S29NS-P [SPANSION]

MirrorBit Flash Family; 的MirrorBit闪存系列
S29NS-P
型号: S29NS-P
厂家: SPANSION    SPANSION
描述:

MirrorBit Flash Family
的MirrorBit闪存系列

闪存
文件: 总86页 (文件大小:3142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29NS-P MirrorBitTM Flash Family  
S29NS512P S29NS256P S29NS128P  
512/256/128 Mb (32/16/8 M x 16 bit), 1.8 V Burst Simultaneous  
Read/Write, Multiplexed MirrorBit Flash Memory  
S29NS-P MirrorBitTM Flash Family Cover Sheet  
Data Sheet (Advance Information)  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S29NS-P_00  
Revision A  
Amendment 1  
Issue Date February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
S29NS-P MirrorBitTM Flash Family  
S29NS512P S29NS256P S29NS128P  
512/256/128 Mb (32/16/8 M x 16 bit), 1.8 V Burst Simultaneous  
Read/Write, Multiplexed MirrorBit Flash Memory  
Data Sheet (Advance Information)  
Features  
„ Single 1.8 V read/program/erase (1.70–1.95 V)  
„ 90 nm MirrorBit Technology  
„ Hardware (WP#) protection of highest two sectors  
„ Top Boot sector configuration (NS256/128P)  
„ Handshaking by monitoring RDY  
„ Multiplexed Data and Address for reduced I/O count  
„ Simultaneous Read/Write operation  
„ Full/Half drive output slew rate control  
„ 32-word Write Buffer  
„ Offered Packages  
– NS512P: 64-ball FBGA (8 mm x 9.2 mm)  
– NS256P/NS128P: 44-ball FBGA (6.2 mm x 7.7 mm)  
„ Low VCC write inhibit  
„ Sixteen-bank architecture consisting of  
„ Persistent and Password methods of Advanced Sector  
64/32/16 MB for NS512/256/128P, respectively  
Protection  
„ Four 32 KB sectors at the top of memory array (NS256/128P)  
„ Write operation status bits indicate program and erase  
„ 512 128KB sectors (NS512P), 255/127 128KB sectors (NS256/  
operation completion  
128P)  
„ Suspend and Resume commands for Program and Erase  
„ Programmable linear (8/16/32) with or without wrap around  
operations  
and continuous burst read modes  
„ Unlock Bypass program command to reduce programming  
„ Secured Silicon Sector region consisting of 128 words each  
time  
for factory and customer  
„ Synchronous or Asynchronous program operation,  
„ 20-year data retention (typical)  
independent of burst control register settings  
„ Cycling Endurance: 100,000 cycles per sector (typical)  
„ RDY output indicates data available to system  
„ Command set compatible with JEDEC (42.4) standard  
„ VPP input pin to reduce factory programming time  
„ Support for Common Flash Interface (CFI)  
Performance Characteristics  
Read Access Times  
Current Consumption (typical values)  
Speed Option (MHz)  
108  
80  
Continuous Burst Read @ 108 MHz  
Simultaneous Operation 108 MHz  
Program  
42 mA  
60 mA  
30 mA  
20 µA  
Max. Synch. Latency, ns (t  
)
IACC  
Max. Synch. Burst Access, ns (t  
)
7.0  
80  
BACC  
Max. Asynch. Access Time, ns (t  
)
Standby Mode  
ACC  
Max OE# Access Time, ns (t  
)
7.0  
OE  
Typical Program & Erase Times  
Single Word Programming  
Effective Write Buffer Programming (V ) Per Word  
30 µs  
6 µs  
CC  
Effective Write Buffer Programming (V ) Per Word  
PP  
4 µs  
Sector Erase (16 Kword Sector)  
Sector Erase (64 Kword Sector)  
350 ms  
600 ms  
General Description  
The Spansion S29NS512/256/128P are MirrorBit Flash products fabricated on 90 nm process technology. These burst mode  
Flash devices are capable of performing simultaneous read and write operations with zero latency on two separate banks using  
multiplexed data and address pins. These products can operate up to 108 MHz and use a single VCC of 1.7 V to 1.95 V that  
makes them ideal for the demanding wireless applications of today that require higher density, better performance, and lowered  
power consumption.  
Publication Number S29NS-P_00  
Revision A  
Amendment 1  
Issue Date February 20, 2007  
This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in  
this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice.  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.  
2.  
3.  
4.  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Input/Output Descriptions & Logic Symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Physical Dimensions/Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Special Handling Instructions for FBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.  
6.  
Product Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Device Operation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Asynchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Synchronous (Burst) Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Autoselect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Program/Erase Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Simultaneous Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Hardware Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.10 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.11 Programmable Output Slew Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.  
Advanced Sector Protection/Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Persistent Protection Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Dynamic Protection Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Persistent Protection Bit Lock Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Password Protection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Advanced Sector Protection Software Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Hardware Data Protection Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.  
9.  
Power Conservation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
8.1  
8.2  
8.3  
8.4  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Automatic Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Hardware RESET# Input Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Output Disable (OE#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Secured Silicon Sector Flash Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
9.1  
9.2  
9.3  
Factory Secured Silicon Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Customer Secured Silicon Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Secured Silicon Sector Entry and Exit Command Sequences. . . . . . . . . . . . . . . . . . . . . . . . 62  
10. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.3 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.4 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.5 Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.6 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.7 CLK Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10.8 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10.9 Erase and Programming Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
11. Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
11.1 Common Flash Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
4
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figures  
Figure 3.1  
Simultaneous Operation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
64-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS512P Top View, Balls Facing Down . . 10  
44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS256P Top View, Balls Facing Down . . 11  
44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS128P Top View, Balls Facing Down . . 11  
VDD064—64-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS512P. . . . . . . . . . . . . . . . . . 12  
VDE044—44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS128/256P . . . . . . . . . . . . . . 13  
Synchronous Read Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Single Word Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Write Buffer Programming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Sector Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Write Operation Status Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Advanced Sector Protection/Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
PPB Program/Erase Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Lock Register Program Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 4.1  
Figure 4.2  
Figure 4.3  
Figure 4.4  
Figure 4.5  
Figure 6.1  
Figure 6.2  
Figure 6.3  
Figure 6.4  
Figure 6.5  
Figure 7.1  
Figure 7.2  
Figure 7.3  
Figure 10.1 Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 10.2 Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 10.3 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 10.4 Input Waveforms and Measurement Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 10.5  
VCC Power-Up Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 10.6 CLK Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 10.7 8-Word Linear Synchronous Single Data Rate Burst with Wrap Around. . . . . . . . . . . . . . . . 68  
Figure 10.8 8-Word Linear Single Data Read Synchronous Burst without Wrap Around. . . . . . . . . . . . . 69  
Figure 10.9 Asynchronous Mode Read with Latched Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 10.10 Asynchronous Mode Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 10.11 Reset Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 10.12 Asynchronous Program Operation Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 10.13 Chip/Sector Erase Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 10.14 Accelerated Unlock Bypass Programming Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 10.15 Data# Polling Timings (During Embedded Algorithm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 10.16 Toggle Bit Timings (During Embedded Algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 10.17 Synchronous Data Polling Timings/Toggle Bit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 10.18 DQ2 vs. DQ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 10.19 Latency with Boundary Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 10.20 Wait State Configuration Register Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 10.21 Back-to-Back Read/Write Cycle Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
5
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Tables  
Table 2.1  
Table 5.1  
Table 5.2  
Table 5.3  
Table 6.1  
Table 6.2  
Table 6.3  
Table 6.4  
Table 6.5  
Table 6.6  
Table 6.7  
Table 6.8  
Table 6.9  
Table 6.10  
Table 6.11  
Table 6.12  
Table 6.13  
Table 6.14  
Table 6.15  
Table 6.16  
Table 6.17  
Table 6.18  
Table 6.19  
Table 6.20  
Table 6.21  
Table 6.22  
Table 6.23  
Table 6.24  
Table 6.25  
Table 6.26  
Table 6.27  
Table 6.28  
Table 6.29  
Table 7.1  
Table 9.1  
Table 9.2  
Table 9.3  
Table 9.4  
Table 10.1  
Table 10.2  
Table 10.3  
Table 10.4  
Table 10.5  
Table 10.6  
Table 10.7  
Table 10.8  
Table 10.9  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
S29NS512P Sector & Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
S29NS256P Sector & Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
S29NS128P Sector & Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Address Latency for 9 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Address Latency for 8 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Address Latency for 7 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Address Latency for 6 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Address Latency for 5 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Address Latency for 4 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Address Latency for 3 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Address Latency for 2 Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Autoselect Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Autoselect Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Autoselect Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Single Word Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Write Buffer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Chip Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Erase Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Program Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Program Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Unlock Bypass Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Unlock Bypass Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Unlock Bypass Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
DQ6 and DQ2 Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Programmable Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Sector Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Secured Silicon SectorSecure Sector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Secured Silicon Sector Entry (LLD Function = lld_SecSiSectorEntryCmd) . . . . . . . . . . . . . .62  
Secured Silicon Sector Program (LLD Function = lld_ProgramCmd) . . . . . . . . . . . . . . . . . . .62  
Secured Silicon Sector Exit (LLD Function = lld_SecSiSectorExitCmd) . . . . . . . . . . . . . . . . .63  
DC Characteristics—CMOS Compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
V
CC Power-Up with No Ramp Rate Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
CLK Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Synchronous/Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Synchronous Wait State Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Asynchronous Mode Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Warm Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Erase/Program Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Table 10.10 Example of Programmable Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Table 10.11 Erase and Programming Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Table 11.1  
Table 11.2  
Table 11.3  
Table 11.4  
Table 11.5  
Table 11.6  
Memory Array Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Sector Protection Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
6
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
1. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S29NS  
512  
P
xx  
BJ  
W
00  
0
Packing Type  
0
3
= Tray (standard; (Note 1))  
= 13-inch Tape and Reel  
Model Number  
00 = Standard  
Temperature Range  
W = Wireless (–25°C to +85°C)  
Package Type & Material Set  
BJ = Very Thin Fine-Pitch BGA,Lead (Pb)-free LF35 Package  
Speed Option (Burst Frequency)  
0P = 66 MHz  
0S = 83 MHz  
AB = 108 MHz  
Process Technology  
P
= 90 nm MirrorBit™ Technology  
Flash Density  
512 =512 Mb  
256 =256 Mb  
128 =128 Mb  
Product Family  
S29NS = 1.8 Volt-only Simultaneous Read/Write, Burst Mode Multiplexed Flash  
Memory  
Valid Combinations  
Package Type  
Speed  
Option  
Base Ordering  
Part Number  
Package Type, Material,  
& Temperature Range  
Packing  
Type  
Model  
Number  
S29NS512P  
S29NS256P  
S29NS128P  
8.0 mm x 9.2 mm, 64-ball  
6.2 mm x 7.7 mm, 44-ball  
0P, 0S, AB  
BJW (Lead (Pb)-free, LF35)  
0, 3 (1)  
00  
Notes  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading S29 and packing type designator from ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local  
sales office to confirm availability of specific valid combinations and to check on newly released  
combinations.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
7
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
2. Input/Output Descriptions & Logic Symbol  
Table 2.1 identifies the input and output package connections provided on the device.  
Table 2.1 Input/Output Descriptions  
Symbol  
A24 – A16  
Type  
Input  
Input  
Input  
I/O  
Description  
Address inputs, S29NS512P  
Address inputs, S29NS256P  
Address inputs, S29NS128P  
Multiplexed Address/Data input/output  
A23 – A16  
A22 – A16  
A/DQ15 – A/DQ0  
CE#  
Input  
Input  
Input  
Supply  
Supply  
I/O  
Chip Enable. Asynchronous relative to CLK for the Burst mode.  
