M750000009 [SPANSION]

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Read/Write Flash Memory; 128兆位(8M ×16位) CMOS 3.0伏只,同步读/写闪存
M750000009
型号: M750000009
厂家: SPANSION    SPANSION
描述:

128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Read/Write Flash Memory
128兆位(8M ×16位) CMOS 3.0伏只,同步读/写闪存

闪存
文件: 总136页 (文件大小:2452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am75PDL191CHH/  
Am75PDL193CHH  
Data Sheet  
July 2003  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-  
inally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appropriate,  
and changes will be noted in a revision summary.  
Continuity of Ordering Part Numbers  
AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM. To order  
these products, please use only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 31096 Revision A Amendment +1 Issue Date February 5, 2004  
THIS PAGE LEFT INTENTIONALLY BLANK.  
ADVANCE INFORMATION  
Am75PDL191CHH/Am75PDL193CHH  
128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Read/Write Flash Memory  
with Enhanced Versatile I/O Control and Dual Chip Enable Input plus, for Additional Code  
or Data Storage, 64 Megabit (4 M x 16-Bit) CMOS 3.0 Volt-only Simultaneous Read/Write  
Flash Memory and 64 Mbit (4 M x 16-Bit)  
CMOS Pseudo Static RAM  
DISTINCTIVE CHARACTERISTICS  
Both top and bottom boot blocks in one device  
For Code Storage:  
Am29PDL127H/Am29PDL129H Features  
Manufactured on 0.13 µm process technology  
20-year data retention at 125°C  
ARCHITECTURAL ADVANTAGES  
Minimum 1 million erase cycle guarantee per sector  
128 Mbit Page Mode device  
PERFORMANCE CHARACTERISTICS  
Page size of 8 words: Fast page read access from random  
locations within the page  
High Performance  
Dual Chip Enable inputs (PDL129 only)  
Page access times as fast as 30 ns  
Random access times as fast as 70 ns  
Two CE inputs control selection of each half of the memory  
space  
Power consumption (typical values at 10 MHz)  
Single power supply operation  
45 mA active read current  
25 mA program/erase current  
1 µA typical standby mode current  
Full Voltage range: 2.7 to 3.3 volt read, erase, and program  
operations for battery-powered applications  
Simultaneous Read/Write Operation  
SOFTWARE FEATURES  
Data can be continuously read from one bank while  
executing erase/program functions in another bank  
Zero latency switching from write to read operations  
Software command-set compatible with JEDEC 42.4  
standard  
Backward compatible with Am29F and Am29LV families  
FlexBank Architecture  
4 separate banks, with up to two simultaneous operations  
per device  
PDL127:  
CFI (Common Flash Interface) complaint  
Provides device-specific information to the system, allowing  
host software to easily reconfigure for different Flash devices  
Bank A: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank B: 48 Mbit (32 Kw x 96)  
Bank C: 48 Mbit (32 Kw x 96)  
Bank D: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Erase Suspend / Erase Resume  
Suspends an erase operation to allow read or program  
operations in other sectors of same bank  
Unlock Bypass Program command  
PDL129:  
Reduces overall programming time when issuing multiple  
program command sequences  
Bank 1A: 48 Mbit (32 Kw x 96)  
Bank 1B: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 2A: 16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 2B: 48 Mbit (32 Kw x 96)  
SecSiTM (Secured Silicon) Sector region  
Up to 128 words accessible through a command sequence  
Up to 64 factory-locked words  
Up to 64 customer-lockable words  
Publication# 31096 Rev: A Amendment 1  
Issue Date: February 5, 2004  
This document contains information on a product under development at Advanced Micro Devices. The information  
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed  
product without notice.  
Refer to AMD’s Website (www.amd.com) for the latest information.  
A D V A N C E I N F O R M A T I O N  
— Pinout and software compatible with  
HARDWARE FEATURES  
single-power-supply flash standard  
Ready/Busy# pin (RY/BY#)  
Provides a hardware method of detecting program or erase  
cycle completion  
PERFORMANCE CHARACTERISTICS  
High performance  
Hardware reset pin (RESET#)  
Hardware method to reset the device to reading array data  
WP#/ACC (Write Protect/Acceleration) input  
— Access time as fast as 70 ns  
— Program time: 4 µs/word typical utilizing Accelerate  
function  
At VIL, hardware level protection for the first and last two 4K  
word sectors.  
Ultra low power consumption (typical values)  
— 2 mA active read current at 1 MHz  
At VIH, allows removal of sector protection  
At VHH, provides accelerated programming in a factory  
setting  
— 10 mA active read current at 5 MHz  
— 200 nA in standby or automatic sleep mode  
Persistent Sector Protection  
Minimum 1 million erase cycles guaranteed per  
sector  
20 year data retention at 125°C  
— Reliable operation for the life of the system  
A command sector protection method to lock combinations  
of individual sectors and sector groups to prevent program or  
erase operations within that sector  
Sectors can be locked and unlocked in-system at VCC level  
Password Sector Protection  
SOFTWARE FEATURES  
A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector using  
a user-defined 64-bit password  
Data Management Software (DMS)  
— AMD-supplied software manages data programming,  
enabling EEPROM emulation  
— Eases historical sector erase flash limitations  
FOR CODE OR DATA STORAGE:  
AM29DL640H  
Supports Common Flash Memory Interface (CFI)  
Erase Suspend/Erase Resume  
Simultaneous Read/Write operations  
— Suspends erase operations to allow reading from  
other sectors in same bank  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank.  
Data# Polling and Toggle Bits  
— Provides a software method of detecting the status of  
program or erase cycles  
— Zero latency between read and write operations  
Flexible BankTM architecture  
— Read may occur in any of the three banks not being  
written or erased.  
Unlock Bypass Program command  
— Reduces overall programming time when issuing  
multiple program command sequences  
— Four banks may be grouped by customer to achieve  
desired bank divisions.  
HARDWARE FEATURES  
Boot Sectors  
Ready/Busy# output (RY/BY#)  
— Hardware method for detecting program or erase  
cycle completion  
Top and bottom boot sectors in the same device  
— Any combination of sectors can be erased  
Manufactured on 0.13 µm process technology  
Hardware reset pin (RESET#)  
— Hardware method of resetting the internal state  
machine to the read mode  
SecSi™ (Secured Silicon) Sector: Extra 256 Byte  
sector  
Factory locked and identifiable: 16 bytes available for  
secure, random factory Electronic Serial Number;  
verifiable as factory locked through autoselect  
function. ExpressFlash option allows entire sector to  
be available for factory-secured data  
WP#/ACC input pin  
— Write protect (WP#) function protects sectors 0, 1,  
140, and 141, regardless of sector protect status  
— Acceleration (ACC) function accelerates program  
timing  
Customer lockable: One-time programmable only.  
Once locked, data cannot be changed  
Sector protection  
— Hardware method of locking a sector, either  
in-system or using programming equipment, to  
prevent any program or erase operation within that  
sector  
Zero Power Operation  
— Sophisticated power management circuits reduce  
power consumed during inactive periods to nearly  
zero.  
Temporary Sector Unprotect allows changing data in  
protected sectors in-system  
Compatible with JEDEC standards  
2
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
PSRAM FEATURES  
Organized as 4,194,304 words by 16 bits  
Single power supply voltage of 2.7 to 3.3 V  
Direct TTL compatibility for all inputs and outputs  
Deep power-down mode: Memory cell data invalid  
Page operation mode:  
8-word Page read operation  
Logic compatible with SRAM R/W (WE) pin  
Standby current  
Standby 100 µA  
Deep power-down standby 5 µA  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
3
A D V A N C E I N F O R M A T I O N  
GENERAL DESCRIPTION (PDL129)  
The Am29PDL129H is a 128 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device orga-  
nized as 8 Mwords. The word-wide data (x16) appears on  
DQ15-DQ0. This device can be programmed in-system or in  
standard EPROM programmers. A 12.0 V VPP is not required  
for write or erase operations.  
The device is entirely command set compatible with the  
JEDEC 42.4 single-power-supply Flash standard. Com-  
mands are written to the command register using standard  
microprocessor write timing. Register contents serve as in-  
puts to an internal state-machine that controls the erase and  
programming circuitry. Write cycles also internally latch ad-  
dresses and data needed for the programming and erase  
operations. Reading data out of the device is similar to read-  
ing from other Flash or EPROM devices.  
The device offers fast page access time of 25 and 30 ns,  
with corresponding random access times of 65 and 85 ns,  
respectively, allowing high speed microprocessors to oper-  
ate without wait states. To eliminate bus contention the de-  
vice has separate chip enable (CE#f1, CE#f2), write enable  
(WE#) and output enable (OE#) controls. Dual Chip Enables  
allow access to two 64 Mbit partitions of the 128 Mbit mem-  
ory space.  
Device programming occurs by executing the program com-  
mand sequence. The Unlock Bypass mode facilitates faster  
programming times by requiring only two write cycles to pro-  
gram data instead of four. Device erasure occurs by execut-  
ing the erase command sequence.  
The host system can detect whether a program or erase op-  
eration is complete by reading the DQ7 (Data# Polling) and  
DQ6 (toggle) status bits. After a program or erase cycle has  
been completed, the device is ready to read array data or ac-  
cept another command.  
Simultaneous Read/Write Operation with  
Zero Latency  
The Simultaneous Read/Write architecture provides simul-  
taneous operation by dividing the memory space into 4  
banks, which can be considered to be four separate memory  
arrays as far as certain operations are concerned. The de-  
vice can improve overall system performance by allowing a  
host system to program or erase in one bank, then immedi-  
ately and simultaneously read from another bank with zero  
latency (with two simultaneous operations operating at any  
one time). This releases the system from waiting for the  
completion of a program or erase operation, greatly improv-  
ing system performance.  
The sector erase architecture allows memory sectors to be  
erased and reprogrammed without affecting the data con-  
tents of other sectors. The device is fully erased when  
shipped from the factory.  
Hardware data protection measures include a low VCC de-  
tector that automatically inhibits write operations during  
power transitions. The hardware sector protection feature  
disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or  
via programming equipment.  
The device can be organized in both top and bottom sector  
configurations. The banks are organized as follows:  
The Erase Suspend/Erase Resume feature enables the  
user to put erase on hold for any period of time to read data  
from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a  
read is needed from the SecSi Sector area (One Time Pro-  
gram area) after an erase suspend, then the user must use  
the proper command sequence to enter and exit this region.  
Chip Enable Configuration  
CE#f1 Control  
CE#f2 Control  
Bank 1A  
Bank 2A  
48 Mbit (32 Kw x 96)  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Bank 1B  
Bank 2B  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
Page Mode Features  
The page size is 8 words. After initial page access is accom-  
plished, the page mode operation provides fast read access  
speed of random locations within that page.  
The device offers two power-saving features. When ad-  
dresses have been stable for a specified amount of time, the  
device enters the automatic sleep mode. The system can  
also place the device into the standby mode. Power con-  
sumption is greatly reduced in both these modes.  
Standard Flash Memory Features  
AMD’s Flash technology combined years of Flash memory  
manufacturing experience to produce the highest levels of  
quality, reliability and cost effectiveness. The device electri-  
cally erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using  
hot electron injection.  
The device requires a single 3.0 volt power supply (2.7 V  
to 3.3 V) for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the program  
and erase operations.  
4
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
GENERAL DESCRIPTION (PDL127)  
The Am29PDL127H is a 128 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device orga-  
nized as 8 Mwords. The word-wide data (x16) appears on  
DQ15-DQ0. This device can be programmed in-system or in  
standard EPROM programmers. A 12.0 V VPP is not required  
for write or erase operations.  
microprocessor write timing. Register contents serve as in-  
puts to an internal state-machine that controls the erase and  
programming circuitry. Write cycles also internally latch ad-  
dresses and data needed for the programming and erase  
operations. Reading data out of the device is similar to read-  
ing from other Flash or EPROM devices.  
The device offers fast page access time of 25 and 30 ns,  
with corresponding random access times of 65 and 85 ns,  
respectively, allowing high speed microprocessors to oper-  
ate without wait states. To eliminate bus contention the de-  
vice has separate chip enable (CE#f1), write enable (WE#)  
and output enable (OE#) controls. Simultaneous Read/Write  
Operation with Zero Latency  
Device programming occurs by executing the program com-  
mand sequence. The Unlock Bypass mode facilitates faster  
programming times by requiring only two write cycles to pro-  
gram data instead of four. Device erasure occurs by execut-  
ing the erase command sequence.  
The host system can detect whether a program or erase op-  
eration is complete by reading the DQ7 (Data# Polling) and  
DQ6 (toggle) status bits. After a program or erase cycle has  
been completed, the device is ready to read array data or ac-  
cept another command.  
The Simultaneous Read/Write architecture provides simul-  
taneous operation by dividing the memory space into 4  
banks, which can be considered to be four separate memory  
arrays as far as certain operations are concerned. The de-  
vice can improve overall system performance by allowing a  
host system to program or erase in one bank, then immedi-  
ately and simultaneously read from another bank with zero  
latency (with two simultaneous operations operating at any  
one time). This releases the system from waiting for the  
completion of a program or erase operation, greatly improv-  
ing system performance.  
The sector erase architecture allows memory sectors to be  
erased and reprogrammed without affecting the data con-  
tents of other sectors. The device is fully erased when  
shipped from the factory.  
Hardware data protection measures include a low VCC de-  
tector that automatically inhibits write operations during  
power transitions. The hardware sector protection feature  
disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or  
via programming equipment.  
The device can be organized in both top and bottom sector  
configurations. The banks are organized as follows:  
Bank  
Sectors  
The Erase Suspend/Erase Resume feature enables the  
user to put erase on hold for any period of time to read data  
from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a  
read is needed from the SecSi Sector area (One Time Pro-  
gram area) after an erase suspend, then the user must use  
the proper command sequence to enter and exit this region.  
A
B
C
D
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
48 Mbit (32 Kw x 96)  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Page Mode Features  
The page size is 8 words. After initial page access is accom-  
plished, the page mode operation provides fast read access  
speed of random locations within that page.  
The device offers two power-saving features. When ad-  
dresses have been stable for a specified amount of time, the  
device enters the automatic sleep mode. The system can  
also place the device into the standby mode. Power con-  
sumption is greatly reduced in both these modes.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V  
to 3.3 V) for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the program  
and erase operations.  
AMD’s Flash technology combined years of Flash memory  
manufacturing experience to produce the highest levels of  
quality, reliability and cost effectiveness. The device electri-  
cally erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using  
hot electron injection.  
The device is entirely command set compatible with the  
JEDEC 42.4 single-power-supply Flash standard. Com-  
mands are written to the command register using standard  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
5
A D V A N C E I N F O R M A T I O N  
GENERAL DESCRIPTION (DL640)  
The Am29DL640H is a 64 megabit, 3.0 volt-only flash  
memory device, organized as 4,194,304 words of 16  
bits each or 8,388,608 bytes of 8 bits each. Word  
mode data appears on DQ15–DQ0; byte mode data  
appears on DQ7–DQ0. The device is designed to be  
programmed in-system with the standard 3.0 volt VCC  
supply, and can also be programmed in standard  
EPROM programmers.  
Factory locked parts provide several options. The  
SecSi Sector may store a secure, random 16 byte  
ESN (Electronic Serial Number), customer code (pro-  
grammed through AMD’s ExpressFlash service), or  
both. Customer Lockable parts may utilize the SecSi  
Sector as bonus space, reading and writing like any  
other flash sector, or may permanently lock their own  
code there.  
The device is available with an access time of 70, 90,  
or 120 ns and is offered in 48-pin TSOP, 63-ball  
Fine-Pitch BGA, and 64-ball Fortified BGA packages.  
Standard control pins—chip enable (CE#), write en-  
able (WE#), and output enable (OE#)—control normal  
read and write operations, and avoid bus contention  
issues.  
DMS (Data Management Software) allows systems  
to easily take advantage of the advanced architecture  
of the simultaneous read/write product line by allowing  
removal of EEPROM devices. DMS will also allow the  
system software to be simplified, as it will perform all  
functions necessary to modify data in file structures,  
as opposed to single-byte modifications. To write or  
update a particular piece of data (a phone number or  
configuration data, for example), the user only needs  
to state which piece of data is to be updated, and  
where the updated data is located in the system. This  
is an advantage compared to systems where  
user-written software must keep track of the old data  
location, status, logical to physical translation of the  
data onto the Flash memory device (or memory de-  
vices), and more. Using DMS, user-written software  
does not need to interface with the Flash memory di-  
rectly. Instead, the user's software accesses the Flash  
memory by calling one of only six functions. AMD pro-  
vides this software to simplify system design and soft-  
ware integration efforts.  
The device requires only a single 3.0 volt power sup-  
ply for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the  
program and erase operations.  
Simultaneous Read/Write Operations with  
Zero Latency  
The Simultaneous Read/Write architecture provides  
simultaneous operation by dividing the memory  
space into four banks, two 8 Mb banks with small and  
large sectors, and two 24 Mb banks of large sectors.  
Sector addresses are fixed, system software can be  
used to form user-defined bank groups.  
During an Erase/Program operation, any of the three  
non-busy banks may be read from. Note that only two  
banks can operate simultaneously. The device can im-  
prove overall system performance by allowing a host  
system to program or erase in one bank, then  
immediately and simultaneously read from the other  
bank, with zero latency. This releases the system from  
waiting for the completion of program or erase  
operations.  
The device offers complete compatibility with the  
JEDEC single-power-supply Flash command set  
standard. Commands are written to the command  
register using standard microprocessor write timings.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
The host system can detect whether a program or  
erase operation is complete by using the device sta-  
tus bits: RY/BY# pin, DQ7 (Data# Polling) and  
DQ6/DQ2 (toggle bits). After a program or erase cycle  
has been completed, the device automatically returns  
to the read mode.  
The Am29DL640H can be organized as both a top and  
bottom boot sector configuration.  
Bank  
Megabits  
Sector Sizes  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Eight 8 Kbyte/4 Kword,  
Fifteen 64 Kbyte/32 Kword  
Bank 1  
8 Mb  
Bank 2  
Bank 3  
24 Mb  
24 Mb  
Forty-eight 64 Kbyte/32 Kword  
Forty-eight 64 Kbyte/32 Kword  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via program-  
ming equipment.  
Eight 8 Kbyte/4 Kword,  
Fifteen 64 Kbyte/32 Kword  
Bank 4  
8 Mb  
Am29DL640H Features  
The SecSi™ (Secured Silicon) Sector is an extra  
256 byte sector capable of being permanently locked  
by AMD or customers. The SecSi Customer Indica-  
tor Bit (DQ6) is permanently set to a 1 if the part has  
been customer locked, permanently set to 0 if the part  
has been factory locked, and is 0 if customer lock-  
able. This way, customer lockable parts can never be  
used to replace a factory locked part.  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the  
standby mode. Power consumption is greatly re-  
duced in both modes.  
6
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Pseudo SRAM Memory  
The pSRAM device is a 64 Mbit pseudo static random  
access memory (PSRAM) organized as 4,194,304  
words by 16 bits. The device operates a single power  
supply. The device also features SRAM-like W/R tim-  
ing whereby the device is controlled by CE1#, OE#,  
and WE# on anynchronous. The device also supports  
deep power-down mode, realizing low-power standby.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
7
A D V A N C E I N F O R M A T I O N  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . 11  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 12  
Connection Diagram–PDL127 . . . . . . . . . . . . . . . 13  
Special Package Handling Instructions .................................. 13  
Connection Diagram–PDL129 . . . . . . . . . . . . . . . 14  
Special Package Handling Instructions .................................. 14  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . 16  
Am29PDL127H/AM29PDL129H Device Bus Operations ....... 17  
Table 1. Device Bus Operations ..................................................... 18  
Requirements for Reading Array Data ................................... 19  
Random Read (Non-Page Read) ........................................ 19  
Page Mode Read ................................................................ 19  
Table 2. Page Select .......................................................................19  
Simultaneous Operation ......................................................... 19  
Table 3. Bank Select (PDL129H) ....................................................19  
Table 4. Bank Select (PDL127H) ....................................................19  
Writing Commands/Command Sequences ............................ 20  
Accelerated Program Operation .......................................... 20  
Autoselect Functions ........................................................... 20  
Standby Mode ........................................................................ 20  
Automatic Sleep Mode ........................................................... 20  
RESET#: Hardware Reset Pin ............................................... 21  
Output Disable Mode .............................................................. 21  
Table 5. SecSiTM Sector Addresses ................................................21  
Table 6. Am29PDL127H Sector Architecture ..................................22  
Table 7. Am29PDL129H Sector Architecture ..................................29  
Table 8. Am29PDL127H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection ........................................................................37  
Table 9. Am29PDL129H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection  
SecSi Sector Protection Bits ................................................ 46  
Hardware Data Protection ...................................................... 46  
Low VCC Write Inhibit ......................................................... 46  
Write Pulse “Glitch” Protection ............................................ 46  
Logical Inhibit ....................................................................... 46  
Power-Up Write Inhibit ......................................................... 46  
Common Flash Memory Interface (CFI) . . . . . . . 46  
Table 12. CFI Query Identification String........................................ 47  
System Interface String................................................................... 47  
Table 14. Device Geometry Definition ............................................ 48  
Table 15. Primary Vendor-Specific Extended Query ...................... 49  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 50  
Reading Array Data ................................................................ 50  
Reset Command ..................................................................... 50  
Autoselect Command Sequence ............................................ 50  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence .............................................................. 51  
Word Program Command Sequence ...................................... 51  
Unlock Bypass Command Sequence .................................. 51  
Figure 4. Program Operation ......................................................... 52  
Chip Erase Command Sequence ........................................... 52  
Sector Erase Command Sequence ........................................ 52  
Figure 5. Erase Operation.............................................................. 53  
Erase Suspend/Erase Resume Commands ........................... 53  
Password Program Command ................................................ 53  
Password Verify Command .................................................... 54  
Password Protection Mode Locking Bit Program Command .. 54  
Persistent Sector Protection Mode Locking Bit Program Com-  
mand ....................................................................................... 54  
SecSi Sector Protection Bit Program Command .................... 54  
PPB Lock Bit Set Command ................................................... 54  
DYB Write Command ............................................................. 54  
Password Unlock Command .................................................. 55  
PPB Program Command ........................................................ 55  
All PPB Erase Command ........................................................ 55  
DYB Write Command ............................................................. 55  
PPB Lock Bit Set Command ................................................... 55  
PPB Status Command ............................................................ 55  
PPB Lock Bit Status Command .............................................. 55  
Sector Protection Status Command ....................................... 55  
Command Definitions Tables .................................................. 56  
Table 16. Memory Array Command Definitions ............................. 56  
Table 17. Sector Protection Command Definitions ........................ 57  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 58  
DQ7: Data# Polling ................................................................. 58  
Figure 6. Data# Polling Algorithm .................................................. 58  
RY/BY#: Ready/Busy# ............................................................ 59  
DQ6: Toggle Bit I .................................................................... 59  
Figure 7. Toggle Bit Algorithm........................................................ 59  
DQ2: Toggle Bit II ................................................................... 60  
Reading Toggle Bits DQ6/DQ2 ............................................... 60  
DQ5: Exceeded Timing Limits ................................................ 60  
CE#f1 Control ..................................................................................38  
Table 10. Am29PDL129H Boot Sector/Sector Block Addresses for  
Protection/Unprotection  
CE#f2 Control ..................................................................................38  
Sector Protection. . . . . . . . . . . . . . . . . . . . . . . . . 39  
Persistent Sector Protection ................................................... 39  
Persistent Protection Bit (PPB) ............................................ 39  
Persistent Protection Bit Lock (PPB Lock) .......................... 39  
Dynamic Protection Bit (DYB) ............................................. 39  
Table 11. Sector Protection Schemes .............................................40  
Persistent Sector Protection Mode Locking Bit ................... 40  
Password Protection Mode ..................................................... 40  
Password and Password Mode Locking Bit ........................ 41  
64-bit Password ................................................................... 41  
Write Protect (WP#) ................................................................ 41  
Persistent Protection Bit Lock .............................................. 41  
High Voltage Sector Protection .............................................. 42  
Figure 1. In-System Sector Protection/  
Sector Unprotection Algorithms ...................................................... 43  
Temporary Sector Unprotect .................................................. 44  
Figure 2. Temporary Sector Unprotect Operation........................... 44  
SecSi™ (Secured Silicon) Sector  
