S29JL064J70BFI003 [SPANSION]

Flash, 4MX16, 70ns, PBGA48, 8.15 X 6.15 MM, LEAD FREE, FBGA-48;
S29JL064J70BFI003
型号: S29JL064J70BFI003
厂家: SPANSION    SPANSION
描述:

Flash, 4MX16, 70ns, PBGA48, 8.15 X 6.15 MM, LEAD FREE, FBGA-48

文件: 总61页 (文件大小:2023K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29JL064J  
64 Megabit (8M x 8-Bit/4M x 16-Bit)  
CMOS 3.0 Volt-Only, Simultaneous Read/Write Flash  
Memory  
S29JL064J Cover Sheet  
Data Sheet  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S29JL064J_00  
Revision 05  
Issue Date December 16, 2011  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or V range. Changes may also include those needed to clarify a  
IO  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S29JL064J  
S29JL064J_00_05 December 16, 2011  
S29JL064J  
64 Megabit (8M x 8-Bit/4M x 16-Bit)  
CMOS 3.0 Volt-Only, Simultaneous Read/Write Flash  
Memory  
Data Sheet  
Distinctive Characteristics  
Ultra low power consumption (typical values)  
Architectural Advantages  
Simultaneous Read/Write operations  
– 2 mA active read current at 1 MHz  
– 10 mA active read current at 5 MHz  
– 200 nA in standby or automatic sleep mode  
– Data can be continuously read from one bank while executing  
erase/program functions in another bank  
Cycling endurance: 1 million cycles per sector typical  
Data retention: 20 years typical  
– Zero latency between read and write operations  
Flexible bank architecture  
– Read may occur in any of the three banks not being programmed or  
erased  
Software Features  
Supports Common Flash Memory Interface (CFI)  
– Four banks may be grouped by customer to achieve desired bank  
divisions  
Erase suspend/erase resume  
Boot sectors  
– Suspends erase operations to read data from, or program data to, a  
sector that is not being erased, then resumes the erase operation  
Top and bottom boot sectors in the same device  
– Any combination of sectors can be erased  
Data# polling and toggle bits  
Manufactured on 0.11 µm Process Technology  
– Provides a software method of detecting the status of program or  
erase operations  
Secured Silicon Region: Extra 256-byte sector  
Factory locked and identifiable: 16 bytes available for secure,  
random factory Electronic Serial Number; verifiable as factory  
locked through autoselect function  
Unlock bypass program command  
– Reduces overall programming time when issuing multiple program  
command sequences  
Customer lockable: One-time programmable only. Once locked,  
data cannot be changed  
Hardware Features  
Ready/Busy# output (RY/BY#)  
Zero power operation  
– Sophisticated power management circuits reduce power consumed  
during inactive periods to nearly zero  
– Hardware method for detecting program or erase cycle completion  
Hardware reset pin (RESET#)  
Compatible with JEDEC standards  
– Pinout and software compatible with single-power-supply flash  
standard  
– Hardware method of resetting the internal state machine to the read  
mode  
WP#/ACC input pin  
– Write protect (WP#) function protects sectors 0, 1, 140, and 141,  
regardless of sector protect status  
– Acceleration (ACC) function accelerates program timing  
Package Options  
48-ball Fine-pitch BGA  
48-pin TSOP  
Sector Protection  
– Hardware method to prevent any program or erase operation within  
a sector  
Performance Characteristics  
High performance  
Temporary Sector Unprotect allows changing data in protected  
sectors in-system  
– Access time as fast as 55 ns  
– Program time: 7 µs/word typical using accelerated programming  
function  
General Description  
The S29JL064J is a 64 Mbit, 3.0 volt-only flash memory device, organized as 4,194,304 words of 16 bits each or 8,388,608  
bytes of 8 bits each. Word mode data appears on DQ15–DQ0; byte mode data appears on DQ7–DQ0. The device is designed  
to be programmed in-system with the standard 3.0 volt V supply, and can also be programmed in standard EPROM  
CC  
programmers. The device is available with an access time of 55, 60, 70 ns and is offered in a 48-ball FBGA or 48-pin TSOP  
package. Standard control pins—chip enable (CE#), write enable (WE#), and output enable (OE#)—control normal read and  
write operations, and avoid bus contention issues. The device requires only a single 3.0 volt power supply for both read and  
write functions. Internally generated and regulated voltages are provided for the program and erase operations.  
Publication Number S29JL064J_00  
Revision 05  
Issue Date December 16, 2011  
D a t a S h e e t  
Table of Contents  
Distinctive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.  
Simultaneous Read/Write Operations with Zero Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1 S29JL064J Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.  
3.  
4.  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
48-pin TSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
48-ball FBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.  
6.  
7.  
8.  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
Word/Byte Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Requirements for Reading Array Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Simultaneous Read/Write Operations with Zero Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
RESET#: Hardware Reset Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Autoselect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.10 Boot Sector/Sector Block Protection and Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8.11 Write Protect (WP#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.12 Temporary Sector Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.13 Secured Silicon Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.14 Hardware Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.  
Common Flash Memory Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
10. Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.1 Reading Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.2 Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
10.3 Autoselect Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10.4 Enter Secured Silicon Region/Exit Secured Silicon Region Command Sequence . . . . . . . . 32  
10.5 Byte/Word Program Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10.6 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.7 Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.8 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
11. Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11.1 DQ7: Data# Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11.2 RY/BY#: Ready/Busy#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
11.3 DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
11.4 DQ2: Toggle Bit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11.5 Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11.6 DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11.7 DQ3: Sector Erase Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
13. Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
14. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
14.1 CMOS Compatible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
14.2 Zero-Power Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
15. Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
16. Key To Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
17. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
17.1 Read-Only Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
17.2 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
17.3 Word/Byte Configuration (BYTE#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
17.4 Erase and Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
17.5 Temporary Sector Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
17.6 Alternate CE# Controlled Erase and Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
18. Erase and Programming Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
19. Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
20. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
20.1 TS 048—48-Pin Standard TSOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
20.2 VBK048—48-Pin FBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
21. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
5
D a t a S h e e t  
Figures  
Figure 4.1  
Figure 4.2  
Figure 8.1  
Figure 8.2  
Figure 8.3  
48-Pin Standard TSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
48-ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Temporary Sector Unprotect Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
In-System Sector Protect/Unprotect Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Secured Silicon Region Protect Verify. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10.1 Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10.2 Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 11.1 Data# Polling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 11.2 Toggle Bit Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 12.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 12.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 14.1  
I
Current vs. Time (Showing Active and Automatic Sleep Currents) . . . . . . . . . . . . . . . . 44  
CC1  
Figure 14.2 Typical I  
vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CC1  
Figure 15.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 16.1 Input Waveforms and Measurement Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 17.1 Read Operation Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 17.2 Reset Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 17.3 BYTE# Timings for Read Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17.4 BYTE# Timings for Write Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17.5 Program Operation Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 17.6 Accelerated Program Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 17.7 Chip/Sector Erase Operation Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 17.8 Back-to-back Read/Write Cycle Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 17.9 Data# Polling Timings (During Embedded Algorithms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 17.10 Toggle Bit Timings (During Embedded Algorithms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 17.11 DQ2 vs. DQ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 17.12 Temporary Sector Unprotect Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 17.13 Sector/Sector Block Protect and Unprotect Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 17.14 Alternate CE# Controlled Write (Erase/Program) Operation Timings . . . . . . . . . . . . . . . . . . 55  
6
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Tables  
Table 8.1  
Table 8.2  
Table 8.3  
Table 8.4  
Table 8.5  
Table 8.6  
Table 8.7  
Table 9.1  
Table 9.2  
Table 9.3  
Table 9.4  
Table 10.1  
Table 11.1  
Table 15.1  
S29JL064J Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
S29JL064J Sector Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bank Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Secured Silicon Region Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
S29JL064J Autoselect Codes, (High Voltage Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
S29JL064J Boot Sector/Sector Block Addresses for Protection/Unprotection . . . . . . . . . . . 22  
WP#/ACC Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
S29JL064J Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Test Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
7
D a t a S h e e t  
1. Simultaneous Read/Write Operations with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation by dividing the memory space  
into four banks, two 8 Mb banks with small and large sectors, and two 24 Mb banks of large sectors. Sector  