OE#  
Output Enable. Asynchronous relative to CLK for the Burst mode  
WE#  
Write Enable  
V
V
V
V
Device Power Supply  
CC  
Input/Output Power Supply (must be ramped simultaneously with V  
)
CCQ  
SS  
CC  
Ground  
I/O  
Input/Output Ground  
SSQ  
NC  
No Connect No Connected internally  
RDY  
Output  
Ready. Indicates when valid burst data is ready to be read  
The first rising edge of CLK in conjunction with AVD# low latches address input and activates burst  
mode operation. After the initial word is output, subsequent rising edges of CLK increment the  
internal address counter. CLK should remain low during asynchronous access  
CLK  
Input  
Address Valid input. Indicates to device that the valid address is present on the address inputs  
(address bits A15 – A0 are multiplexed, address bits Amax – A16 are address only).  
AVD#  
Input  
V = for asynchronous mode, indicates valid address; for burst mode, cause staring address to be  
IL  
latched on rising edge of CLK.  
= device ignores address inputs  
V
IH  
RESET#  
WP#  
Input  
Input  
Hardware Reset. Low = device resets and returns to reading array data.  
Write Protect. At V , disables program and erase functions in the four top sectors. Should be at V  
IL  
for all other conditions.  
IH  
Accelerated input.  
At V , accelerates programming; automatically places device in unlock bypass mode.  
HH  
V
Input  
PP  
At V ,disables all program and erase functions.  
IL  
Should be at V for all other conditions.  
IH  
RFU  
Reserved  
Reserved for future use  
8
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
3. Block Diagrams  
Figure 3.1 Simultaneous Operation Circuit  
V
CC  
V
SS  
Bank Address  
DQ15–DQ0  
V
CCQ  
Bank 0  
V
SSQ  
Amax–A0  
X-Decoder  
OE#  
Bank Address  
DQ15–DQ0  
Bank 1  
WP#  
VPP  
X-Decoder  
?Amax–A0  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
RESET#  
WE#  
DQ15–DQ0  
Status  
CE#  
AVD#  
RDY  
Control  
?Amax–A16  
A/DQ15–A/DQ0  
X-Decoder  
Bank (n-1)  
DQ15–DQ0  
Bank Address  
?Amax–A16  
X-Decoder  
Bank (n)  
Bank Address  
DQ15–DQ0  
Notes  
1. Amax = A24 for NS512P, A23 for NS256P, A22 for NS128P.  
2. Bank (n) = 15 for NS512P/ NS256P/ NS128P.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
9
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
4. Physical Dimensions/Connection Diagrams  
This section shows the I/O designations and package specifications for the OPN.  
4.1  
4.2  
Related Documents  
The following documents contain information relating to the S29NS-P devices. Click on the title or go to  
www.spansion.com, or request a copy from your sales office.  
„ Considerations for X-ray Inspection of Surface-Mounted Flash Integrated Circuits  
Special Handling Instructions for FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The  
package and/or data integrity may be compromised if the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
64-Ball Fine-Pitch Grid Array, S29NS512P  
Figure 4.1 64-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS512P Top View, Balls Facing Down  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
nc  
nc  
DNU  
F-RDY  
F-VCCQ  
F-VSS  
DNU  
A21  
A16  
F-VSS  
F-VSS  
A20  
A24  
F-VCC  
F-VCC  
A23  
F-VSS  
F-VCC  
F-ACC  
A25  
A19  
A18  
DNU  
A17  
DNU  
A22  
Legend  
Flash Only  
No Connect  
D
E
F-CLK  
F-WE#  
F-ADV#  
F-RST# F-WP#  
F-CE#  
F-VSSQ  
F-OE#  
F
A/DQ7 A/DQ6 A/DQ13 A/DQ12 A/DQ3 A/DQ2 A/DQ9 A/DQ8  
Reserved for  
Future Use  
G
A/DQ15 A/DQ14 F-VSSQ A/DQ5 A/DQ4 A/DQ11 A/DQ10 F-VCCQ A/DQ1 A/DQ0  
H
J
Do Not Use  
DNU  
DNU  
DNU  
F-VCCQ F-VSSQ  
DPD  
F-VCCQ  
DNU  
DNU  
DNU  
K
nc  
nc  
Figure 2.1.  
10  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS256P  
Figure 4.2 44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS256P Top View, Balls Facing Down  
NC  
NC  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A22  
RDY  
A21  
VSS  
CLK  
VCC  
WE#  
VPP  
A19  
A17  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
VCCQ  
A16  
A20  
AVD#  
A23  
RESET#  
WP#  
A18  
CE#  
VSSQ  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
OE#  
VSS  
A/DQ7  
A/DQ6 A/DQ13 A/DQ12 A/DQ3  
A/DQ2  
A/DQ9  
A/DQ8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
A/DQ15 A/DQ14  
VSSQ  
A/DQ5  
A/DQ4 A/DQ11 A/DQ10  
VCCQ  
A/DQ1  
A/DQ0  
NC  
NC  
44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS128P  
Figure 4.3 44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS128P Top View, Balls Facing Down  
NC  
NC  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A22  
RDY  
A21  
VSS  
CLK  
VCC  
WE#  
VPP  
A19  
A17  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
VCCQ  
A16  
A20  
AVD#  
NC  
RESET#  
WP#  
A18  
CE#  
VSSQ  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
OE#  
VSS  
A/DQ7  
A/DQ6 A/DQ13 A/DQ12 A/DQ3  
A/DQ2  
A/DQ9  
A/DQ8  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
A/DQ15 A/DQ14  
VSSQ  
A/DQ5  
A/DQ4 A/DQ11 A/DQ10  
VCCQ  
A/DQ1  
A/DQ0  
NC  
NC  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
11  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
VDD064—64-Ball Very Thin Fine-Pitch Ball Grid Array  
Figure 4.4 VDD064—64-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS512P  
A
10  
D
D1  
A1 CORNER  
A1 CORNER  
INDEX MARK  
e
10  
9
8
7
6
5
4
3
2
1
NF2  
NF1  
e
A
B
C
D
E
F
7
E1  
E
SE  
0.50  
NF4  
NF3  
SD  
7
B
1.00  
TOP VIEW  
Øb  
6
0.10  
C
Ø 0.05  
Ø 0.15  
M
M
C
A2  
C
A
C A  
B
A1  
0.08  
C
SEATING PLANE  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
PACKAGE  
VDD 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
JEDEC  
8.00 mm x 9.20 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
0.86  
0.20  
0.66  
7.90  
9.10  
NOM  
---  
MAX  
1.00  
---  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
0.71  
8.00  
9.20  
4.50  
2.50  
10  
0.76  
8.10  
9.30  
BODY THICKNESS  
BODY SIZE  
D
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
MD  
ME  
N
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
Ø b  
e
0.25  
0.30  
0.50  
0.25  
0.35  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3533 \ 16-038.27 \ 12.13.05  
12  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
VDE44-44-Ball Very Thin Fine-Pitch Ball Grid Array, 6.2mm x 7.7 mm  
Figure 4.5 VDE044—44-Ball Very Thin Fine-Pitch Ball Grid Array, S29NS128/256P  
D1  
A
D
A1 CORNER  
INDEX MARK  
A1 CORNER  
10  
9
8
7
6
5
4
3
2
1
10  
NF2  
NF1  
e
A
B
C
D
E
B
E1  
SE  
1.00  
7
NF4  
NF3  
1.00  
SD  
B
7
TOP VIEW  
φb  
6
φ 0.05  
φ 0.15  
M
M
C
C A  
0.10  
C
A2  
A
BOTTOM VIEW  
0.08  
C
A1  
SEATING PLANE  
C
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VDE 044  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
7.70 mm x 6.20 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
0.86  
0.20  
0.66  
7.6  
NOM  
---  
MAX  
1.00  
---  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
0.71  
7.7  
0.76  
7.8  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
6.1  
6.2  
6.3  
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
4.50  
1.50  
10  
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
4
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN ?  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
44  
φb  
0.25  
0.30  
0.50 BSC.  
0.25 BSC.  
0.35  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
BALL PITCH  
SD / SE  
?
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3308.2 \ 16-038.9L  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
13  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
5. Product Overview  
The S29NS-P family consists of 512, 256, and 128 Mb, 1.8 volts-only, simultaneous read/write burst mode,  
multiplexed Flash device optimized for today’s wireless designs that demand a large storage array, rich  
functionality, and low power consumption.  
These devices are organized in 32, 16, or 8 Mwords of 16 bits each and are capable of continuous,  
synchronous (burst) read or linear read (8-word, 16-word, or 32-word aligned group) with or without wrap  
around. These flash devices multiplex the data and addresses for reduced I/O count. These products also  
offer single word programming or a 32-word buffer for programming with program/erase and suspend  
functionality. Additional features include:  
„ Advanced Sector Protection methods for protecting sectors as required  
„ 256 words of Secured Silicon area for storing customer and factory secured information. The Secured  
Silicon Sector is One Time Programmable.  