DQ3: Sector Erase Timer ....................................................... 60  
Table 18. Write Operation Status ................................................... 61  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 62  
Figure 8. Maximum Negative Overshoot Waveform ...................... 62  
Figure 9. Maximum Positive Overshoot Waveform........................ 62  
Flash Memory Region ............................................................ 44  
Factory-Locked Area (64 words) ......................................... 44  
Customer-Lockable Area (64 words) ................................... 44  
Figure 3. SecSi Protection Algorithm .............................................. 45  
8
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
ESD Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 64  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 10. Test Setup..................................................................... 65  
Figure 11. Input Waveforms and Measurement Levels .................. 65  
pSRAM AC Characteristics . . . . . . . . . . . . . . . . . 66  
CE#1ps Timing ....................................................................... 66  
Figure 12. Timing Diagram for Alternating  
Flash Memory Region ............................................................. 90  
Figure 3. SecSi Sector Protect Verify............................................. 91  
Hardware Data Protection ...................................................... 91  
Low VCC Write Inhibit ......................................................... 91  
Write Pulse “Glitch” Protection ............................................ 91  
Logical Inhibit ....................................................................... 91  
Power-Up Write Inhibit ......................................................... 91  
Common Flash Memory Interface (CFI) . . . . . . . 91  
Table 7. CFI Query Identification String.......................................... 92  
System Interface String................................................................... 92  
Table 9. Device Geometry Definition .............................................. 93  
Table 10. Primary Vendor-Specific Extended Query ...................... 94  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 95  
Between Pseudo SRAM and Flash................................................. 66  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 67  
Read-Only Operations – Am29PDL127H ............................... 67  
Read-Only Operations – Am29PDL129H ............................... 67  
Figure 13. Read Operation Timings................................................ 68  
Figure 14. Page Read Operation Timings....................................... 68  
Hardware Reset (RESET#) .................................................... 69  
Figure 15. Reset Timings................................................................ 69  
Erase and Program Operations .............................................. 70  
Figure 16. Program Operation Timings........................................... 71  
Figure 17. Accelerated Program Timing Diagram........................... 71  
Figure 18. Chip/Sector Erase Operation Timings ........................... 72  
Figure 19. Back-to-back Read/Write Cycle Timings ....................... 73  
Figure 20. Data# Polling Timings (During Embedded Algorithms).. 73  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)....... 74  
Figure 22. DQ2 vs. DQ6.................................................................. 74  
Temporary Sector Unprotect .................................................. 75  
Figure 23. Temporary Sector Unprotect Timing Diagram ............... 75  
Figure 24. Sector/Sector Block Protect and  
Reading Array Data ................................................................ 95  
Reset Command ..................................................................... 95  
Autoselect Command Sequence ............................................ 95  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence .............................................................. 95  
Word Program Command Sequence ...................................... 96  
Unlock Bypass Command Sequence .................................. 96  
Figure 4. Program Operation ......................................................... 97  
Chip Erase Command Sequence ........................................... 97  
Sector Erase Command Sequence ........................................ 97  
Figure 5. Erase Operation.............................................................. 98  
Erase Suspend/Erase Resume Commands ........................... 98  
Table 11. Am29DL640H Command Definitions .............................. 99  
Write Operation Status . . . . . . . . . . . . . . . . . . . 100  
DQ7: Data# Polling ...............................................................100  
Figure 6. Data# Polling Algorithm ................................................ 100  
RY/BY#: Ready/Busy# .......................................................... 101  
DQ6: Toggle Bit I ..................................................................101  
Figure 7. Toggle Bit Algorithm...................................................... 101  
DQ2: Toggle Bit II ................................................................. 102  
Reading Toggle Bits DQ6/DQ2 .............................................102  
DQ5: Exceeded Timing Limits .............................................. 102  
DQ3: Sector Erase Timer ..................................................... 102  
Table 12. Write Operation Status ................................................. 103  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 104  
Figure 8. Maximum Negative Overshoot Waveform .................... 104  
Figure 9. Maximum Positive Overshoot Waveform...................... 104  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 10. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents)........................................................... 106  
Figure 11. Typical ICC1 vs. Frequency.......................................... 106  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 12. Test Setup.................................................................. 107  
Figure 13. Input Waveforms and Measurement Levels ............... 107  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 108  
Unprotect Timing Diagram .............................................................. 76  
Alternate CE# Controlled Erase and Program Operations ..... 77  
Figure 25. Flash Alternate CE# Controlled Write (Erase/Program)  
Operation Timings........................................................................... 78  
Erase And Programming Performance . . . . . . . . 79  
Latchup Characteristics . . . . . . . . . . . . . . . . . . . 79  
Package Pin Capacitance . . . . . . . . . . . . . . . . . . 79  
Flash Data Retention . . . . . . . . . . . . . . . . . . . . . . 79  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 80  
Table 1. Am29DL640H Device Bus Operations ..............................80  
Word/Byte Configuration ........................................................ 80  
Requirements for Reading Array Data ................................... 80  
Writing Commands/Command Sequences ............................ 81  
Accelerated Program Operation .......................................... 81  
Autoselect Functions ........................................................... 81  
Simultaneous Read/Write Operations with Zero Latency ....... 81  
Standby Mode ........................................................................ 81  
Automatic Sleep Mode ........................................................... 81  
RESET#: Hardware Reset Pin ............................................... 82  
Output Disable Mode .............................................................. 82  
Table 2. Am29DL640H Sector Architecture ....................................82  
Table 3. Bank Address ....................................................................85  
SecSiTM Sector Addresses.............................................................. 85  
Autoselect Mode ..................................................................... 85  
Sector/Sector Block Protection and Unprotection .................. 87  
Table 5. Am29DL640H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection ........................................................................87  
Write Protect (WP#) ................................................................ 87  
Table 6. WP#/ACC Modes ..............................................................88  
Temporary Sector Unprotect .................................................. 88  
Figure 1. Temporary Sector Unprotect Operation........................... 88  
Figure 2. In-System Sector Protect/Unprotect Algorithms .............. 89  
SecSi™ (Secured Silicon) Sector  
Read-Only Operations .........................................................108  
Figure 14. Read Operation Timings............................................. 108  
Hardware Reset (RESET#) .................................................. 109  
Figure 15. Reset Timings............................................................. 109  
Erase and Program Operations ............................................110  
Figure 16. Program Operation Timings........................................ 111  
Figure 17. Accelerated Program Timing Diagram........................ 111  
Figure 18. Chip/Sector Erase Operation Timings ........................ 112  
Figure 19. Back-to-back Read/Write Cycle Timings .................... 113  
Figure 20. Data# Polling Timings (During Embedded Algorithms) 113  
Figure 21. Toggle Bit Timings (During Embedded Algorithms).... 114  
Figure 22. DQ2 vs. DQ6............................................................... 114  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
9
A D V A N C E I N F O R M A T I O N  
Temporary Sector Unprotect ................................................ 115  
Figure 23. Temporary Sector Unprotect Timing Diagram ............. 115  
Figure 24. Sector/Sector Block Protect and  
Unprotect Timing Diagram ............................................................ 116  
Alternate CE# Controlled Erase and Program Operations ... 117  
Figure 25. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings......................................................................... 118  
Erase And Programming Performance . . . . . . . 119  
Latchup Characteristics . . . . . . . . . . . . . . . . . . 119  
PSRAM AC Characteristics . . . . . . . . . . . . . . . . 120  
CE#s Timing ......................................................................... 120  
Figure 26. Timing Diagram for Alternating  
Between Pseudo SRAM to Flash.................................................. 120  
Figure 27. Timing Waveform of Power-up .................................... 120  
pSRAM AC CHaracteristics . . . . . . . . . . . . . . . . 121  
Absolute Maximum Ratings .................................................. 121  
DC Recommended Operating Conditions (Ta = -25oC to 85oC)  
121  
DC Characteristics (Ta = -25oC to 85oC, VDD = 2.6 to 3.3 V) ..  
122  
Capacitance (Ta = -25oC, f = 1 MHz) .................................. 122  
AC Characteristics and Operating Conditions ...................... 123  
AC Test Conditions ............................................................... 124  
Timing Diagrams ................................................................... 125  
Page Read Cycle (8 words access) ......................................125  
Write Cycle 1 ........................................................................ 126  
Write Cycle 2 ........................................................................ 126  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . 128  
FMB073—73-Ball Fine-Pitch Grid Array 9 x 12 mm ............. 128  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . 129  
Functional Description .......................................................... 121  
10  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
PRODUCT SELECTOR GUIDE  
Part Number  
Am29PDL129H  
70  
Speed Option  
VCC, VIO = 2.7–3.3 V  
Max Access Time, ns (tACC  
)
70  
30  
Max CE# Access, ns (tCE  
Max Page Access, ns (tPACC  
)
)
Max OE# Access, ns (tOE  
)
Part Number  
Am29DL640H  
Speed Option  
Standard Voltage Range: VCC = 2.7–3.3 V  
70  
70  
70  
30  
Max Access Time (ns), tACC  
CE# Access (ns), tCE  
OE# Access (ns), tOE  
Part Number  
pSRAM  
70  
Speed Option  
Standard Voltage Range: VCC = 2.7–3.3 V  
Max Access Time, ns (tACC  
Max CE# Access, ns (tCE  
Max OE# Access, ns (tOE  
Page Access, ns (tAA  
)
70  
)
pSRAM  
)
25  
30  
)
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
11  
A D V A N C E I N F O R M A T I O N  
MCP BLOCK DIAGRAM  
VCC  
VSS  
A0 to A21  
(A22 PDL127 Only)  
A0 to A21 (A22)  
Am29PDL127H  
or  
Am29PDL129H  
CE#f1  
CE#f2  
DQ0 to DQ15  
V
IO = VCC  
DQ0 to DQ15  
VCC  
VSS  
A0 to A21  
Am29DL640G  
WP#/ACC  
OE#  
DQ0 to DQ15  
CE#f3  
WE#  
RESET#  
VSSA  
VSS  
A0 to A21  
64 Mb  
CE#1ps  
CE2ps  
pSRAM  
CC = VCCQ  
DQ0 to DQ15  
V
UB#  
LB#  
VCCps  
VCC  
VSSQ  
12  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
CONNECTION DIAGRAM–PDL127  
73-Ball FBGA  
Top View  
A1  
A10  
DL640G Only  
NC  
NC  
Pseudo  
SRAM Only  
B1  
B5  
CE#f3  
C5  
B6  
B10  
NC  
NC  
NC  
Flash Shared Only  
PDL127H Only  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
A21  
F9  
UB# RESET# CE2ps  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
A22  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f1  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V
CC  
ps  
CE#1ps DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
exposed to temperatures above 150°C for prolonged  
periods of time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (BGA). The package and/or data  
integrity may be compromised if the package body is  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
13  
A D V A N C E I N F O R M A T I O N  
CONNECTION DIAGRAM–PDL129  
73-Ball FBGA  
Top View  
DL640G Only  
A1  
A10  
NC  
NC  
Pseudo  
SRAM Only  
B1  
B5  
CE#f3  
C5  
B6  
B10  
NC  
NC  
NC  
Flash Shared Only  
PDL129 Only  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
UB# RESET# CE2ps  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
A21  
F9  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
CE#f2  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
H9  
NC  
J9  
NC  
H2  
CE#f1  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
DQ13 DQ15  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
V
CC  
f
V ps  
CC  
CE#1ps DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
integrity may be compromised if the package body is  
exposed to temperatures above 150°C for prolonged  
periods of time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (BGA). The package and/or data  
14  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
WP/ACC#= 12V, program and erase  
PIN DESCRIPTION  
A21–A0  
operations are accelerated.  
= 22 Address Inputs (Common)  
VCC  
f
= Flash 3.0 volt-only single power sup-  
ply (see Product Selector Guide for  
speed options and voltage supply  
tolerances)  
A22  
=
Address Input (PDL127 only)  
(Flash)  
DQ15–DQ0  
CE#f1  
= 16 Data Inputs/Outputs (Common)  
= Chip Enable 1 (Flash) (PDL 127  
only)  
VCC  
VSS  
NC  
s
= pSRAM Power Supply  
= Device Ground (Common)  
= Pin Not Connected Internally  
CE#f1, CE#f2 = Chip Enable Inputs. CE#f1 controls  
the 64 Mb in Banks 1A and 1B.  
CE#f2 controls the 64 Mb in Banks  
2A and 2B.  
LOGIC SYMBOL  
22  
CE#1ps  
= Chip Enable 1 (pSRAM) (PDL129  
only)  
A21–A0  
CE2ps  
OE#  
= Chip Enable 2 (pSRAM)  
= Output Enable (Common)  
= Write Enable (Common)  
A22 (PDL127 Only)  
CE#f1  
16  
WE#  
DQ15–DQ0  
RY/BY#  
= Ready/Busy Output and open drain.  
When RY/BY# = VIH, the device is  
ready to accept read operations and  
CE#f2 (PDL129 Only)  
CE#1ps  
commands. When RY/BY# = VOL  
,
CE2ps  
RY/BY#  
the device is either executing an em-  
bedded algorithm or the device is  
executing a hardware reset opera-  
tion.  
OE#  
WE#  
UB#s  
= Upper Byte Control (pSRAM)  
= Lower Byte Control (pSRAM)  
= Hardware Reset Pin, Active Low  
WP#/ACC  
LB#s  
RESET#  
UB#s  
RESET#  
WP#/ACC  
= Write Protect/Acceleration Input.  
When WP/ACC#= VIL, the highest  
and lowest two 4K-word sectors are  
write protected regardless of other  
sector protection configurations.  
When WP/ACC#= VIH, these sector  
are unprotected unless the DYB or  
PPB is programmed. When  
LB#s  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
15  
A D V A N C E I N F O R M A T I O N  
ORDERING INFORMATION  
The order number (Valid Combination) is formed by the following:  
Am75PDL19 70  
1
C
H
H
N
TEMPERATURE RANGE  
Light Industrial (–25°C to +85°C)  
N
=
SPEED OPTION  
See “Product Selector Guide” on page 5.  
PROCESS TECHNOLOGY OF AM29DL640  
H
=
0.13 µm  
PROCESS TECHNOLOGY OF AM29PDL127/129  
0.13 µm  
H
=
PSEUDO SRAM DEVICE DENSITY  
64 Mbits  
C
=
CONTROL PINS  
1
3
=
=
1 CE Flash  
2 CE Flash  
AMD DEVICE NUMBER/DESCRIPTION  
Am75PDL191CHH/Am75PDL193CHH  
Am29PDL127H/129H–128 Megabit (8 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous  
Operation Flash Memory, One Chip Enable Input on Am29PDL127H, Dual Chip Enable  
Inputs on Am29PDL129H  
Am29DL640H–64 Megabit (4M x 16-Bit) CMOS Flash Memory  
64 Mb pSRAM  
Valid Combinations  
Valid Combinations for BGA Packages  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult the local AMD sales office to confirm  
availability of specific valid combinations and to check on newly re-  
leased combinations.  
Order Number  
Am75PDL191CHH70I  
Am75PDL193CHH70I  
Package Marking  
M750000008  
M750000009  
VIO Range  
2.7–3.3 V  
2.7–3.3 V  
16  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Am29PDL127H/AM29PDL129H Device Bus Operations  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Tables 1-2 lists the device bus operations, the  
inputs and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
17  
A D V A N C E I N F O R M A T I O N  
Table 1. Device Bus Operations  
CE#f2  
LB#s UB#s  
(Note (Note RESET#  
WP#/  
ACC  
(Note 4)  
Operation  
(Notes 1, 2)  
CE#f1  
Active  
DQ7– DQ15–  
(PDL129 CE#1ps CE2ps OE# WE#  
only)  
Addr.  
DQ0  
DQ8  
3)  
3)  
(Note 7)  
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
H
H
L
Read from  
Active Flash  
AIN  
AIN  
DOUT  
DOUT  
L (H)  
L (H)  
H (L)  
H (L)  
L
H
L
X
X
H
H
L/H  
H
L
Write to Active  
Flash  
DIN  
DIN  
H
X
X
(Note 4)  
VCC  
0.3 V  
VCC 0.3 V  
VCC 0.3 V  
Standby  
H
H
H
L
X
X
X
X
X
X
X
X
X
X
H
H
High-Z High-Z  
High-Z High-Z  
VCC  
Deep Power-down  
Standby  
0.3 V  
H
H
H
H
X
X
X
X
X
X
Output Disable (Note 9)  
L (H)  
H (L)  
L
H
H
L
L/H  
L/H  
High-Z High-Z  
High-Z High-Z  
(Note 7)  
H
H
H
H
L
Flash Hardware  
Reset  
X
X
X
X
X
X
(Note 8)  
(Note 7)  
H
SADD,  
A6 = L,  
A1 = H,  
A0 = L  
Sector Protect  
(Notes 6, 10)  
VID  
DIN  
L (H)  
L (H)  
H (L)  
H (L)  
H
L
X
X
L/H  
X
(Note 9)  
(Note 7)  
(Note 8)  
H
H
H
L
H
L
SADD,  
A6 = H,  
A1 = H,  
A0 = L  
Sector  
Unprotect  
(Notes 5, 9)  
VID  
DIN  
H
X
L
L
X
H
X
X
X
X
(Note 6)  
(Note 6)  
X
X
Temporary  
Sector  
Unprotect  
(Note 7)  
(Note 8)  
H
H
H
L
VID  
DIN  
X
X
High-Z  
DOUT  
DOUT  
DOUT  
L
H
L
L
L
AIN  
Read from pSRAM  
Write to pSRAM  
H
H
H
H
L
L
H
H
H
H
High-Z  
DOUT  
DIN  
H
L
High-Z  
DIN  
L
AIN  
DIN  
X
L
H
L
L
X
High-Z  
DIN  
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 0.5 V, X = Don’t Care, SADD = Flash Sector Address, AIN  
=
Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Other operations except for those indicated in this column are  
6. If WP#/ACC = VIL, the two outermost boot sectors remain  
protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or  
inhibited.  
2. Do not apply CE#f1 or 2 = VIL, CE#1ps = VIL and CE2ps = VIH at  
the same time.  
unprotected using the method described in “Sector/Sector Block  
Protection and Unprotection”. If WP#/ACC = VHH, all sectors will  
be unprotected.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL, the boot sectors will be protected. If WP#/ACC  
= VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by  
40%.  
7. Data will be retained in pSRAM.  
8. Data will be lost in pSRAM.  
9. Both CE#f1 inputs may be held low for this operation.  
5. The sector protect and sector unprotect functions may also be  
implemented via programming equipment. See the “Sector/Sector  
Block Protection and Unprotection” section.  
18  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
page mode accesses are obtained by keeping  
A22–A3 (A21–A3 for PDL129) constant and changing  
A2 to A0 to select the specific word within that page.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must  
drive the OE# and appropriate CE#f1/CE#f2 (PDL129  
only) pins to VIL. CE#f1 and CE#f2 are the power con-  
trol and for PDL129 select the lower (CE#f1) or upper  
(CE#f2) halves of the device. OE# is the output control  
and gates array data to the output pins. WE# should  
remain at VIH.  
Table 2. Page Select  
Word  
A2  
0
A1  
0
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. Each bank remains  
enabled for read access until the command register  
contents are altered.  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Refer to the AC Characteristics table for timing specifi-  
cations and to Figure 13 for the timing diagram. ICC1 in  
the DC Characteristics table represents the active cur-  
rent specification for reading array data.  
Simultaneous Operation  
In addition to the conventional features (read, pro-  
gram, erase-suspend read, and erase-suspend pro-  
gram), the device is capable of reading data from one  
bank of memory while a program or erase operation is  
in progress in another bank of memory (simultaneous  
operation), The bank can be selected by bank ad-  
dresses (A22–A20) (A21–A20 for PDL129) with zero  
latency.  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from  
stable addresses to valid output data. The chip enable  
access time (tCE) is the delay from the stable ad-  
dresses and stable CE#f1 to valid data at the output  
inputs. The output enable access time is the delay  
from the falling edge of the OE# to valid data at the  
output inputs (assuming the addresses have been sta-  
ble for at least tACC–tOE time).  
The simultaneous operation can execute multi-func-  
tion mode in the same bank.  
Table 3. Bank Select (PDL129H)  
Page Mode Read  
The device is capable of fast page mode read and is  
compatible with the page mode Mask ROM read oper-  
ation. This mode provides faster read access speed  
for random locations within a page. Address bits  
A22–A3 (A21–A3 for PDL129) select an 8-word page,  
and address bits A2–A0 select a specific word within  
that page. This is an asynchronous operation with the  
microprocessor supplying the specific word location.  
Bank  
CE#f1  
CE#f2  
A21–A20  
00, 01, 10  
11  
Bank 1A  
Bank 1B  
Bank 2A  
Bank 2B  
0
0
1
1
1
1
0
0
00  
01, 10, 11  
Table 4. Bank Select (PDL127H)  
The random or initial page access is tACC or tCE and  
subsequent page read accesses (as long as the loca-  
tions specified by the microprocessor fall within that  
page) are tPACC. When CE#f1 and CE#f2 (PDL129  
only) are deasserted (CE#f1=CE#f2=VIH), the reasser-  
tion of CE#f1 or CE#f2 (PDL129 only) for subsequent  
access has access time of tACC or tCE. Here again,  
CE#f1/CE#f2 (PDL129 only) selects the device and  
OE# is the output control and should be used to gate  
data to the output inputs if the device is selected. Fast  
Bank  
A22–A20  
000  
Bank A  
Bank B  
Bank C  
Bank D  
001, 010, 011  
100, 101, 110  
111  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
19  
A D V A N C E I N F O R M A T I O N  
Autoselect Functions  
Writing Commands/Command Sequences  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ15–DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Command Se-  
quence sections for more information.  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE#f1 or CE#f2 (PDL 129 only) to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once a bank enters the Un-  
lock Bypass mode, only two write cycles are required  
to program a word, instead of four. The “Word Pro-  
gram Command Sequence” section has details on  
programming data to the device using both standard  
and Unlock Bypass command sequences.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Table 4 indicates the address  
space that each sector occupies. A “bank address” is  
the address bits required to uniquely select a bank.  
Similarly, a sector address” refers to the address bits  
required to uniquely select a sector. The “Command  
Definitions” section has details on erasing a sector or  
the entire chip, or suspending/resuming the erase op-  
eration.  
The device enters the CMOS standby mode when the  
CE#f1, CE#f2 (PDL129 only) and RESET# pins are all  
held at VIO 0.3 V. (Note that this is a more restricted  
voltage range than VIH.) If CE#f1, CE#f2 (PDL129  
only), and RESET# are held at VIH, but not within VCC  
0.3 V, the device will be in the standby mode, but the  
standby current will be greater. The device requires  
standard access time (tCE) for read access when the  
device is in either of these standby modes, before it is  
ready to read data.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The AC  
Characteristics section contains timing specification  
tables and timing diagrams for write operations.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
Accelerated Program Operation  
The device offers accelerated program operations  
through the ACC function. This function is primarily in-  
tended to allow faster manufacturing throughput at the  
factory.  
ICC3 in the DC Characteristics table represents the  
CMOS standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated pro-  
gramming, or device damage may result. In addition,  
the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left float-  
ing or unconnected; inconsistent behavior of the de-  
vice may result.  
this mode when addresses remain stable for tACC  
+
150 ns. The automatic sleep mode is independent of  
the CE#f1/CE#f2 (PDL129 only), WE#, and OE# con-  
trol signals. Standard address access timings provide  
new data when addresses are changed. While in  
sleep mode, output data is latched and always avail-  
able to the system. Note that during automatic sleep  
mode, OE# must be at VIH before the device reduces  
current to the stated sleep mode specification. ICC5 in  
the DC Characteristics table represents the automatic  
sleep mode current specification.  
20  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
internal reset operation is complete, which requires a  
RESET#: Hardware Reset Pin  
time of tREADY (during Embedded Algorithms). The sys-  
tem can thus monitor RY/BY# to determine whether  
the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing  
(RY/BY# pin is “1”), the reset operation is completed  
within a time of tREADY (not during Embedded Algo-  
rithms). The system can read data tRH after the RE-  
SET# pin returns to VIH.  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
Refer to the pSRAM AC Characteristics tables for RE-  
SET# parameters and to Figure 15 for the timing dia-  
gram.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS 0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS 0.3 V, the standby current will  
be greater.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins (except for RY/BY#) are  
placed in the highest Impedance state  
Table 5. SecSiTM Sector Addresses  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
Sector Size  
Address Range  
Am29PDL127H/  
Am29PDL129H  
128 words  
000000h–00007Fh  
Factory-Locked Area  
64 words  
64 words  
000000h-00003Fh  
000040h-00007Fh  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
Customer-Lockable Area  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
21  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
22  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
Sector Address (A22-A12)  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
Sector Size (Kwords)  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
23  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA79  
Sector Address (A22-A12)  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
Sector Size (Kwords)  
Address Range (x16)  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
24  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
Sector Address (A22-A12)  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
Sector Size (Kwords)  
Address Range (x16)  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
25  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
Sector Address (A22-A12)  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
26  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Sector Address (A22-A12)  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
27  
A D V A N C E I N F O R M A T I O N  
Table 6. Am29PDL127H Sector Architecture (Continued)  
Bank  
Sector  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Sector Address (A22-A12)  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
Sector Size (Kwords)  
Address Range (x16)  
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
4
28  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-0  
SA1-1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
SA1-2  
SA1-3  
SA1-4  
SA1-5  
SA1-6  
SA1-7  
SA1-8  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
29  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-38  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
30  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
SA1-83  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
32  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
31  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
SA1-96  
SA1-97  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
4
4
4
4
4
4
4
32  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
SA2-0  
SA2-1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA2-2  
4
SA2-3  
4
SA2-4  
4
SA2-5  
4
SA2-6  
4
SA2-7  
4
SA2-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA2-9  
SA2-10  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
SA2-36  
SA2-37  
SA2-38  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
33  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
34  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA2-79  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