addresses are fixed, system software can be used to form user-defined bank groups.  
During an Erase/Program operation, any of the three non-busy banks may be read from. Note that only two  
banks can operate simultaneously. The device can improve overall system performance by allowing a host  
system to program or erase in one bank, then immediately and simultaneously read from the other bank, with  
zero latency. This releases the system from waiting for the completion of program or erase operations.  
The S29JL064J is organized as a dual boot device with both top and bottom boot sectors.  
Bank  
Mbits  
Sector Sizes  
Eight 8 kbyte/4 kword,  
Fifteen 64 kbyte/32 kword  
Bank 1  
8 Mb  
Bank 2  
Bank 3  
24 Mb  
24 Mb  
Forty-eight 64 kbyte/32 kword  
Forty-eight 64 kbyte/32 kword  
Eight 8 kbyte/4 kword,  
Fifteen 64 kbyte/32 kword  
Bank 4  
8 Mb  
1.1  
S29JL064J Features  
The Secured Silicon Region is an extra 256 byte sector capable of being permanently locked by Spansion  
or customers. The Secured Silicon Customer Indicator Bit (DQ6) is permanently set to 1 if the part has been  
customer locked, and permanently set to 0 if the part has been factory locked. This way, customer lockable  
parts can never be used to replace a factory locked part.  
Factory locked parts provide several options. The Secured Silicon Region may store a secure, random 16  
byte ESN (Electronic Serial Number), customer code (programmed through Spansion programming  
services), or both. Customer Lockable parts may utilize the Secured Silicon Region as bonus space, reading  
and writing like any other flash sector, or may permanently lock their own code there.  
The device offers complete compatibility with the JEDEC 42.4 single-power-supply Flash command set  
standard. Commands are written to the command register using standard microprocessor write timings.  
Reading data out of the device is similar to reading from other Flash or EPROM devices.  
The host system can detect whether a program or erase operation is complete by using the device status  
bits: RY/BY# pin, DQ7 (Data# Polling) and DQ6/DQ2 (toggle bits). After a program or erase cycle has been  
completed, the device automatically returns to the read mode.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the  
data contents of other sectors. The device is fully erased when shipped from the factory.  
Hardware data protection measures include a low V detector that automatically inhibits write operations  
CC  
during power transitions. The hardware sector protection feature disables both program and erase  
operations in any combination of the sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to  
read data from, or program data to, any sector that is not selected for erasure. True background erase can  
thus be achieved. If a read is needed from the Secured Silicon Region (One Time Program area) after an  
erase suspend, then the user must use the proper command sequence to enter and exit this region.  
The device offers two power-saving features. When addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode. The system can also place the device into the standby  
mode. Power consumption is greatly reduced in both modes.  
8
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
2. Product Selector Guide  
Part Number  
S29JL064J  
Speed Option  
Standard Voltage Range: V  
= 2.7–3.6V  
55  
55  
55  
25  
60  
60  
60  
25  
70  
70  
70  
30  
CC  
Max Access Time (ns), tACC  
CE# Access (ns), tCE  
OE# Access (ns), tOE  
3. Block Diagram  
V
V
CC  
OE# BYTE#  
SS  
Mux  
Bank 1  
Bank 1 Address  
A21–A0  
X-Decoder  
Bank 2 Address  
RY/BY#  
Bank 2  
X-Decoder  
A21–A0  
RESET#  
STATE  
CONTROL  
&
Status  
WE#  
CE#  
DQ15–DQ0  
COMMAND  
REGISTER  
BYTE#  
Control  
Mux  
WP#/ACC  
DQ0–DQ15  
X-Decoder  
Bank 3  
Bank 3 Address  
X-Decoder  
Bank 4  
A21–A0  
Bank 4 Address  
Mux  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
9
D a t a S h e e t  
4. Connection Diagrams  
4.1  
48-pin TSOP Package  
Figure 4.1 48-Pin Standard TSOP  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A19  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
9
A20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
A21  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
OE#  
VSS  
CE#  
A0  
4.2  
48-ball FBGA Package  
Figure 4.2 48-ball FBGA  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE# RESET#  
A21  
A19  
DQ5  
DQ12  
VCC  
DQ4  
A3 B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
VSS  
10  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
5. Pin Description  
A21–A0  
DQ14–DQ0  
DQ15/A-1  
CE#  
22 Address pins  
15 Data Inputs/Outputs (x16-only devices)  
DQ15 (Data Input/Output, word mode), A-1 (LSB Address Input, byte mode)  
Chip Enable, Active Low  
OE#  
Output Enable, Active Low  
WE#  
Write Enable, Active Low  
WP#/ACC  
RESET#  
BYTE#  
Hardware Write Protect/Acceleration Pin  
Hardware Reset Pin, Active Low  
Selects 8-bit or 16-bit mode, Active Low  
Ready/Busy Output, Active Low  
RY/BY#  
3.0 volt-only single power supply (see Product Selector Guide on page 9 for speed options and voltage  
supply tolerances)  
VCC  
VSS  
Device Ground  
Not Connected. No device internal signal is connected to the package connector nor is there any future plan to use the  
connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board  
(PCB).  
NC  
Do Not Use. A device internal signal may be connected to the package connector. The connection may be used by  
Spansion for test or other purposes and is not intended for connection to any host system signal. Any DNU signal  
related function will be inactive when the signal is at VIL. The signal has an internal pull-down resistor and may be left  
unconnected in the host system or may be tied to VSS. Do not use these connections for PCB signal routing channels.  
Do not connect any host system signal to these connections.  
DNU  
RFU  
Reserved for Future Use. No device internal signal is currently connected to the package connector but there is  
potential future use for the connector for a signal. It is recommended to not use RFU connectors for PCB routing  
channels so that the PCB may take advantage of future enhanced features in compatible footprint devices.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
11  
D a t a S h e e t  
6. Logic Symbol  
22  
A21–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
BYTE#  
RY/BY#  
12  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
7. Ordering Information  
The order number is formed by a valid combination of the following:  
S29JL064J  
55  
T
F
I
00  
0
Packing Type  
0
= Tray  
3
= 13-inch Tape and Reel  
Model Number (Additional Ordering Options)  
00 = Standard Configuration  
Temperature Range  
I
= Industrial (–40°C to +85°C)  
Package Material Set  
F
= Pb-free  
H
= Low-halogen, Pb-free  
Package Type  
B
= Fine-pitch Ball Grid Array (FBGA) Package  
T
= Thin Small Outline Package (TSOP) Standard Pinout  
Speed Option  
55 = 55 ns  
60 = 60 ns  
70 = 70 ns  
Product Family  
S29JL064J: 3.0 Volt-only, 64 Mbit (4 M x 16-bit/8 M x 8-bit) Simultaneous Read/  
Write Flash Memory Manufactured on 110 nm process technology  
S29JL064J Valid Combinations  
Device Number/  
Description  
PackageType  
& Material  
Speed (ns)  
Temperature Range Model Number Packing Type Package Description  
TF  
TS048  
TSOP  
FBGA  
S29JL064J  
55, 60, 70  
I
00  
0, 3 (1)  
BH  
VBK048  
Note:  
1. Packing type 0 is standard. Specify other options as required.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
13  
D a t a S h e e t  
8. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the  
internal command register. The command register itself does not occupy any addressable memory location.  
The register is a latch used to store the commands, along with the address and data information needed to  
execute the command. The contents of the register serve as inputs to the internal state machine. The state  
machine outputs dictate the function of the device. Table 8.1 lists the device bus operations, the inputs and  
control levels they require, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Table 8.1 S29JL064J Device Bus Operations  
DQ15–DQ8  
WP#/  
ACC  
Addresses  
(Note 1)  
BYTE#  
= VIH  
DQ7–  
DQ0  
Operation  
CE#  
L
OE#  
L
WE#  
H
RESET#  
BYTE# = VIL  
Read  
Write  
H
H
L/H  
AIN  
AIN  
DOUT  
DIN  
DOUT  
DIN  
DQ14–DQ8 = High-Z,  
DQ15 = A-1  
L
H
L
(Note 3)  
VCC  
0.3V  
±
VCC ±  
0.3V  
Standby  
X
X
L/H  
X
High-Z  
High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L/H  
L/H  
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
X
L
SA, A6 = L,  
A1 = H, A0 = L  
Sector Protect (Note 2)  
L
L
X
H
H
X
L
L
VID  
VID  
VID  
L/H  
X
X
X
X
DIN  
DIN  
DIN  
Sector Unprotect  
(Note 2)  
SA, A6 = H,  
A1 = H, A0 = L  
(Note 3)  
(Note 3)  
Temporary Sector  
Unprotect  
X
AIN  
DIN  
High-Z  
Legend  
L = Logic Low = VIL  
H = Logic High = VIH  
VID = 11.5–12.5V  
VHH = 9.0 0.5V  
X = Don’t Care  
SA = Sector Address  
AIN = Address In  
DIN = Data In  
DOUT = Data Out  
Notes:  
1. Addresses are A21:A0 in word mode (BYTE# = VIH), A21:A-1 in byte mode (BYTE# = VIL).  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See Boot Sector/Sector Block  
Protection and Unprotection on page 22.  
3. If WP#/ACC = VIL, sectors 0, 1, 140, and 141 remain protected. If WP#/ACC = VIH, protection on sectors 0, 1, 140, and 141 depends on  
whether they were last protected or unprotected using the method described in Boot Sector/Sector Block Protection and Unprotection  
on page 22. If WP#/ACC = VHH, all sectors will be unprotected.  
8.1  
Word/Byte Configuration  
The BYTE# pin controls whether the device data I/O pins operate in the byte or word configuration. If the  
BYTE# pin is set at logic ‘1’, the device is in word configuration, DQ15–DQ0 are active and controlled by CE#  
and OE#.  
If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only data I/O pins DQ7–DQ0 are  
active and controlled by CE# and OE#. The data I/O pins DQ14–DQ8 are tri-stated, and the DQ15 pin is used  
as an input for the LSB (A-1) address function.  
14  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
8.2  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE# pins to V . CE# is the power  
IL  
control and selects the device. OE# is the output control and gates array data to the output pins. WE# should  
remain at V . The BYTE# pin determines whether the device outputs array data in words or bytes.  
IH  
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory content occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses  
on the device address inputs produce valid data on the device data outputs. Each bank remains enabled for  
read access until the command register contents are altered.  
Refer to Read-Only Operations on page 46 for timing specifications and to Figure 17.1 on page 46 for the  
timing diagram. I  
array data.  
in DC Characteristics on page 43 represents the active current specification for reading  
CC1  
8.3  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device and erasing  
sectors of memory), the system must drive WE# and CE# to V , and OE# to V .  
IL  
IH  
For program operations, the BYTE# pin determines whether the device accepts program data in bytes or  
words. Refer to Word/Byte Configuration on page 14 for more information.  
The device features an Unlock Bypass mode to facilitate faster programming. Once a bank enters the  
Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. Byte/  
Word Program Command Sequence on page 32 has details on programming data to the device using both  
standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 8.3 on page 20  