5.1  
Memory Map  
The S29NS512/256/128P Mb devices consist of 16 banks organized as shown in Tables 5.1 5.3.  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 1 of 8)  
Bank  
Sector  
SA0  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
Bank  
Sector  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
14  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 2 of 8)  
Bank  
Sector  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
Bank  
Sector  
SA96  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7FFFFFh  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
15  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 3 of 8)  
Bank  
Sector  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
800000h–80FFFFh  
810000h–81FFFFh  
820000h–82FFFFh  
830000h–83FFFFh  
840000h–84FFFFh  
850000h–85FFFFh  
860000h–86FFFFh  
870000h–87FFFFh  
880000h–88FFFFh  
890000h–89FFFFh  
8A0000h–8AFFFFh  
8B0000h–8BFFFFh  
8C0000h–8CFFFFh  
8D0000h–8DFFFFh  
8E0000h–8EFFFFh  
8F0000h–8FFFFFh  
900000h–90FFFFh  
910000h–91FFFFh  
920000h–92FFFFh  
930000h–93FFFFh  
940000h–94FFFFh  
950000h–95FFFFh  
960000h–96FFFFh  
970000h–97FFFFh  
980000h–98FFFFh  
990000h–99FFFFh  
9A0000h–9AFFFFh  
9B0000h–9BFFFFh  
9C0000h–9CFFFFh  
9D0000h–9DFFFFh  
9E0000h–9EFFFFh  
9F0000h–9FFFFFh  
Bank  
Sector  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
A00000h–A0FFFFh  
A10000h–A1FFFFh  
A20000h–A2FFFFh  
A30000h–A3FFFFh  
A40000h–A4FFFFh  
A50000h–A5FFFFh  
A60000h–A6FFFFh  
A70000h–A7FFFFh  
A80000h–A8FFFFh  
A90000h–A9FFFFh  
AA0000h–AAFFFFh  
AB0000h–ABFFFFh  
AC0000h–ACFFFFh  
AD0000h–ADFFFFh  
AE0000h–AEFFFFh  
AF0000h–AFFFFFh  
B00000h–B0FFFFh  
B10000h–B1FFFFh  
B20000h–B2FFFFh  
B30000h–B3FFFFh  
B40000h–B4FFFFh  
B50000h–B5FFFFh  
B60000h–B6FFFFh  
B70000h–B7FFFFh  
B80000h–B8FFFFh  
B90000h–B9FFFFh  
BA0000h–BAFFFFh  
BB0000h–BBFFFFh  
BC0000h–BCFFFFh  
BD0000h–BDFFFFh  
BE0000h–BEFFFFh  
BF0000h–BFFFFFh  
16  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 4 of 8)  
Bank  
Sector  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
C00000h–C0FFFFh  
C10000h–C1FFFFh  
C20000h–C2FFFFh  
C30000h–C3FFFFh  
C40000h–C4FFFFh  
C50000h–C5FFFFh  
C60000h–C6FFFFh  
C70000h–C7FFFFh  
C80000h–C8FFFFh  
C90000h–C9FFFFh  
CA0000h–CAFFFFh  
CB0000h–CBFFFFh  
CC0000h–CCFFFFh  
CD0000h–CDFFFFh  
CE0000h–CEFFFFh  
CF0000h–CFFFFFh  
D00000h–D0FFFFh  
D10000h–D1FFFFh  
D20000h–D2FFFFh  
D30000h–D3FFFFh  
D40000h–D4FFFFh  
D50000h–D5FFFFh  
D60000h–D6FFFFh  
D70000h–D7FFFFh  
D80000h–D8FFFFh  
D90000h–D9FFFFh  
DA0000h–DAFFFFh  
DB0000h–DBFFFFh  
DC0000h–DCFFFFh  
DD0000h–DDFFFFh  
DE0000h–DEFFFFh  
DF0000h–DFFFFFh  
Bank  
Sector  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
E00000h–E0FFFFh  
E10000h–E1FFFFh  
E20000h–E2FFFFh  
E30000h–E3FFFFh  
E40000h–E4FFFFh  
E50000h–E5FFFFh  
E60000h–E6FFFFh  
E70000h–E7FFFFh  
E80000h–E8FFFFh  
E90000h–E9FFFFh  
EA0000h–EAFFFFh  
EB0000h–EBFFFFh  
EC0000h–ECFFFFh  
ED0000h–EDFFFFh  
EE0000h–EEFFFFh  
EF0000h–EFFFFFh  
F00000h–F0FFFFh  
F10000h–F1FFFFh  
F20000h–F2FFFFh  
F30000h–F3FFFFh  
F40000h–F4FFFFh  
F50000h–F5FFFFh  
F60000h–F6FFFFh  
F70000h–F7FFFFh  
F80000h–F8FFFFh  
F90000h–F9FFFFh  
FA0000h–FAFFFFh  
FB0000h–FBFFFFh  
FC0000h–FCFFFFh  
FD0000h–FDFFFFh  
FE0000h–FEFFFFh  
FF0000h–FFFFFFh  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
17  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 5 of 8)  
Bank  
Sector  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
SA270  
SA271  
SA272  
SA273  
SA274  
SA275  
SA276  
SA277  
SA278  
SA279  
SA280  
SA281  
SA282  
SA283  
SA284  
SA285  
SA286  
SA287  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
Bank  
Sector  
SA288  
SA289  
SA290  
SA291  
SA292  
SA293  
SA294  
SA295  
SA296  
SA297  
SA298  
SA299  
SA300  
SA301  
SA302  
SA303  
SA304  
SA305  
SA306  
SA307  
SA308  
SA309  
SA310  
SA311  
SA312  
SA313  
SA314  
SA315  
SA316  
SA317  
SA318  
SA319  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
1000000h-100FFFFh  
1010000h-101FFFFh  
1020000h-102FFFFh  
1030000h-103FFFFh  
1040000h-104FFFFh  
1050000h-105FFFFh  
1060000h-106FFFFh  
1070000h-107FFFFh  
1030000h-108FFFFh  
1090000h-109FFFFh  
10A0000h-10AFFFFh  
10B0000h-10BFFFFh  
10C0000h-10CFFFFh  
10D0000h-10DFFFFh  
10E0000h-10EFFFFh  
10F0000h-10FFFFFh  
1100000h-110FFFFh  
1110000h-111FFFFh  
1120000h-112FFFFh  
1130000h-113FFFFh  
1140000h-114FFFFh  
1150000h-115FFFFh  
1160000h-116FFFFh  
1170000h-117FFFFh  
1180000h-118FFFFh  
1190000h-119FFFFh  
11A0000h-11AFFFFh  
11B0000h-11BFFFFh  
11C0000h-11CFFFFh  
11D0000h-11DFFFFh  
11E0000h-11EFFFFh  
11F0000h-11FFFFFh  
1200000h-120FFFFh  
1210000h-121FFFFh  
1220000h-122FFFFh  
1230000h-123FFFFh  
1240000h-124FFFFh  
1250000h-125FFFFh  
1260000h-126FFFFh  
1270000h-127FFFFh  
1230000h-128FFFFh  
1290000h-129FFFFh  
12A0000h-12AFFFFh  
12B0000h-12BFFFFh  
12C0000h-12CFFFFh  
12D0000h-12DFFFFh  
12E0000h-12EFFFFh  
12F0000h-12FFFFFh  
1300000h-130FFFFh  
1310000h-131FFFFh  
1320000h-132FFFFh  
1330000h-133FFFFh  
1340000h-134FFFFh  
1350000h-135FFFFh  
1360000h-136FFFFh  
1370000h-137FFFFh  
1380000h-138FFFFh  
1390000h-139FFFFh  
13A0000h-13AFFFFh  
13B0000h-13BFFFFh  
13C0000h-13CFFFFh  
13D0000h-13DFFFFh  
13E0000h-13EFFFFh  
13F0000h-13FFFFFh  
18  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 6 of 8)  
Bank  
Sector  
SA320  
SA321  
SA322  
SA323  
SA324  
SA325  
SA326  
SA327  
SA328  
SA329  
SA330  
SA331  
SA332  
SA333  
SA334  
SA335  
SA336  
SA337  
SA338  
SA339  
SA340  
SA341  
SA342  
SA343  
SA344  
SA345  
SA346  
SA347  
SA348  
SA349  
SA350  
SA351  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
Bank  
Sector  
SA352  
SA353  
SA354  
SA355  
SA356  
SA357  
SA358  
SA359  
SA360  
SA361  
SA362  
SA363  
SA364  
SA365  
SA366  
SA367  
SA368  
SA369  
SA370  
SA371  
SA372  
SA373  
SA374  
SA375  
SA376  
SA377  
SA378  
SA379  
SA380  
SA381  
SA382  
SA383  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
1400000h-140FFFFh  
1410000h-141FFFFh  
1420000h-142FFFFh  
1430000h-143FFFFh  
1440000h-144FFFFh  
1450000h-145FFFFh  
1460000h-146FFFFh  
1470000h-147FFFFh  
1430000h-148FFFFh  
1490000h-149FFFFh  
14A0000h-14AFFFFh  
14B0000h-14BFFFFh  
14C0000h-14CFFFFh  
14D0000h-14DFFFFh  
14E0000h-14EFFFFh  
14F0000h-14FFFFFh  
1500000h-150FFFFh  
1510000h-151FFFFh  
1520000h-152FFFFh  
1530000h-153FFFFh  
1540000h-154FFFFh  
1550000h-155FFFFh  
1560000h-156FFFFh  
1570000h-157FFFFh  
1580000h-158FFFFh  
1590000h-159FFFFh  
15A0000h-15AFFFFh  
15B0000h-15BFFFFh  
15C0000h-15CFFFFh  
15D0000h-15DFFFFh  
15E0000h-15EFFFFh  
15F0000h-15FFFFFh  
1600000h-160FFFFh  
1610000h-161FFFFh  
1620000h-162FFFFh  
1630000h-163FFFFh  
1640000h-164FFFFh  
1650000h-165FFFFh  
1660000h-166FFFFh  
1670000h-167FFFFh  
1630000h-168FFFFh  
1690000h-169FFFFh  
16A0000h-16AFFFFh  
16B0000h-16BFFFFh  
16C0000h-16CFFFFh  
16D0000h-16DFFFFh  
16E0000h-16EFFFFh  
16F0000h-16FFFFFh  
1700000h-170FFFFh  
1710000h-171FFFFh  
1720000h-172FFFFh  
1730000h-173FFFFh  
1740000h-174FFFFh  
1750000h-175FFFFh  
1760000h-176FFFFh  
1770000h-177FFFFh  
1780000h-178FFFFh  
1790000h-179FFFFh  
17A0000h-17AFFFFh  
17B0000h-17BFFFFh  
15C0000h-17CFFFFh  
17D0000h-17DFFFFh  
17E0000h-17EFFFFh  
17F0000h-17FFFFFh  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
19  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 7 of 8)  
Bank  
Sector  
SA384  
SA385  
SA386  
SA387  
SA388  
SA389  
SA390  
SA391  
SA392  
SA393  
SA394  
SA395  
SA396  
SA397  
SA398  
SA399  
SA400  
SA401  
SA402  
SA403  
SA404  
SA405  
SA406  
SA407  
SA408  
SA409  
SA410  
SA411  
SA412  
SA413  
SA414  
SA415  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
Bank  
Sector  
SA416  
SA417  
SA418  
SA419  
SA420  
SA421  
SA422  
SA423  
SA424  
SA425  
SA426  
SA427  
SA428  
SA429  
SA430  
SA431  
SA432  
SA433  
SA434  
SA435  
SA436  
SA437  
SA438  
SA439  
SA440  
SA441  
SA442  
SA443  
SA444  
SA445  
SA446  
SA447  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
1800000h-180FFFFh  
1810000h-181FFFFh  
1820000h-182FFFFh  
1830000h-183FFFFh  
1840000h-184FFFFh  
1850000h-185FFFFh  
1860000h-186FFFFh  
1870000h-187FFFFh  
1830000h-188FFFFh  
1890000h-189FFFFh  
18A0000h-18AFFFFh  
18B0000h-18BFFFFh  
18C0000h-18CFFFFh  
18D0000h-18DFFFFh  
18E0000h-18EFFFFh  
18F0000h-18FFFFFh  
1900000h-190FFFFh  
1910000h-191FFFFh  
1920000h-192FFFFh  
1930000h-193FFFFh  
1940000h-194FFFFh  
1950000h-195FFFFh  
1960000h-196FFFFh  
1970000h-197FFFFh  
1980000h-198FFFFh  
1990000h-199FFFFh  
19A0000h-19AFFFFh  
19B0000h-19BFFFFh  
19C0000h-19CFFFFh  
19D0000h-19DFFFFh  
19E0000h-19EFFFFh  
19F0000h-19FFFFFh  
1A00000h-1A0FFFFh  
1A10000h-1A1FFFFh  
1A20000h-1A2FFFFh  
1A30000h-1A3FFFFh  
1A40000h-1A4FFFFh  
1A50000h-1A5FFFFh  
1A60000h-1A6FFFFh  
1A70000h-1A7FFFFh  
1A30000h-1A8FFFFh  
1A90000h-1A9FFFFh  
1AA0000h-1AAFFFFh  
1AB0000h-1ABFFFFh  
1AC0000h-1ACFFFFh  
1AD0000h-1ADFFFFh  
1AE0000h-1AEFFFFh  
1AF0000h-1AFFFFFh  
1B00000h-1B0FFFFh  
1B10000h-1B1FFFFh  