SA2-96  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
35  
A D V A N C E I N F O R M A T I O N  
Table 7. Am29PDL129H Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE#f1  
CE#f2  
Address Range (x16)  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
32  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
36  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 8. Am29PDL127H Boot Sector/Sector Block  
Sector/  
Sector Block Size  
Sector  
A22-A12  
Addresses for Protection/Unprotection  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
Sector/  
Sector Block Size  
Sector  
A22-A12  
SA0  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
4 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
SA264  
4 Kwords  
SA265  
4 Kwords  
SA266  
4 Kwords  
SA267  
4 Kwords  
SA268  
4 Kwords  
SA269  
4 Kwords  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
37  
A D V A N C E I N F O R M A T I O N  
Table 9. Am29PDL129H Boot Sector/Sector Block  
Table 10. Am29PDL129H Boot Sector/Sector  
Block Addresses for Protection/Unprotection  
CE#f2 Control  
Addresses for Protection/Unprotection  
CE#f1 Control  
Sector  
Group  
Sector/Sector  
Block Size  
Sector  
Group  
A21-12  
Sector/Sector  
Block Size  
A21-12  
SA1-0–SA1-3  
SA1-4–SA1-7  
SA1-8–SA1-11  
SA1-12–SA1-15  
SA1-16–SA1-19  
SA1-20–SA1-23  
SA1-24–SA1-27  
SA1-28–SA1-31  
SA1-32–SA1-35  
SA1-36–SA1-39  
SA1-40–SA1-43  
SA1-44–SA1-47  
SA1-48–SA1-51  
SA1-52–SA1-55  
SA1-56–SA1-59  
SA1-60–SA1-63  
SA1-64–SA1-67  
SA1-68–SA1-71  
SA1-72–SA1-75  
SA1-76–SA1-79  
SA1-80–SA1-83  
SA1-84–SA1-87  
SA1-88–SA1-91  
SA1-92–SA1-95  
SA1-96–SA1-99  
SA1-100–SA1-103  
SA1-104–SA1-107  
SA1-108–SA1-111  
SA1-112–SA1-115  
SA1-116–SA1-119  
SA1-120–SA1-123  
SA1-124  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA2-0  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
4 Kwords  
SA2-1  
4 Kwords  
SA2-2  
4 Kwords  
SA2-3  
4 Kwords  
SA2-4  
4 Kwords  
SA2-5  
4 Kwords  
SA2-6  
4 Kwords  
SA2-7  
4 Kwords  
SA2-8  
32 Kwords  
SA2-9  
32 Kwords  
SA2-10  
32 Kwords  
SA2-11 - SA2-14  
SA2-15 - SA2-18  
SA2-19 - SA2-22  
SA2-23 - SA2-26  
SA2-27 - SA2-30  
SA2-31 - SA2-34  
SA2-35 - SA2-38  
SA2-39 - SA2-42  
SA2-43 - SA2-46  
SA2-47 - SA2-50  
SA2-51 - SA2-54  
SA2-55 - SA2-58  
SA2-59 - SA2-62  
SA2-63 - SA2-66  
SA2-67 - SA2-70  
SA2-71 - SA2-74  
SA2-75 - SA2-78  
SA2-79 - SA2-82  
SA2-83 - SA2-86  
SA2-87 - SA2-90  
SA2-91 - SA2-94  
SA2-95 - SA2-98  
SA2-99 - SA2-102  
SA2-103 - SA2-106  
SA2-107 - SA2-110  
SA2-111 - SA2-114  
SA2-115 - SA2-118  
SA2-119 - SA2-122  
SA2-123 - SA2-126  
SA2-127 - SA2-130  
SA2-131 - SA2-134  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA1-125  
32 Kwords  
SA1-126  
32 Kwords  
SA1-127  
4 Kwords  
SA1-128  
4 Kwords  
SA1-129  
4 Kwords  
SA1-130  
4 Kwords  
SA1-131  
4 Kwords  
SA1-132  
4 Kwords  
SA1-133  
4 Kwords  
SA1-134  
4 Kwords  
38  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
SECTOR PROTECTION  
The Am50PDL191CH/Am50PDL193CH features sev-  
eral levels of sector protection, which can disable both  
the program and erase operations in certain sectors or  
sector groups:  
Dynamically Locked—The sector is protected and  
can be changed by a simple command.  
Unlocked—The sector is unprotected and can be  
changed by a simple command.  
Persistent Sector Protection  
To achieve these states, three types of “bits” are used:  
A command sector protection method that replaces  
the old 12 V controlled protection method.  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is as-  
signed to a maximum four sectors (see the sector ad-  
dress tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector  
Persistent Protection Bits (PPBs) for greater flexibility.  
Each PPB is individually modifiable through the PPB  
Write Command.  
Password Sector Protection  
A highly sophisticated protection method that requires  
a password before changes to certain sectors or sec-  
tor groups are permitted.  
WP# Hardware Protection  
A write protect pin that can prevent program or erase  
operations in sectors 0, 1, 268, and 269 in PDL 127 or  
in SA1-133, SA1-134, SA2-0, SA2-1 in PDL 129. The  
WP# Hardware Protection feature is always available,  
regardless of which of the other two methods are cho-  
sen.  
The device erases all PPBs in parallel. If any PPB re-  
quires erasure, the device must be instructed to pre-  
program all of the sector PPBs prior to PPB erasure.  
Otherwise, a previously erased sector PPBs can po-  
tentially be over-erased. The flash device does not  
have a built-in means of preventing sector PPBs  
over-erasure.  
Selecting a Sector Protection Mode  
The device defaults to the Persistent Sector Protection  
mode. However, to prevents a program or virus from  
later setting the Password Mode Locking Bit, which  
would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Pro-  
tection Mode, it is recommended that either of two  
one-time programmable non-volatile bits that perma-  
nently define which sector protection method be set  
before the device is first programmed. The Persis-  
tent Sector Protection Mode Locking Bit perma-  
nently sets the device to the Persistent Sector  
Protection mode. The Password Mode Locking Bit  
permanently sets the device to the Password Sector  
Protection mode. It is not possible to switch between  
the two protection modes once a locking bit has been  
set.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a glo-  
bal volatile bit. When set to “1”, the PPBs cannot be  
changed. When cleared (“0”), the PPBs are change-  
able. There is only one PPB Lock bit per device. The  
PPB Lock is cleared after power-up or hardware reset.  
There is no command sequence to unlock the PPB  
Lock.  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector.  
After power-up or hardware reset, the contents of all  
DYBs is “0”. Each DYB is individually modifiable  
through the DYB Write Command.  
When the parts are first shipped, the PPBs are  
cleared, the DYBs are cleared, and PPB Lock is de-  
faulted to power up in the cleared state – meaning the  
PPBs are changeable.  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at the factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
When the device is first powered on the DYBs power  
up cleared (sectors not protected). The Protection  
State for each sector is determined by the logical OR  
of the PPB and the DYB related to that sector. For the  
sectors that have the PPBs cleared, the DYBs control  
whether or not the sector is protected or unprotected.  
By issuing the DYB Write command sequences, the  
DYBs will be set or cleared, thus placing each sector in  
the protected or unprotected state. These are the  
so-called Dynamic Locked or Unlocked states. They  
are called dynamic states because it is very easy to  
switch back and forth between the protected and un-  
protected conditions. This allows software to easily  
protect sectors against inadvertent changes yet does  
It is possible to determine whether a sector is pro-  
tected or unprotected. See Autoselect Command Se-  
quence for details.  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the  
12 V controlled protection method in previous AMD  
flash devices. This new method provides three differ-  
ent sector protection states:  
Persistently Locked—The sector is protected and  
cannot be changed.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
39  
A D V A N C E I N F O R M A T I O N  
not prevent the easy removal of protection when  
Table 11. Sector Protection Schemes  
changes are needed. The DYBs maybe set or cleared  
as often as needed.  
PPB  
DYB  
PPB  
Lock  
Sector State  
The PPBs allow for a more static, and difficult to  
change, level of protection. The PPBs retain their state  
across power cycles because they are non-volatile. In-  
dividual PPBs are set with a command but must all be  
cleared as a group through a complex sequence of  
program and erasing commands. The PPBs are also  
limited to 100 erase cycles.  
Unprotected—PPB and DYB are  
changeable  
0
0
0
Unprotected—PPB not  
changeable, DYB is changeable  
0
0
1
0
1
1
0
1
1
1
0
1
1
0
1
0
0
0
1
1
1
Protected—PPB and DYB are  
changeable  
The PPB Lock bit adds an additional level of protec-  
tion. Once all PPBs are programmed to the desired  
settings, the PPB Lock may be set to “1”. Setting the  
PPB Lock disables all program and erase commands  
to the non-volatile PPBs. In effect, the PPB Lock Bit  
locks the PPBs into their current state. The only way to  
clear the PPB Lock is to go through a power cycle.  
System boot code can determine if any changes to the  
PPB are needed; for example, to allow new system  
code to be downloaded. If no changes are needed  
then the boot code can set the PPB Lock to disable  
any further changes to the PPBs during system opera-  
tion.  
Protected—PPB not  
changeable, DYB is changeable  
Table 11 contains all possible combinations of the  
DYB, PPB, and PPB lock relating to the status of the  
sector.  
In summary, if the PPB is set, and the PPB lock is set,  
the sector is protected and the protection can not be  
removed until the next power cycle clears the PPB  
lock. If the PPB is cleared, the sector can be dynami-  
cally locked or unlocked. The DYB then controls  
whether or not the sector is protected or unprotected.  
The WP#/ACC write protect pin adds a final level of  
hardware protection to sectors 0, 1, 268, and 269 in  
PDL 127 or in SA1-133, SA1-134, SA2-0, SA2-1 in  
PDL 129. When this pin is low it is not possible to  
change the contents of these sectors. These sectors  
generally hold system boot code. The WP#/ACC pin  
can prevent any changes to the boot code that could  
override the choices made while setting up sector pro-  
tection during system initialization.  
If the user attempts to program or erase a protected  
sector, the device ignores the command and returns to  
read mode. A program command to a protected sector  
enables status polling for approximately 1 µs before  
the device returns to read mode without having modi-  
fied the contents of the protected sector. An erase  
command to a protected sector enables status polling  
for approximately 50 µs after which the device returns  
to read mode without having erased the protected sec-  
tor.  
It is possible to have sectors that have been persis-  
tently locked, and sectors that are left in the dynamic  
state. The sectors in the dynamic state are all unpro-  
tected. If there is a need to protect some of them, a  
simple DYB Write command sequence is all that is  
necessary. The DYB write command for the dynamic  
sectors switch the DYBs to signify protected and un-  
protected, respectively. If there is a need to change the  
status of the persistently locked sectors, a few more  
steps are required. First, the PPB Lock bit must be dis-  
abled by either putting the device through a power-cy-  
cle, or hardware reset. The PPBs can then be  
changed to reflect the desired settings. Setting the  
PPB lock bit once again will lock the PPBs, and the de-  
vice operates normally again.  
The programming of the DYB, PPB, and PPB lock for a  
given sector can be verified by writing a  
DYB/PPB/PPB lock verify command to the device.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sec-  
tor Protection mode locking bit exists to guarantee that  
the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit pre-  
vents programming of the password protection mode  
locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
The best protection is achieved by executing the PPB  
lock bit set command early in the boot code, and pro-  
tect the boot code by holding WP#/ACC = VIL.  
Password Protection Mode  
The Password Sector Protection Mode method allows  
an even higher level of security than the Persistent  
Sector Protection Mode. There are two main differ-  
40  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
ences between the Persistent Sector Protection and  
the Password Sector Protection Mode:  
The Password Mode Locking Bit, once set, prevents  
reading the 64-bit password on the DQ bus and further  
password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit  
is programmed, the Persistent Sector Protection Lock-  
ing Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
When the device is first powered on, or comes out  
of a reset cycle, the PPB Lock bit set to the locked  
state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writ-  
ing a unique 64-bit Password to the device.  
64-bit Password  
The Password Sector Protection method is otherwise  
identical to the Persistent Sector Protection method.  
The 64-bit Password is located in its own memory  
space and is accessible through the use of the Pass-  
word Program and Verify commands (see “Password  
Verify Command”). The password function works in  
conjunction with the Password Mode Locking Bit,  
which when set, prevents the Password Verify com-  
mand from reading the contents of the password on  
the pins of the device.  
A 64-bit password is the only additional tool utilized in  
this method.  
Once the Password Mode Locking Bit is set, the pass-  
word is permanently set with no means to read, pro-  
gram, or erase it. The password is used to clear the  
PPB Lock bit. The Password Unlock command must  
be written to the flash, along with a password. The  
flash device internally compares the given password  
with the pre-programmed password. If they match, the  
PPB Lock bit is cleared, and the PPBs can be altered.  
If they do not match, the flash device does nothing.  
There is a built-in 2 µs delay for each “password  
check.This delay is intended to thwart any efforts to  
run a program that tries all possible combinations in  
order to crack the password.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method  
of protecting sectors 0, 1, 268, and 269 in PDL 127 or  
in SA1-133, SA1-134, SA2-0, SA2-1 in PDL 129 with-  
out using VID. This function is provided by the WP# pin  
and overrides the previously discussed High Voltage  
Sector Protection method.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the two  
outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously pro-  
tected or unprotected.  
Password and Password Mode Locking Bit  
In order to select the Password sector protection  
scheme, the customer must first program the pass-  
word. The password may be correlated to the unique  
Electronic Serial Number (ESN) of the particular flash  
device. Each ESN is different for every flash device;  
therefore each password should be different for every  
flash device. While programming in the password re-  
gion, the customer may perform Password Verify oper-  
ations.  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether sectors 0, 1, 268, and 269 in  
PDL 127 or in SA1-133, SA1-134, SA2-0, SA2-1 in  
PDL 129 were last set to be protected or unprotected.  
That is, sector protection or unprotection for these sec-  
tors depends on whether they were last protected or  
unprotected using the method described in High Volt-  
age Sector Protection.  
Once the desired password is programmed in, the  
customer must then set the Password Mode Locking  
Bit. This operation achieves two objectives:  
Note that the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
1. Permanently sets the device to operate using the  
Password Protection Mode. It is not possible to re-  
verse this function.  
Persistent Protection Bit Lock  
2. Disables all further commands to the password re-  
gion. All program, and read operations are ignored.  
The Persistent Protection Bit (PPB) Lock is a volatile  
bit that reflects the state of the Password Mode Lock-  
ing Bit after power-up reset. If the Password Mode  
Lock Bit is also set after a hardware reset (RESET#  
asserted) or a power-up reset, the ONLY means for  
clearing the PPB Lock Bit in Password Protection  
Mode is to issue the Password Unlock command. Suc-  
cessful execution of the Password Unlock command  
clears the PPB Lock Bit, allowing for sector PPBs  
modifications. Asserting RESET#, taking the device  
through a power-on reset, or issuing the PPB Lock Bit  
Set command sets the PPB Lock Bit to a “1” when the  
Password Mode Lock Bit is not set.  
Both of these objectives are important, and if not care-  
fully considered, may lead to unrecoverable errors.  
The user must be sure that the Password Protection  
method is desired when setting the Password Mode  
Locking Bit. More importantly, the user must be sure  
that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations  
are disabled, there is no means to verify what the  
password is afterwards. If the password is lost after  
setting the Password Mode Locking Bit, there will be  
no way to clear the PPB Lock bit.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
41  
A D V A N C E I N F O R M A T I O N  
If the Password Mode Locking Bit is not set, including  
High Voltage Sector Protection  
Persistent Protection Mode, the PPB Lock Bit is  
cleared after power-up or hardware reset. The PPB  
Lock Bit is set by issuing the PPB Lock Bit Set com-  
mand. Once set the only means for clearing the PPB  
Lock Bit is by issuing a hardware or power-up reset.  
The Password Unlock command is ignored in Persis-  
tent Protection Mode.  
Sector protection and unprotection may also be imple-  
mented using programming equipment. The proce-  
dure requires high voltage (VID) to be placed on the  
RESET# pin. Refer to Figure 1 for details on this pro-  
cedure. Note that for sector unprotect, all unprotected  
sectors must first be protected prior to the first sector  
write cycle.  
42  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
RESET# = VID  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/  
Sector Unprotection Algorithms  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
43  
A D V A N C E I N F O R M A T I O N  
tection mode and Password Protection mode. It uses  
indicator bits (DQ6, DQ7) to indicate the fac-  
tory-locked and customer-locked status of the part.  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
sector addresses. Once VID is removed from the RE-  
SET# pin, all the previously protected sectors are  
protected again. Figure 2 shows the algorithm, and  
Figure 23 shows the timing diagrams, for this feature.  
While PPB lock is set, the device cannot enter the  
Temporary Sector Unprotection Mode.  
The system accesses the SecSi Sector through a  
command sequence (see “Enter SecSi™ Sector/Exit  
SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the ad-  
dresses normally occupied by the boot sectors. This  
mode of operation continues until the system issues  
the Exit SecSi Sector command sequence, or until  
power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to send-  
ing commands to the normal address space.  
Factory-Locked Area (64 words)  
The factory-locked area of the SecSi Sector  
(000000h-00003Fh) is locked when the part is  
shipped, whether or not the area was programmed at  
the factory. The SecSi Sector Factory-locked Indicator  
Bit (DQ7) is permanently set to a “1”. AMD offers the  
ExpressFlash service to program the factory-locked  
area with a random ESN, a customer-defined code, or  
any combination of the two. Because only AMD can  
program and protect the factory-locked area, this  
method ensures the security of the ESN once the  
product is shipped to the field. Contact an AMD repre-  
sentative for details on using AMD’s ExpressFlash ser-  
vice. Note that the ACC function and unlock bypass  
modes are not available when the SecSi Sector is en-  
abled.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Customer-Lockable Area (64 words)  
The customer-lockable area of the SecSi Sector  
(000040h-00007Fh) is shipped unprotected, which al-  
lows the customer to program and optionally lock the  
area as appropriate for the application. The SecSi  
Sector Customer-locked Indicator Bit (DQ6) is shipped  
as “0” and can be permanently locked to “1” by issuing  
the SecSi Protection Bit Program Command. The  
SecSi Sector can be read any number of times, but  
can be programmed and locked only once. Note that  
the accelerated programming (ACC) and unlock by-  
pass functions are not available when programming  
the SecSi Sector.  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL,  
sectors 0, 1, 268, 269 in PDL 127 or in SA1-133,  
SA1-134, SA2-0, SA2-1 in PDL 129.will remain  
protected).  
2. All previously protected sectors are protected once  
again.  
Figure 2. Temporary Sector Unprotect Operation  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region  
The Customer-lockable SecSi Sector area can be pro-  
tected using one of the following procedures:  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN) The 128-word SecSi sector is divided into 64  
factory-lockable words that can be programmed and  
locked by the customer. The SecSi sector is located at  
addresses 000000h-00007Fh in both Persistent Pro-  
Follow the SecSi Sector Protection Algorithm as  
shown in . This allows in-system protection of the  
SecSi Sector without raising any device pin to a  
high voltage. Note that this method is only applica-  
ble to the SecSi Sector.  
44  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
START  
SecSiTM Sector Entry  
Write AAh to address 555h  
Write 55h to address 2AAh  
Write 88h to address 555h  
SecSi Sector Entry  
SecSi Sector  
Protection Entry  
Write AAh to address 555h  
Write 55h to address 2AAh  
Write 60h to address 555h  
PLSCNT = 1  
Protect SecSi Sector:  
write 68h to sector address  
with A7–A0 = 00011010  
SecSi Sector Protection  
Time out 256 µs  
Verify SecSi Sector:  
write 48h to sector address  
with A7–A0 = 00011010  
Increment PLSCNT  
Read from sector address  
(SA0 + 1Ah)  
No  
No  
PLSCNT = 25?  
Data = 01h?  
Yes  
Yes  
Device Failed  
SecSi Sector  
Protection Completed  
SecSi Sector Exit  
Write 555h/AAh  
Write 2AAh/55h  
SecSi Sector Exit  
Write SA0+555h/90h  
Write XXXh/00h  
Figure 3. SecSi Protection Algorithm  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
45  
A D V A N C E I N F O R M A T I O N  
Once the SecSi Sector is locked and verified, the sys-  
write cycle, CE#f1/CE#f2 and WE# must be a logical  
zero while OE# is a logical one.  
tem must write the Exit SecSi Sector Region com-  
mand sequence to return to reading and writing the  
remainder of the array.  
Power-Up Write Inhibit  
If WE# = CE#f1 = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
The SecSi Sector lock must be used with caution  
since, once locked, there is no procedure available for  
unlocking the SecSi Sector area and none of the bits  
in the SecSi Sector memory space can be modified in  
any way.  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
SecSi Sector Protection Bits  
The SecSi Sector Protection Bits prevent program-  
ming of the SecSi Sector memory area. Once set, the  
SecSi Sector memory area contents are non-modifi-  
able.  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be  
caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system  
noise.  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses  
given in Tables 12–15. To terminate reading CFI data,  
the system must write the reset command. The CFI  
Query mode is not accessible when the device is exe-  
cuting an Embedded Program or embedded Erase al-  
gorithm.  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 12–15. The  
system must write the reset command to return the  
device to reading array data.  
greater than VLKO  
.
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/flash/cfi. Alterna-  
tively, contact an AMD representative for copies of  
these documents.  
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#,  
CE#f1, CE#f2 or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE#f1 =CE#f2 = VIH or WE# = VIH. To initiate a  
46  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 12. CFI Query Identification String  
Description  
Addresses  
Data  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 13. System Interface String  
Description  
Addresses  
Data  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0004h  
0000h  
0009h  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
47  
A D V A N C E I N F O R M A T I O N  
Table 14. Device Geometry Definition  
Description  
Addresses  
Data  
27h  
0018h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
00FDh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
48  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 15. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
000Ch  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
0002h  
0001h  
0001h  
0007h  
00E7h  
0000h  
0002h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
01 =29F040 mode, 02 = 29F016 mode, 03 = 29F400, 04 = 29LV800 mode  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Fh  
0001h  
00h = Uniform device, 02h = Bottom Boot Device, 03h = Top Boot Device, 04h = Both  
Top and Bottom  
Program Suspend  
50h  
57h  
58h  
59h  
5Ah  
5Bh  
0001h  
0004h  
0027h  
0060h  
0060h  
0027h  
0 = Not supported, 1 = Supported  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
49  
A D V A N C E I N F O R M A T I O N  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 16 defines the valid register command  
sequences. Writing incorrect address and data val-  
ues or writing them in the improper sequence may  
place the device in an unknown state. A reset com-  
mand is then required to return the device to reading  
array data.  
erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure be-  
gins, however, the device ignores reset commands  
until the operation is complete.  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the bank to  
which the system was writing to the read mode. If the  
program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-sus-  
pend-read mode. Once programming begins, however,  
the device ignores reset commands until the operation  
is complete.  
All addresses are latched on the falling edge of WE#  
or CE#f1/CE#f2 (PDL129H only), whichever happens  
later. All data is latched on the rising edge of WE# or  
CE#f1/CE#f2 (PDL129H only), whichever happens  
first. Refer to the AC Characteristics section for timing  
diagrams.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Sus-  
pend mode, writing the reset command returns that  
bank to the erase-suspend-read mode.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
After the device accepts an Erase Suspend command,  
the corresponding bank enters the erase-sus-  
pend-read mode, after which the system can read  
data from any non-erase-suspended sector within the  
same bank. The system can read array data using the  
standard read timing, except that if it reads at an ad-  
dress within erase-suspended sectors, the device out-  
puts status data. After completing a programming  
operation in the Erase Suspend mode, the system  
may once again read array data with the same excep-  
tion. See the Erase Suspend/Erase Resume Com-  
mands section for more information.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and device codes,  
and determine whether or not a sector is protected.  
The autoselect command sequence may be written to  
an address within a bank that is either in the read or  
erase-suspend-read mode. The autoselect command  
may not be written while the device is actively pro-  
gramming or erasing in the other bank.  
The system must issue the reset command to return a  
bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the  
next section, Reset Command, for more information.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autose-  
lect mode. The system may read any number of  
autoselect codes without reinitiating the command se-  
quence.  
See also Requirements for Reading Array Data in the  
MCP Device Bus Operations section for more informa-  
tion. The Read-Only Operations – Am29PDL127H and  
Read-Only Operations – Am29PDL127H tables pro-  
vide the read parameters, and Figure 13 shows the  
timing diagram.  
Table 16 shows the address and data requirements.  
To determine sector protection information, the system  
must write to the appropriate bank address (BA) and  
sector address (SA). Table 4 shows the address range  
and bank number associated with each sector.  
Reset Command  
Writing the reset command resets the banks to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
50  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Programming is allowed in any sequence and across  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate the operation was success-  
ful. However, a succeeding read will show that the  
data is still “0.Only erase operations can convert a “0”  
to a “1.”  
The SecSi Sector region provides a secured data area  
containing a random, eight word electronic serial num-  
ber (ESN). The system can access the SecSi Sector  
region by issuing the three-cycle Enter SecSi Sector  
command sequence. The device continues to access  
the SecSi Sector region until the system issues the  
four-cycle Exit SecSi Sector command sequence. The  
Exit SecSi Sector command sequence returns the de-  
vice to normal operation. The SecSi Sector is not ac-  
cessible when the device is executing an Embedded  
Program or embedded Erase algorithm. Table 16  
shows the address and data requirements for both  
command sequences. See also “SecSi™ (Secured Sili-  
con) Sector Flash Memory Region” for further informa-  
tion. Note that the ACC function and unlock bypass  
modes are not available when the SecSi Sector is en-  
abled.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram data to a bank faster than using the standard  
program command sequence. The unlock bypass  
command sequence is initiated by first writing two un-  
lock cycles. This is followed by a third write cycle con-  
taining the unlock bypass command, 20h. That bank  
then enters the unlock bypass mode. A two-cycle un-  
lock bypass program command sequence is all that is  
required to program in this mode. The first cycle in this  
sequence contains the unlock bypass program com-  
mand, A0h; the second cycle contains the program  
address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial  
two unlock cycles required in the standard program  
command sequence, resulting in faster total program-  
ming time. Table 16 shows the requirements for the  
command sequence.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The pro-  