indicates the address space that each sector occupies. Similarly, a sector address is the address bits  
required to uniquely select a sector. Command Definitions on page 31 has details on erasing a sector or the  
entire chip, or suspending/resuming the erase operation.  
The device address space is divided into four banks. A bank address is the address bits required to uniquely  
select a bank.  
I
in the DC Characteristics on page 43 represents the active current specification for the write mode. AC  
CC2  
Characteristics on page 46 contains timing specification tables and timing diagrams for write operations.  
8.3.1  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is primarily intended to allow faster manufacturing throughput at  
the factory.  
If the system asserts V on this pin, the device automatically enters the aforementioned Unlock Bypass  
HH  
mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the  
time required for program operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing V from the WP#/ACC pin returns the device to normal  
HH  
operation. Note that V must not be asserted on WP#/ACC for operations other than accelerated  
HH  
programming, or device damage may result. In addition, the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may result. See Write Protect (WP#) on page 23 for related  
information.  
8.3.2  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system  
can then read autoselect codes from the internal register (which is separate from the memory array) on  
DQ15–DQ0. Standard read cycle timings apply in this mode. Refer to Autoselect Mode on page 21 and  
Autoselect Command Sequence on page 32 for more information.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
15  
D a t a S h e e t  
8.4  
8.5  
Simultaneous Read/Write Operations with Zero Latency  
This device is capable of reading data from one bank of memory while programming or erasing in another  
bank of memory. An erase operation may also be suspended to read from or program to another location  
within the same bank (except the sector being erased). Figure 17.8 on page 51 shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. I  
and I  
in the DC Characteristics  
CC6  
CC7  
on page 43 represent the current specifications for read-while-program and read-while-erase, respectively.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state,  
independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at V  
0.3V.  
CC  
(Note that this is a more restricted voltage range than V .) If CE# and RESET# are held at V , but not within  
IH  
IH  
V
0.3V, the device will be in the standby mode, but the standby current will be greater. The device  
CC  
requires standard access time (t ) for read access when the device is in either of these standby modes,  
CE  
before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation  
is completed.  
I
in DC Characteristics on page 43 represents the standby current specification.  
CC3  
8.6  
8.7  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables  
this mode when addresses remain stable for t  
CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are  
changed. While in sleep mode, output data is latched and always available to the system. I  
Characteristics on page 43 represents the automatic sleep mode current specification.  
+ 30 ns. The automatic sleep mode is independent of the  
ACC  
in DC  
CC5  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When the  
RESET# pin is driven low for at least a period of t , the device immediately terminates any operation in  
RP  
progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The operation that was interrupted  
should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at V  
0.3V, the device  
SS  
draws CMOS standby current (I  
will be greater.  
). If RESET# is held at V but not within V  
0.3V, the standby current  
CC4  
IL  
SS  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a time of t  
(during Embedded Algorithms). The  
READY  
system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is  
asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is  
completed within a time of t  
(not during Embedded Algorithms). The system can read data t after the  
READY  
RH  
RESET# pin returns to V .  
IH  
Refer to Hardware Reset (RESET#) on page 47 for RESET# parameters and to Figure 17.2 on page 47 for  
the timing diagram.  
16  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
8.8  
Output Disable Mode  
When the OE# input is at V , output from the device is disabled. The output pins are placed in the high  
IH  
impedance state.  
Table 8.2 S29JL064J Sector Architecture (Sheet 1 of 4)  
Sector Address  
A21–A12  
Sector Size  
(kbytes/kwords)  
(x8)  
(x16)  
Address Range  
Bank  
Sector  
SA0  
Address Range  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001xxx  
0000010xxx  
0000011xxx  
0000100xxx  
0000101xxx  
0000110xxx  
0000111xxx  
0001000xxx  
0001001xxx  
0001010xxx  
0001011xxx  
0001100xxx  
0001101xxx  
0001110xxx  
0001111xxx  
8/4  
8/4  
000000h–001FFFh  
002000h–003FFFh  
004000h–005FFFh  
006000h–007FFFh  
008000h–009FFFh  
00A000h–00BFFFh  
00C000h–00DFFFh  
00E000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
00000h–00FFFh  
01000h–01FFFh  
02000h–02FFFh  
03000h–03FFFh  
04000h–04FFFh  
05000h–05FFFh  
06000h–06FFFh  
07000h–07FFFh  
08000h–0FFFFh  
10000h–17FFFh  
18000h–1FFFFh  
20000h–27FFFh  
28000h–2FFFFh  
30000h–37FFFh  
38000h–3FFFFh  
40000h–47FFFh  
48000h–4FFFFh  
50000h–57FFFh  
58000h–5FFFFh  
60000h–67FFFh  
68000h–6FFFFh  
70000h–77FFFh  
78000h–7FFFFh  
SA1  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
Bank 1  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
17  
D a t a S h e e t  
Table 8.2 S29JL064J Sector Architecture (Sheet 2 of 4)  
Sector Address  
A21–A12  
Sector Size  
(kbytes/kwords)  
(x8)  
(x16)  
Address Range  
Bank  
Sector  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Address Range  
0010000xxx  
0010001xxx  
0010010xxx  
0010011xxx  
0010100xxx  
0010101xxx  
0010110xxx  
0010111xxx  
0011000xxx  
0011001xxx  
0011010xxx  
0011011xxx  
0011000xxx  
0011101xxx  
0011110xxx  
0011111xxx  
0100000xxx  
0100001xxx  
0100010xxx  
0101011xxx  
0100100xxx  
0100101xxx  
0100110xxx  
0100111xxx  
0101000xxx  
0101001xxx  
0101010xxx  
0101011xxx  
0101100xxx  
0101101xxx  
0101110xxx  
0101111xxx  
0110000xxx  
0110001xxx  
0110010xxx  
0110011xxx  
0110100xxx  
0110101xxx  
0110110xxx  
0110111xxx  
0111000xxx  
0111001xxx  
0111010xxx  
0111011xxx  
0111100xxx  
0111101xxx  
0111110xxx  
0111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
80000h–87FFFh  
88000h–8FFFFh  
90000h–97FFFh  
98000h–9FFFFh  
A0000h–A7FFFh  
A8000h–AFFFFh  
B0000h–B7FFFh  
B8000h–BFFFFh  
C0000h–C7FFFh  
C8000h–CFFFFh  
D0000h–D7FFFh  
D8000h–DFFFFh  
E0000h–E7FFFh  
E8000h–EFFFFh  
F0000h–F7FFFh  
F8000h–FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Bank 2  
18  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Table 8.2 S29JL064J Sector Architecture (Sheet 3 of 4)  
Sector Address  
A21–A12  
Sector Size  
(kbytes/kwords)  
(x8)  
(x16)  
Address Range  
Bank  
Sector  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
Address Range  
1000000xxx  
1000001xxx  
1000010xxx  
1000011xxx  
1000100xxx  
1000101xxx  
1000110xxx  
1000111xxx  
1001000xxx  
1001001xxx  
1001010xxx  
1001011xxx  
1001100xxx  
1001101xxx  
1001110xxx  
1001111xxx  
1010000xxx  
1010001xxx  
1010010xxx  
1010011xxx  
1010100xxx  
1010101xxx  
1010110xxx  
1010111xxx  
1011000xxx  
1011001xxx  
1011010xxx  
1011011xxx  
1011100xxx  
1011101xxx  
1011110xxx  
1011111xxx  
1100000xxx  
1100001xxx  
1100010xxx  
1100011xxx  
1100100xxx  
1100101xxx  
1100110xxx  
1100111xxx  
1101000xxx  
1101001xxx  
1101010xxx  
1101011xxx  
1101100xxx  
1101101xxx  
1101110xxx  
1101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–28FFFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2FFFFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
Bank 3  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
19  
D a t a S h e e t  
Table 8.2 S29JL064J Sector Architecture (Sheet 4 of 4)  
Sector Address  
A21–A12  
Sector Size  
(kbytes/kwords)  
(x8)  
(x16)  
Address Range  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
Address Range  
1110000xxx  
1110001xxx  
1110010xxx  
1110011xxx  
1110100xxx  
1110101xxx  
1110110xxx  
1110111xxx  
1111000xxx  
1111001xxx  
1111010xxx  
1111011xxx  
1111100xxx  
1111101xxx  
1111110xxx  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7F1FFFh  
7F2000h–7F3FFFh  
7F4000h–7F5FFFh  
7F6000h–7F7FFFh  
7F8000h–7F9FFFh  
7FA000h–7FBFFFh  
7FC000h–7FDFFFh  
7FE000h–7FFFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
Bank 4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note:  
The address range is A21:A-1 in byte mode (BYTE# = VIL) or A21:A0 in word mode (BYTE# = VIH).  
Table 8.3 Bank Address  
Bank  
A21–A19  
000  
1
2
3
4
001, 010, 011  
100, 101, 110  
111  
Table 8.4 Secured Silicon Region Addresses  
(x8)  
(x16)  
Device  
Sector Size  
Address Range  
Address Range  
S29JL064J  
256 bytes  
000000h–0000FFh  
000000h–00007Fh  
20  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
8.9  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to  
automatically match a device to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires V on address pin A9. Address pins  
ID  
must be as shown in Table 8.5. In addition, when verifying sector protection, the sector address must appear  
on the appropriate highest order address bits (see Table 8.3 on page 20). Table 8.5 shows the remaining  
address bits that are don’t care. When all necessary bits have been set as required, the programming  
equipment may then read the corresponding identifier code on DQ7–DQ0. However, the autoselect codes  
can also be accessed in-system through the command register, for instances when the S29JL064J is erased  
or programmed in a system without access to high voltage on the A9 pin. The command sequence is  
illustrated in Table 10.1 on page 36. Note that if a Bank Address (BA) on address bits A21, A20, and A19 is  
asserted during the third write cycle of the autoselect command, the host system can read autoselect data  
from that bank and then immediately read array data from another bank, without exiting the autoselect mode.  
To access the autoselect codes in-system, the host system can issue the autoselect command via the  
command register, as shown in Table 10.1 on page 36. This method does not require V . Refer to  
ID  
Autoselect Command Sequence on page 32 for more information.  
Table 8.5 S29JL064J Autoselect Codes, (High Voltage Method)  
DQ15 to DQ8  
A11  
to  
DQ7  
to  
A21  
to  
A8  
to  
A5  
to  
BYTE# BYTE#  
Description  
CE# OE# WE#  
A12  
A10  
A9  
A7  
A6  
A4  
A3  
A2  
A1  
A0  
= VIH  
= VIL  
DQ0  
Manufacturer ID:  
Spansion Products  
L
L
L
L
L
L
L
L
H
H
H
H
BA  
BA  
SA  
BA  
X
X
X
X
VID  
X
X
X
X
L
X
X
X
X
L
L
L
L
X
X
01h  
Read Cycle 1  
Read Cycle 2  
Read Cycle 3  
L
L
L
L
H
H
L
H
H
L
H
H
H
L
22h  
22h  
22h  
7Eh  
02h  
01h  
VID  
VID  
VID  
X
X
X
H
Sector Protection  
Verification  
01h (protected),  
00h (unprotected)  
L
L
L
H
L
X
81h (Factory Locked),  
41h (Customer  
Locked),  
Secured Silicon  
Indicator Bit (DQ6,  
DQ7)  
L
L
L
H
H
X
01h (Not Locked)  
Legend  
L = Logic Low = VIL  
H = Logic High = VIH  
BA = Bank Address  
SA = Sector Address  
X = Don’t care.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
21  
D a t a S h e e t  
8.10 Boot Sector/Sector Block Protection and Unprotection  
Note: For the following discussion, the term sector applies to both boot sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are protected or unprotected at the same time (see  