1B20000h-1B2FFFFh  
1B30000h-1B3FFFFh  
1B40000h-1B4FFFFh  
1B50000h-1B5FFFFh  
1B60000h-1B6FFFFh  
1B70000h-1B7FFFFh  
1B80000h-1B8FFFFh  
1B90000h-1B9FFFFh  
1BA0000h-1BAFFFFh  
1BB0000h-1BBFFFFh  
1BC0000h-1BCFFFFh  
1BD0000h-1BDFFFFh  
1BE0000h-1BEFFFFh  
1BF0000h-1BFFFFFh  
20  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.1 S29NS512P Sector & Memory Address Map (Sheet 8 of 8)  
Bank  
Sector  
SA448  
SA449  
SA450  
SA451  
SA452  
SA453  
SA454  
SA455  
SA456  
SA457  
SA458  
SA459  
SA460  
SA461  
SA462  
SA463  
SA464  
SA465  
SA466  
SA467  
SA468  
SA469  
SA470  
SA471  
SA472  
SA473  
SA474  
SA475  
SA476  
SA477  
SA478  
SA479  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
Bank  
Sector  
SA480  
SA481  
SA482  
SA483  
SA484  
SA485  
SA486  
SA487  
SA488  
SA489  
SA490  
SA491  
SA492  
SA493  
SA494  
SA495  
SA496  
SA497  
SA498  
SA499  
SA500  
SA501  
SA502  
SA503  
SA504  
SA505  
SA506  
SA507  
SA508  
SA509  
SA510  
SA511  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
1C00000h-1C0FFFFh  
1C10000h-1C1FFFFh  
1C20000h-1C2FFFFh  
1C30000h-1C3FFFFh  
1C40000h-1C4FFFFh  
1C50000h-1C5FFFFh  
1C60000h-1C6FFFFh  
1C70000h-1C7FFFFh  
1C30000h-1C8FFFFh  
1C90000h-1C9FFFFh  
1CA0000h-1CAFFFFh  
1CB0000h-1CBFFFFh  
1CC0000h-1CCFFFFh  
1CD0000h-1CDFFFFh  
1CE0000h-1CEFFFFh  
1CF0000h-1CFFFFFh  
1D00000h-1D0FFFFh  
1D10000h-1D1FFFFh  
1D20000h-1D2FFFFh  
1D30000h-1D3FFFFh  
1D40000h-1D4FFFFh  
1D50000h-1D5FFFFh  
1D60000h-1D6FFFFh  
1D70000h-1D7FFFFh  
1D80000h-1D8FFFFh  
1D90000h-1D9FFFFh  
1DA0000h-1DAFFFFh  
1DB0000h-1DBFFFFh  
1DC0000h-1DCFFFFh  
1DD0000h-1DDFFFFh  
1DE0000h-1DEFFFFh  
1DF0000h-1DFFFFFh  
1E00000h-1E0FFFFh  
1E10000h-1E1FFFFh  
1E20000h-1E2FFFFh  
1E30000h-1E3FFFFh  
1E40000h-1E4FFFFh  
1E50000h-1E5FFFFh  
1E60000h-1E6FFFFh  
1E70000h-1E7FFFFh  
1E30000h-1E8FFFFh  
1E90000h-1E9FFFFh  
1EA0000h-1EAFFFFh  
1EB0000h-1EBFFFFh  
1EC0000h-1ECFFFFh  
1ED0000h-1EDFFFFh  
1EE0000h-1EEFFFFh  
1EF0000h-1EFFFFFh  
1F00000h-1F0FFFFh  
1F10000h-1F1FFFFh  
1F20000h-1F2FFFFh  
1F30000h-1F3FFFFh  
1F40000h-1F4FFFFh  
1F50000h-1F5FFFFh  
1F60000h-1F6FFFFh  
1F70000h-1F7FFFFh  
1F80000h-1F8FFFFh  
1F90000h-1F9FFFFh  
1FA0000h-1FAFFFFh  
1FB0000h-1FBFFFFh  
1FC0000h-1FCFFFFh  
1FD0000h-1FDFFFFh  
1FE0000h-1FEFFFFh  
1FF0000h-1FFFFFFh  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
21  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.2 S29NS256P Sector & Memory Address Map (Sheet 1 of 3)  
Bank  
Sector  
SA0  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
Bank  
Sector  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
22  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.2 S29NS256P Sector & Memory Address Map (Sheet 2 of 3)  
Bank  
Sector  
SA80  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
800000h–80FFFFh  
810000h–81FFFFh  
820000h–82FFFFh  
830000h–83FFFFh  
840000h–84FFFFh  
850000h–85FFFFh  
860000h–86FFFFh  
870000h–87FFFFh  
880000h–88FFFFh  
890000h–89FFFFh  
8A0000h–8AFFFFh  
8B0000h–8BFFFFh  
8C0000h–8CFFFFh  
8D0000h–8DFFFFh  
8E0000h–8EFFFFh  
8F0000h–8FFFFFh  
900000h–90FFFFh  
910000h–91FFFFh  
920000h–92FFFFh  
930000h–93FFFFh  
940000h–94FFFFh  
950000h–95FFFFh  
960000h–96FFFFh  
970000h–97FFFFh  
980000h–98FFFFh  
990000h–99FFFFh  
9A0000h–9AFFFFh  
9B0000h–9BFFFFh  
9C0000h–9CFFFFh  
9D0000h–9DFFFFh  
9E0000h–9EFFFFh  
9F0000h–9FFFFFh  
Bank  
Sector  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7FFFFFh  
A00000h–A0FFFFh  
A10000h–A1FFFFh  
A20000h–A2FFFFh  
A30000h–A3FFFFh  
A40000h–A4FFFFh  
A50000h–A5FFFFh  
A60000h–A6FFFFh  
A70000h–A7FFFFh  
A80000h–A8FFFFh  
A90000h–A9FFFFh  
AA0000h–AAFFFFh  
AB0000h–ABFFFFh  
AC0000h–ACFFFFh  
AD0000h–ADFFFFh  
AE0000h–AEFFFFh  
AF0000h–AFFFFFh  
B00000h–B0FFFFh  
B10000h–B1FFFFh  
B20000h–B2FFFFh  
B30000h–B3FFFFh  
B40000h–B4FFFFh  
B50000h–B5FFFFh  
B60000h–B6FFFFh  
B70000h–B7FFFFh  
B80000h–B8FFFFh  
B90000h–B9FFFFh  
BA0000h–BAFFFFh  
BB0000h–BBFFFFh  
BC0000h–BCFFFFh  
BD0000h–BDFFFFh  
BE0000h–BEFFFFh  
BF0000h–BFFFFFh  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
23  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.2 S29NS256P Sector & Memory Address Map (Sheet 3 of 3)  
Bank  
Sector  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
C00000h–C0FFFFh  
C10000h–C1FFFFh  
C20000h–C2FFFFh  
C30000h–C3FFFFh  
C40000h–C4FFFFh  
C50000h–C5FFFFh  
C60000h–C6FFFFh  
C70000h–C7FFFFh  
C80000h–C8FFFFh  
C90000h–C9FFFFh  
CA0000h–CAFFFFh  
CB0000h–CBFFFFh  
CC0000h–CCFFFFh  
CD0000h–CDFFFFh  
CE0000h–CEFFFFh  
CF0000h–CFFFFFh  
D00000h–D0FFFFh  
D10000h–D1FFFFh  
D20000h–D2FFFFh  
D30000h–D3FFFFh  
D40000h–D4FFFFh  
D50000h–D5FFFFh  
D60000h–D6FFFFh  
D70000h–D7FFFFh  
D80000h–D8FFFFh  
D90000h–D9FFFFh  
DA0000h–DAFFFFh  
DB0000h–DBFFFFh  
DC0000h–DCFFFFh  
DD0000h–DDFFFFh  
DE0000h–DEFFFFh  
DF0000h–DFFFFFh  
Bank  
Sector  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
16 K words  
16 K words  
16 K words  
16 K words  
Address Range  
E00000h–E0FFFFh  
E10000h–E1FFFFh  
E20000h–E2FFFFh  
E30000h–E3FFFFh  
E40000h–E4FFFFh  
E50000h–E5FFFFh  
E60000h–E6FFFFh  
E70000h–E7FFFFh  
E80000h–E8FFFFh  
E90000h–E9FFFFh  
EA0000h–EAFFFFh  
EB0000h–EBFFFFh  
EC0000h–ECFFFFh  
ED0000h–EDFFFFh  
EE0000h–EEFFFFh  
EF0000h–EFFFFFh  
F00000h–F0FFFFh  
F10000h–F1FFFFh  
F20000h–F2FFFFh  
F30000h–F3FFFFh  
F40000h–F4FFFFh  
F50000h–F5FFFFh  
F60000h–F6FFFFh  
F70000h–F7FFFFh  
F80000h–F8FFFFh  
F90000h–F9FFFFh  
FA0000h–FAFFFFh  
FB0000h–FBFFFFh  
FC0000h–FCFFFFh  
FD0000h–FDFFFFh  
FE0000h–FEFFFFh  
FF0000h–FF3FFFh  
FF4000h–FF7FFFh  
FF8000h–FFBFFFh  
FFC000h–FFFFFFh  
24  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.3 S29NS128P Sector & Memory Address Map (Sheet 1 of 2)  
Bank  
Sector  
SA0  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
000000h–00FFFFh  
010000h–01FFFFh  
020000h–02FFFFh  
030000h–03FFFFh  
040000h–04FFFFh  
050000h–05FFFFh  
060000h–06FFFFh  
070000h–07FFFFh  
080000h–08FFFFh  
090000h–09FFFFh  
0A0000h–0AFFFFh  
0B0000h–0BFFFFh  
0C0000h–0CFFFFh  
0D0000h–0DFFFFh  
0E0000h–0EFFFFh  
0F0000h–0FFFFFh  
100000h–10FFFFh  
110000h–11FFFFh  
120000h–12FFFFh  
130000h–13FFFFh  
140000h–14FFFFh  
150000h–15FFFFh  
160000h–16FFFFh  
170000h–17FFFFh  
180000h–18FFFFh  
190000h–19FFFFh  
1A0000h–1AFFFFh  
1B0000h–1BFFFFh  
1C0000h–1CFFFFh  
1D0000h–1DFFFFh  
1E0000h–1EFFFFh  
1F0000h–1FFFFFh  
400000h–40FFFFh  
410000h–41FFFFh  
420000h–42FFFFh  
430000h–43FFFFh  
440000h–44FFFFh  
450000h–45FFFFh  
460000h–46FFFFh  
470000h–47FFFFh  
480000h–48FFFFh  
490000h–49FFFFh  
4A0000h–4AFFFFh  
4B0000h–4BFFFFh  
4C0000h–4CFFFFh  
4D0000h–4DFFFFh  
4E0000h–4EFFFFh  
4F0000h–4FFFFFh  
Bank  
Sector  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
Address Range  
200000h–20FFFFh  
210000h–21FFFFh  
220000h–22FFFFh  
230000h–23FFFFh  
240000h–24FFFFh  
250000h–25FFFFh  
260000h–26FFFFh  
270000h–27FFFFh  
280000h–28FFFFh  
290000h–29FFFFh  
2A0000h–2AFFFFh  
2B0000h–2BFFFFh  
2C0000h–2CFFFFh  
2D0000h–2DFFFFh  
2E0000h–2EFFFFh  
2F0000h–2FFFFFh  
300000h–30FFFFh  
310000h–31FFFFh  
320000h–32FFFFh  
330000h–33FFFFh  
340000h–34FFFFh  
350000h–35FFFFh  
360000h–36FFFFh  
370000h–37FFFFh  
380000h–38FFFFh  
390000h–39FFFFh  
3A0000h–3AFFFFh  
3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3D0000h–3DFFFFh  
3E0000h–3EFFFFh  
3F0000h–3FFFFFh  
600000h–60FFFFh  
610000h–61FFFFh  
620000h–62FFFFh  
630000h–63FFFFh  
640000h–64FFFFh  
650000h–65FFFFh  
660000h–66FFFFh  
670000h–67FFFFh  
680000h–68FFFFh  
690000h–69FFFFh  
6A0000h–6AFFFFh  
6B0000h–6BFFFFh  
6C0000h–6CFFFFh  
6D0000h–6DFFFFh  
6E0000h–6EFFFFh  
6F0000h–6FFFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
25  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 5.3 S29NS128P Sector & Memory Address Map (Sheet 2 of 2)  
Bank  
Sector  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
Sector Size  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
64 Kwords  
Address Range  
500000h–50FFFFh  
510000h–51FFFFh  
520000h–52FFFFh  
530000h–53FFFFh  
540000h–54FFFFh  
550000h–55FFFFh  
560000h–56FFFFh  
570000h–57FFFFh  
580000h–58FFFFh  
590000h–59FFFFh  
5A0000h–5AFFFFh  
5B0000h–5BFFFFh  
5C0000h–5CFFFFh  
5D0000h–5DFFFFh  
5E0000h–5EFFFFh  
5F0000h–5FFFFFh  
Bank  
Sector  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
Sector Size  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
64 K words  
16 K words  
16 K words  
16 K words  
16 K words  
Address Range  
700000h–70FFFFh  
710000h–71FFFFh  
720000h–72FFFFh  
730000h–73FFFFh  
740000h–74FFFFh  
750000h–75FFFFh  
760000h–76FFFFh  
770000h–77FFFFh  
780000h–78FFFFh  
790000h–79FFFFh  
7A0000h–7AFFFFh  
7B0000h–7BFFFFh  
7C0000h–7CFFFFh  
7D0000h–7DFFFFh  
7E0000h–7EFFFFh  
7F0000h–7F3FFFh  
7F4000h–7F7FFFh  
7F8000h–7FBFFFh  
7FC000h–7FFFFFh  
26  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
6. Device Operations  
This section describes the read, program, erase, simultaneous read/write operations, handshaking, and reset  
features of the Flash devices.  