gram command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up  
command. The program address and data are written  
next, which in turn initiate the Embedded Program al-  
gorithm. The system is not required to provide further  
controls or timings. The device automatically provides  
internally generated program pulses and verifies the  
programmed cell margin. Table 16 shows the address  
and data requirements for the program command se-  
quence.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence.  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
When the Embedded Program algorithm is complete,  
that bank then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. Refer to the Write Operation  
Status section for information on these status bits.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. Note that the SecSi sector, autoselect, and  
CFI functions are unavailable when the SecSi Sector  
is enabled. The program command sequence should  
be reinitiated once that bank has returned to the read  
mode, to ensure data integrity.  
Figure 4 illustrates the algorithm for the program oper-  
ation. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters,  
and Figures 16 and 17 for timing diagrams.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
51  
A D V A N C E I N F O R M A T I O N  
the SecSi sector, autoselect, and CFI functions are un-  
available when the SecSi Sector is enabled. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
START  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 for timing diagrams.  
Write Program  
Command Sequence  
Sector Erase Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command.Table 16 shows the ad-  
dress and data requirements for the sector erase com-  
mand sequence.  
Verify Data?  
Yes  
No  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than 50  
µs, otherwise erasure may begin. Any sector erase ad-  
dress and command following the exceeded time-out  
may or may not be accepted. It is recommended that  
processor interrupts be disabled during this time to en-  
sure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. Any command other than Sector Erase or  
Erase Suspend during the time-out period resets  
that bank to the read mode. Note that the SecSi sec-  
tor, autoselect, and CFI functions are unavailable  
when the SecSi Sector is enabled. The system must  
rewrite the command sequence and any additional ad-  
dresses and commands.  
Note: See Table 16 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 16  
shows the address and data requirements for the chip  
erase command sequence.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
Sector Erase Timer). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete,  
that bank returns to the read mode and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2,  
or RY/BY#. Refer to the Write Operation Status sec-  
tion for information on these status bits.  
When the Embedded Erase algorithm is complete, the  
bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read  
data from the non-erasing bank. The system can de-  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. Note that  
52  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
termine the status of the erase operation by reading  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer  
to the Write Operation Status section for information  
on these status bits.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once that bank has returned to  
reading array data, to ensure data integrity.  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written  
during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the  
erase operation. Addresses are “don’t-cares” when  
writing the Erase suspend command.  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 section for timing diagrams.  
After the erase operation has been suspended, the  
bank enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device “erase sus-  
pends” all sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
duces status information on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
After an erase-suspended program operation is com-  
plete, the bank returns to the erase-suspend-read  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Word Program operation.  
Refer to the Write Operation Status section for more  
information.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. The device  
allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored  
in the memory array. When the device exits the au-  
toselect mode, the device reverts to the Erase Sus-  
pend mode, and is ready for another valid operation.  
Refer to the Autoselect Command Sequence sections  
for details.  
No  
Data = FFh?  
Yes  
Erasure Completed  
To resume the sector erase operation, the system  
must write the Erase Resume command (address bits  
are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command.  
Further writes of the Resume command are ignored.  
Another Erase Suspend command can be written after  
the chip has resumed erasing.  
Notes:  
1. See Table 16 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume  
Commands  
Password Program Command  
The Password Program Command permits program-  
ming the password that is used as part of the hard-  
ware protection scheme. The actual password is  
64-bits long. Four Password Program commands are  
required to program the password. The system must  
enter the unlock cycle, password program command  
(38h) and the program address/data for each portion  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing  
this command. This command is valid only during the  
sector erase operation, including the 80 µs time-out  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
53  
A D V A N C E I N F O R M A T I O N  
of the password when programming. There are no pro-  
Persistent Sector Protection Mode  
Locking Bit Program Command  
visions for entering the 2-cycle unlock cycle, the pass-  
word program command, and all the password data.  
There is no special addressing order required for pro-  
gramming the password. Also, when the password is  
undergoing programming, Simultaneous Operation is  
disabled. Read operations to any memory location will  
return the programming status. Once programming is  
complete, the user must issue a Read/Reset com-  
mand to return the device to normal operation. Once  
the Password is written and verified, the Password  
Mode Locking Bit must be set in order to prevent verifi-  
cation. The Password Program Command is only ca-  
pable of programming “0”s. Programming a “1” after a  
cell is programmed as a “0” results in a time-out by the  
Embedded Program Algorithm™ with the cell remain-  
ing as a “0”. The password is all ones when shipped  
from the factory. All 64-bit password combinations are  
valid as a password.  
The Persistent Sector Protection Mode Locking Bit  
Program Command programs the Persistent Sector  
Protection Mode Locking Bit, which prevents the Pass-  
word Mode Locking Bit from ever being programmed.  
If the Persistent Sector Protection Mode Locking Bit is  
verified as programmed without margin, the Persistent  
Sector Protection Mode Locking Bit Program Com-  
mand should be reissued to improve program margin.  
By disabling the program circuitry of the Password  
Mode Locking Bit, the device is forced to remain in the  
Persistent Sector Protection mode of operation, once  
this bit is set. Exiting the Persistent Protection Mode  
Locking Bit Program command is accomplished by  
writing the Read/Reset command.  
SecSi Sector Protection Bit Program  
Command  
Password Verify Command  
The SecSi Sector Protection Bit Program Command  
programs the SecSi Sector Protection Bit, which pre-  
vents the SecSi sector memory from being cleared. If  
the SecSi Sector Protection Bit is verified as pro-  
grammed without margin, the SecSi Sector Protection  
Bit Program Command should be reissued to improve  
program margin. Exiting the VCC-level SecSi Sector  
Protection Bit Program Command is accomplished by  
writing the Read/Reset command.  
The Password Verify Command is used to verify the  
Password. The Password is verifiable only when the  
Password Mode Locking Bit is not programmed. If the  
Password Mode Locking Bit is programmed and the  
user attempts to verify the Password, the device will al-  
ways drive all F’s onto the DQ data bus.  
The Password Verify command is permitted if the  
SecSi sector is enabled. Also, the device will not oper-  
ate in Simultaneous Operation when the Password  
Verify command is executed. Only the password is re-  
turned regardless of the bank address. The lower two  
address bits (A1-A0) are valid during the Password  
Verify. Writing the Read/Reset command returns the  
device back to normal operation.  
PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the  
PPB Lock bit if it is cleared either at reset or if the  
Password Unlock command was successfully exe-  
cuted. There is no PPB Lock Bit Clear command.  
Once the PPB Lock Bit is set, it cannot be cleared un-  
less the device is taken through a power-on clear or  
the Password Unlock command is executed. Upon set-  
ting the PPB Lock Bit, the PPBs are latched into the  
DYBs. If the Password Mode Locking Bit is set, the  
PPB Lock Bit status is reflected as set, even after a  
power-on reset cycle. Exiting the PPB Lock Bit Set  
command is accomplished by writing the Read/Reset  
command (only in the Persistent Protection Mode).  
Password Protection Mode Locking Bit  
Program Command  
The Password Protection Mode Locking Bit Program  
Command programs the Password Protection Mode  
Locking Bit, which prevents further verifies or updates  
to the Password. Once programmed, the Password  
Protection Mode Locking Bit cannot be erased! If the  
Password Protection Mode Locking Bit is verified as  
program without margin, the Password Protection  
Mode Locking Bit Program command can be executed  
to improve the program margin. Once the Password  
Protection Mode Locking Bit is programmed, the Per-  
sistent Sector Protection Locking Bit program circuitry  
is disabled, thereby forcing the device to remain in the  
Password Protection mode. Exiting the Mode Locking  
Bit Program command is accomplished by writing the  
Read/Reset command.  
DYB Write Command  
The DYB Write command is used to set or clear a DYB  
for a given sector. The high order address bits  
A22-A12 for PDL127 and (A21–A12) for PDL129H are  
issued at the same time as the code 01h or 00h on  
DQ7-DQ0. All other DQ data bus pins are ignored dur-  
ing the data write cycle. The DYBs are modifiable at  
any time, regardless of the state of the PPB or PPB  
Lock Bit. The DYBs are cleared at power-up or hard-  
ware reset. Exiting the DYB Write command is accom-  
plished by writing the Read/Reset command.  
54  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
determine whether the PPB has been erased with  
Password Unlock Command  
margin. If the PPBs has been erased without margin,  
the erase command should be reissued to improve the  
program margin.  
The Password Unlock command is used to clear the  
PPB Lock Bit so that the PPBs can be unlocked for  
modification, thereby allowing the PPBs to become ac-  
cessible for modification. The exact password must be  
entered in order for the unlocking function to occur.  
This command cannot be issued any faster than 2 µs  
at a time to prevent a hacker from running through all  
64-bit combinations in an attempt to correctly match a  
password. If the command is issued before the 2 µs  
execution window for each portion of the unlock, the  
command will be ignored.  
It is the responsibility of the user to preprogram all  
PPBs prior to issuing the All PPB Erase command. If  
the user attempts to erase a cleared PPB, over-era-  
sure may occur making it difficult to program the PPB  
at a later time. Also note that the total number of PPB  
program/erase cycles is limited to 100 cycles. Cycling  
the PPBs beyond 100 cycles is not guaranteed.  
DYB Write Command  
Once the Password Unlock command is entered, the  
RY/BY# indicates that the device is busy. Approxi-  
mately 1 µs is required for each portion of the unlock.  
Once the first portion of the password unlock com-  
pletes (RY/BY# is not low or DQ6 does not toggle  
when read), the next part of the password is written.  
The system must thus monitor RY/BY# or the status  
bits to confirm when to write the next portion of the  
password. Seven cycles are required to successfully  
clear the PPB Lock Bit.  
The DYB Write command is used for setting the DYB,  
which is a volatile bit that is cleared at reset. There is  
one DYB per sector. If the PPB is set, the sector is pro-  
tected regardless of the value of the DYB. If the PPB is  
cleared, setting the DYB to a 1 protects the sector from  
programs or erases. Since this is a volatile bit, remov-  
ing power or resetting the device will clear the DYBs.  
The bank address is latched when the command is  
written.  
PPB Lock Bit Set Command  
PPB Program Command  
The PPB Lock Bit set command is used for setting the  
DYB, which is a volatile bit that is cleared at reset.  
There is one DYB per sector. If the PPB is set, the sec-  
tor is protected regardless of the value of the DYB. If  
the PPB is cleared, setting the DYB to a 1 protects the  
sector from programs or erases. Since this is a volatile  
bit, removing power or resetting the device will clear  
the DYBs. The bank address is latched when the com-  
mand is written.  
The PPB Program command is used to program, or  
set, a given PPB. Each PPB is individually pro-  
grammed (but is bulk erased with the other PPBs).  
The specific sector address (A21–A12) are written at  
the same time as the program command 60h with A6  
= 0. If the PPB Lock Bit is set and the corresponding  
PPB is set for the sector, the PPB Program command  
will not execute and the command will time-out without  
programming the PPB.  
After programming a PPB, two additional cycles are  
needed to determine whether the PPB has been pro-  
grammed with margin. If the PPB has been pro-  
grammed without margin, the program command  
should be reissued to improve the program margin.  
Also note that the total number of PPB program/erase  
cycles is limited to 100 cycles. Cycling the PPBs be-  
yond 100 cycles is not guaranteed.  
PPB Status Command  
The programming of the PPB for a given sector can be  
verified by writing a PPB status verify command to the  
device.  
PPB Lock Bit Status Command  
The programming of the PPB Lock Bit for a given sec-  
tor can be verified by writing a PPB Lock Bit status ver-  
ify command to the device.  
The PPB Program command does not follow the Em-  
bedded Program algorithm.  
Sector Protection Status Command  
The programming of either the PPB or DYB for a given  
sector or sector group can be verified by writing a Sec-  
tor Protection Status command to the device.  
All PPB Erase Command  
The All PPB Erase command is used to erase all  
PPBs in bulk. There is no means for individually eras-  
ing a specific PPB. Unlike the PPB program, no spe-  
cific sector address is required. However, when the  
PPB erase command is written all Sector PPBs are  
erased in parallel. If the PPB Lock Bit is set the ALL  
PPB Erase command will not execute and the com-  
mand will time-out without erasing the PPBs. After  
erasing the PPBs, two additional cycles are needed to  
Note that there is no single command to independently  
verify the programming of a DYB for a given sector  
group.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
55  
A D V A N C E I N F O R M A T I O N  
Command Definitions Tables  
Table 16. Memory Array Command Definitions  
Bus Cycles (Notes 1–4)  
Command (Notes)  
Addr Data Addr Data Addr Data  
RA RD  
XXX F0  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Read (5)  
Reset (6)  
1
1
4
6
Manufacturer ID  
555  
555  
AA 2AA  
55  
55  
555  
555  
90 (BA)X00  
90 (BA)X01  
01  
7E  
Device ID (10)  
AA 2AA  
(BA)X0E (Note 10) (BA)X0F  
00  
Autoselect  
(Note 7)  
SecSi Sector Factory  
Protect (8)  
(see  
note 8)  
4
4
555  
AA 2AA  
55  
55  
555  
555  
90  
X03  
Sector Group Protect  
Verify (9)  
XX00/  
XX01  
555 AAA 2AA  
90 (SA)X02  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
BA  
55  
AA 2AA  
AA 2AA  
AA 2AA  
B0  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
555  
555  
PD  
AA  
AA  
Chip Erase  
Sector Erase  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Program/Erase Suspend (11)  
Program/Erase Resume (12)  
CFI Query (13)  
30  
98  
Accelerated Program (15)  
Unlock Bypass Entry (15)  
Unlock Bypass Program (15)  
Unlock Bypass Erase (15)  
Unlock Bypass CFI (13, 15)  
Unlock Bypass Reset (15)  
XX  
555  
XX  
XX  
XX  
A0  
PA  
PD  
55  
AA 2AA  
555  
20  
A0  
80  
98  
PA  
PD  
10  
XX  
XXX 90 XXX 00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass mode, or  
erase operation. Determined by A22:A20, (A21:A20 for PDL129) see  
Tables 4 and 5 for more detail.  
PA = Program Address (A22:A0) (A21:A0 for PDL129). Addresses  
latch on falling edge of WE# or CE#f1/CE#f2 (PDL129 only) pulse,  
whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches  
on rising edge of WE# or CE#f1/CE#f2 (PDL129 only) pulse,  
whichever happens first.  
RA = Read Address (A22:A0) (A21:A0 for PDL129).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (A22:A12) (A21:A12 for PDL129) for verifying (in  
autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific  
write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes:  
1. See Table 1 for description of bus operations.  
8. The data is C0h for factory or customer locked and 80h for factory  
locked.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector group and 01h for a  
protected sector group.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
10. Device ID must be read across cycles 4, 5, and 6. 20 for  
Am29PDL127H and 21 for Am29PDL129H.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AAh as shown in table, address bits higher than A11  
(except where BA is required) and data bits higher than DQ7 are  
don’t cares.  
11. System may read and program in non-erasing sectors, or enter  
autoselect mode, when in Program/Erase Suspend mode.  
Program/Erase Suspend command is valid only during a sector  
erase operation, and requires bank address.  
5. No unlock or command cycles required when bank is reading  
array data.  
12. Program/Erase Resume command is valid only during Erase  
Suspend mode, and requires bank address.  
6. The Reset command is required to return to reading array (or to  
erase-suspend-read mode if previously in Erase Suspend) when  
bank is in autoselect mode, or if DQ5 goes high (while bank is  
providing status information).  
13. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
7. Fourth cycle of autoselect command sequence is a read cycle.  
System must provide bank address to obtain manufacturer ID or  
device ID information. See Autoselect Command Sequence  
section for more information.  
14. WP#/ACC must be at VID during the entire operation of command.  
15. Unlock Bypass Entry command is required prior to any Unlock  
Bypass operation. Unlock Bypass Reset command is required to  
return to the reading array.  
56  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 17. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command  
(Notes)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
4
XXX  
555  
555  
F0  
SecSi Sector Entry  
SecSi Sector Exit  
AA 2AA  
AA 2AA  
55  
55  
555  
555  
88  
90  
XX  
00  
68  
SecSi Protection  
Bit Program (5, 6)  
6
5
4
4
7
555  
555  
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
60  
60  
38  
C8  
28  
OW  
OW  
OW  
48  
OW  
RD(0)  
SecSi Protection  
Bit Status  
OW  
48  
RD(0)  
PasswordProgram  
(5, 7, 8)  
XX[0-3]  
PWA[0-3]  
PWA[0]  
PD[0-3]  
PWD[0-3]  
PWD[0]  
Password Verify  
(6, 8, 9)  
Password Unlock  
(7, 10, 11)  
PWA[1]  
PWD[1]  
PWA[2]  
(SA)WP  
PWD[2]  
RD(0)  
PWA[3]  
PWD[3]  
PPBProgram (5, 6,  
12, 17)  
6
5
6
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
555  
555  
555  
60  
60  
60  
(SA)WP  
(SA)WP  
WP  
68  
48  
60  
(SA)WP  
(SA)WP  
(SA)  
48  
RD (0)  
40  
PPB Status  
All PPB Erase (5,  
6, 13, 14)  
(SA)WP  
RD(0)  
PPB Lock Bit Set  
(17)  
3
4
555  
555  
AA 2AA  
AA 2AA  
55  
55  
555  
555  
78  
58  
PPB Lock Bit  
Status (15)  
SA  
RD(1)  
DYB Write (7)  
4
4
4
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
555  
555  
555  
48  
48  
58  
SA  
SA  
SA  
X1  
X0  
DYB Erase (7)  
DYB Status (6, 18)  
RD(0)  
PPMLB Program  
(5, 6, 12)  
6
5
6
5
555  
555  
555  
555  
AA 2AA  
AA 2AA  
AA 2AA  
AA 2AA  
55  
55  
55  
55  
555  
555  
555  
555  
60  
60  
60  
60  
PL  
PL  
SL  
SL  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
PPMLB Status (5)  
RD(0)  
48  
SPMLB Program  
(5, 6, 12)  
SPMLB Status (5)  
RD(0)  
Legend:  
DYB = Dynamic Protection Bit  
RD(1) = Read Data DQ1 for PPB Lock status.  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
SA = Sector Address where security command applies. Address bits  
A21:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010) (NoteTable.16  
31096a1.fm)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
10. The password is written over four consecutive cycles, at  
addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
4. During unlock and command cycles, when lower address bits are  
555 or 2AAh as shown in table, address bits higher than A11  
(except where BA is required) and data bits higher than DQ7 are  
don’t cares.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been  
fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase command  
must be issued and verified again. Before issuing erase  
command, all PPBs should be programmed to prevent PPB  
overerasure.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6  
validate bit has been fully programmed when DQ0 = 1. If DQ0 = 0  
in cycle 6, program command must be issued and verified again.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
16. For PDL128G and PDL640G, the WP address is 0111010. The  
EP address (PPB Erase Address) is 1111010.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of  
password.  
17. Following the final cycle of the command sequence, the user must  
write the first three cycles of the Autoselect command and then  
write a Reset command.  
9. Command sequence returns FFh if PPMLB is set.  
18. If checking the DYB status of sectors in multiple banks, the user  
must follow Note 17 before crossing a bank boundary.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
57  
A D V A N C E I N F O R M A T I O N  
WRITE OPERATION STATUS  
The device provides several bits to determine the status of a  
program or erase operation: DQ2, DQ3, DQ5, DQ6, and  
DQ7. Table 18 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is com-  
plete or in progress. The device also provides a hard-  
ware-based output signal, RY/BY#, to determine whether  
an Embedded Program or Erase operation is in progress or  
has been completed.  
pleted the program or erase operation and DQ7 has  
valid data, the data outputs on DQ15–DQ0 may be still  
invalid. Valid data on DQ15–DQ0 will appear on suc-  
cessive read cycles.  
Table 18 shows the outputs for Data# Polling on DQ7.  
Figure 6 shows the Data# Polling algorithm. Figure 6  
in the AC Characteristics section shows the Data#  
Polling timing diagram.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system  
whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether a bank is in Erase Sus-  
pend. Data# Polling is valid after the rising edge of the final  
WE# pulse in the command sequence.  
START  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device out-  
puts on DQ7 the complement of the datum programmed to  
DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to  
DQ7. The system must provide the program address to  
read valid status information on DQ7. If a program address  
falls within a protected sector, Data# Polling on DQ7 is ac-  
tive for approximately 1 µs, then that bank returns to the  
read mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Yes  
Read DQ7–DQ0  
Addr = VA  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sec-  
tors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at  
DQ15–DQ0 on the following read cycles. Just prior to  
the completion of an Embedded Program or Erase op-  
eration, DQ7 may change asynchronously with  
DQ15–DQ0 while Output Enable (OE#) is asserted  
low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has com-  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
58  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
DQ6 also toggles during the erase-suspend-program  
RY/BY#: Ready/Busy#  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
Table 18 shows the outputs for Toggle Bit I on DQ6.  
Figure 7 shows the toggle bit algorithm. Figure 21 in  
the “AC Characteristics” section shows the toggle bit  
timing diagrams. Figure 22 shows the differences be-  
tween DQ2 and DQ6 in graphical form. See also the  
subsection on DQ2: Toggle Bit II.  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or one of the banks is in the erase-sus-  
pend-read mode.  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Table 18 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE#f1 to control the read cycles. When the operation  
is complete, DQ6 stops toggling.  
Yes  
No  
DQ5 = 1?  
Yes  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are pro-  
tected.  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is  
erase-suspended. When the device is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
DQ6 toggles. When the device enters the Erase Sus-  
pend mode, DQ6 stops toggling. However, the system  
must also use DQ2 to determine which sectors are  
erasing or erase-suspended. Alternatively, the system  
can use DQ7 (see the subsection on DQ7: Data# Poll-  
ing).  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.See the subsections on DQ6 and DQ2 for  
more information.  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Figure 7. Toggle Bit Algorithm  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
59  
A D V A N C E I N F O R M A T I O N  
The remaining scenario is that the system initially de-  
DQ2: Toggle Bit II  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 7).  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE#f1 to  
control the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 18 to compare out-  
puts for DQ2 and DQ6.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a “1,indicating that the program  
or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the DQ6: Toggle Bit I subsection.  
Figure 21 shows the toggle bit timing diagram. Figure  
22 shows the differences between DQ2 and DQ6 in  
graphical form.  
Under both these conditions, the system must write  
the reset command to return to the read mode (or to  
the erase-suspend-read mode if a bank was previ-  
ously in the erase-suspend-program mode).  
Reading Toggle Bits DQ6/DQ2  
DQ3: Sector Erase Timer  
Refer to Figure 7 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the fol-  
lowing read cycle.  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.See also the Sector Erase  
Command Sequence section.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
“1,the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
Table 18 shows the status of DQ3 relative to the other  
status bits.  
60  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 18. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
Erase-Suspend-  
Read  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm  
is in progress. The device outputs array data if the system addresses a non-busy bank.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
61  
A D V A N C E I N F O R M A T I O N  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –55°C to +125°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . . –40°C to +85°C  
+0.8 V  
Voltage with Respect to Ground  
–0.5 V  
–2.0 V  
V
CCf, VCCs (Note 1) . . . . . . . . . . . .0.5 V to +4.0 V  
RESET# (Note 2) . . . . . . . . . . . .–0.5 V to +12.5 V  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
20 ns  
Figure 8. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to –2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 8. During voltage transitions, input or I/O pins  
may overshoot to VCC +2.0 V for periods up to 20 ns. See  
Figure 9.  
20 ns  
VCC  
+2.0 V  
2. Minimum DC input voltage on pins RESET#, and  
WP#/ACC is –0.5 V. During voltage transitions,  
WP#/ACC, and RESET# may overshoot VSS to –2.0 V for  
periods of up to 20 ns. See Figure 8. Maximum DC input  
voltage on pin RESET# is +12.5 V which may overshoot  
to +14.0 V for periods up to 20 ns. Maximum DC input  
voltage on WP#/ACC is +9.5 V which may overshoot to  
+12.0 V for periods up to 20 ns.  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
devices that are developed by a third party (‘third-party  
components”).  
OPERATING RANGES  
Industrial (I) Devices  
Spansion components are tested and guaranteed to  
the ESD immunity levels listed in the corresponding  
Spansion Flash memory Qualification Database.  
Third-party components are neither tested nor guaran-  
teed by FASL LLC for ESD immunity. However, ESD  
test results for third-party components may be avail-  
able from the component manufacturer. Component  
manufacturer contact information is listed in the Span-  
sion MCP Qualification Report, when available.  
Ambient Temperature (TA) . . . . . . . . . –25°C to +85°C  
VCCf/VCCs Supply Voltages  
V
CCf/VCCs for standard voltage range . .2.7 V to 3.3 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
ESD IMMUNITY  
Spansion Flash memory Multi-Chip Products (MCPs)  
may contain component devices that are developed by  
FASL LLC (“Spansion components”) and component  
The Spansion Flash memory Qualification Database  
and Spansion MCP Qualification Report are available  
from AMD and Fujitsu sales offices.  
62  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
63  
A D V A N C E I N F O R M A T I O N  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
Input Load Current  
1.0  
µA  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
1.0  
µA  
mA  
mA  
5 MHz  
20  
45  
30  
55  
VCC Active Read Current (Notes Table.1  
31096a1.fm, 2, 3)  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
10 MHz  
VCC Active Write Current (Notes Table.1  