Table 8.6).  
The hardware sector protection feature disables both program and erase operations in any sector. The  
hardware sector unprotection feature re-enables both program and erase operations in previously protected  
sectors. Sector protection/unprotection can be implemented via two methods.  
Table 8.6 S29JL064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 1 of 2)  
Sector  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
A21–A12  
Sector/Sector Block Size  
8 kbytes  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
0000001XXX,  
0000010XXX,  
0000011XXX,  
SA8–SA10  
192 (3x64) kbytes  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23–SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
SA83–SA86  
SA87–SA90  
SA91–SA94  
SA95–SA98  
SA99–SA102  
SA103–SA106  
SA107–SA110  
SA111–SA114  
SA115–SA118  
SA119–SA122  
SA123–SA126  
SA127–SA130  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
256 (4x64) kbytes  
22  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Table 8.6 S29JL064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 2 of 2)  
Sector  
A21–A12  
Sector/Sector Block Size  
1111100XXX,  
1111101XXX,  
1111110XXX  
SA131–SA133  
192 (3x64) kbytes  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
8 kbytes  
Sector Protect/Sector Unprotect requires V on the RESET# pin only, and can be implemented either in-  
ID  
system or via programming equipment. Figure 8.2 on page 25 shows the algorithms and Figure 17.13  
on page 54 shows the timing diagram. For sector unprotect, all unprotected sectors must first be protected  
prior to the first sector unprotect write cycle. Note that the sector unprotect algorithm unprotects all sectors in  
parallel. All previously protected sectors must be individually re-protected. To change data in protected  
sectors efficiently, the temporary sector unprotect function is available. See Temporary Sector Unprotect  
on page 24.  
The device is shipped with all sectors unprotected. Optional Spansion programming service enable  
programming and protecting sectors at the factory prior to shipping the device. Contact your local sales office  
for details.  
It is possible to determine whether a sector is protected or unprotected. See Autoselect Mode on page 21 for  
details.  
8.11 Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting without using V . This function is one of  
ID  
two provided by the WP#/ACC pin.  
If the system asserts V on the WP#/ACC pin, the device disables program and erase functions in sectors 0,  
IL  
1, 140, and 141, independently of whether those sectors were protected or unprotected using the method  
described in Boot Sector/Sector Block Protection and Unprotection on page 22.  
If the system asserts V on the WP#/ACC pin, the device reverts to whether sectors 0, 1, 140, and 141 were  
IH  
last set to be protected or unprotected. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected using the method described in Boot Sector/Sector Block  
Protection and Unprotection on page 22.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may  
result.  
Table 8.7 WP#/ACC Modes  
WP# Input Voltage  
Device Mode  
VIL  
Disables programming and erasing in SA0, SA1, SA140, and SA141  
Enables programming and erasing in SA0, SA1, SA140, and SA141, dependent on whether they were last  
protected or unprotected.  
VIH  
VHH  
Enables accelerated programming (ACC). See Accelerated Program Operation on page 15.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
23  
D a t a S h e e t  
8.12 Temporary Sector Unprotect  
Note: For the following discussion, the term sector applies to both sectors and sector blocks. A sector block  
consists of two or more adjacent sectors that are protected or unprotected at the same time (see Table 8.6  
on page 22).  
This feature allows temporary unprotection of previously protected sectors to change data in-system. The  
Temporary Sector Unprotect mode is activated by setting the RESET# pin to V . During this mode, formerly  
ID  
protected sectors can be programmed or erased by selecting the sector addresses. Once V is removed  
ID  
from the RESET# pin, all the previously protected sectors are protected again. Figure 8.1 shows the  
algorithm, and Figure 17.12 on page 53 shows the timing diagrams, for this feature. If the WP#/ACC pin is at  
V , sectors 0, 1, 140, and 141 will remain protected during the Temporary sector Unprotect mode.  
IL  
Figure 8.1 Temporary Sector Unprotect Operation  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL, sectors 0, 1, 140, and 141 will remain protected).  
2. All previously protected sectors are protected once again.  
24  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 8.2 In-System Sector Protect/Unprotect Algorithms  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
unprotect address  
No  
No  
First Write  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
A1 = 1, A0 = 0  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
No  
from RESET#  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
25  
D a t a S h e e t  
8.13 Secured Silicon Region  
The Secured Silicon Region feature provides a Flash memory region that enables permanent part  
identification through an Electronic Serial Number (ESN). The Secured Silicon Region is 256 bytes in length,  
and may shipped unprotected, allowing customers to utilize that sector in any manner they choose, or may  
shipped locked at the factory (upon customer request). The Secured Silicon Indicator Bit data will be 81h if  
factory locked, 41h if customer locked, or 01h if neither. Refer to Table 8.5 on page 21 for more details.  
The system accesses the Secured Silicon Region through a command sequence (see Enter Secured Silicon  
Region/Exit Secured Silicon Region Command Sequence on page 32). After the system has written the Enter  
Secured Silicon Region command sequence, it may read the Secured Silicon Region by using the addresses  
normally occupied by the boot sectors. This mode of operation continues until the system issues the Exit  
Secured Silicon Region command sequence, or until power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to sending commands to the first 256 bytes of Sector 0. Note  
that the ACC function and unlock bypass modes are not available when the Secured Silicon Region is  
enabled.  
8.13.1  
Factory Locked: Secured Silicon Region Programmed and Protected At the  
Factory  
In a factory locked device, the Secured Silicon Region is protected when the device is shipped from the  
factory. The Secured Silicon Region cannot be modified in any way. The device is preprogrammed with both a  
random number and a secure ESN. The 8-word random number is at addresses 000000h–000007h in word  
mode (or 000000h–00000Fh in byte mode). The secure ESN is programmed in the next 8 words at addresses  
000008h–00000Fh (or 000010h–00001Fh in byte mode). The device is available preprogrammed with one of  
the following:  
A random, secure ESN only  
Customer code through Spansion programming services  
Both a random, secure ESN and customer code through Spansion programming services  
Contact an your local sales office for details on using Spansion programming services.  
8.13.2  
Customer Lockable: Secured Silicon Region NOT Programmed or Protected  
At the Factory  
If the security feature is not required, the Secured Silicon Region can be treated as an additional Flash  
memory space. The Secured Silicon Region can be read any number of times, but can be programmed and  
locked only once. Note that the accelerated programming (ACC) and unlock bypass functions are not  
available when programming the Secured Silicon Region.  
Write the three-cycle Enter Secured Silicon Region command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 8.2 on page 25, except that RESET# may be at either V or  
IH  
V . This allows in-system protection of the Secured Silicon Region without raising any device pin to a high  
ID  
voltage. Note that this method is only applicable to the Secured Silicon Region.  
To verify the protect/unprotect status of the Secured Silicon Region, follow the algorithm shown in  
Figure 8.3 on page 27.  
Once the Secured Silicon Region is locked and verified, the system must write the Exit Secured Silicon  
Region command sequence to return to reading and writing the remainder of the array.  
The Secured Silicon Region lock must be used with caution since, once locked, there is no procedure  
available for unlocking the Secured Silicon Region and none of the bits in the Secured Silicon Region  
memory space can be modified in any way.  
26  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 8.3 Secured Silicon Region Protect Verify  
START  
If data = 00h,  
RESET# =  
Secure Silicon Region  
VIH or VID  
is unprotected.  
If data = 01h,  
Secure Silicon Region  
Wait 1 ms  
is protected.  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to Secure  
Silicon Region address  
Secured Silicon Region  
with A6 = 0,  
A1 = 1, A0 = 0  
exit command  
Secure Silicon Region  
Read from Secure  
Silicon Region address  
Protect Verify  
complete  
with A6 = 0,  
A1 = 1, A0 = 0  
8.14 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection  
against inadvertent writes (refer to Table 10.1 on page 36 for command definitions). In addition, the following  
hardware data protection measures prevent accidental erasure or programming, which might otherwise be  
caused by spurious system level signals during V power-up and power-down transitions, or from system  
CC  
noise.  
8.14.1  
Low VCC Write Inhibit  
When V is less than V  
, the device does not accept any write cycles. This protects data during V  
CC  
LKO  
CC  
power-up and power-down. The command register and all internal program/erase circuits are disabled, and  
the device resets to the read mode. Subsequent writes are ignored until V is greater than V . The  
CC  
LKO  
system must provide the proper signals to the control pins to prevent unintentional writes when V is greater  
CC  
than V  
.
LKO  
8.14.2  
8.14.3  
Write Pulse Glitch Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = V , CE# = V or WE# = V . To initiate a write cycle,  
IL  
IH  
IH  
CE# and WE# must be a logical zero while OE# is a logical one.  
8.14.4  
Power-Up Write Inhibit  
If WE# = CE# = V and OE# = V during power up, the device does not accept commands on the rising  
IL  
IH  
edge of WE#. The internal state machine is automatically reset to the read mode on power-up.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
27  
D a t a S h e e t  
9. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows specific vendor-specified software algorithms to be used for entire families of  
devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any time the device is ready to read array data. The system  
can read CFI information at the addresses given in Table 9.1 on page 28 to Table 9.4 on page 30. To  
terminate reading CFI data, the system must write the reset command.The CFI Query mode is not accessible  
when the device is executing an Embedded Program or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the autoselect mode via the  
command register only (high voltage method does not apply). The device enters the CFI query mode, and the  
system can read CFI data at the addresses given in Table 9.1 on page 28 to Table 9.4 on page 30. The  
system must write the reset command to return to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100. Contact your local sales  
office for copies of these documents.  
Table 9.1 CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
Table 9.2 System Interface String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
36h  
38h  
0027h  