Operations are initiated by writing specific commands or a sequence with specific address and data patterns  
into the command registers (see Tables 11.1 and 11.2). The command register itself does not occupy any  
addressable memory location; rather, it is composed of latches that store the commands, along with the  
address and data information needed to execute the command. The contents of the register serve as input to  
the internal state machine and the state machine outputs dictate the function of the device. Writing incorrect  
address and data values or writing them in an improper sequence may place the device in an unknown state,  
in which case the system must write the reset command to return the device to the reading array data mode.  
6.1  
Device Operation Table  
The device must be setup appropriately for each operation. Table 6.1 describes the required state of each  
control pin for any particular operation.  
Table 6.1 Device Operations  
Amax–  
A16  
A/DQ15–  
A/DQ0  
Operation  
Asynchronous Read –  
CE# OE#  
WE#  
CLK  
AVD#  
RDY  
RESET#  
L
L
H
X
Addr In  
I/O  
H
H
Addresses Latched  
Asynchronous Write  
L
H
X
H
X
X
X
X
X
Addr In  
I/O  
H
H
H
Standby (CE#)  
X
X
X
X
X
X
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
Hardware Reset  
Burst Read Operations  
Latch Starting Burst Address by CLK  
L
L
H
L
H
H
L
Addr In  
X
Addr In  
I/O  
X
H
H
H
Advance Burst read to next address  
Terminate current Burst read cycle  
H
H
X
X
X
H
H
X
X
X
X
X
X
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
H
L
Terminate current Burst read cycle  
via RESET#  
Terminate current Burst read cycle  
and start new Burst read cycle  
L
X
H
Addr In  
Addr In  
X
H
Legend  
L = Logic 0, H = Logic 1, X = can be either V or V .,  
= rising edge,  
= high to low,  
= toggle.  
IL  
IH  
Notes  
1. Address is latched on the rising edge of clock.  
2. CLK must stay low or high after CE# goes low when device in Asynchronous Read mode.  
6.2  
Asynchronous Read  
All memories require access time to output array data. In an asynchronous read operation, data is read from  
one memory location at a time. Addresses are presented to the device in random order, and the propagation  
delay through the device causes the data on its outputs to arrive asynchronously with the address on its  
inputs.  
To read data from the memory array, the system must first assert a valid address while driving AVD# and  
CE# to VIL. WE# must remain at VIH. The rising edge of AVD# latches the address. The OE# signal must be  
driven to VIL, once AVD# has been driven to VIH.  
The data is output on A/DQ15 – A/DQ0 pins after the access time (tOE) has elapsed from the falling edge of  
OE#.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
27  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
6.3  
Synchronous (Burst) Read Operation  
The device is capable of continuous sequential burst operation and linear burst operation of a preset length.  
When the device first powers up, it is enabled for Asynchronous read and can be automatically enabled for  
burst mode and the address is latched on the first rising edge of CLK input, while AVD# is held low for one  
clock cycle.  
Prior to activating the clock signal, the system should determine how many wait states are desired for the  
initial word (tIACC) of each burst access, what mode of burst operation is desired and how the RDY signal  
transitions with valid data. The system would then write the configuration register command sequence.  
At startup the system writes the Set Configuration Register command sequence to optimize the system  
performance.  
The data is output tIACC after the rising edge of the first CLK. Subsequent words are output tBACC after the  
rising edge of each successive clock cycle, which automatically increments the internal address counter.  
Note that data is output only at the rising edge of the clock. RDY indicates the initial latency.  
Note that the device has a fixed internal address boundary that occurs every 128 words. No boundary  
crossing latency is required when the device operates with wait states set from 2 to 9.  
6.3.1  
Latency Tables for Variable Wait State  
Tables 6.2 6.9 show the latency for variable wait state in a normal Burst operation.  
Table 6.2 Address Latency for 9 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D8  
D8  
D8  
D8  
D8  
D8  
D8  
D8  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
D3  
D4  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
D4  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
9 ws  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
D6  
D7  
1 ws  
1 ws  
1 ws  
D7  
1 ws  
1 ws  
1 ws  
Table 6.3 Address Latency for 8 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D8  
D9  
D9  
D9  
D9  
D9  
D9  
D9  
D7  
D8  
D8  
D8  
D8  
D8  
D8  
D8  
D3  
D4  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
D4  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
8 ws  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
D6  
D7  
1 ws  
1 ws  
1 ws  
D7  
1 ws  
1 ws  
1 ws  
28  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 6.4 Address Latency for 7 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D8  
D8  
D8  
D8  
D8  
D8  
D7  
D8  
D9  
D9  
D9  
D9  
D9  
D9  
D8  
D9  
D3  
D4  
D5  
D6  
D7  
D10  
D10  
D10  
D10  
D10  
D10  
D4  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
1 ws  
7 ws  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
D6  
D7  
1 ws  
1 ws  
1 ws  
D7  
1 ws  
1 ws  
1 ws  
Table 6.5 Address Latency for 6 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D7  
D8  
D8  
D8  
D8  
D8  
D6  
D7  
D8  
D9  
D9  
D9  
D9  
D9  
D7  
D8  
D8  
D9  
D9  
D3  
D4  
D5  
D6  
D10  
D11  
D11  
D11  
D11  
D11  
D4  
D5  
D6  
D7  
D10  
D10  
D10  
D10  
D10  
6 ws  
D5  
D6  
D7  
1 ws  
1 ws  
1 ws  
1 ws  
D6  
D7  
1 ws  
1 ws  
1 ws  
D7  
1 ws  
1 ws  
1 ws  
Table 6.6 Address Latency for 5 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D6  
D7  
D8  
D8  
D8  
D8  
D5  
D6  
D7  
D8  
D9  
D9  
D9  
D9  
D6  
D7  
D8  
D8  
D7  
D8  
D9  
D3  
D4  
D5  
D9  
D10  
D11  
D12  
D12  
D12  
D12  
D4  
D5  
D6  
D9  
D10  
D11  
D11  
D11  
D11  
5 ws  
D5  
D6  
D7  
D10  
D10  
D10  
D10  
D6  
D7  
1 ws  
1 ws  
1 ws  
D7  
1 ws  
1 ws  
1 ws  
Table 6.7 Address Latency for 4 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D3  
D4  
D5  
D6  
D7  
D8  
D8  
D8  
D4  
D5  
D6  
D7  
D8  
D9  
D9  
D9  
D5  
D6  
D7  
D7  
D8  
D8  
D6  
D7  
D9  
D3  
D4  
D8  
D9  
D10  
D11  
D12  
D13  
D13  
D13  
D4  
D5  
D8  
D9  
D10  
D11  
D12  
D12  
D12  
4 ws  
D5  
D6  
D9  
D10  
D11  
D11  
D11  
D6  
D7  
D10  
D10  
D10  
D7  
1 ws  
1 ws  
1 ws  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
29  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 6.8 Address Latency for 3 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D8  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D9  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D3  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D14  
D4  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D13  
3 ws  
D5  
D8  
D9  
D10  
D11  
D12  
D12  
D6  
D9  
D10  
D11  
D11  
D7  
D10  
D10  
1 ws  
Table 6.9 Address Latency for 2 Wait States  
Word  
Initial Wait  
0
1
2
3
4
5
6
7
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
D8  
D8  
D9  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
2 ws  
D8  
D9  
D10  
D11  
D12  
D13  
D9  
D10  
D11  
D12  
D10  
D11  
30  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 6.1 Synchronous Read Flow Chart  
Note: Setup Configuration Register parameters  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Set Configuration Registers  
Command and Settings:  
Address 555h, Data D0h  
Address X00h, Data CR0-CR1  
Command Cycle  
CR = Configuration Registers  
Load Initial Address  
Address = RA  
RA = Read Address  
CR13-CR11 sets initial access time  
(from address latched to  
valid data) from 2 to 7 clock cycles  
Wait tIACC  
Programmable Wait State Setting  
+
Read Initial Data  
RD = DQ[15:0]  
RD = Read Data  
Wait X Clocks:  
Refer to the Latency tables.  
Additional Latency Due to Starting  
Address, Clock Frequency, and  
Boundary Crossing  
Read Next Data  
RD = DQ[15:0]  
Delay X Clocks  
Crossing  
Boundary?  
No  
End of Data?  
Yes  
Yes  
Completed  
6.3.2  
Continuous Burst Read Mode  
In the continuous burst read mode, the device outputs sequential burst data from the starting address given  
and then wraps around to address 000000h when it reaches the highest addressable memory location. The  
burst read mode continues until the system drives CE# high, or RESET= VIL. Continuous burst mode can  
also be aborted by asserting AVD# low and providing a new address to the device.  
If the address being read crosses a 128-word line boundary within the same bank, but not into a program or  
erase suspended sector, as mentioned above, additional latency cycles are required as reflected by the  
configuration register table (Table 6.11) and Tables 6.2 6.9 .  
If the address crosses a bank boundary while the subsequent bank is programming or erasing, the device  
provides read status information and the clock is ignored. Upon completion of status read or program or erase  
operation, the host can restart a burst read operation using a new address and AVD# pulse.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
31  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
6.3.3  
8-Word, 16-Word, and 32-Word Linear Burst Read with Wrap Around  
In a linear burst read operation, a fixed number of words (8, 16, or 32 words) are read from consecutive  
addresses that are determined by the group within which the starting address falls. The groups are sized  
according to the number of words read in a single burst sequence for a given mode (see Table 6.10).  
For example, if the starting address in the 8-word mode is 3Ch, the address range to be read is 38-3Fh, and  
the burst sequence is 3C-3D-3E-3F-38-39-3A-3Bh. Thus, the device outputs all words in that burst address  
group until all word are read, regardless of where the starting address occurs in the address group, and then  
terminates the burst read.  
In a similar fashion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on the starting  
address provided to the device, then wrap back to the first address in the selected address group.  
Note that in this mode the address pointer does not cross the boundary that occurs every 128 words; thus, no  
additional wait states are inserted due to boundary crossing.  
Table 6.10 Burst Address Groups  
Mode  
8-word  
16-word  
32-word  
Group Size  
8 words  
Group Address Ranges  
0 – 7h, 8 – Fh, 10 – 17h,...  
0 – Fh, 10 – 1Fh, 20 – 2Fh,...  
00 – 1Fh, 20 – 3Fh, 40 – 5Fh,...  
16 words  
32 words  
6.3.4  
6.3.5  
8-Word, 16-Word, and 32-Word Linear Burst without Wrap Around  
If wrap around is not enabled for linear burst read operations, the 8-word, 16-word, or 32-word burst executes  
up to the maximum memory address of the selected number of words. The burst stops after 8, 16, or 32  
addresses and does not wrap around to the first address of the selected group.  