31096a1.fm, 3, 4)  
ICC2  
OE# = VIH, WE# = VIL  
15  
25  
CE#f1, CE#f2 (PDL129 only),  
RESET#, WP/ACC# = VIO 0.3 V  
ICC3  
ICC4  
ICC5  
VCC Standby Current (Note 3)  
VCC Reset Current (Note 3)  
1
1
1
5
5
5
µA  
µA  
µA  
RESET# = VSS 0.3 V, CE# = VSS  
VIH = VIO 0.3 V;  
VIL = VSS 0.3 V, CE# = VSS  
Automatic Sleep Mode (Notes 3, 5)  
VCC Active Read-While-Program Current  
(Notes 1, 2, 3)  
ICC6  
ICC7  
ICC8  
OE# = VIH  
OE# = VIH  
OE# = VIH  
Word  
Word  
21  
21  
17  
45  
45  
25  
mA  
mA  
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2, 3)  
VCC Active Program-While-Erase-  
Suspended Current (Notes 1, 3, 6)  
VIL  
VIH  
VHH  
Input Low Voltage  
VIO = 2.7–3.6 V  
VIO = 2.7–3.6 V  
VCC = 3.0 V 10%  
–0.5  
2.0  
0.8  
V
V
V
V
CC+0.3  
Input High Voltage  
Voltage for ACC Program Acceleration  
8.5  
9.5  
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 3.0 V 10%  
11.5  
12.5  
0.4  
V
VOL  
VOH  
VLKO  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
V
V
V
Output High Voltage  
2.4  
2.3  
Low VCC Lock-Out Voltage (Note 6)  
2.5  
Notes:  
1. Valid CE#f1/CE#f2 conditions (PDL129 only): (CE#f1= VIL, CE#f2=  
IH) or (CE#f1= VIH, CE#f2= VIL)  
4. ICC active while Embedded Erase or Embedded Program is in  
progress.  
V
2. The ICC current listed is typically less than 5 mA/MHz, with OE# at  
VIH.  
5. Automatic sleep mode enables the low power mode when  
addresses remain stable for tACC + 150 ns. Typical sleep mode  
current is 1 µA.  
3. Maximum ICC specifications are tested with VCC = VCCmax  
.
6. Not 100% tested.  
64  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
TEST CONDITIONS  
Table 19. Test Specifications  
3.3 V  
Test Condition  
Output Load  
70  
Unit  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
70  
5
pF  
Input Rise and Fall Times  
Input Pulse Levels  
ns  
V
C
L
6.2 kΩ  
0.0–3.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 10. Test Setup  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
KS000010-PAL  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 11. Input Waveforms and Measurement Levels  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
65  
A D V A N C E I N F O R M A T I O N  
pSRAM AC CHARACTERISTICS  
CE#1ps Timing  
Parameter  
Test Setup  
AllSpeeds  
Unit  
JEDEC  
Std  
Description  
tCCR  
CE#1ps Recover Time  
Min  
0
ns  
CE#1ps  
CE2ps  
tCCR  
tCCR  
Figure 12. Timing Diagram for Alternating  
Between Pseudo SRAM and Flash  
66  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Read-Only Operations – Am29PDL127H  
Parameter  
All Speeds  
JEDEC  
tAVAV  
Std. Description  
Test Setup  
70  
70  
70  
70  
30  
30  
16  
16  
Unit  
ns  
tRC  
tACC  
tCE  
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
tAVQV  
Address to Output Delay  
CE#f1, OE# = VIL  
OE# = VIL  
ns  
tELQV  
Chip Enable to Output Delay  
ns  
tPACC Page Access Time  
ns  
tGLQV  
tEHQZ  
tGHQZ  
tOE  
tDF  
tDF  
Output Enable to Output Delay  
ns  
Chip Enable to Output High Z (Note 1, 3)  
Output Enable to Output High Z (Notes 1, 3)  
ns  
ns  
Output Hold Time From Addresses, CE#f1 or  
OE#, Whichever Occurs First (Notes 3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
3. Measurements performed by placing a 50 ohm termination on the  
data pin with a bias of VCC/2. The time from OE# high to the data  
2. See Figure 10 and Table 19 for test specifications  
bus driven to VCC/2 is taken as tDF  
.
Read-Only Operations – Am29PDL129H  
Parameter  
All Speeds  
JEDEC  
tAVAV  
Std. Description  
Test Setup  
70  
70  
70  
70  
30  
30  
16  
16  
Unit  
ns  
tRC  
tACC  
tCE  
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
Max  
tAVQV  
Address to Output Delay (Note 3)  
CE#f1, OE# = VIL  
OE# = VIL  
ns  
tELQV  
Chip Enable to Output Delay (Note 4)  
ns  
tPACC Page Access Time  
ns  
tGLQV  
tEHQZ  
tGHQZ  
tOE  
tDF  
tDF  
Output Enable to Output Delay  
ns  
Chip Enable to Output High Z (Notes 1, 5, 6)  
Output Enable to Output High Z (Notes 1, 5)  
ns  
ns  
Output Hold Time From Addresses,  
CE#f1/CE#f2 or OE#, Whichever Occurs First  
(Notes 5, 6)  
tAXQX  
tOH  
Min  
5
ns  
Read  
Min  
Min  
0
ns  
ns  
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
Data# Polling  
10  
Notes:  
1. Not 100% tested.  
5. Measurements performed by placing a 50 ohm termination on the  
data pin with a bias of VCC/2. The time from OE# high to the data  
2. See Figure 10 and Table 19 for test specifications  
bus driven to VCC/2 is taken as tDF  
.
3. Valid CE#f1/CE#f2 conditions: (CE#f1= VIL, CE#f2= VIH) or  
(CE#f1= VIH, CE#f2=VIL).  
6. Valid CE#f1/CE#f2 transitions: (CE#f1= VIL, CE#f2= VIH) or  
(CE#f1= VIH, CE#f2=VIL) to (CE#f1= CE#f2= VIH).  
4. Valid CE#f1/CE#f2 transitions: (CE#f1= CE#f2= VIH) to (CE#f1=  
VIL, CE#f2=VIH) or (CE#f1= VIH, CE#f2=VIL).  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
67  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#f1  
or CE#f2  
(PDL 129 only)  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operation Timings  
Same Page  
Addresses  
A2-A0  
Ad  
Qd  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
CE# f1  
or CE#f2 (PDL129 only)  
OE#  
Figure 14. Page Read Operation Timings  
Notes: During CE#f1 transitions, CE#f2= VIH; During CE#f2 transitions, CE#f1= VIH  
68  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
RESET# Pin Low (During Embedded Algorithms)  
All Speed Options  
Unit  
tReady  
Max  
Max  
20  
µs  
to Read Mode (See Note)  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#f1,  
CE#f2 (PDL129 only),  
OE#  
tRH  
RESET#  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#1  
tRB  
CE#f1,  
CE#f2 (PDL129 only),  
OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
69  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
All  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
Speeds  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
65  
0
tAVWL  
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
35  
ns  
tWLAX  
ns  
Address Hold Time From CE#1f or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
30  
0
ns  
ns  
ns  
Data Hold Time  
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tWLEL  
tELWL  
tWS  
tCS  
WE# Setup Time (CE#f1 to WE#)  
CE#f1 Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tEHWH  
tWHEH  
tWLWH  
tWHDL  
tWH  
WE# Hold Time (CE#f1 to WE#)  
CE#f1 Hold Time  
0
tCH  
0
tWP  
Write Pulse Width  
40  
25  
0
tWPH  
tSR/W  
tWHWH1  
Write Pulse Width High  
Latency Between Read and Write Operations  
tWHWH1  
tWHWH1  
tWHWH2  
Programming Operation (Note 2)  
Word  
6
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
Typ  
4
µs  
tWHWH2  
tVCS  
Sector Erase Operation (Note 2)  
VCC Setup Time (Note 1)  
Typ  
Min  
Min  
Max  
0.5  
50  
0
sec  
µs  
tRB  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See the “Flash Erase And Programming Performance” section for more information.  
70  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#f1  
or CE#f2  
(PDL129 only)  
tCH  
tGHWL  
OE#  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
Data  
tBUSY  
tRB  
RY/BY#  
V
CCf  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
3. For PDL129 during CE#f1 transitions the other CE#f1 pin = VIH.  
Figure 16. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 17. Accelerated Program Timing Diagram  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
71  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
tWC  
VA  
Addresses  
2AAh  
SADD  
555h for chip erase  
tAH  
CE#f1  
(PDL129 only)  
tGHWL  
tCH  
OE#  
WE#  
tWP  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
f
Notes:  
1. SADD = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Flash Write Operation Status”.  
2. For PDL129 during CE#f1 transitions the other CE#f1 pin = VIH.  
Figure 18. Chip/Sector Erase Operation Timings  
72  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Addresses  
tCPH  
tACC  
tCE  
CE#f1 or  
CE#f2 (PDL129 only)  
tCP  
tOE  
OE#  
tOEH  
tGHWL  
tWP  
WE#  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
Data  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE#f Controlled Write Cycles  
Figure 19. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
VA  
tACC  
tCE  
VA  
VA  
CE#f1 or  
CE#f2 (PDL129 only)  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 20. Data# Polling Timings (During Embedded Algorithms)  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
73  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#f1 or  
CE#f2 (PDL129 only)  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
Valid Data  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle.  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#f1 to  
toggle DQ2 and DQ6.  
Figure 22. DQ2 vs. DQ6  
74  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#f1 or  
CE#f2 (PDL129 only)  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 23. Temporary Sector Unprotect Timing Diagram  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
75  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SADD,  
A6, A1, A0  
Valid*  
Sector/Sector Block Protect or Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
Sector/Sector Block Protect: 150 µs,  
Sector/Sector Block Unprotect: 15 ms  
1 µs  
CE#f1 or  
CE#f1(PDL129 only)  
WE#  
OE#  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0, SADD = Sector Address.  
2. For PDL129 during CE#f1 transitions the other CE#f1 pin = VIH  
.
Figure 24. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
76  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
All  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
Speeds  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
70  
0
tAVWL  
tELAX  
tDVEH  
tEHDX  
ns  
tAH  
tDS  
tDH  
35  
30  
0
ns  
ns  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE#f Pulse Width  
CE#f Pulse Width High  
40  
25  
tCPH  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
Word  
Typ  
6
µs  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
Notes:  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
0.4  
sec  
1. Not 100% tested.  
2. See the “Flash Erase And Programming Performance” section for more information.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
77  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
555 for program  
2AA for erase  
PA for program  
SADD for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#f1 or  
CE#f2 (PDL129 only)  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
Data  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SADD = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
Figure 25. Flash Alternate CE# Controlled Write (Erase/Program) Operation Timings  
78  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2)  
Unit  
sec  
sec  
Comments  
Sector Erase Time  
Chip Erase Time  
0.4  
5
Excludes 00h programming  
prior to erasure (Note 4)  
108  
Excludes system level  
overhead (Note 5)  
Word Program Time  
6
210  
µs  
Accelerated Word Program Time  
Chip Program Time (Note 3)  
Notes:  
4
120  
200  
µs  
50  
sec  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles. All values are subject to change.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Tables  
Table 16 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
VCC Current  
–1.0 V  
VCC + 1.0 V  
+100 mA  
–100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
PACKAGE PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
11  
Max  
14  
Unit  
pF  
CIN  
COUT  
CIN2  
Output Capacitance  
VOUT = 0  
VIN = 0  
12  
16  
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
14  
16  
pF  
CIN3  
VIN = 0  
17  
20  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
FLASH DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
79  
A D V A N C E I N F O R M A T I O N  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Table 1. Am29DL640H Device Bus Operations  
Addresses  
(Note 2)  
DQ7–  
DQ0  
Operation  
CE#  
L
OE#  
L
WE#  
H
RESET#  
WP#/ACC  
L/H  
DQ15–DQ8  
DOUT  
Read  
Write  
H
H
AIN  
DOUT  
DIN  
L
H
L
(Note 3)  
AIN  
DIN  
VCC  
0.3 V  
VCC  
0.3 V  
Standby  
X
X
L/H  
X
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
X
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 2)  
L
L
H
H
X
L
L
X
VID  
VID  
VID  
L/H  
X
X
DIN  
DIN  
DIN  
SA, A6 = H,  
A1 = H, A0 = L  
Sector Unprotect (Note 2)  
(Note 3)  
(Note 3)  
Temporary Sector  
Unprotect  
X
AIN  
DIN  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 0.5 V, X = Don’t Care, SA = Sector Address,  
IN = Address In, DIN = Data In, DOUT = Data Out  
A
Notes:  
1. Addresses are A21:A0 in word mode.  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector/Sector  
Block Protection and Unprotection” section.  
3. If WP#/ACC = VIL, sectors 0, 1, 140, and 141 remain protected. If WP#/ACC = VIH, protection on sectors 0, 1, 140, and 141  
depends on whether they were last protected or unprotected using the method described in “Sector/Sector Block Protection  
and Unprotection”. If WP#/ACC = VHH, all sectors will be unprotected.  
control and selects the device. OE# is the output con-  
Word/Byte Configuration  
trol and gates array data to the output pins. WE#  
The BYTE# pin controls whether the device data I/O  
should remain at VIH. The BYTE# pin determines  
pins operate in the byte or word configuration. If the  
whether the device outputs array data in words or  
BYTE# pin is set at logic ‘1’, the device is in word con-  
bytes.  
figuration, DQ15–DQ0 are active and controlled by  
CE# and OE#.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. Each bank remains  
enabled for read access until the command register  
contents are altered.  
If the BYTE# pin is set at logic ‘0’, the device is in byte  
configuration, and only data I/O pins DQ7–DQ0 are  
active and controlled by CE# and OE#. The data I/O  
pins DQ14–DQ8 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
80  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Refer to the AC AC Characteristics table for timing  
nected; inconsistent behavior of the device may result.  
See “Write Protect (WP#)” on page 87 for related infor-  
mation.  
specifications and to Figure 13 for the timing diagram.  
ICC1 in the DC Characteristics table represents the ac-  
tive current specification for reading array data.  
Autoselect Functions  
Writing Commands/Command Sequences  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ15–DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Mode and Autose-  
lect Command Sequence sections for more informa-  
tion.  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
For program operations, the BYTE# pin determines  
whether the device accepts program data in bytes or  
words. Refer to “Requirements for Reading Array  
Data” for more information.  
Simultaneous Read/Write Operations with  
Zero Latency  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once a bank enters the Un-  
lock Bypass mode, only two write cycles are required  
to program a word or byte, instead of four. The “Word  
Program Command Sequence” section has details on  
programming data to the device using both standard  
and Unlock Bypass command sequences.  
This device is capable of reading data from one bank  
of memory while programming or erasing in the other  
bank of memory. An erase operation may also be sus-  
pended to read from or program to another location  
within the same bank (except the sector being  
erased). Figure 19 shows how read and write cycles  
may be initiated for simultaneous operation with zero  
latency. ICC6 and ICC7 in the DC Characteristics table  
represent the current specifications for read-while-pro-  
gram and read-while-erase, respectively.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Table 2 indicates the address  
space that each sector occupies. Similarly, a sector  
address” is the address bits required to uniquely select  
a sector. The “Command Definitions” section has de-  
tails on erasing a sector or the entire chip, or suspend-  
ing/resuming the erase operation.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device address space is divided into four banks. A  
“bank address” is the address bits required to uniquely  
select a bank.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The AC  
Characteristics section contains timing specification  
tables and timing diagrams for write operations.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at VCC 0.3 V.  
(Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within  
VCC 0.3 V, the device will be in the standby mode,  
but the standby current will be greater. The device re-  
quires standard access time (tCE) for read access  
when the device is in either of these standby modes,  
before it is ready to read data.  
Accelerated Program Operation  
The device offers accelerated program operations  
through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is prima-  
rily intended to allow faster manufacturing throughput  
at the factory.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated pro-  
gramming, or device damage may result. In addition,  
the WP#/ACC pin must not be left floating or uncon-  
ICC3 in the DC Characteristics table represents the  
standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of  
the CE#, WE#, and OE# control signals. Standard ad-  
dress access timings provide new data when ad-  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
81  
A D V A N C E I N F O R M A T I O N  
dresses are changed. While in sleep mode, output  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
data is latched and always available to the system.  
ICC5 in the DC Characteristics table represents the  
automatic sleep mode current specification.  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The sys-  
tem can thus monitor RY/BY# to determine whether  
the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing  
(RY/BY# pin is “1”), the reset operation is completed  
within a time of tREADY (not during Embedded Algo-  
rithms). The system can read data tRH after the RE-  
SET# pin returns to VIH.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
Refer to the pSRAM AC Characteristics tables for RE-  
SET# parameters and to Figure 15 for the timing dia-  
gram.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS 0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS 0.3 V, the standby current will  
be greater.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high  
impedance state.  
Table 2. Am29DL640H Sector Architecture  
Sector Address  
A21–A12  
Sector Size  
(Kwords)  
(x16)  
Address Range  
Bank  
Sector  
SA0  
SA1  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001101xxx  
0001111xxx  
4
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
Bank 1  
82  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 2. Am29DL640H Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(Kwords)  
(x16)  
Address Range  
Bank  
Sector  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0100100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
F9000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Bank 2  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
83  
A D V A N C E I N F O R M A T I O N  
Table 2. Am29DL640H Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(Kwords)  
(x16)  
Address Range  
Bank  
Sector  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
Bank 3  
84  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 2. Am29DL640H Sector Architecture (Continued)  
Sector Address  
A21–A12  
Sector Size  
(Kwords)  
(x16)  
Address Range  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
Bank 4  
4
4
4
4
4
4
4
Table 3. Bank Address  
Bank  
A21–A19  
1
2
3
4
000  
001, 010, 011  
100, 101, 110  
111  
Table 4. SecSiTM Sector Addresses  
(x16)  
Device  
Sector Size  
Address Range  
Am29DL640H  
256 bytes  
00000h–0007Fh  
set as required, the programming equipment may then  
read the corresponding identifier code on DQ7–DQ0.  
However, the autoselect codes can also be accessed  
in-system through the command register, for instances  
when the Am29DL640 is erased or programmed in a  
system without access to high voltage on the A9 pin.  
The command sequence is illustrated in Table 11.  
Note that if a Bank Address (BA) on address bits A21,  
A20, and A19 is asserted during the third write cycle of  
the autoselect command, the host system can read  
autoselect data from that bank and then immediately  
read array data from the other bank, without exiting the  
autoselect mode.  
Autoselect Mode  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equip-  
ment to automatically match a device to be pro-  
grammed with its corresponding programming  
algorithm. However, the autoselect codes can also be  
accessed in-system through the command register.  
When using programming equipment, the autoselect  
mode requires VID on address pin A9. Address pins  
must be as shown in Table 5. In addition, when verify-  
ing sector protection, the sector address must appear  
on the appropriate highest order address bits (see  
Table 2). Table 5 shows the remaining address bits  
that are don’t care. When all necessary bits have been  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 11. This method  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
85  
A D V A N C E I N F O R M A T I O N  
does not require VID. Refer to the Autoselect Com-  
mand Sequence section for more information.  
86  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Sector/Sector Block Protection and  
Unprotection  
Sector/  
Sector Block Size  
Sector  
A21–A12  
SA99–SA102  
SA103–SA106  
SA107–SA110  
SA111–SA114  
SA115–SA118  
SA119–SA122  
SA123–SA126  
SA127–SA130  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
(Note: For the following discussion, the term “sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table  
10).  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sectors. Sector protection/unprotection can be imple-  
mented via two methods.  
1111100XXX,  
1111101XXX,  
1111110XXX  
SA131–SA133  
192 (3x64) Kbytes  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111101  
1111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
Table 5. Am29DL640H Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
Sector/  
Sector  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
A21–A12  
Sector Block Size  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
Sector protection/sector unprotection requires VID on  
the RESET# pin only, and can be implemented either  
in-system or via programming equipment. Figure 1  
shows the algorithms and Figure 24 shows the timing  
diagram. For sector unprotect, all unprotected sectors  
must first be protected prior to the first sector unpro-  
tect write cycle. Note that the sector unprotect algo-  
rithm unprotects all sectors in parallel. All previously  
protected sectors must be individually re-protected. To  
change data in protected sectors efficiently, the tem-  
porary sector unprotect function is available. See  
Temporary Sector Unprotect”.  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
0000001XXX,  
0000010XXX,  
0000011XXX,  
SA8–SA10  
192 (3x64) Kbytes  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23–SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
SA83–SA86  
SA87–SA90  
SA91–SA94  
SA95–SA98  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
It is possible to determine whether a sector is pro-  
tected or unprotected. See the Autoselect Mode sec-  
tion for details.  
Write Protect (WP#)  
The Write Protect function provides a hardware  
method of protecting without using VID. This function is  
one of two provided by the WP#/ACC pin.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in sectors  
0, 1, 140, and 141, independently of whether those  
sectors were protected or unprotected using the  
method described in “Sector/Sector Block Protection  
and Unprotection”.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
87  
A D V A N C E I N F O R M A T I O N  
If the system asserts VIH on the WP#/ACC pin, the de-  
Temporary Sector Unprotect  
vice reverts to whether sectors 0, 1, 140, and 141  
were last set to be protected or unprotected. That is,  
sector protection or unprotection for these sectors de-  
pends on whether they were last protected or unpro-  
tected using the method described in “Sector/Sector  
Block Protection and Unprotection”.  
(Note: For the following discussion, the term “sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table  
10).  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
sector addresses. Once VID is removed from the RE-  
SET# pin, all the previously protected sectors are  
protected again. Figure 2 shows the algorithm, and  
Figure 23 shows the timing diagrams, for this feature.  
If the WP#/ACC pin is at VIL, sectors 0, 1, 140, and  
141 will remain protected during the Temporary sector  
Unprotect mode.  
Note that the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
Table 6. WP#/ACC Modes  
Device  
Mode  
WP# Input  
Voltage  
Disables programming and erasing in  
SA0, SA1, SA140, and SA141  
VIL  
VIH  
Enables programming and erasing in  
SA0, SA1, SA140, and SA141  
Enables accelerated programming  
(ACC). See “Accelerated Program  
Operation” on page 20.  
VHH  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL,  
sectors 0, 1, 140, and 141 will remain protected).  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
88  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
RESET# = VID  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
89  
A D V A N C E I N F O R M A T I O N  
programmed in the next 8 words at addresses  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region  
000008h–00000Fh (or 000010h–00001Fh in byte  
mode). The device is available preprogrammed with  
one of the following:  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN). The SecSi Sector is 256 bytes in length, and  
uses a SecSi Sector Indicator Bit (DQ7) to indicate  
whether or not the SecSi Sector is locked when  
shipped from the factory. This bit is permanently set at  
the factory and cannot be changed, which prevents  
cloning of a factory locked part. This ensures the secu-  
rity of the ESN once the product is shipped to the field.  
A random, secure ESN only  
Customer code through the ExpressFlash service  
Both a random, secure ESN and customer code  
through the ExpressFlash service.  
Customers may opt to have their code programmed by  
AMD through the AMD ExpressFlash service. AMD  
programs the customer’s code, with or without the ran-  
dom ESN. The devices are then shipped from AMD’s  
factory with the SecSi Sector permanently locked.  
Contact an AMD representative for details on using  
AMD’s ExpressFlash service.  
AMD offers the device with the SecSi Sector either  
factory locked or customer lockable. The fac-  
tory-locked version is always protected when shipped  
from the factory, and has the SecSi (Secured Silicon)  
Sector Indicator Bit permanently set to a “1.The cus-  
tomer-lockable version is shipped with the SecSi Sec-  
tor unprotected, allowing customers to utilize the that  
sector in any manner they choose. The customer-lock-  
able version has the SecSi (Secured Silicon) Sector  
Indicator Bit permanently set to a “0.Thus, the SecSi  
Sector Indicator Bit prevents customer-lockable de-  
vices from being used to replace devices that are fac-  
tory locked.  
Customer Lockable: SecSi Sector NOT  
Programmed or Protected at the Factory  
If the security feature is not required, the SecSi Sector  
can be treated as an additional Flash memory space.  
The SecSi Sector can be read any number of times,  
but can be programmed and locked only once. Note  
that the accelerated programming (ACC) and unlock  
bypass functions are not available when programming  
the SecSi Sector.  
The system accesses the SecSi Sector Secure  
through a command sequence (see “Enter SecSi™  
Sector/Exit SecSi Sector Command Sequence”). After  
the system has written the Enter SecSi Sector com-  
mand sequence, it may read the SecSi Sector by  
using the addresses normally occupied by the boot  
sectors. This mode of operation continues until the  
system issues the Exit SecSi Sector command se-  
quence, or until power is removed from the device. On  
power-up, or following a hardware reset, the device re-  
verts to sending commands to the first 256 bytes of  
Sector 0. Note that the ACC function and unlock by-  
pass modes are not available when the SecSi Sector  
is enabled.  
The SecSi Sector area can be protected using one of  
the following procedures:  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 1, ex-  
cept that RESET# may be at either VIH or VID. This  
allows in-system protection of the SecSi Sector Re-  
gion without raising any device pin to a high voltage.  
Note that this method is only applicable to the SecSi  
Sector.  
To verify the protect/unprotect status of the SecSi  
Sector, follow the algorithm shown in Figure 3.  
Once the SecSi Sector is locked and verified, the sys-  
tem must write the Exit SecSi Sector Region com-  
mand sequence to return to reading and writing the  
remainder of the array.  
Factory Locked: SecSi Sector Programmed and  
Protected At the Factory  
In a factory locked device, the SecSi Sector is pro-  
tected when the device is shipped from the factory.  
The SecSi Sector cannot be modified in any way. The  
device is preprogrammed with both a random number  
and a secure ESN. The 8-word random number is at  
addresses 000000h–000007h in word mode (or  
000000h–00000Fh in byte mode). The secure ESN is  
The SecSi Sector lock must be used with caution  
since, once locked, there is no procedure available for  
unlocking the SecSi Sector area and none of the bits  
in the SecSi Sector memory space can be modified in  
any way.  
90  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
START  
If WE# = CE# = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to the read mode on power-up.  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Wait 1 µs  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The  
system can read CFI information at the addresses  
given in Tables 12–15. To terminate reading CFI data,  
the system must write the reset command.The CFI  
Query mode is not accessible when the device is exe-  
cuting an Embedded Program or embedded Erase al-  
gorithm.  
Figure 3. SecSi Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Table 11 for com-  
mand definitions). In addition, the following hardware  
data protection measures prevent accidental erasure  