VCC Max. (write/erase)  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0003h  
0000h  
0009h  
000Fh  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
28  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Table 9.3 Device Geometry Definition  
Addresses  
(Word  
Addresses  
Mode)  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0017h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to the CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
007Dh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
29  
D a t a S h e e t  
Table 9.4 Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required,  
45h  
46h  
8Ah  
8Ch  
000Ch  
0002h  
1 = Not Required  
Process Technology (Bits 7-2)  
0011 = 0.11 µm Floating Gate  
Erase Suspend  
0 = Not Supported,  
1 = To Read Only,  
2 = To Read & Write  
Sector Protect  
47h  
48h  
8Eh  
90h  
0001h  
0001h  
0 = Not Supported,  
X = Number of sectors per group  
Sector Temporary Unprotect  
00 = Not Supported,  
01 = Supported  
Sector Protect/Unprotect scheme  
01 =29F040 mode,  
49h  
92h  
0004h  
02 = 29F016 mode,  
03 = 29F400,  
04 = 29LV800 mode  
Simultaneous Operation  
4Ah  
4Bh  
94h  
96h  
0077h  
0000h  
00 = Not Supported,  
X = Number of Sectors (excluding Bank 1)  
Burst Mode Type  
00 = Not Supported,  
01 = Supported  
Page Mode Type  
00 = Not Supported,  
01 = 4 Word Page,  
02 = 8 Word Page  
4Ch  
98h  
0000h  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
9Ah  
9Ch  
0085h  
0095h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
00h = Uniform device,  
01h = 8 x 8 kbyte Sectors, Top And Bottom Boot with Write Protect,  
02h = Bottom Boot Device,  
4Fh  
9Eh  
0001h  
03h = Top Boot Device,  
04h= Both Top and Bottom  
Program Suspend  
50h  
57h  
A0h  
AEh  
0000h  
0004h  
0 = Not supported, 1 = Supported  
Bank Organization  
00 = Data at 4Ah is zero,  
X = Number of Banks  
Bank 1 Region Information  
58h  
59h  
5Ah  
5Bh  
B0h  
B2h  
B4h  
B6h  
0017h  
0030h  
0030h  
0017h  
X = Number of Sectors in Bank 1  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
30  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
10. Command Definitions  
Writing specific address and data sequences into the command register initiates device operations.  
Table 10.1 on page 36 defines the valid register command sequences. Writing incorrect address and data  
values or writing them in the improper sequence may place the device in an unknown state. A reset command  
is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens first. Refer to AC Characteristics on page 46 for timing  
diagrams.  
10.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data after completing an Embedded Program or Embedded  
Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank enters the erase-suspend-  
read mode, after which the system can read data from any non-erase-suspended sector within the same  
bank. The system can read array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing a programming operation in  
the Erase Suspend mode, the system may once again read array data with the same exception. See Erase  
Suspend/Erase Resume Commands on page 35 for more information.  
The system must issue the reset command to return a bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase operation, or if the bank is in the autoselect mode. See Reset  
Command on page 31 for more information.  
See Requirements for Reading Array Data on page 15 for more information. Read-Only Operations  
on page 46 provides the read parameters, and Figure 17.1 on page 46 shows the timing diagram.  
10.2 Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read mode. Address bits are don’t  
cares for this command.  
The reset command may be written between the sequence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the system was writing to the read mode. Once erasure begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command sequence before  
programming begins. This resets the bank to which the system was writing to the read mode. If the program  
command sequence is written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins, however, the device ignores  
reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns that bank  
to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the bank to the  
read mode (or erase-suspend-read mode if that bank was in Erase Suspend). Please note that the RY/BY#  
signal remains low until this reset is issued.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
31  
D a t a S h e e t  
10.3 Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device codes,  
and determine whether or not a sector is protected. The autoselect command sequence may be written to an  
address within a bank that is either in the read or erase-suspend-read mode. The autoselect command may  
not be written while the device is actively programming or erasing in another bank.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the autoselect command. The bank then enters the autoselect  
mode. The system may read any number of autoselect codes without re-initiating the command sequence.  
Table 10.1 on page 36 shows the address and data requirements. To determine sector protection  
information, the system must write to the appropriate bank address (BA) and sector address (SA). Table 8.3  
on page 20 shows the address range and bank number associated with each sector.  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
10.4 Enter Secured Silicon Region/Exit Secured Silicon Region Command  
Sequence  
The system can access the Secured Silicon Region by issuing the three-cycle Enter Secured Silicon Region  
command sequence. The device continues to access the Secured Silicon Region until the system issues the  
four-cycle Exit Secured Silicon Region command sequence. The Exit Secured Silicon Region command  
sequence returns the device to normal operation. The Secured Silicon Region is not accessible when the  
device is executing an Embedded Program or embedded Erase algorithm. Table 10.1 on page 36 shows the  
address and data requirements for both command sequences. See also Secured Silicon Region on page 26 for  
further information. Note that the ACC function and unlock bypass modes are not available when the Secured  
Silicon Region is enabled.  
10.5 Byte/Word Program Command Sequence  
The system may program the device by word or byte, depending on the state of the BYTE# pin. Programming  
is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles,  
followed by the program set-up command. The program address and data are written next, which in turn  
initiate the Embedded Program algorithm. The system is not required to provide further controls or timings.  
The device automatically provides internally generated program pulses and verifies the programmed cell  
margin. Table 10.1 on page 36 shows the address and data requirements for the byte program command  
sequence.  
When the Embedded Program algorithm is complete, that bank then returns to the read mode and addresses  
are no longer latched. The system can determine the status of the program operation by using DQ7, DQ6, or  
RY/BY#. Refer to Write Operation Status on page 37 for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program operation. The program command sequence should be  
reinitiated once that bank has returned to the read mode, to ensure data integrity. Note that the Secured  
Silicon Region, autoselect, and CFI functions are unavailable when a program operation is in progress.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from  
0 back to a 1. Attempting to do so may cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status  
bits to indicate the operation was successful. However, a succeeding read will show that the data is still 0.  
Only erase operations can convert a 0 to a 1.  
32  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
10.5.1  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program bytes or words to a bank faster than using the  
standard program command sequence. The unlock bypass command sequence is initiated by first writing two  
unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. That bank  
then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is  
required to program in this mode. The first cycle in this sequence contains the unlock bypass program  
command, A0h; the second cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required in the standard program  
command sequence, resulting in faster total programming time. Table 10.1 on page 36 shows the  
requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are  
valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command  
sequence. (See Table 10.1 on page 36).  
The device offers accelerated program operations through the WP#/ACC pin. When the system asserts V  
HH  
on the WP#/ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write  
the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP#/  
ACC pin to accelerate the operation. Note that the WP#/ACC pin must not be at V for any operation other  
HH  
than accelerated programming, or device damage may result. In addition, the WP#/ACC pin must not be left  
floating or unconnected; inconsistent behavior of the device may result.  
Figure 10.1 on page 33 illustrates the algorithm for the program operation. Refer to Erase and Program  
Operations on page 49 for parameters, and Figure 17.5 on page 50 for timing diagrams.  
Figure 10.1 Program Operation  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note:  
1. See Table 10.1 on page 36 for program command sequence.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
33  
D a t a S h e e t  
10.6 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical erase. The system is not required to provide any  
controls or timings during these operations. Table 10.1 on page 36 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no  
longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or RY/  
BY#. Refer to Write Operation Status on page 37 for information on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hardware reset  
immediately terminates the erase operation. If that occurs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading array data, to ensure data integrity. Note that the Secured  
Silicon Region, autoselect, and CFI functions are unavailable when an erase operation is in progress.  
Figure 10.2 on page 35 illustrates the algorithm for the erase operation. Refer to Erase and Program  
Operations on page 49 for parameters, and Figure 17.7 on page 51 for timing diagrams.  
10.7 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed  
by the address of the sector to be erased, and the sector erase command. Table 10.1 on page 36 shows the  
address and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically programs and verifies the entire sector for an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase commands may be written. However, these additional erase  
commands are only one bus cycle long and should be identical to the sixth cycle of the standard erase  
command explained above. Loading the sector erase buffer may be done in any sequence, and the number  
of sectors may be from one sector to all sectors. The time between these additional cycles must be less than  
50 µs, otherwise erasure may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be disabled during this time to  
ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is  
written. If any command other than 30h, B0h, F0h is input during the time-out period, the normal  
operation will not be guaranteed. The system must rewrite the command sequence and any additional  
addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3:  