For example, if the starting address in the 8-word mode is 3Ch, the address range to be read is 3C-43h, and  
the burst sequence is 3C-3D-3E-3F-40-41-42-43h if wrap around is not enabled. The next address to be read  
requires a new address and AVD# pulse. Note that in this burst read mode, the address pointer may cross the  
boundary that occurs every 128 words, which incurs the additional boundary crossing wait state.  
Configuration Registers  
This device uses two 16-bit configuration registers to set various operational parameters. Upon power-up or  
hardware reset, the device is capable of the asynchronous read mode and synchronous read, and the  
configuration register settings are in their default state. The host system should determine the proper settings  
for the entire configuration register, and then execute the Set Configuration Register command sequence  
before attempting burst operations. The Configuration Register can also be read using a command sequence  
(see Table 11.1). The following list describes the register settings.  
Table 6.11 Configuration Register  
CR Bit  
Function  
Settings (Binary)  
0 = Reserved (Default)  
1 = Reserved  
Reserved  
(Not used)  
CR0.15  
0 = Reserved (Default)  
1 = Reserved  
Reserved  
(Not used)  
CR0.14  
32  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 6.11 Configuration Register  
CR Bit  
Function  
Settings (Binary)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
2nd  
3rd  
4th  
5th  
6th  
7th  
CR1.0  
initial data is  
valid on the  
rising  
CLK edge  
AVD# transition  
to V  
CR0.13  
CR0.12  
=
IH  
Programmable  
Wait State  
(Note 1)  
=
=
Reserved  
8th  
9th  
initial data is  
valid on the  
rising  
CLK edge  
AVD# transition  
to V  
IH  
CR0.11  
initial data is  
valid on the  
rising  
CLK edge  
AVD# transition  
to V (Default)  
1101  
=
=
13th  
IH  
1110  
1111  
Reserved  
0 = RDY signal is active low  
1 = RDY signal is active high (Default)  
RDY  
Polarity  
CR0.10  
CR0.9  
CR0.8  
CR0.7  
CR0.6  
CR0.5  
CR1.4  
CR0.4  
CR0.3  
0 = Reserved  
1 = Reserved (Default)  
Reserved  
(Not used)  
0 = RDY active one clock cycle before data  
1 = RDY active with data (Default)  
RDY  
0 = Reserved  
1 = Reserved (Default)  
Reserved  
(Not used)  
0 = Reserved  
1 = Reserved (Default)  
Reserved  
(Not used)  
Reserved  
(Not used)  
0 = Reserved (Default)  
1 = Reserved  
0 = Full Drive= Current Driver Strength (Default)  
1 = Half Drive  
Output Drive  
Strength  
0 = RDY (Default)  
1 = Reserved  
RDY Function  
0 = No Wrap Around Burst  
1 = Wrap Around Burst (Default)  
Burst Wrap  
Around  
000 = Continuous (Default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
100 = 32-Word Linear Burst  
(All other bit settings are reserved)  
CR0.2  
Burst  
Length  
CR0.1  
CR0.0  
Notes  
1. The addresses are latched by rising edge of CLK.  
2. CR1.0 to CR1.3 and CR1.5 to CR1.15 = 1 (Default).  
3. A software reset command is required after read command.  
4. CR0.3 is ignored if in continuous read mode (no wrap around).  
6.4  
Autoselect  
The Autoselect is used for manufacturer ID, Device identification, and sector protection information. This  
mode is primarily intended for programming equipment to automatically match a device with its corresponding  
programming algorithm. The Autoselect codes can also be accessed in the system. When verifying sector  
protection, the sector address must appear on the appropriate highest order address bits (see Table 6.12).  
The remaining address bits are don't care. The most significant four bits of the address during the third write  
cycle select the bank from which the Autoselect codes are read by the host. All other banks can be accessed  
normally for data read without exiting the Autoselect mode.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
33  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
„ To access the Autoselect codes, the host system must issue the Autoselect command.  
„ The Autoselect command sequence may be written to an address within a bank that is either in the read or  
erase-suspend-read mode.  
„ The Autoselect command may not be written while the device is actively programming or erasing.  
Autoselect does not support simultaneous operations or burst mode.  
„ The system must write the reset command to return to the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
See Table 11.1 for command sequence details.  
Table 6.12 Autoselect Addresses  
Description  
Address  
Read Data  
Manufacturer ID  
Byte 00  
(BA) + 00h  
0001h  
307Eh(NS512P)  
317Eh(NS256P)  
327Eh(NS128P)  
Device ID,  
Byte 01  
(BA) + 01h  
(SA) + 02h  
Sector Lock/Unlock  
Byte 02  
0001h = Locked,  
0000h = Unlocked  
DQ15 – DQ8 = reserved  
DQ7 – Factory Lock Bit;  
1 = Locked, 0 = Not Locked  
DQ6 – Customer Lock Bit;  
1 = Locked, 0 = Not Locked  
Indicator Bits  
Byte 07  
(BA) + 07h  
DQ5 – Handshake Bit;  
1 = Reserved,  
0 = Standard Handshake  
DQ4 and DQ3 – WP# Protection Boot Code;  
01 = WP# Protects Top Boot Sectors,  
DQ2 – DQ0 = reserved  
303Fh (NS512P)  
3141h (NS256P)  
3243h (NS128P)  
Device ID,  
Byte 0E  
(BA) + 0Eh  
(BA) + 0Fh  
3000h (NS512P)  
3100h (NS256P)  
3200h (NS128P)  
Device ID,  
Byte 0F  
Software Functions and Sample Code  
Table 6.13 Autoselect Entry  
(LLD Function = lld_AutoselectEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
BA+AAAh  
BA+555h  
Word Address  
BA+555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
Autoselect Command  
0x00AAh  
0x0055h  
0x0090h  
Write  
BA+2AAh  
Write  
BA+AAAh  
BA+555h  
Table 6.14 Autoselect Exit  
(LLD Function = lld_AutoselectExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Word Address  
base + xxxxh  
Data  
Unlock Cycle 1  
base + xxxxh  
0x00F0h  
Notes  
1. Any offset within the device works.  
2. BA = Bank Address. The bank address is required.  
3. base = base address.  
The following is a C source code example of using the autoselect function to read the manufacturer ID. Refer  
to the Spansion Low Level Driver User’s Guide (available on www.spansion.com) for general information on  
Spansion Flash memory software development guidelines.  
34  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
/* Here is an example of Autoselect mode (getting manufacturer ID) */  
/* Define UINT16 example: typedef unsigned short UINT16; */  
UINT16 manuf_id;  
/* Auto Select Entry */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0090; /* write autoselect command */  
/* multiple reads can be performed after entry */  
manuf_id = *( (UINT16 *)bank_addr + 0x000 ); /* read manuf. id */  
/*  
Autoselect exit */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0; /* exit autoselect (write reset command) */  
6.5  
Program/Erase Operations  
These devices are capable of several modes of programming and or erase operations which are described in  
detail in the following sections. However, prior to any programming and or erase operation, devices can be  
setup appropriately as outlined in the configuration register (Table 6.11).  
For any program and or erase operations, including writing command sequences, the system must drive  
AVD# and CE# to VIL, and OE# to VIH when providing an address to the device, and drive WE# and CE# to  
VIL, and OE# to VIH when writing commands or programming data.  
All addresses are latched on the rising edge of AVD# or falling edge of WE#, and all data is latched on the  
first rising edge of WE#.  
Note the following:  
„ When the Embedded Program/Erase algorithm is complete, the device returns to the read mode.  
„ The system can determine the status of the Program/Erase operation. Refer to the Write Operation Status  
section for further information.  
„ While 1 can be programmed to 0, a 0 cannot be programmed to a 1. Any such attempt is ignored as only  
an erase operation can covert a 0 to a 1.  
„ Any commands written to the device during the Embedded Program/Erase Algorithm are ignored except  
the Program/Erase Suspend command.  
„ Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a program operation is in  
progress.  
„ A hardware reset or power removal immediately terminates the Program/Erase operation and the Program/  
Erase command sequence should be reinitiated once the device has returned to the read mode, to ensure  
data integrity.  
„ Programming is allowed in any sequence and across sector boundaries only for single word programming  
operation. See Write Buffer Programming when using the write buffer.  
Note: The system may also lock or unlock any sector while the erase operation is suspended.  
6.5.1  
Single Word Programming  
Single word programming mode is the simplest method of programming. In this mode, four Flash command  
write cycles are used to program an individual Flash address. While the single word programming method is  
supported by all Spansion devices, in general it is not recommended for devices that support Write Buffer  
Programming. See Table 11.1 for the required bus cycles and Figure 6.2 for the flowchart.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
35  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
When the Embedded Program algorithm is complete, the device then returns to the read mode and  
addresses are no longer latched. The system can determine the status of the program operation by using  
DQ7 or DQ6. Refer to the Write Operation Status section for information on these status bits.  
Figure 6.2 Single Word Program  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Program Command:  
Address 555h, Data A0h  
Setup Command  
Program Address (PA),  
Program Data (PD)  
Program Data to Address:  
PA, PD  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Polling Status  
= Busy?  
No  
Yes  
Polling Status  
= Complete?  
Error condition  
No  
(Exceeded Timing Limits)  
Operation successfully completed  
Operation failed  
Software Functions and Sample Code  
Table 6.15 Single Word Program  
(LLD Function = lld_ProgramCmd)  
Cycle  
Operation  
Write  
Byte Address  
Word Address  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Program  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
00AAh  
0055h  
Write  
Write  
00A0h  
Write  
Data Word  
Note  
Base = Base Address.  
The following is a C source code example of using the single word program function. Refer to the Spansion  
Low Level Driver User’s Guide (available on www.spansion.com) for general information on Spansion Flash  
memory software development guidelines.  
36  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
/* Example: Program Command  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00A0;  
/* write unlock cycle 1  
*/  
*/  
*/  
*/  
/* write unlock cycle 2  
/* write program setup command  
/* write data to be programmed  
*( (UINT16 *)pa )  
= data;  
/* Poll for program completion */  
6.5.2  
Write Buffer Programming  
Write Buffer Programming allows the system to write a maximum of 32 words in one programming operation.  
This results in a faster effective word programming time than the standard word programming algorithms. The  
Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the Write Buffer Load command written at the Sector Address in which  
programming occurs. At this point, the system writes the number of word locations minus 1 that is loaded into  
the page buffer at the Sector Address in which programming occurs. This tells the device how many write  
buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash confirm  
command. The number of locations to program cannot exceed the size of the write buffer or the operation  
aborts. (Note: the size of the write buffer is dependent upon which data are being loaded. Also note that the  
number loaded = the number of locations to program minus 1. For example, if the system programs 6 address  
locations, then 05h should be written to the device.)  
The system then writes the starting address/data combination. This starting address is the first address/data  
pair to be programmed, and selects the write-buffer-page address. All subsequent address/data pairs must  
be in sequential order.  
The write-buffer addresses must be in the same sector for all address/data pairs loaded into the write buffer.  
It is to be noted that Write Buffer Programming cannot be performed across multiple sectors. If the system  
attempts to load programming data outside of the selected write-buffer addresses, the operation aborts after  
the Write to Buffer command is executed. Also, the starting address must be the least significant address and  
must be incremental and that the write buffer data cannot be in different sectors.  
After writing the Starting Address/Data pair, the system then writes the remaining address/data pairs into the  
write buffer. Write buffer locations must be loaded in sequential order starting with the lowest address in the  
page. Note that if the number of address/data pairs do not match the word count, the program buffer to flash  
command is ignored.  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter  
decrements for every data load operation. Also, the last data loaded at a location before the Program Buffer  
to Flash confirm command is programmed into the device. It is the software’s responsibility to comprehend  
ramifications of loading a write-buffer location more than once. The counter decrements for each data load  
operation, NOT for each unique write-buffer-address location.  