or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up  
and power-down transitions, or from system noise.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 12–15. The  
system must write the reset command to return the  
device to reading array data.  
Low VCC Write Inhibit  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/flash/cfi. Alterna-  
tively, contact an AMD representative for copies of  
these documents.  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control  
pins to prevent unintentional writes when VCC is  
greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE#  
or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
91  
A D V A N C E I N F O R M A T I O N  
Table 7. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 8. System Interface String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data Description  
VCC Min. (write/erase)  
0027h  
1Bh  
1Ch  
36h  
38h  
D7–D4: volt, D3–D0: 100 millivolt  
VCC Max. (write/erase)  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
92  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 9. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0017h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
007Dh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
93  
A D V A N C E I N F O R M A T I O N  
Table 10. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
Query-unique ASCII string “PRI”  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
0004h  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
8Ch  
8Eh  
90h  
0002h  
0001h  
0001h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
92h  
0004h  
01 =29F040 mode, 02 = 29F016 mode, 03 = 29F400, 04 = 29LV800  
mode  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors (excluding Bank 1)  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0077h  
0000h  
0000h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = 8 x 8 Kbyte Sectors, Top And Bottom Boot  
with Write Protect, 02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
9Eh  
0004h  
Program Suspend  
50h  
57h  
58h  
59h  
5Ah  
5Bh  
A0h  
AEh  
B0h  
B2h  
B4h  
B6h  
0001h  
0004h  
0017h  
0030h  
0030h  
0017h  
0 = Not supported, 1 = Supported, but not tested  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
94  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 11 defines the valid register command  
sequences. Writing incorrect address and data values  
or writing them in the improper sequence may place  
the device to an unknown state. A reset command is  
required to return the device to read array data.  
before programming begins. This resets the bank to  
which the system was writing to the read mode. If the  
program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-sus-  
pend-read mode. Once programming begins, however,  
the device ignores reset commands until the operation  
is complete.  
All addresses are latched on the falling edge of WE#  
or CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the pSRAM AC Characteristics section  
for timing diagrams.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Sus-  
pend mode, writing the reset command returns that  
bank to the erase-suspend-read mode.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
After the device accepts an Erase Suspend command,  
the corresponding bank enters the erase-sus-  
pend-read mode, after which the system can read  
data from any non-erase-suspended sector within the  
same bank. The system can read array data using the  
standard read timing, except that if it reads at an ad-  
dress within erase-suspended sectors, the device out-  
puts status data. After completing a programming  
operation in the Erase Suspend mode, the system  
may once again read array data with the same excep-  
tion. See the Erase Suspend/Erase Resume Com-  
mands section for more information.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and device codes,  
and determine whether or not a sector is protected.  
The autoselect command sequence may be written to  
an address within a bank that is either in the read or  
erase-suspend-read mode. The autoselect command  
may not be written while the device is actively pro-  
gramming or erasing in the other bank.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autose-  
lect mode. The system may read any number of  
autoselect codes without reinitiating the command se-  
quence.  
The system must issue the reset command to return a  
bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the  
next section, Reset Command, for more information.  
See also Requirements for Reading Array Data in the  
section for more information. The AC Characteristics  
table provides the read parameters, and Figure 13  
shows the timing diagram.  
Table 11 shows the address and data requirements.  
To determine sector protection information, the system  
must write to the appropriate bank address (BA) and  
sector address (SA). Table 2 shows the address range  
and bank number associated with each sector.  
Reset Command  
Writing the reset command resets the banks to the  
read or erase-suspend-read mode. Address bits are  
don’t cares for this command.  
The system must write the reset command to return to  
the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure be-  
gins, however, the device ignores reset commands  
until the operation is complete.  
The SecSi Sector region provides a secured data area  
containing a random, sixteen-byte electronic serial  
number (ESN). The system can access the SecSi  
Sector region by issuing the three-cycle Enter SecSi  
Sector command sequence. The device continues to  
access the SecSi Sector region until the system is-  
The reset command may be written between the  
sequence cycles in a program command sequence  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
95  
A D V A N C E I N F O R M A T I O N  
sues the four-cycle Exit SecSi Sector command se-  
ful. However, a succeeding read will show that the  
data is still “0.Only erase operations can convert a “0”  
to a “1.”  
quence. The Exit SecSi Sector command sequence  
returns the device to normal operation. The SecSi  
Sector is not accessible when the device is executing  
an Embedded Program or embedded Erase algorithm.  
Table 11 shows the address and data requirements for  
both command sequences. See also “SecSi™ (Se-  
cured Silicon) Sector Flash Memory Region” for further  
information. Note that the ACC function and unlock by-  
pass modes are not available when the SecSi Sector  
is enabled.  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to a bank faster than using the  
standard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
That bank then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Table 11 shows the require-  
ments for the command sequence.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The pro-  
gram command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up  
command. The program address and data are written  
next, which in turn initiate the Embedded Program al-  
gorithm. The system is not required to provide further  
controls or timings. The device automatically provides  
internally generated program pulses and verifies the  
programmed cell margin. Table 11 shows the address  
and data requirements for the byte program command  
sequence.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. See Table 12.  
When the Embedded Program algorithm is complete,  
that bank then returns to the read mode and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. Refer to the Write Operation  
Status section for information on these status bits.  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. SecSi sector, autoselect, and CFI are not  
allowed. The program command sequence should be  
reinitiated once that bank has returned to the read  
mode, to ensure data integrity. Note that the SecSi  
Sector, autoselect, and CFI functions are unavailable  
when a program operation is in progress.  
Figure 4 illustrates the algorithm for the program oper-  
ation. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters,  
and Figure 16 for timing diagrams.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from “0” back to a “1.Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate the operation was success-  
96  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that oc-  
curs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
START  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 section for timing diagrams.  
Write Program  
Command Sequence  
Data Poll  
from System  
Sector Erase Command Sequence  
Embedded  
Program  
algorithm  
in progress  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then fol-  
lowed by the address of the sector to be erased, and  
the sector erase command. Table 11 shows the ad-  
dress and data requirements for the sector erase com-  
mand sequence.  
Verify Data?  
Yes  
No  
No  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
After the command sequence is written, a sector erase  
time-out of 80 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than 80  
µs, otherwise erasure may begin. Any sector erase ad-  
dress and command following the exceeded time-out  
may or may not be accepted. It is recommended that  
processor interrupts be disabled during this time to en-  
sure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. Any command other than Sector Erase or  
Erase Suspend during the time-out period resets  
that bank to the read mode. No SecSi sector, au-  
toselect, or CFI is available. The system must rewrite  
the command sequence and any additional addresses  
and commands.  
Note: See Table 11 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 11  
shows the address and data requirements for the chip  
erase command sequence.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete,  
that bank returns to the read mode and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2,  
or RY/BY#. Refer to the Write Operation Status sec-  
tion for information on these status bits. Note that the  
SecSi Sector, autoselect, and CFI functions are un-  
available when a program operation is in progress.  
When the Embedded Erase algorithm is complete, the  
bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read  
data from the non-erasing bank. The system can de-  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
97  
A D V A N C E I N F O R M A T I O N  
termine the status of the erase operation by reading  
for erasure. The bank address is required when writing  
this command. This command is valid only during the  
sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer  
to the Write Operation Status section for information  
on these status bits.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once that bank has returned to  
reading array data, to ensure data integrity.  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written  
during the sector erase time-out, the device immedi-  
ately terminates the time-out period and suspends the  
erase operation. Addresses are “don’t-cares” when  
writing the Erase suspend command.  
Figure 5 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations ta-  
bles in the AC Characteristics section for parameters,  
and Figure 18 section for timing diagrams.  
After the erase operation has been suspended, the  
bank enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device “erase sus-  
pends” all sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
duces status information on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
After an erase-suspended program operation is com-  
plete, the bank returns to the erase-suspend-read  
mode. The system can determine the status of the  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Byte Program operation.  
Refer to the Write Operation Status section for more  
information.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. The device  
allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored  
in the memory array. When the device exits the au-  
toselect mode, the device reverts to the Erase Sus-  
pend mode, and is ready for another valid operation.  
Refer to the Autoselect Mode and Autoselect Com-  
mand Sequence sections for details.  
Yes  
Erasure Completed  
Notes:  
1. See Table 11 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
To resume the sector erase operation, the system  
must write the Erase Resume command (address bits  
are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command.  
Further writes of the Resume command are ignored.  
Another Erase Suspend command can be written after  
the chip has resumed erasing.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume  
Commands  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
98  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 11. Am29DL640H Command Definitions  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Addr  
Sixth  
Addr  
Addr Data Addr Data  
Data  
Addr  
Data  
Data  
Data  
Read (Note 5)  
Reset (Note 6)  
1
1
RA  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
555  
RD  
F0  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
Manufacturer ID  
4
6
4
AA  
AA  
AA  
55  
55  
55  
90 (BA)X00  
01  
7E  
(BA)X01  
90  
(BA)X0E  
(BA)X1C  
(BA)X0F  
(BA)X1E  
Device ID (Note 9)  
02  
01  
(BA)X02  
(BA)X03  
(BA)X06  
SecSi Sector Factory  
Protect (Note 10)  
90  
80/00  
Sector/Sector Block  
Protect Verify  
(Note 11)  
(SA)X02  
4
AA  
55  
90  
00/01  
Byte  
AAA  
555  
(BA)AAA  
(SA)X04  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
BA  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
XXX  
2AA  
555  
2AA  
555  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
3
AA  
AA  
AA  
AA  
55  
55  
55  
55  
88  
90  
A0  
20  
XXX  
PA  
00  
PD  
Unlock Bypass  
Unlock Bypass Program (Note 15)  
Unlock Bypass Reset (Note 15)  
2
2
A0  
90  
PD  
00  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
Chip Erase  
Byte  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Word  
Sector Erase  
Byte  
SA  
AAA  
AAA  
Erase Suspend (Note 11)  
Erase Resume (Note 12)  
1
1
B0  
30  
BA  
Word  
CFI Query (Note 13)  
Byte  
55  
AA  
1
98  
Legend:  
X = Don’t care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A21–A12 uniquely select any sector. Refer to  
Table 2 for information on sector addresses.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE# pulse, whichever happens  
later.  
BA = Address of the bank that is being switched to autoselect mode, is  
in bypass mode, or is being erased. A21–A19 uniquely select a bank.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The device ID must be read across the fourth, fifth, and sixth  
cycles.  
10. The data is 80h for factory locked, 40h for customer locked, and  
00h for not factory/customer locked.  
11. The data is 00h for an unprotected sector/sector block and 01h for  
a protected sector/sector block.  
12. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
13. The Unlock Bypass Reset command is required to return to the  
read mode when the bank is in the unlock bypass mode.  
14. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
15. The Erase Resume command is valid only during the Erase  
Suspend mode, and requires the bank address.  
3. Except for the read cycle and the fourth, fifth, and sixth cycle of  
the autoselect command sequence, all bus cycles are write  
cycles.  
4. Data bits DQ15–DQ8 are don’t care in command sequences,  
except for RD and PD.  
5. Unless otherwise noted, address bits A21–A11 are don’t cares for  
unlock and command cycles, unless SA or PA is required.  
6. No unlock or command cycles required when bank is reading  
array data.  
7. The Reset command is required to return to the read mode (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high (while  
the bank is providing status information).  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. The system must provide the bank address to obtain the  
manufacturer ID, device ID, or SecSi Sector factory protect  
information. Data bits DQ15–DQ8 are don’t care. While reading  
the autoselect addresses, the bank address must be the same  
until a reset command is given. See the Autoselect Command  
Sequence section for more information.  
16. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
99  
A D V A N C E I N F O R M A T I O N  
WRITE OPERATION STATUS  
The device provides several bits to determine the status of a  
program or erase operation: DQ2, DQ3, DQ5, DQ6, and  
DQ7. Table 18 and the following subsections describe the  
function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is com-  
plete or in progress. The device also provides a hard-  
ware-based output signal, RY/BY#, to determine whether  
an Embedded Program or Erase operation is in progress or  
has been completed.  
vice has completed the program or erase operation  
and DQ7 has valid data, the data outputs on  
DQ15–DQ0 may be still invalid. Valid data on  
DQ15–DQ0 (or DQ7–DQ0 for x8-only device) will ap-  
pear on successive read cycles.  
Table 18 shows the outputs for Data# Polling on DQ7.  
Figure 6 shows the Data# Polling algorithm. Figure 20  
in the pSRAM AC Characteristics section shows the  
Data# Polling timing diagram.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system  
whether an Embedded Program or Erase algorithm is in  
progress or completed, or whether a bank is in Erase Sus-  
pend. Data# Polling is valid after the rising edge of the final  
WE# pulse in the command sequence.  
START  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Program algorithm, the device out-  
puts on DQ7 the complement of the datum programmed to  
DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to  
DQ7. The system must provide the program address to  
read valid status information on DQ7. If a program address  
falls within a protected sector, Data# Polling on DQ7 is ac-  
tive for approximately 1 µs, then that bank returns to the  
read mode.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Yes  
Read DQ7–DQ0  
Addr = VA  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then the  
bank returns to the read mode. If not all selected sec-  
tors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected. However, if the sys-  
tem reads DQ7 at an address within a protected  
sector, the status may not be valid.  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at  
DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the  
following read cycles. Just prior to the completion of an  
Embedded Program or Erase operation, DQ7 may  
change asynchronously with DQ15–DQ8 (DQ7–DQ0  
for x8-only device) while Output Enable (OE#) is as-  
serted low. That is, the device may change from pro-  
viding status information to valid data on DQ7.  
Depending on when the system samples the DQ7 out-  
put, it may read the status or valid data. Even if the de-  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 6. Data# Polling Algorithm  
100  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
DQ6 also toggles during the erase-suspend-program  
RY/BY#: Ready/Busy#  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
Table 18 shows the outputs for Toggle Bit I on DQ6.  
Figure 7 shows the toggle bit algorithm. Figure 21 in  
the “AC Characteristics” section shows the toggle bit  
timing diagrams. Figure 22 shows the differences be-  
tween DQ2 and DQ6 in graphical form. See also the  
subsection on DQ2: Toggle Bit II.  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is in the read mode, the standby  
mode, or one of the banks is in the erase-sus-  
pend-read mode.  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Table 18 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
Yes  
No  
DQ5 = 1?  
Yes  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are pro-  
tected.  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is  
erase-suspended. When the device is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
DQ6 toggles. When the device enters the Erase Sus-  
pend mode, DQ6 stops toggling. However, the system  
must also use DQ2 to determine which sectors are  
erasing or erase-suspended. Alternatively, the system  
can use DQ7 (see the subsection on DQ7: Data# Poll-  
ing).  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5  
= “1” because the toggle bit may stop toggling as DQ5  
changes to “1.See the subsections on DQ6 and DQ2 for  
more information.  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Figure 7. Toggle Bit Algorithm  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
101  
A D V A N C E I N F O R M A T I O N  
not gone high. The system may continue to monitor  
DQ2: Toggle Bit II  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the previ-  
ous paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to de-  
termine the status of the operation (top of Figure 7).  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ5: Exceeded Timing Limits  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to con-  
trol the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 18 to compare out-  
puts for DQ2 and DQ6.  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under these  
conditions DQ5 produces a “1,indicating that the program  
or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries  
to program a “1” to a location that was previously pro-  
grammed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “DQ2: Toggle Bit II” explains the  
algorithm. See also the DQ6: Toggle Bit I subsection.  
Figure 21 shows the toggle bit timing diagram. Figure  
22 shows the differences between DQ2 and DQ6 in  
graphical form.  
Under both these conditions, the system must write  
the reset command to return to the read mode (or to  
the erase-suspend-read mode if a bank was previ-  
ously in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
Reading Toggle Bits DQ6/DQ2  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a “0” to a “1.If the time between addi-  
tional sector erase commands from the system can be  
assumed to be less than 50 µs, the system need not  
monitor DQ3. See also the Sector Erase Command  
Sequence section.  
Refer to Figure 7 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ15–DQ0 (or DQ7–DQ0 for x8-only  
device) at least twice in a row to determine whether a  
toggle bit is toggling. Typically, the system would note  
and store the value of the toggle bit after the first read.  
After the second read, the system would compare the  
new value of the toggle bit with the first. If the toggle bit  
is not toggling, the device has completed the program  
or erase operation. The system can read array data on  
DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the  
following read cycle.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
“1,the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
Table 18 shows the status of DQ3 relative to the other  
status bits.  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
102  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Table 12. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
Erase-Suspend-  
Read  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm  
is in progress. The device outputs array data if the system addresses a non-busy bank.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
103  
A D V A N C E I N F O R M A T I O N  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C  
+0.8 V  
Voltage with Respect to Ground  
–0.5 V  
–2.0 V  
V
CC (Note 1) . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
A9, OE#, and RESET#  
(Note 2). . . . . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
20 ns  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Figure 8. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to –2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 8. During voltage transitions, input or I/O pins  
may overshoot to VCC +2.0 V for periods up to 20 ns. See  
Figure 9.  
20 ns  
VCC  
+2.0 V  
VCC  
2. Minimum DC input voltage on pins A9, OE#, RESET#,  
and WP#/ACC is –0.5 V. During voltage transitions, A9,  
OE#, WP#/ACC, and RESET# may overshoot VSS to  
–2.0 V for periods of up to 20 ns. See Figure 8. Maximum  
DC input voltage on pin A9 is +12.5 V which may  
overshoot to +14.0 V for periods up to 20 ns. Maximum  
DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Spansion Flash MultiChip memory products are not  
tested or guaranteed for any level of ESD immunity on  
components not designed and manufactured by FASL  
LLC. Please refer to individual MCP product qualifica-  
tion reports for information on how to obtain ESD im-  
munity information from manufacturers of such  
components.  
OPERATING RANGES  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
Extended (E) Devices  
Ambient Temperature (TA) . . . . . . . . –55°C to +125°C  
VCC Supply Voltages  
VCC for standard voltage range . . . . . . .2.7 V to 3.3 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
104  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
VIN = VSS to VCC  
CC = VCC max  
VCC = VCC max; A9 = 12.5 V  
Min  
Typ  
Max  
1.0  
35  
Unit  
µA  
,
ILI  
Input Load Current  
V
ILIT  
ILO  
ILR  
A9 Input Load Current  
Output Leakage Current  
Reset Leakage Current  
µA  
V
OUT = VSS to VCC  
,
1.0  
µA  
VCC = VCC max  
VCC = VCC max; RESET= 12.5 V  
35  
16  
4
µA  
5 MHz  
10  
2
CE# = VIL, OE# = VIH,  
Byte Mode  
1 MHz  
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
5 MHz  
10  
2
16  
4
CE# = VIL, OE# = VIH,  
Word Mode  
1 MHz  
ICC2  
ICC3  
ICC4  
VCC Active Write Current (Notes 2, 3) CE# = VIL, OE# = VIH, WE# = VIL  
15  
0.2  
0.2  
30  
5
mA  
µA  
µA  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE#, RESET# = VCC 0.3 V  
RESET# = VSS 0.3 V  
5
VIH = VCC 0.3 V;  
VIL = VSS 0.3 V  
ICC5  
ICC6  
ICC7  
Automatic Sleep Mode (Notes 2, 4)  
0.2  
21  
21  
5
µA  
mA  
mA  
VCC Active Read-While-Program  
Current (Notes 1, 2)  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
Word  
Word  
45  
45  
VCC Active Read-While-Erase  
Current (Notes 1, 2)  
VCC Active  
ICC8  
Program-While-Erase-Suspended  
Current (Notes 2, 5)  
CE# = VIL, OE# = VIH  
17  
35  
mA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
0.7 x VCC  
VCC + 0.3  
Voltage for WP#/ACC Sector  
Protect/Unprotect and Program  
Acceleration  
VHH  
V
CC = 3.0 V 10%  
CC = 3.0 V 10%  
8.5  
9.5  
V
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
V
11.5  
12.5  
0.45  
VOL  
VOH1  
VOH2  
VLKO  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min  
OH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
I
0.85 VCC  
VCC–0.4  
2.0  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
V
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode current is  
200 nA.  
5. Not 100% tested.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
105  
A D V A N C E I N F O R M A T I O N  
DC CHARACTERISTICS  
Zero-Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 10. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 11. Typical ICC1 vs. Frequency  
106  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
TEST CONDITIONS  
Table 13. Test Specifications  
3.1 V  
Test Condition  
Output Load  
All Speed Options Unit  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
70  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0–3.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 12. Test Setup  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 13. Input Waveforms and Measurement Levels  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
107  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Read-Only Operations  
Parameter  
JEDEC  
Std. Description  
tRC Read Cycle Time (Note 1)  
Test Setup  
All Speed Options Unit  
tAVAV  
Min  
70  
70  
ns  
ns  
CE#,  
OE# = VIL  
tAVQV  
tACC Address to Output Delay  
Max  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
70  
30  
16  
16  
ns  
ns  
ns  
ns  
Output Enable to Output Delay  
Chip Enable to Output High Z (Notes 1, 3)  
Output Enable to Output High Z (Notes 1, 3)  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 10 and Table 19 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of VCC/2. The time from OE# high to  
the data bus driven to VCC/2 is taken as tDF  
.
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operation Timings  
108  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
RESET# Pin Low (During Embedded Algorithms)  
All Speed Options  
Unit  
tReady  
Max  
Max  
20  
µs  
to Read Mode (See Note)  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
109  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
All Speed Options  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
70  
0
tAVWL  
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
40  
ns  
tWLAX  
ns  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
40  
0
ns  
ns  
ns  
Data Hold Time  
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
CE# Hold Time  
tWP  
Write Pulse Width  
30  
30  
0
tWPH  
tSR/W  
tWHWH1  
Write Pulse Width High  
Latency Between Read and Write Operations  
tWHWH1  
tWHWH1  
tWHWH2  
Programming Operation (Note 2)  
Word  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
Typ  
4
µs  
tWHWH2  
tVCS  
Sector Erase Operation (Note 2)  
VCC Setup Time (Note 1)  
Typ  
Min  
Min  
Max  
0.4  
50  
0
sec  
µs  
tRB  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
110  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 16. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 17. Accelerated Program Timing Diagram  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
111  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 18. Chip/Sector Erase Operation Timings  
112  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
Valid RA  
Valid PA  
Addresses  
tAH  
tCPH  
tACC  
tCE  
CE#  
tCP  
tOE  
OE#  
tOEH  
tGHWL  
tWP  
WE#  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
Data  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# or CE2# Controlled Write Cycles  
Figure 19. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Valid Data  
Status Data  
True  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 20. Data# Polling Timings (During Embedded Algorithms)  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
113  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle  
DQ2 and DQ6.  
Figure 22. DQ2 vs. DQ6  
114  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 23. Temporary Sector Unprotect Timing Diagram  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