Sector Erase Timer.). The time-out begins from the rising edge of the final WE# or CE# pulse (first rising  
edge) in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded Erase operation is in progress, the system can read data  
from the non-erasing bank. The system can determine the status of the erase operation by reading DQ7,  
DQ6, DQ2, or RY/BY# in the erasing bank. Refer to Write Operation Status on page 37 for information on  
these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands  
are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs,  
the sector erase command sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity. Note that the Secured Silicon Region, autoselect, and CFI functions are unavailable  
when an erase operation is in progress.  
Figure 10.2 on page 35 illustrates the algorithm for the erase operation. Refer to Erase and Program  
Operations on page 49 for parameters, and Figure 17.7 on page 51 for timing diagrams.  
34  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 10.2 Erase Operation  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 10.1 on page 36 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
10.8 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected for erasure. The bank address is required when writing  
this command. This command is valid only during the sector erase operation, including the 50 µs time-out  
period during the sector erase command sequence. The Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algorithm. The bank address must contain one of the sectors  
currently selected for erase.  
When the Erase Suspend command is written during the sector erase operation, the device requires a  
maximum of 35 µs to suspend the erase operation. However, when the Erase Suspend command is written  
during the sector erase time-out, the device immediately terminates the time-out period and suspends the  
erase operation.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system  
can read data from or program data to any sector not selected for erasure. (The device erase suspends all  
sectors selected for erasure.) It is not recommended to program the Secured Silicon Region after an erase  
suspend, as proper device functionality cannot be guaranteed. Reading at any address within erase-  
suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer to Write Operation Status  
on page 37 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode.  
The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard Byte Program operation. Refer to Write Operation Status on page 37 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence. The device  
allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in  
the memory array. When the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to Autoselect Mode on page 21 and Autoselect  
Command Sequence on page 32 for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The bank  
address of the erase-suspended bank is required when writing this command. Further writes of the Resume  
command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
35  
D a t a S h e e t  
Table 10.1 S29JL064J Command Definitions  
Bus Cycles (Notes 25)  
Third Fourth  
Addr Addr  
Command  
Sequence  
(Note 1)  
First  
Addr  
Second  
Fifth  
Addr  
Sixth  
Addr  
Data  
RD  
Addr  
Data  
Data  
Data  
Data  
Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
XXX  
555  
AAA  
555  
AAA  
555  
AAA  
555  
F0  
Word  
Byte  
Word  
Byte  
Word  
Byte  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
(BA)AAA  
(BA)555  
Manufacturer ID  
4
6
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
(BA)X00  
01  
7E  
(BA)X01  
(BA)X02  
(BA)X03  
(BA)X06  
(SA)X02  
(BA)X0E  
(BA)X1C  
(BA)X0F  
(BA)X1E  
Device ID (Note 9)  
02  
01  
Secured Silicon Region  
Factory Protect (Note 10)  
81/41/  
01  
Boot Sector/Sector Block Word  
Protect Verify  
(Note 11)  
4
AA  
55  
90  
00/01  
Byte  
AAA  
555  
(BA)AAA  
(SA)X04  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
555  
AAA  
555  
AAA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
BA  
2AA  
555  
2AA  
555  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
Enter Secured Silicon Region  
3
4
4
3
AA  
AA  
AA  
AA  
55  
55  
55  
55  
88  
90  
A0  
20  
Exit Secured Silicon Region  
Program  
XXX  
PA  
00  
AAA  
555  
PD  
AAA  
555  
Unlock Bypass  
AAA  
Unlock Bypass Program (Note 12)  
Unlock Bypass Reset (Note 13)  
2
2
A0  
90  
PD  
00  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
Chip Erase  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
Byte  
Word  
Byte  
AAA  
Sector Erase (Note 17)  
SA  
AAA  
AAA  
Erase Suspend (Note 14)  
Erase Resume (Note 15)  
1
1
B0  
30  
BA  
Word  
Byte  
55  
CFI Query (Note 16)  
1
98  
AA  
Legend  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A21–A12 uniquely select any sector. Refer to Table 8.3 on page 20 for  
information on sector addresses.  
BA = Address of the bank that is being switched to autoselect mode, is in bypass mode, or is being erased. A21–A19 uniquely select a bank.  
Notes:  
1. See Table 8.1 on page 14 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle and the fourth, fifth, and sixth cycle of the autoselect command sequence, all bus cycles are write cycles.  
4. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD and PD.  
5. Unless otherwise noted, address bits A21–A11 are don’t cares for unlock and command cycles, unless SA or PA is required.  
6. No unlock or command cycles required when bank is reading array data.  
7. The Reset command is required to return to the read mode (or to the erase-suspend-read mode if previously in Erase Suspend) when a bank is in the autoselect  
mode, or if DQ5 goes high (while the bank is providing status information).  
8. The fourth cycle of the autoselect command sequence is a read cycle. The system must provide the bank address to obtain the manufacturer ID, device ID, or  
Secured Silicon Region factory protect information. Data bits DQ15–DQ8 are don’t care. While reading the autoselect addresses, the bank address must be the  
same until a reset command is given. See Autoselect Command Sequence on page 32 for more information.  
9. The device ID must be read across the fourth, fifth, and sixth cycles.  
10.The data is 81h for factory locked, 41h for customer locked, and 01h for not factory/customer locked.  
36  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
11.The data is 00h for an unprotected sector/sector block and 01h for a protected sector/sector block.  
12.The Unlock Bypass command is required prior to the Unlock Bypass Program command.  
13.The Unlock Bypass Reset command is required to return to the read mode when the bank is in the unlock bypass mode.  
14.The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is  
valid only during a sector erase operation, and requires the bank address.  
15.The Erase Resume command is valid only during the Erase Suspend mode, and requires the bank address.  
16.Command is valid when device is ready to read array data or when device is in autoselect mode.  
17.Additional sector erase commands during the time-out period after an initial sector erase are one cycle long and identical to the sixth  
cycle of the sector erase command sequence (SA / 30).  
11. Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5,  
DQ6, and DQ7. Table 11.1 on page 42 and the following subsections describe the function of these bits. DQ7  
and DQ6 each offer a method for determining whether a program or erase operation is complete or in  
progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an  
Embedded Program or Erase operation is in progress or has been completed.  
11.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm  
is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising  
edge of the final WE# pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum  
programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling produces a 1 on DQ7.  
The system must provide an address within any of the sectors selected for erasure to read valid status  
information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling  
on DQ7 is active for approximately 3 ms, then the bank returns to the read mode. If not all selected sectors  
are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the  
status may not be valid.  
When the system detects DQ7 has changed from the complement to true data, it can read valid data at  
DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the following read cycles. Just prior to the completion of an  
Embedded Program or Erase operation, DQ7 may change asynchronously with DQ15–DQ8 (DQ7–DQ0 for  
x8-only device) while Output Enable (OE#) is asserted low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has completed the program or erase operation and DQ7 has valid  
data, the data outputs on DQ15–DQ0 may be still invalid. Valid data on DQ15–DQ0 (or DQ7–DQ0 for x8-only  
device) will appear on successive read cycles.  
Table 11.1 on page 42 shows the outputs for Data# Polling on DQ7. Figure 11.1 on page 38 shows the Data#  
Polling algorithm. Figure 17.9 on page 52 shows the Data# Polling timing diagram.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
37  
D a t a S h e e t  
Figure 11.1 Data# Polling Algorithm  
34!24  
2EADå$1ꢀn$1ꢅ  
!DDRåꢁå6!  
9ES  
$1ꢀåꢁå$ATAꢂ  
.O  
.O  
$1ꢃåꢁåꢄꢂ  
9ES  
2EADå$1ꢀn$1ꢅ  
!DDRåꢁå6!  
9ES  
$1ꢀåꢁå$ATAꢂ  
.O  
0!33  
&!),  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being  
erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1 because DQ7 may change simultaneously with DQ5.  
11.2 RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a  
pull-up resistor to V  
.
CC  
If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the  
Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or one  
of the banks is in the erase-suspend-read mode.  
Table 11.1 on page 42 shows the outputs for RY/BY#.  
When DQ5 is set to “1”, RY/BY# will be in the BUSY state, or “0”.  
38  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
11.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is  
valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for  
approximately 3 ms, then returns to reading array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use  
DQ7 (see DQ7: Data# Polling on page 37).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program  
algorithm is complete.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
39  
D a t a S h e e t  
Figure 11.2 Toggle Bit Algorithm  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note:  
The system should recheck the toggle bit even if DQ5 = 1 because the toggle bit may stop toggling as DQ5 changes to 1. See the  
subsections on DQ6 and DQ2 for more information.  
11.4 DQ2: Toggle Bit II  
The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that  
is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is  
valid after the rising edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure.  
(The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the  
sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is  
actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus,  
both status bits are required for sector and mode information. Refer to Table 11.1 on page 42 to compare  
outputs for DQ2 and DQ6.  
Figure 11.2 on page 40 shows the toggle bit algorithm in flowchart form, and DQ2: Toggle Bit II on page 40  
explains the algorithm. See also DQ6: Toggle Bit I on page 39. Figure 17.10 on page 52 shows the toggle bit  
timing diagram. Figure 17.11 on page 53 shows the differences between DQ2 and DQ6 in graphical form.  
40  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
11.5 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 11.2 on page 40 for the following discussion. Whenever the system initially begins reading  