Once the specified number of write buffer locations have been loaded, the system must then write the  
Program Buffer to Flash command at the Sector Address. Any other address/data write combinations abort  
the Write Buffer Programming operation. The device then goes busy. The Data Bar polling techniques should  
be used while monitoring the last address location loaded into the write buffer. This eliminates the need to  
store an address in memory because the system can load the last address location, issue the program  
confirm command at the last loaded address location, and then data bar poll at that same address. DQ7,  
DQ6, DQ5, DQ2, and DQ1 should be monitored to determine the device status during Write Buffer  
Programming.  
The write-buffer embedded programming operation can be suspended using the standard suspend/resume  
commands. Upon successful completion of the Write Buffer Programming operation, the device returns to  
READ mode.  
The Write Buffer Programming Sequence is ABORTED in the following ways:  
„ Load a value that is greater than the buffer size during the Number of Locations to Program step (DQ7 is  
not valid in this condition).  
„ Write to an address in a sector different than the one specified during the Write-Buffer-Load command.  
„ Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address  
during the write buffer data loading stage of the operation.  
„ Write data other than the Confirm Command after the specified number of data load cycles.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
37  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Software Functions and Sample Code  
Table 6.16 Write Buffer Program  
(LLD Functions Used = lld_WriteToBufferCmd, lld_ProgramBufferToFlashCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Word Address  
Base + 555h  
Base + 2AAh  
Data  
00AAh  
1
2
3
4
Unlock  
Write  
0055h  
Write Buffer Load Command  
Write Word Count  
Write  
Program Address  
Program Address  
0025h  
Write  
Word Count (N–1)h  
Number of words (N) loaded into the write buffer can be from 1 to 32 words.  
5 to 36  
Last  
Load Buffer Word N  
Write Buffer to Flash  
Write  
Write  
Program Address, Word N  
Sector Address  
Word N  
0029h  
Notes  
1. Base = Base Address.  
2. Last = Last cycle of write buffer program operation; depending on number of words written, the total number of cycles may be from 6 to  
37.  
3. For maximum efficiency, it is recommended that the write buffer be loaded with the highest number of words (N words) possible.  
The following is a C source code example of using the write buffer program function. Refer to the Spansion  
Low Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory  
software development guidelines.  
/* Example: Write Buffer Programming Command */  
/* NOTES: Write buffer programming limited to 16 words. */  
/* All addresses to be written to the flash in */  
/* one operation must be within the same write buffer. */  
/* A write buffer begins at addresses evenly divisible */  
/* by 0x20.  
UINT16 i; */  
UINT16 *src = source_of_data; /* address of source data */  
UINT16 *dst = destination_of_data; /* flash destination address */  
UINT16 wc = words_to_program -1; /* word count (minus 1) */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */  
*( (UINT16 *)dst ) = 0x0025; /* write write buffer load command */  
*( (UINT16 *)dst ) = wc; /* write word count (minus 1) */  
for (i=0;i<=wc;i++)  
{
*dst++ = *src++; /* ALL dst MUST BE in same Write Buffer */  
}
*( (UINT16 *)sector_address ) = 0x0029; /* write confirm command */  
/* poll for completion */  
/* Example: Write Buffer Abort Reset */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00F0; /* write buffer abort reset */  
38  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 6.3 Write Buffer Programming Operation  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Issue  
Write Buffer Load Command:  
Program Address Data 25h  
Load Word Count to Program  
Program Data to Address:  
SA = wc  
wc = number of words – 1  
Yes  
Confirm command:  
wc = 0?  
No  
SA 29h  
Write Next Word,  
Decrement wc:  
PA data , wc = wc – 1  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Polling Status  
= Done?  
No  
Error?  
Yes  
No  
Yes  
Write Buffer  
Abort?  
No  
RESET. Issue Write Buffer  
Abort Reset Command  
PASS. Device is in  
read mode.  
FAIL. Issue reset command  
to return to read array mode.  
6.5.3  
Sector Erase  
The sector erase function erases one or more sectors in the memory array. (See Table 11.1 and Figure 6.4.)  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase.  
After a successful sector erase, all locations within the erased sector contain FFFFh. The system is not  
required to provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of no less than tSEA occurs. During the time-  
out period, additional sector addresses and sector erase commands may be written. Loading the sector erase  
buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than tSEA. Any sector erase address and command  
following the exceeded time-out (tSEA) may or may not be accepted. Any command other than Sector Erase  
or Erase Suspend during the time-out period resets that bank to the read mode. The system can monitor DQ3  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
39  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
to determine if the sector erase timer has timed out (See the section, DQ3: Sector Erase Timeout State  
Indicator.) The time-out begins from the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded Erase operation is in progress, the system can read data  
from the non-erasing banks. The system can determine the status of the erase operation by reading DQ7 or  
DQ6/DQ2 in the erasing bank. Refer to Write Operation Status for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands  
are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs,  
the sector erase command sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity.  
Figure 6.4 illustrates the algorithm for the erase operation. Refer to Program/Erase Operations for  
parameters and timing diagrams.  
Software Functions and Sample Code  
Table 6.17 Sector Erase  
(LLD Function = lld_SectorEraseCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Sector Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Sector Address  
Data  
00AAh  
0055h  
0080h  
00AAh  
0055h  
0030h  
1
2
3
4
5
6
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Sector Erase Command  
Write  
Unlimited additional sectors may be selected for erase; command(s) must be written within t  
.
SEA  
The following is a C source code example of using the sector erase function. Refer to the Spansion Low Level  
Driver User’s Guide (available on www.spansion.com) for general information on Spansion Flash memory  
software development guidelines.  
/* Example: Sector Erase Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
*/  
*/  
*/  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
*( (UINT16 *)sector_address )  
= 0x0030;  
/* write sector erase command  
*/  
40  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 6.4 Sector Erase Operation  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Sector Erase Cycles:  
Address 555h, Data 80h  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Command Cycle 1  
Command Cycle 2  
Command Cycle 3  
Specify first sector for erasure  
Sector Address, Data 30h  
Select  
Additional  
Sectors?  
No  
Yes  
Write Additional  
Sector Addresses  
• Each additional cycle must be written within tSEA timeout  
• Timeout resets after each additional cycle is written  
• The host system may monitor DQ3 or wait tSEA to ensure  
acceptance of erase commands  
Yes  
Last Sector  
Selected?  
No  
• No limit on number of sectors  
Poll DQ3.  
DQ3 = 1?  
• Commands other than Erase Suspend or selecting  
additional sectors for erasure during timeout reset device  
to reading array data  
No  
Yes  
Perform Write Operation  
Status Algorithm  
Status may be obtained by reading DQ7, DQ6 and/or DQ2.  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Device returns  
to reading array.  
FAIL. Write reset command  
to return to reading array.  
Notes  
1. See Table 11.1 for erase command sequence.  
2. See DQ3: Sector Erase Timeout State Indicator for information on the sector erase timeout.  
6.5.4  
Chip Erase Command Sequence  
Chip erase is a six-bus cycle operation as indicated by Table 11.1. These commands invoke the Embedded  
Erase algorithm, which does not require the system to preprogram prior to erase. The Embedded Erase  
algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to  
electrical erase. After a successful chip erase, all locations of the chip contain FFFFh. The system is not  
required to provide any controls or timings during these operations. Table 11.1 shows the address and data  
requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no  
longer latched. The system can determine the status of the erase operation by using DQ7 or DQ6/DQ2. Refer  
to the Write Operation Status section for information on these status bits.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
41  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Any commands written during the chip erase operation are ignored. However, note that a hardware reset  
immediately terminates the erase operation. If that occurs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading array data, to ensure data integrity.  
Software Functions and Sample Code  
Table 6.18 Chip Erase  
(LLD Function = lld_ChipEraseCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
00AAh  
0055h  
0080h  
00AAh  
0055h  
0010h  
1
2
3
4
5
6
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Chip Erase Command  
Write  
The following is a C source code example of using the chip erase function. Refer to the Spansion Low Level  
Driver User’s Guide (www.spansion.comm) for general information on Spansion Flash memory software  
development guidelines.  
/* Example: Chip Erase Command */  
/* Note: Cannot be suspended  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0010;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
*/  
*/  
*/  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
/* write chip erase command  
*/  
6.5.5  
Erase Suspend/Erase Resume Commands  
When the Erase Suspend command is written during the sector erase time-out, the device immediately  
terminates the time-out period and suspends the erase operation. The Erase Suspend command allows the  
system to interrupt a sector erase operation and then read data from, or program data to, any sector not  
selected for erasure. The bank address is required when writing this command. This command is valid only  
during the sector erase operation, including the minimum tSEA time-out period during the sector erase  
command sequence. The Erase Suspend command is ignored if written during the chip erase operation.  
When the Erase Suspend command is written after the tSEA time-out period has expired and during the sector  
erase operation, the device requires a maximum of tESL (erase suspend latency) to suspend the erase  
operation.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system  
can read data from or program data to any sector not selected for erasure. (The device erase suspends all  
sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status  
information on DQ7-DQ0. The system can use DQ7, or DQ6, and DQ2 together, to determine if a sector is  
actively erasing or is erase-suspended. Refer to Table 6.27 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode.  
The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard program operation.  
In the erase-suspend-read mode, the system can also issue the Autoselect command sequence. Refer to the  
Write Buffer Programming section and the Autoselect section for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The bank  
address of the erase-suspended bank is required when writing this command. Further writes of the Resume  
command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing.  
Note: While an erase operation can be suspended and resumed multiple times, a minimum delay of tERS  
(Erase Resume to Suspend) is required from resume to the next suspend.  
42  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Software Functions and Sample Code  
Table 6.19 Erase Suspend  
(LLD Function = lld_EraseSuspendCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
The following is a C source code example of using the erase suspend function. Refer to the Spansion Low  
Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory software  
development guidelines.  
/* Example: Erase suspend command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Table 6.20 Erase Resume  
(LLD Function = lld_EraseResumeCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Bank Address  
Data  
1
Write  
Bank Address  
0030h  
The following is a C source code example of using the erase resume function. Refer to the Spansion Low  
Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory software  
development guidelines.  
/* Example: Erase resume command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
/* The flash needs adequate time in the resume state */  
6.5.6  
Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded programming operation or a  
Write to Buffer programming operation so that data can read from any non-suspended sector. When the  
Program Suspend command is written during a programming process, the device halts the programming  
operation within tPSL (program suspend latency) and updates the status bits. Addresses are don't-cares when  
writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array data from any non-  
suspended sector. The Program Suspend command may also be issued during a programming operation  
while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or  
Program Suspend. If a read is needed from the Secured Silicon Sector area, then user must use the proper  
command sequences to enter and exit this region.  
The system may also write the Autoselect command sequence when the device is in Program Suspend  
mode. The device allows reading Autoselect codes in the suspended sectors, since the codes are not stored  
in the memory array. When the device exits the Autoselect mode, the device reverts to Program Suspend  
mode, and is ready for another valid operation. See the Autoselect section for more information.  
After the Program Resume command is written, the device reverts to programming. The system can  
determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard  
program operation. See the Write Operation Status section for more information.  
The system must write the Program Resume command (address bits are don't care) to exit the Program  
Suspend mode and continue the programming operation. Further writes of the Program Resume command  
are ignored. Another Program Suspend command can be written after the device has resumed programming.  
Note: While a program operation can be suspended and resumed multiple times, a minimum delay of tPRS  
(Program Resume to Suspend) is required from resume to the next suspend.  