115  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Sector Group Protect/Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 24. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
116  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
All Speed Options  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
70  
0
tAVWL  
tELAX  
tDVEH  
tEHDX  
ns  
tAH  
40  
40  
0
ns  
tDS  
ns  
tDH  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
40  
30  
tCPH  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
Word  
Typ  
7
µs  
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
Notes:  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
0.4  
sec  
1. Not 100% tested.  
2. See the “Erase and Programming” section for more information.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
117  
A D V A N C E I N F O R M A T I O N  
AC CHARACTERISTICS  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 25. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
118  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
Chip Erase Time  
0.4  
56  
5
5
Excludes 00h programming  
prior to erasure (Note 4)  
Byte Program Time  
Accelerated Byte/Word Program Time  
Word Program Time  
Chip Program Time  
150  
120  
210  
4
µs  
Excludes system level  
overhead (Note 5)  
7
µs  
Word Mode  
28  
84  
sec  
(Note 3)  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table  
11 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
VCC Current  
–1.0 V  
VCC + 1.0 V  
+100 mA  
–100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
DATA RETENTION  
Parameter Description  
Test Conditions  
Min  
10  
Unit  
Years  
Years  
150°C  
125°C  
Minimum Pattern Data Retention Time  
20  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
119  
A D V A N C E I N F O R M A T I O N  
PSRAM AC CHARACTERISTICS  
CE#s Timing  
Parameter  
Test Setup  
AllSpeeds  
Unit  
JEDEC  
Std  
Description  
tCCR  
CE#s Recover Time  
Min  
0
ns  
CE#1ps  
CE2ps  
tCCR  
tCCR  
Figure 26. Timing Diagram for Alternating  
Between Pseudo SRAM to Flash  
VCC (Min)  
VCC  
Min. 0 ns  
CS2s  
Min. 200 µs  
CS#1s  
Normal Operation  
Power Up Mode  
Note: After VCC reaches VCC (MIn), wait 200 µs with CS#1s and CS2s high. The device will enter into normal operation.  
Figure 27. Timing Waveform of Power-up  
120  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
PSRAM AC CHARACTERISTICS  
Functional Description  
Power  
Mode  
Read (Word)  
CE1# CE2 OE# WE# LB# UB# Add I/01 to I/08  
I/01 to I/08  
DOUT  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
H
L
X
X
X
X
X
X
X
X
DOUT  
DOUT  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
Read (Lower Byte)  
Read (Upper Byte)  
Write (Word)  
High-Z  
DOUT  
L
H
L
High-Z  
DIN  
X
X
X
H
X
X
L
DIN  
Write (Lower Byte)  
Write (Upper Byte)  
Outputs Disabled  
Standby  
L
L
H
L
DIN  
Invalid  
DIN  
L
H
X
X
X
Invalid  
High-Z  
High-Z  
High-Z  
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
Deep Power-down Standby  
X
Note: L = Low-level Input (VIL), H = High-level Input (VIH), X = VIH or VIL, High-Z = High-impedance.  
Absolute Maximum Ratings  
Symbol  
VDD  
Ratings  
Value  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-25 to 85  
-55 to 150  
0.6  
Unit  
V
Power Supply Voltage  
Input Voltage  
VIN  
V
VOUT  
Topr.  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
Short Circuit Output Current  
oC  
W
oC  
oC  
Tstrg.  
PD  
IOUT  
50  
Note: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
DC Recommended Operating Conditions (Ta = -25oC to 85oC)  
Symbol  
VDD  
Ratings  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
Min  
2.6  
Typ  
Max  
3.3  
Unit  
2.75  
VIH  
2.0  
-
-
VDD + 0.3*  
0.4  
V
IOUT  
-0.3*  
Note: All voltages are reference to GND. *: VIH (Max) VDD+1.0 V with 10 ns pulse width, VIL (Min) -1.0 V with 10 ns pulse width.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
121  
A D V A N C E I N F O R M A T I O N  
DC Characteristics (Ta = -25oC to 85oC, VDD = 2.6 to 3.3 V)  
Symbol  
IIL  
Parameter  
Input Leakage Current  
Output Leakage Current  
Output High Voltage  
Output Low Voltage  
Test Condition  
VIN = 0 V to VDD  
Min  
-1.0  
-1.0  
2.4  
-
Typ  
Max  
+1.0  
+1.0  
Unit  
µA  
µA  
V
-
-
-
-
ILO  
Output disable, VOUT = 0 V to VDD  
IOH = -0.5 mA  
VOH  
VOL  
IOL = -1.0 mA  
0.4  
50  
V
CE1# = VIL  
-
IDDO1  
Operating Current  
t
RC = min  
-
-
mA  
mA  
CE2 = VIH, IOUT = 0 mA  
CE1# = VIL, CE2 = VIH,  
-
IDDO2  
Page Access Operating Current  
Standby Current (MOS)  
tPC = min  
25  
Page add. cycling, IOUT = 0 mA  
IDDS  
CE1# = VDD - 0.2V CE2 = VDD - 0.2V  
-
-
-
-
100  
5
µA  
µA  
,
IDDSD  
Deep Power-down Standby Current CE2 = 0.2V  
Notes:  
1. IDDO depends on the cycle time.  
2. IDDO depends on output loading. Specified values are defined with  
the output open condition.  
Capacitance (Ta = -25oC, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
Max  
10  
Unit  
pF  
Input Capitance  
VIN = GND  
COUT  
Output Capitance  
VOUT = GND  
10  
pF  
Note:  
1. This parameter is sampled periodically and is not 100% tested.  
6. During the output state of I/O signals, input signals of reverse  
polarity must not be applied.  
2. AC measurements are assumed tR, tF = 5 ns.  
7. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes  
LOW, the outputs will remain at high impedance.  
3. Parameters tOD, tODO, tBD and tODW define the time at which the  
output goes the open condition and are not output voltage  
reference levels.  
8. If CE1 or LB#/UB# goes HIGH coincident with or before WE#  
goes HIGH, the outputs will remain at high impedance.  
4. Data cannot be retained at deep power-down standby mode.  
5. If OE# is high during the write cycle, the outputs will remain at  
high impedance.  
122  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
AC Characteristics and Operating Conditions  
Symbol  
tRC  
Parameter  
Min  
70  
-
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
1000  
tACC  
tCO  
Address Access Time  
70  
Chip Enable (CE1#) Access Time  
Output Enable Access Time  
Data Byte Control Access Time  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
Output Data Hold Time  
-
70  
tOE  
-
25  
tBA  
-
25  
tCOE  
tOEE  
tBE  
10  
0
-
-
0
-
tOD  
-
20  
tODO  
tBD  
-
20  
-
20  
tOH  
10  
70  
30  
-
-
tPM  
Page Mode Time  
10000  
tPC  
Page Mode Cycle Time  
-
tAA  
Page Mode Address Access Time  
Page Mode Output Data Hold Time  
Write Cycle Time  
30  
tAOH  
tWC  
tWP  
10  
70  
50  
70  
60  
60  
0
-
10000  
Write Pulse Width  
-
-
tCW  
tBW  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
-
tAW  
-
tAS  
-
tWR  
tCEH  
tWEH  
tODW  
Write Recovery Time  
0
-
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
10  
6
-
-
-
20  
tOEW  
tDS  
WE# High to Output Active  
Data Set-up Time  
0
30  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ms  
ns  
µs  
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
tCPD  
tCHC  
tCHP  
CE2 Pulse Width  
CE2 Hold from CE1#  
CE2 Hold from Power on  
30  
Notes:  
1. Stresses greater than listed under “Absolute Maximum Ratings” may  
cause permanent damage to the device.  
5. AC measurements are assumed tR, tF = 5 ns.  
6. Parameters tOD, tODO, tBD and tODW define the time at which the  
output goes the open condition and are not output voltage  
reference levels.  
2. All voltages are reference to GND.  
3. IDDO depends on the cycle time.  
7. Data cannot be retained at deep power-down standby mode.  
4. IDDO depends on output loading. Specified values are defined  
with the output open condition.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
123  
A D V A N C E I N F O R M A T I O N  
AC Test Conditions  
Parameter  
Condition  
Output Load  
30 pF + 1 TTL Gate  
Input Pulse Level  
Timing Measurements  
Reference Level  
V
V
V
DD - 0.2 V, 0.2 V  
DD x 0.5  
DD x 0.5  
tR, tF  
5 ns  
124  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
Timing Diagrams  
Read Cycle  
Page Read Cycle (8 words access)  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
125  
A D V A N C E I N F O R M A T I O N  
Write Cycle 1  
Write Cycle 2  
126  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
127  
A D V A N C E I N F O R M A T I O N  
PHYSICAL DIMENSIONS  
FMB073—73-Ball Fine-Pitch Grid Array 9 x 12 mm  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
TOP VIEW  
SIDE VIEW  
0.15  
(2X)  
C
SD  
BOTTOM VIEW  
0.20  
0.08  
C
A2  
A
C
C
A1  
6
73X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
FMB 073  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
13.00 mm X 9.00 mm PACKAGE  
NOTE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
SYMBOL  
A
MIN.  
---  
NOM.  
---  
MAX.  
1.40  
---  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
4. e REPRESENTS THE SOLDER BALL GRID PITCH.  
5. SYMBOL "MD" IS THE BALL MATRIX IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX IN THE "E" DIRECTION.  
PROFILE  
A1  
0.20  
1.02  
---  
BALL HEIGHT  
BODY THICKNESS  
BODY SIZE  
A2  
---  
1.17  
D
13.00 BSC  
9.00 BSC  
8.80 BSC  
7.20 BSC  
12  
n IS THE NUMBER OF POPULATED SOLDER BALL  
POSITIONS FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
E1  
7. SD AND SE ARE MEASURED WITH RESPECT TO  
DATUMS A AND B AND DEFINE THE POSITION OF THE  
CENTER SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
73  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS  
IN THE OUTER ROW SD OR SE = 0.000.  
Ob  
eE  
0.29  
---  
0.39  
BALL DIAMETER  
0.80 BSC  
0.80 BSC  
0.40 BSC  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS  
IN THE OUTER ROW, SD OR SE = E/2  
eD  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
SD/SE  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B2,B3,B4,B5,B6,B7,B8,B9  
DEPOPULATED SOLDER BALLS  
9. NOT USED.  
C2,C9,C10,D1,D10,E1,E10  
F5,F6,G5,G6,H1,H10,J1,J10  
K1,K2,K9,K10,L2,L3,L4,L7,L8,L9  
M2,M3,M4,M5,M6,M7,M8,M9  
10. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER  
OR INK MARK, METALLIZED MARK INDENTATION OR  
OTHER MEANS.  
w053003f-163814c  
128  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
REVISION SUMMARY  
Revision A (December 5, 2003)  
Initial release.  
Revision A+1 (February 5, 2004)  
ESD Immunity  
Added an ESD Immunity qualification statement re-  
garding component devices manufactured by third par-  
ties.  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
129  
A D V A N C E I N F O R M A T I O N  
Trademarks  
Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
130  
Am75PDL191CHH/Am75PDL193CHH  
February 5, 2004  
A D V A N C E I N F O R M A T I O N  
February 5, 2004  
Am75PDL191CHH/Am75PDL193CHH  
131  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . 11  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 12  
Connection Diagram–PDL127 . . . . . . . . . . . . . . . 13  
Special Package Handling Instructions .................................. 13  
Connection Diagram–PDL129 . . . . . . . . . . . . . . . 14  
Hardware Data Protection ...................................................... 46  
Low VCC Write Inhibit ......................................................... 46  
Write Pulse “Glitch” Protection ............................................ 46  
Logical Inhibit ....................................................................... 46  
Power-Up Write Inhibit ......................................................... 46  
Common Flash Memory Interface (CFI) . . . . . . . 46  
Table 12. CFI Query Identification String........................................ 47  
System Interface String................................................................... 47  
Table 14. Device Geometry Definition ............................................ 48  
Table 15. Primary Vendor-Specific Extended Query ...................... 49  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 50  
Reading Array Data ................................................................ 50  
Special Package Handling Instructions .................................. 14  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . 16  
Am29PDL127H/AM29PDL129H Device Bus Operations ....... 17  
Table 1. Device Bus Operations ..................................................... 18  
Requirements for Reading Array Data ................................... 19  
Random Read (Non-Page Read) ........................................ 19  
Page Mode Read ................................................................ 19  
Table 2. Page Select .......................................................................19  
Simultaneous Operation ......................................................... 19  
Table 3. Bank Select (PDL129H) ....................................................19  
Table 4. Bank Select (PDL127H) ....................................................19  
Writing Commands/Command Sequences ............................ 20  
Accelerated Program Operation .......................................... 20  
Autoselect Functions ........................................................... 20  
Standby Mode ........................................................................ 20  
Automatic Sleep Mode ........................................................... 20  
RESET#: Hardware Reset Pin ............................................... 21  
Reset Command ..................................................................... 50  
Autoselect Command Sequence ............................................ 50  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence .............................................................. 51  
Word Program Command Sequence ...................................... 51  
Unlock Bypass Command Sequence .................................. 51  
Figure 4. Program Operation ......................................................... 52  
Chip Erase Command Sequence ........................................... 52  
Sector Erase Command Sequence ........................................ 52  
Figure 5. Erase Operation.............................................................. 53  
Erase Suspend/Erase Resume Commands ........................... 53  
Password Program Command ................................................ 53  
Password Verify Command .................................................... 54  
Password Protection Mode Locking Bit Program Command .. 54  
Persistent Sector Protection Mode Locking Bit Program Com-  
mand ....................................................................................... 54  
SecSi Sector Protection Bit Program Command .................... 54  
PPB Lock Bit Set Command ................................................... 54  
DYB Write Command ............................................................. 54  
Password Unlock Command .................................................. 55  
PPB Program Command ........................................................ 55  
All PPB Erase Command ........................................................ 55  
DYB Write Command ............................................................. 55  
PPB Lock Bit Set Command ................................................... 55  
PPB Status Command ............................................................ 55  
PPB Lock Bit Status Command .............................................. 55  
Sector Protection Status Command ....................................... 55  
Command Definitions Tables .................................................. 56  
Table 16. Memory Array Command Definitions ............................. 56  
Table 17. Sector Protection Command Definitions ........................ 57  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 58  
DQ7: Data# Polling ................................................................. 58  
Figure 6. Data# Polling Algorithm .................................................. 58  
RY/BY#: Ready/Busy# ............................................................ 59  
DQ6: Toggle Bit I .................................................................... 59  
Figure 7. Toggle Bit Algorithm........................................................ 59  
DQ2: Toggle Bit II ................................................................... 60  
Reading Toggle Bits DQ6/DQ2 ............................................... 60  
Output Disable Mode .............................................................. 21  
Table 5. SecSiTM Sector Addresses ................................................21  
Table 6. Am29PDL127H Sector Architecture ..................................22  
Table 7. Am29PDL129H Sector Architecture ..................................29  
Table 8. Am29PDL127H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection ........................................................................37  
Table 9. Am29PDL129H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection  
CE#f1 Control ..................................................................................38  
Table 10. Am29PDL129H Boot Sector/Sector Block Addresses for  
Protection/Unprotection  
CE#f2 Control ..................................................................................38  
Sector Protection. . . . . . . . . . . . . . . . . . . . . . . . . 39  
Persistent Sector Protection ................................................... 39  
Persistent Protection Bit (PPB) ............................................ 39  
Persistent Protection Bit Lock (PPB Lock) .......................... 39  
Dynamic Protection Bit (DYB) ............................................. 39  
Table 11. Sector Protection Schemes .............................................40  
Persistent Sector Protection Mode Locking Bit ................... 40  
Password Protection Mode ..................................................... 40  
Password and Password Mode Locking Bit ........................ 41  
64-bit Password ................................................................... 41  
Write Protect (WP#) ................................................................ 41  
Persistent Protection Bit Lock .............................................. 41  
High Voltage Sector Protection .............................................. 42  
Figure 1. In-System Sector Protection/  
Sector Unprotection Algorithms ...................................................... 43  
Temporary Sector Unprotect .................................................. 44  
Figure 2. Temporary Sector Unprotect Operation........................... 44  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region ............................................................ 44  
Factory-Locked Area (64 words) ......................................... 44  
Customer-Lockable Area (64 words) ................................... 44  
Figure 3. SecSi Protection Algorithm .............................................. 45  
SecSi Sector Protection Bits ................................................ 46  
DQ5: Exceeded Timing Limits ................................................ 60  
DQ3: Sector Erase Timer ....................................................... 60  
Table 18. Write Operation Status ................................................... 61  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 62  
Figure 8. Maximum Negative Overshoot Waveform ...................... 62  
Figure 9. Maximum Positive Overshoot Waveform........................ 62  
ESD Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 64  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
1
February 5, 2004  
Figure 10. Test Setup..................................................................... 65  
Figure 11. Input Waveforms and Measurement Levels .................. 65  
pSRAM AC Characteristics . . . . . . . . . . . . . . . . . 66  
CE#1ps Timing ....................................................................... 66  
Figure 12. Timing Diagram for Alternating  
Between Pseudo SRAM and Flash................................................. 66  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 67  
Read-Only Operations – Am29PDL127H ............................... 67  
Read-Only Operations – Am29PDL129H ............................... 67  
Figure 13. Read Operation Timings................................................ 68  
Figure 14. Page Read Operation Timings....................................... 68  
Hardware Reset (RESET#) .................................................... 69  
Figure 15. Reset Timings................................................................ 69  
Erase and Program Operations .............................................. 70  
Figure 16. Program Operation Timings........................................... 71  
Figure 17. Accelerated Program Timing Diagram........................... 71  
Figure 18. Chip/Sector Erase Operation Timings ........................... 72  
Figure 19. Back-to-back Read/Write Cycle Timings ....................... 73  
Figure 20. Data# Polling Timings (During Embedded Algorithms).. 73  
Figure 21. Toggle Bit Timings (During Embedded Algorithms)....... 74  
Figure 22. DQ2 vs. DQ6.................................................................. 74  
Temporary Sector Unprotect .................................................. 75  
Figure 23. Temporary Sector Unprotect Timing Diagram ............... 75  
Figure 24. Sector/Sector Block Protect and  
Low VCC Write Inhibit ......................................................... 91  
Write Pulse “Glitch” Protection ............................................ 91  
Logical Inhibit ....................................................................... 91  
Power-Up Write Inhibit ......................................................... 91  
Common Flash Memory Interface (CFI) . . . . . . . 91  
Table 7. CFI Query Identification String.......................................... 92  
System Interface String................................................................... 92  
Table 9. Device Geometry Definition .............................................. 93  
Table 10. Primary Vendor-Specific Extended Query ...................... 94  
Command Definitions . . . . . . . . . . . . . . . . . . . . . 95  
Reading Array Data ................................................................ 95  
Reset Command ..................................................................... 95  
Autoselect Command Sequence ............................................ 95  
Enter SecSi™ Sector/Exit SecSi Sector  
Command Sequence .............................................................. 95  
Word Program Command Sequence ...................................... 96  
Unlock Bypass Command Sequence .................................. 96  
Figure 4. Program Operation ......................................................... 97  
Chip Erase Command Sequence ........................................... 97  
Sector Erase Command Sequence ........................................ 97  
Figure 5. Erase Operation.............................................................. 98  
Erase Suspend/Erase Resume Commands ........................... 98  
Table 11. Am29DL640H Command Definitions .............................. 99  
Write Operation Status . . . . . . . . . . . . . . . . . . . 100  
DQ7: Data# Polling ...............................................................100  
Figure 6. Data# Polling Algorithm ................................................ 100  
RY/BY#: Ready/Busy# .......................................................... 101  
DQ6: Toggle Bit I ..................................................................101  
Figure 7. Toggle Bit Algorithm...................................................... 101  
DQ2: Toggle Bit II ................................................................. 102  
Reading Toggle Bits DQ6/DQ2 .............................................102  
DQ5: Exceeded Timing Limits .............................................. 102  
DQ3: Sector Erase Timer ..................................................... 102  
Table 12. Write Operation Status ................................................. 103  
Absolute Maximum Ratings . . . . . . . . . . . . . . . 104  
Figure 8. Maximum Negative Overshoot Waveform .................... 104  
Figure 9. Maximum Positive Overshoot Waveform...................... 104  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 10. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents)........................................................... 106  
Figure 11. Typical ICC1 vs. Frequency.......................................... 106  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 12. Test Setup.................................................................. 107  
Figure 13. Input Waveforms and Measurement Levels ............... 107  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 108  
Read-Only Operations .........................................................108  
Figure 14. Read Operation Timings............................................. 108  
Hardware Reset (RESET#) .................................................. 109  
Figure 15. Reset Timings............................................................. 109  
Erase and Program Operations ............................................110  
Figure 16. Program Operation Timings........................................ 111  
Figure 17. Accelerated Program Timing Diagram........................ 111  
Figure 18. Chip/Sector Erase Operation Timings ........................ 112  
Figure 19. Back-to-back Read/Write Cycle Timings .................... 113  
Figure 20. Data# Polling Timings (During Embedded Algorithms) 113  
Figure 21. Toggle Bit Timings (During Embedded Algorithms).... 114  
Figure 22. DQ2 vs. DQ6............................................................... 114  
Temporary Sector Unprotect ................................................ 115  
Figure 23. Temporary Sector Unprotect Timing Diagram ............ 115  
Figure 24. Sector/Sector Block Protect and  
Unprotect Timing Diagram .............................................................. 76  
Alternate CE# Controlled Erase and Program Operations ..... 77  
Figure 25. Flash Alternate CE# Controlled Write (Erase/Program)  
Operation Timings........................................................................... 78  
Erase And Programming Performance . . . . . . . . 79  
Latchup Characteristics . . . . . . . . . . . . . . . . . . . 79  
Package Pin Capacitance . . . . . . . . . . . . . . . . . . 79  
Flash Data Retention . . . . . . . . . . . . . . . . . . . . . . 79  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 80  
Table 1. Am29DL640H Device Bus Operations ..............................80  
Word/Byte Configuration ........................................................ 80  
Requirements for Reading Array Data ................................... 80  
Writing Commands/Command Sequences ............................ 81  
Accelerated Program Operation .......................................... 81  
Autoselect Functions ........................................................... 81  
Simultaneous Read/Write Operations with Zero Latency ....... 81  
Standby Mode ........................................................................ 81  
Automatic Sleep Mode ........................................................... 81  
RESET#: Hardware Reset Pin ............................................... 82  
Output Disable Mode .............................................................. 82  
Table 2. Am29DL640H Sector Architecture ....................................82  
Table 3. Bank Address ....................................................................85  
SecSiTM Sector Addresses.............................................................. 85  
Autoselect Mode ..................................................................... 85  
Sector/Sector Block Protection and Unprotection .................. 87  
Table 5. Am29DL640H Boot Sector/Sector Block Addresses for Pro-  
tection/Unprotection ........................................................................87  
Write Protect (WP#) ................................................................ 87  
Table 6. WP#/ACC Modes ..............................................................88  
Temporary Sector Unprotect .................................................. 88  
Figure 1. Temporary Sector Unprotect Operation........................... 88  
Figure 2. In-System Sector Protect/Unprotect Algorithms .............. 89  
SecSi™ (Secured Silicon) Sector  
Flash Memory Region ............................................................ 90  
Figure 3. SecSi Sector Protect Verify.............................................. 91  
Hardware Data Protection ...................................................... 91  
February 5, 2004  
2
Unprotect Timing Diagram ............................................................ 116  
Alternate CE# Controlled Erase and Program Operations ... 117  
Figure 25. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings......................................................................... 118  
Erase And Programming Performance . . . . . . . 119  
Latchup Characteristics . . . . . . . . . . . . . . . . . . 119  
PSRAM AC Characteristics . . . . . . . . . . . . . . . . 120  
CE#s Timing ......................................................................... 120  
Figure 26. Timing Diagram for Alternating  
Between Pseudo SRAM to Flash.................................................. 120  
Figure 27. Timing Waveform of Power-up .................................... 120  
pSRAM AC CHaracteristics . . . . . . . . . . . . . . . . 121  
Functional Description .......................................................... 121  
Absolute Maximum Ratings .................................................. 121  
DC Recommended Operating Conditions (Ta = -25oC to 85oC)  
121  
DC Characteristics (Ta = -25oC to 85oC, VDD = 2.6 to 3.3 V) ..  
122  
Capacitance (Ta = -25oC, f = 1 MHz) .................................. 122  
AC Characteristics and Operating Conditions ...................... 123  
AC Test Conditions ............................................................... 124  
Timing Diagrams ................................................................... 125  
Page Read Cycle (8 words access) ......................................125  
Write Cycle 1 ........................................................................ 126  
Write Cycle 2 ........................................................................ 126  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . 128  
FMB073—73-Ball Fine-Pitch Grid Array 9 x 12 mm ............. 128  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . 129  
3
February 5, 2004  