toggle bit status, it must read DQ15–DQ0 (or DQ7–DQ0 for x8-only device) at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle  
bit after the first read. After the second read, the system would compare the new value of the toggle bit with  
the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system  
can read array data on DQ15–DQ0 (or DQ7–DQ0 for x8-only device) on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the  
system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as  
DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or  
erase operation. If it is still toggling, the device did not completed the operation successfully, and the system  
must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not  
gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles,  
determining the status as described in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algorithm when it returns to  
determine the status of the operation (top of Figure 11.2 on page 40).  
11.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a 1, indicating that the program or erase cycle was not successfully  
completed.  
The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was previously  
programmed to 0. Only an erase operation can change a 0 back to a 1. Under this condition, the device  
halts the operation, and when the timing limit has been exceeded, DQ5 produces a 1.  
Under both these conditions, the system must write the reset command to return to the read mode (or to the  
erase-suspend-read mode if a bank was previously in the erase-suspend-program mode).  
11.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors  
are selected for erasure, the entire time-out also applies after each additional sector erase command. When  
the time-out period is complete, DQ3 switches from a 0 to a 1. If the time between additional sector erase  
commands from the system can be assumed to be less than 50 µs, the system need not monitor DQ3. See  
also Sector Erase Command Sequence on page 34.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is  
1, the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until  
the erase operation is complete. If DQ3 is 0, the device will accept additional sector erase commands. To  
ensure the command has been accepted, the system software should check the status of DQ3 prior to and  
following each subsequent sector erase command. If DQ3 is high on the second status check, the last  
command might not have been accepted. The RDY/BSY# pin will be in the BUSY state under this condition.  
Table 11.1 on page 42 shows the status of DQ3 relative to the other status bits.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
41  
D a t a S h e e t  
Table 11.1 Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
DQ7#  
Toggle  
Toggle  
Toggle  
0
0
0
No toggle  
Toggle  
0
0
0
Standard  
Mode  
in busy erasing sector  
0
0
Embedded Erase  
Algorithm  
in not busy erasing sector  
1
No toggle  
Erase  
Suspended Sector  
1
No toggle  
0
N/A  
Toggle  
1
Erase  
Suspend  
Mode  
Erase-Suspend-Read  
Non-Erase Suspended  
Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to 1 when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm is in  
progress. The device outputs array data if the system addresses a non-busy bank.  
12. Absolute Maximum Ratings  
Storage Temperature, Plastic Packages  
–65°C to +150°C  
–65°C to +125°C  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground  
VCC (Note 1)  
–0.5V to +4.0V  
–0.5V to +12.5V  
–0.5V to +9.5V  
–0.5V to VCC +0.5V  
200 mA  
A9 and RESET# (Note 2)  
WP#/ACC  
All other pins (Note 1)  
Output Short Circuit Current (Note 3)  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5V. During voltage transitions, input or I/O pins may overshoot VSS to –2.0V for periods of  
up to 20 ns. Maximum DC voltage on input or I/O pins is VCC +0.5V. See Figure 12.1 on page 42. During voltage transitions, input or I/O  
pins may overshoot to VCC +2.0V for periods up to 20 ns. See Figure 12.2 on page 42.  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5V. During voltage transitions, A9, OE#, WP#/ACC, and  
RESET# may overshoot VSS to –2.0V for periods of up to 20 ns. See Figure 12.1 on page 42. Maximum DC input voltage on pin A9 is  
+12.5V which may overshoot to +14.0V for periods up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5V which may overshoot  
to +12.0V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 12.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Figure 12.2 Maximum Positive Overshoot Waveform  
20 ns  
V
CC+2.0 V  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
42  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
13. Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (T )  
–40°C to +85°C  
2.7V to 3.6V  
A
V
CC  
Supply Voltages  
for standard voltage range  
CC  
V
Operating ranges define those limits between which the functionality of the device is guaranteed.  
14. DC Characteristics  
14.1 CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Input Load Current  
Test Conditions  
VIN = VSS to VCC  
Min  
Typ  
Max  
Unit  
,
ILI  
± 1.0  
µA  
VCC = VCC max  
VCC = VCC max, OE# = VIH; A9 or  
RESET# = 12.5V  
ILIT  
A9 and RESET# Input Load Current  
35  
µA  
VOUT = VSS to VCC  
VCC = VCC max, OE# = VIH  
,
ILO  
ILR  
Output Leakage Current  
Reset Leakage Current  
± 1.0  
µA  
µA  
VCC = VCC max; RESET# = 12.5V  
35  
16  
4
5 MHz  
10  
2
CE# = VIL, OE# = VIH, Byte  
Mode  
1 MHz  
5 MHz  
1 MHz  
ICC1  
VCC Active Read Current (Notes 1, 2)  
mA  
10  
2
16  
4
CE# = VIL, OE# = VIH, Word  
Mode  
ICC2  
ICC3  
ICC4  
VCC Active Write Current (Notes 2, 3)  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE# = VIL, OE# = VIH, WE# = VIL  
CE#, RESET# = VCC ± ± 0.3V  
RESET# = VSS ± ± 0.3V  
15  
0.2  
0.2  
30  
5
mA  
µA  
µA  
5
VIH = VCC ± 0.3V;  
VIL = VSS ± ± 0.3V  
ICC5  
Automatic Sleep Mode (Notes 2, 4)  
0.2  
5
µA  
Byte  
Word  
Byte  
Word  
21  
21  
21  
21  
45  
45  
45  
45  
CE# = VIL  
OE# = VIH, 1 MHz  
CE# = VIL  
,
ICC6  
VCC Active Read-While-Program Current (2)  
mA  
,
ICC7  
VCC Active Read-While-Erase Current (2)  
mA  
mA  
OE# = VIH, 1 MHz  
VCC Active Program-While-Erase-Suspended Current  
(Notes 2, 5)  
ICC8  
CE# = VIL, OE# = VIH  
17  
35  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
0.7 x VCC  
VCC + 0.3  
Voltage for WP#/ACC Sector Protect/Unprotect and  
Program Acceleration  
VHH  
VID  
V
CC = 3.0V 10ꢀ  
8.5  
8.5  
9.5  
V
V
Voltage for Autoselect and Temporary Sector  
Unprotect  
VCC = 3.0V ± 10ꢀ  
12.5  
0.45  
VOL  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min  
IOH = –2.0 mA, VCC = VCC min  
IOH = –100 µA, VCC = VCC min  
V
V
VOH1  
VOH2  
VLKO  
0.85 VCC  
VCC–0.4  
1.8  
Output High Voltage  
Low VCC Lock-Out Voltage (Note 5)  
2.0  
2.5  
V
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH  
.
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode current is 200 nA.  
5. Not 100% tested.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
43  
D a t a S h e e t  
14.2 Zero-Power Flash  
Figure 14.1 I  
Current vs. Time (Showing Active and Automatic Sleep Currents)  
CC1  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note:  
Addresses are switching at 1 MHz  
Figure 14.2 Typical I  
vs. Frequency  
CC1  
12  
10  
8
3.6V  
2.7V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note:  
T = 25°C  
44  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
15. Test Conditions  
Figure 15.1 Test Setup  
Device  
Under  
Test  
C
L
Table 15.1 Test Specifications  
Test Condition  
Output Load Capacitance, CL  
55, 60  
70  
Unit  
pF  
ns  
V
30  
100  
Input Rise and Fall Times (Note 1)  
Input Pulse Levels  
5
0.0 or VCC  
0.5 VCC  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
0.5 VCC  
V
Note:  
1. Input rise and fall times are 0-100%.  
16. Key To Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High-Z)  
Figure 16.1 Input Waveforms and Measurement Levels  
3.0V  
1.5V  
1.5V  
Input  
Measurement Level  
Output  
0.0V  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
45  
D a t a S h e e t  
17. AC Characteristics  
17.1 Read-Only Operations  
Parameter  
Speed Options  
JEDEC Std.  
Description  
Read Cycle Time (Note 1)  
Test Setup  
55  
60  
70  
Unit  
tAVAV  
tAVQV  
tRC  
Min  
55  
55  
55  
60  
70  
70  
ns  
CE#,  
OE# = VIL  
tACC Address to Output Delay  
Max  
60  
60  
ns  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
OE# = VIL Max  
70  
30  
ns  
ns  
ns  
ns  
Output Enable to Output Delay  
Max  
Max  
Max  
25  
Chip Enable to Output High-Z (Notes 1, 3)  
Output Enable to Output High-Z (Notes 1, 3)  
16  
16  
Output Hold Time From Addresses, CE# or OE#,  
Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
Read  
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
5
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 15.1 on page 45 and Table 15.1 on page 45 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of VCC/2. The time from OE# high to the data bus  
driven to VCC/2 is taken as tDF  
.
Figure 17.1 Read Operation Timings  
tRC  
Addresses Stable  
Addresses  
tACC  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
High-Z  
High-Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
46  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
17.2 Hardware Reset (RESET#)  
Parameter  
JEDEC Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms) to Read  
Mode (See Note)  
tReady  
tReady  
Max  
Max  
35  
µs  
RESET# Pin Low (NOT During Embedded Algorithms) to  
Read Mode (See Note)  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
35  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note:  
Not 100% tested.  
Figure 17.2 Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
47  
D a t a S h e e t  
17.3 Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std.  
ELFL/tELFH  
tFLQZ  
Description  
55  
60  
5
70  
Unit  
ns  
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output High-Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
16  
60  
ns  
tFHQV  
55  
70  
ns  
Figure 17.3 BYTE# Timings for Read Operations  
CE#  
OE#  
BYTE#  
DQ14–DQ0  
DQ15/A-1  
tELFL  
Data Output  
(DQ14–DQ0)  
Data  
Output  
BYTE#  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
tFLQZ  
tELFH  
BYTE#  
BYTE#  
Switching  
from byte  
to word  
mode  
Data Output  
(DQ14–DQ0)  
Data  
DQ14–DQ0  
DQ15/A-1  
Address  
Input  
DQ15  
Output  
tFHQV  
Figure 17.4 BYTE# Timings for Write Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note:  
Refer to the Erase/Program Operations table for tAS and tAH specifications.  
48  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
17.4 Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
55  
60  
60  
0
70 Unit  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
55  
70  
ns  
ns  
ns  
ns  
tAVWL  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
35  
tWLAX  
30  
30  
40  
40  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
35  
0
ns  
ns  
ns  
Data Hold Time  
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
25  
25  
25  
25  
0
30  
30  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
Byte  
6
tWHWH1  
tWHWH1  
Programming Operation (Note 2)  
µs  
µs  
Word  
6
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
4
tWHWH2  
tVCS  
Sector Erase Operation (Note 2)  
VCC Setup Time (Note 1)  
Typ  
Min  
Min  
Max  
Max  
0.5  
50  
0
sec  
µs  
ns  
ns  
µs  
tRB  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
Erase Suspend Latency  
tBUSY  
tESL  
90  
35  
Notes:  
1. Not 100% tested.  
2. See Erase and Programming Performance on page 56 for more information.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
49  
D a t a S h e e t  
Figure 17.5 Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address.  
2. Illustration shows device in word mode.  
Figure 17.6 Accelerated Program Timing Diagram  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
tVHH  
50  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 17.7 Chip/Sector Erase Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
VA  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status on page 37).  
2. These waveforms are for the word mode.  
Figure 17.8 Back-to-back Read/Write Cycle Timings  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Addresses  
tCPH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# or CE2# Controlled Write Cycles  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
51  
D a t a S h e e t  
Figure 17.9 Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note:  
VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle  
Figure 17.10 Toggle Bit Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tCPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note:  
VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array  
data read cycle.  
52  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 17.11 DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note:  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
17.5 Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
tRSP  
Description  
VID Rise and Fall Time (See Note)  
All Speed Options  
Unit  
ns  
Min  
Min  
Min  
500  
250  
4
VHH Rise and Fall Time (See Note)  
ns  
RESET# Setup Time for Temporary Sector Unprotect  
µs  
RESET# Hold Time from RY/BY# High for Temporary  
Sector Unprotect  
tRRB  
Min  
4
µs  
Note:  
Not 100% tested.  
Figure 17.12 Temporary Sector Unprotect Timing Diagram  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
53  
D a t a S h e e t  
Figure 17.13 Sector/Sector Block Protect and Unprotect Timing Diagram  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Note:  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
17.6 Alternate CE# Controlled Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std.  
tWC  
tAS  
Description  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
55  
60  
60  
0
70  
Unit  
ns  
Min  
Min  
Min  
Min  
Min  
55  
70  
tAVWL  
tELAX  
tDVEH  
tEHDX  
ns  
tAH  
tDS  
tDH  
30  
30  
35  
35  
0
40  
40  
ns  
ns  
Data Hold Time  
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
25  
25  
25  
25  
6
40  
30  
tCPH  
Byte  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
µs  
Word  
6
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
0.5  
sec  
Notes:  
1. Not 100% tested.  
2. See Erase and Programming Performance on page 56 for more information.  
54  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Figure 17.14 Alternate CE# Controlled Write (Erase/Program) Operation Timings  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
55  
D a t a S h e e t  
18. Erase and Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
Comments  
Sector Erase Time  
Chip Erase Time  
0.5  
71  
5
Excludes 00h programming  
prior to erasure (Note 3)  
Excludes system level  
overhead (Note 4)  
Byte Program Time  
6
80  
µs  
Word Program Time  
Accelerated Byte/Word Program Time  
Notes:  
6
4
80  
70  
µs  
µs  
1. Typical program and erase times assume the following conditions: 25°C, 3.0V VCC, 100,000 cycles; checkerboard data pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7V, 1,000,000 cycles.  
3. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
4. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 10.1  
on page 36 for further information on command definitions.  
5. The device has a minimum program and erase cycle endurance of 100,000 cycles per sector.  
19. Pin Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
VIN = 0  
Max  
8.5  
Unit  
pF  
CIN  
Input Capacitance (applies to A21-A0, DQ15-DQ0)  
Output Capacitance (applies to DQ15-DQ0, RY/BY#)  
COUT  
VOUT = 0  
5.5  
pF  
Control Pin Capacitance  
(applies to CE#, WE#, OE#, WP#/ACC, RESET#, BYTE#)  
CIN2  
VIN = 0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
56  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
20. Physical Dimensions  
20.1 TS 048—48-Pin Standard TSOP  
NOTES:  
PACKAGE  
TS/TSR 48  
JEDEC  
MO-142 (D) DD  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm).  
(DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982)  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
0.15  
1.05  
0.23  
0.27  
0.16  
0.21  
20.20  
18.50  
12.10  
2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
19.80  
18.30  
11.90  
---  
4. TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS  
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS  
ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.  
1.00  
0.20  
0.22  
---  
5. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD  
PROTUSION IS 0.15mm (.0059") PER SIDE.  
c1  
c
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR  
PROTUSION SHALL BE 0.08mm (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX.  
MATERIAL CONDITION. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT  
LEAD TO BE 0.07mm (0.0028").  
---  
D
20.00  
18.40  
12.00  
0.50 BASIC  
0.60  
---  
D1  
E
7. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN  
0.10mm (.0039") AND 0.25mm (0.0098") FROM THE LEAD TIP.  
e
8. LEAD COPLANARITY SHALL BE WITHIN 0.10mm (0.004") AS MEASURED FROM  
THE SEATING PLANE.  
L
0.50  
0˚  
0.70  
8
Θ
9. DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
R
0.08  
---  
0.20  
N
48  
3664 \ f16-038.10 \ 11.6.7  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
57  
D a t a S h e e t  
20.2 VBK048—48-Pin FBGA  
NOTES:  
PACKAGE  
JEDEC  
VBK 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
8.15 mm x 6.15 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
D
---  
1.00  
---  
OVERALL THICKNESS  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
8.15 BSC.  
6.15 BSC.  
5.60 BSC.  
4.00 BSC.  
8
BODY SIZE  
E
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
D1  
E1  
BALL FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
BALL FOOTPRINT  
MD  
ME  
N
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
BALL DIAMETER  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
6
48  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
φb  
e
0.33  
---  
0.43  
0.80 BSC.  
0.40 BSC.  
---  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
g1001.2 \ f16-038.25 \ 07.13.10  
58  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
21. Revision History  
.
Section  
Description  
Revision 01 (June 21, 2010)  
Initial revision.  
Revision 02 (September 1, 2010)  
Updated the data sheet designation from Advanced Information to Preliminary.  
Global  
Corrected spelling, capitalization, and grammatical errors.  
Simultaneous Read/Write Operations  
with Zero Latency  
Added clarification that JL064J is only offered as a dual boot device with both top and bottom boot  
sectors.  
Ordering Information  
Device Bus Operation  
Clarified that Note 1 applies to the Packing Type column.  
The note for the Addresses column should be Note 1, not Note 2.  
Changed “Refer to AC Characteristics on page 46” to “Refer to Hardware Reset (RESET#) on page  
47”.  
RESET#: Hardware Reset Pin  
Clarified the Secured Silicon Indicator Bit data based on factory and customer lock status.  
Secured Silicon Region  
Removed forward looking statements regarding factory locking features as they are supported in  
this device.  
Clarified that once in the CFI query mode, the system must write the reset command to return to  
reading array data.  
Common Flash Memory Interface (CFI)  
Enter Secured Silicon Region/Exit  
Secured Silicon Region Command  
Sequence  
Removed the incorrect generalizing statement that the Secured Silicon Region always contains an  
ESN.  
Added clarification that “It is not recommended to program the Secured Silicon Region after an  
erase suspend, as proper device functionality cannot be guaranteed.”  
Erase Suspend/Erase Resume  
Commands  
In Table 10.1, corrected the Secured Silicon Region Factory Protect fourth cycle data from 81/01 to  
81/41/01.  
Erase and Programming Performance  
Pin Capacitance  
Added Note 5 regarding minimum program and erase cycle endurance.  
Changed section title from “TSOP Pin Capacitance” to “Pin Capacitance”.  
Updated values to reflect maximum capacitances for both TSOP and BGA.  
Removed typical capacitance values.  
Added specific pin clarifications to parameter descriptions.  
Physical Dimensions  
Updated the VBK048 package outline drawing.  
Revision 03 (April 7, 2011)  
Updated the data sheet designation from Preliminary to Full Production (no designation on  
document).  
Global  
Added warning that keeping CE# at VIL from power up through the first reset could cause  
erroneuous data on the first read.  
RESET#: Hardware Reset Pin  
Clarified that during an embedded program or erase, if DQ5 goes high then RY/BY# will remain low  
until a reset is issued  
Reset Command  
Absolute Maximum Ratings  
DC Characteristics  
Corrected the maximum value of WP#/ACC voltage with respect to ground from +10.5V to +9.5V  
Corrected voltage for autoselect and temporary sector unprotect (VID) minimum value from 11.5V to  
8.5V  
Changed the format of the input pulse levels and input and output timing measurement reference  
levels to match the JL032J data sheet format  
Test Conditions  
Added note to “Reset Timings” figure clarifying that CE# should only go low after RESET# has gone  
high.  
Hardware Reset (RESET#)  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
59  
D a t a S h e e t  
Section  
Description  
Revision 04 (August 24, 2011)  
Removed warning that keeping CE# at VIL from power up through the first reset could cause  
erroneuous data on the first read.  
RESET#: Hardware Reset Pin  
Sector Erase Command Sequence  
Command Definitions Table  
Added clarification regarding additional sector erase commands during time-out period.  
Added Note 17 to clarify additional sector erase commands during time-out period.  
Removed note to the “Reset Timings” figure clarifying that CE# should only go low after RESET#  
has gone high.  
Hardware Reset (RESET#)  
Erase and Programming Performance  
Physical Dimensions  
Updated Byte Program Time and Word Program Time to 80 µs.  
Package drawings updated to latest version.  
Revision 05 (December 16, 2011)  
Global  
Corrected all references in the text to the sector erase time-out period from 80 µs to 50 µs.  
60  
S29JL064J  
S29JL064J_00_05 December 16, 2011  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2010-2011 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™,  
EcoRAM™ and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries.  
Other names used are for informational purposes only and may be trademarks of their respective owners.  
December 16, 2011 S29JL064J_00_05  
S29JL064J  
61  

相关型号:

S29JL064J70BHI000

Flash, 4MX16, 70ns, PBGA48, FBGA-48
CYPRESS

S29JL064J70TFI000

CMOS 3.0 Volt-Only, Simultaneous Read/Write Flash Memory
SPANSION

S29JL064J70TFI000

Flash, 4MX16, 70ns, PDSO48, TSOP-48
CYPRESS

S29JL064J70TFI003

Flash, 4MX16, 70ns, PDSO48, TSOP-48
CYPRESS

S29NS-J

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS-J_07

Burst Mode Flash Memories
SPANSION

S29NS-N

Simultaneous Read/Write, Multiplexed, Burst Mode Flash Memory
SPANSION

S29NS-N_07

256/128/64 Megabit (16/8/4M x 16-bit), CMOS 1.8 Volt-only Simultaneous Read/Write, Multiplexed, Burst Mode Flash Memory
SPANSION

S29NS-P

MirrorBit Flash Family
SPANSION

S29NS016J0LBAW000

Burst Mode Flash Memories
SPANSION

S29NS016J0LBAW002

Burst Mode Flash Memories
SPANSION

S29NS016J0LBAW003

Burst Mode Flash Memories
SPANSION