相关型号:

M75010

PHOTOELECTRIC SMOKE DETECTOR WITH INTERCONNECT
ETC

M75012

PHOTOELECTRIC SMOKE DETECTOR WITH INTERCONNECT
ETC

M75018

IONIZATION SMOKE DETECTOR WITH INTERCONNECT
ETC

M7502

HIGH RELIABILITY FOR LOW COST
PETERMANN

M751270FP

暂无描述
MITSUBISHI

M751270P

Line Transceiver, 7 Func, 1 Driver, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MITSUBISHI

M751271FP

Line Transceiver, 7 Func, 1 Driver, PDSO16, 0.300 INCH, PLASTIC, SOP-16
MITSUBISHI

M751271P

Line Transceiver, 7 Func, 1 Driver, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MITSUBISHI

M751273FP

Line Transceiver, 6 Func, 1 Driver, BIPolar, PDSO16, 0.300 INCH, PLASTIC, SOP-16
MITSUBISHI

M751273P

Line Transceiver, 6 Func, 1 Driver, BIPolar, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MITSUBISHI

M751701P

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BIPolar, PDIP8, 0.300 INCH, PLASTIC, DIP-8
MITSUBISHI

M75173FP

Line Receiver, 1 Func, 4 Rcvr, BIPolar, PDSO16, PLASTIC, SOP-16
MITSUBISHI