Software Functions and Sample Code  
Table 6.21 Program Suspend  
(LLD Function = lld_ProgramSuspendCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
43  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
The following is a C source code example of using the program suspend function. Refer to the Spansion Low  
Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory software  
development guidelines.  
/* Example: Program suspend command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Table 6.22 Program Resume  
(LLD Function = lld_ProgramResumeCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Bank Address  
Data  
1
Write  
Bank Address  
0030h  
The following is a C source code example of using the program resume function. Refer to the Spansion Low  
Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory software  
development guidelines.  
/* Example: Program resume command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
6.5.7  
Accelerated Program/Sector Erase  
Accelerated single word programming, write buffer programming and sector erase, operations are enabled  
through the VPP function. This method is faster than the standard chip program and erase command  
sequences.  
The accelerated chip program and erase functions must not be used more than 100 times per sector.  
In addition, accelerated chip program and erase should be performed at room temperature  
(30°C ±10°C).  
If the system asserts VHH on this input, the device automatically enters the accelerated mode and uses the  
higher voltage on the input to reduce the time required for program and erase operations. The system can  
then use the Write Buffer Load command sequence provided by the Unlock Bypass mode. Note that if a  
Write-to-Buffer-Abort Reset is required while in Unlock Bypass mode, the full 3-cycle RESET command  
sequence must be used to reset the device. Removing VHH from the VPP input, upon completion of the  
embedded program or erase operation, returns the device to normal operation.  
„ Sectors must be unlocked prior to raising VPP to VHH  
.
„ The VPP pin must not be at VHH for operations other than accelerated programming and accelerated sector  
erase, or device damage may result.  
„ The VPP pin must not be left floating or unconnected; inconsistent behavior of the device may result.  
„ VPP locks all sector if set to VIL; VPP should be set to VIH for all other conditions.  
6.5.8  
Unlock Bypass  
The unlock bypass feature allows the system to primarily program to a bank faster than using the standard  
program command sequence. The unlock bypass command sequence is initiated by first writing two unlock  
cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then  
enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is  
required to program in this mode. The first cycle in this sequence contains the unlock bypass program  
command, A0h; the second cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required in the standard program  
command sequence, resulting in faster total programming time. The host system may also initiate the chip  
erase and sector erase sequences in the unlock bypass mode. The erase command sequences are four  
cycles in length instead of six cycles. Table 11.1 shows the requirements for the unlock bypass command  
sequences.  
During the unlock bypass mode, only the Read, Unlock Bypass Program, Unlock Bypass Sector Erase,  
Unlock Bypass Chip Erase, and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode,  
the system must issue the two-cycle unlock bypass reset command sequence. The first cycle must contain  
44  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
the bank address and the data 90h. The second cycle need only contain the data 00h. The bank then returns  
to the read mode.  
The device offers accelerated program operations through the VPP input. When the system asserts VHH on  
this input, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle  
Unlock Bypass program command sequence. The device uses the higher voltage on the VPP input to  
accelerate the operation.  
Refer to the Erase/Program Timing section for parameters, and Figures 10.12 and 10.13 for timing diagrams  
Software Functions and Sample Code  
The following are C source code examples of using the unlock bypass entry, program, and exit functions.  
Refer to the Spansion Low Level Driver User’s Guide (www.spansion.com) for general information on  
Spansion Flash memory software development guidelines.  
Table 6.23 Unlock Bypass Entry  
(LLD Function = lld_UnlockBypassEntryCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
00AAh  
0055h  
0020h  
1
2
3
Unlock  
Write  
Entry Command  
Write  
/* Example: Unlock Bypass Entry Command  
*/  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0020;  
/* write unlock cycle 1  
*/  
/* write unlock cycle 2  
*/  
*/  
/* write unlock bypass command  
/* At this point, programming only takes two write cycles.  
/* Once you enter Unlock Bypass Mode, do a series of like  
/* operations (programming or sector erase) and then exit  
/* Unlock Bypass Mode before beginning a different type of  
/* operations.  
*/  
*/  
*/  
*/  
*/  
Table 6.24 Unlock Bypass Program  
(LLD Function = lld_UnlockBypassProgramCmd)  
Cycle  
Description  
Operation  
Write  
Byte Address  
Base + xxxh  
Word Address  
Base +xxxh  
Data  
1
2
Program Setup Command  
Program Command  
00A0h  
Write  
Program Address  
Program Address  
Program Data  
/* Example: Unlock Bypass Program Command */  
/* Do while in Unlock Bypass Entry Mode! */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00A0;  
/* write program setup command  
/* write data to be programmed  
*/  
*/  
*( (UINT16 *)pa )  
= data;  
*/  
/* Poll until done or error.  
/* If done and more to program, */  
/* do above two cycles again. */  
Table 6.25 Unlock Bypass Reset  
(LLD Function = lld_UnlockBypassResetCmd)  
Cycle  
Description  
Reset Cycle 1  
Reset Cycle 2  
Operation  
Write  
Byte Address  
Base + xxxh  
Base + xxxh  
Word Address  
Base +xxxh  
Base +xxxh  
Data  
0090h  
0000h  
1
2
Write  
/* Example: Unlock Bypass Exit Command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0090;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
45  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
6.5.9  
Write Operation Status  
The device provides several bits to determine the status of a program or erase operation. The following  
subsections describe the function of DQ1, DQ2, DQ3, DQ5, DQ6, and DQ7.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm  
is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising  
edge of the final WE# pulse in the command sequence. Note that the Data# Polling is valid only for the last  
word being programmed in the write-buffer-page during Write Buffer Programming. Reading Data# Polling  
status on any word other than the last word to be programmed in the write-buffer-page returns false status  
information. Similarly, attempting to program 1 over a 0 does not return valid Date# information.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum  
programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. The system must  
provide the program address to read valid status information on DQ7. If a program address falls within a  
protected sector, Data# polling on DQ7 is active for approximately tPSP, then that bank returns to the read  
mode.  
During the Embedded Erase Algorithm, Data# polling produces a 0 on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling produces a 1 on DQ7.  
The system must provide an address within any of the sectors selected for erasure to read valid status  
information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling  
on DQ7 is active for approximately tASP, then the bank returns to the read mode. If not all selected sectors are  
protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors  
that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may  
not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously  
with DQ6-DQ1 while Output Enable (OE#) is asserted low. That is, the device may change from providing  
status information to valid data on DQ7. Even if the device has completed the program or erase operation and  
DQ7 has valid data, the data outputs on DQ6-DQ1 may be still invalid. Valid data on DQ7-D01 appears on  
successive read cycles.  
See the following for more information: Table 6.27, Write Operation Status, shows the outputs for Data#  
Polling on DQ7. Table 6.5, Write Operation Status Flowchart, shows the Data# Polling algorithm; and  
Figure 10.15, Data# Polling Timings (During Embedded Algorithm), shows the Data# Polling timing diagram.  
46  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 6.5 Write Operation Status Flowchart  
START  
Read 1  
(Note 6)  
YES  
Erase  
Operation  
Complete  
DQ7=valid  
data?  
NO  
YES  
YES  
Read 2  
Read 3  
Read 1  
DQ5=1?  
Read3= valid  
data?  
NO  
NO  
Read 2  
Read 3  
Program  
Operation  
Failed  
YES  
Write Buffer  
Programming?  
YES  
NO  
Programming  
Operation?  
NO  
Device BUSY,  
Re-Poll  
(Note 3)  
(Note 5)  
(Note 1)  
YES  
(Note 1)  
(Note 2)  
YES  
DQ6  
toggling?  
DQ6  
DEVICE  
ERROR  
TIMEOUT  
toggling?  
NO  
(Note 4)  
NO  
YES  
Read3  
DQ1=1?  
YES  
NO  
Device BUSY,  
Re-Poll  
DQ2  
toggling?  
NO  
Read 2  
Read 3  
Device BUSY,  
Re-Poll  
Erase  
Device in  
Erase/Suspend  
Mode  
Operation  
Complete  
Read3 DQ1=1 YES  
AND DQ7 ?  
Valid Data?  
Write Buffer  
Operation Failed  
NO  
Notes:  
1) DQ6 is toggling if Read2 DQ6 does not equal Read3 DQ6.  
2) DQ2 is toggling if Read2 DQ2 does not equal Read3 DQ2.  
3) May be due to an attempt to program a 0 to 1. Use the RESET command to exit operation.  
4) Write buffer error if DQ1 of last read =1.  
Device BUSY,  
Re-Poll  
5) Invalid state, use RESET command to exit operation.  
6) Valid data is the data that is intended to be programmed or all 1's for an erase operation.  
7) Data polling algorithm valid for all operations except advanced sector protection.  
8) It can fail if one tries to program DQ7 from '0' to '1'  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address in the  
same bank, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause  
DQ6 to toggle. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for  
approximately tASP [all sectors protected toggle time], then returns to reading array data. If not all selected  
sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
47  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately tPSP after the program  
command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program  
Algorithm is complete.  
See the following for additional information: Figure 6.5, Write Operation Status Flowchart; Figure 10.16,  
Toggle Bit Timings (During Embedded Algorithm), and Tables 6.26 and 6.27.  
Toggle Bit I on DQ6 requires either OE# or CE# to be de-asserted and reasserted to show the change in state  
DQ2: Toggle Bit II  
The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that  
is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is  
valid after the rising edge of the final WE# pulse in the command sequence. DQ2 toggles when the system  
reads at addresses within those sectors that have been selected for erasure. But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for  
erasure. Thus, both status bits are required for sector and mode information. Refer to Table 6.26 to compare  
outputs for DQ2 and DQ6. See the following for additional information: Figure 6.5, the DQ6: Toggle Bit I  
section, and Figures 10.15 10.18.  
Table 6.26 DQ6 and DQ2 Indications  
If device is  
and the system reads  
then DQ6  
toggles,  
toggles,  
and DQ2  
does not toggle.  
also toggles.  
programming,  
any address at the bank being programmed  
at an address within a sector selected for erasure,  
actively erasing,  
at an address within sectors not selected for  
toggles,  
does not toggle.  
toggles.  
erasure,  
at an address within a sector selected for erasure, does not toggle,  
erase suspended,  
at an address within sectors not selected for  
returns array  
data,  
returns array data. The system can read  
from any sector not selected for erasure.  
erasure,  
programming in  
erase suspend  
any address at the bank being programmed  
toggles,  
is not applicable.  
Reading Toggle Bits DQ6/DQ2  
Whenever the system initially begins reading toggle bit status, it must read DQ7 – DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typically, the system notes and stores the value of the toggle bit  
after the first read. After the second read, the system compares the new value of the toggle bit with the first. If  
the toggle bit is not toggling, the device has completed the program or erases operation. The system can read  
array data on DQ7 – DQ0 on the following read cycle. However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling,  
since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling,  
the device has successfully completed the program or erases operation. If it is still toggling, the device did not  
complete the operation successfully, and the system must write the reset command to return to reading array  
data. The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles,  
determining the status as described in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algorithm when it returns to  
determine the status of the operation. Refer to Figure 6.5 for more details.  
Note: When verifying the status of a write operation (embedded program/erase) of a memory bank, DQ6 and  
DQ2 toggle between high and low states in a series of consecutive and contiguous status read cycles. In  
order for this toggling behavior to be properly observed, the consecutive status bit reads must not be  
interleaved with read accesses to other memory banks. If it is not possible to temporarily prevent reads to  
48  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
other memory banks, then it is recommended to use the DQ7 status bit as the alternative method of  
determining the active or inactive status of the write operation.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a 1, indicating that the program or erase cycle was not successfully  
completed. The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was  
previously programmed to 0. Only an erase operation can change a 0 back to a 1. Under this condition, the  
device halts the operation, and when the timing limit has been exceeded, DQ5 produces a 1. Under both  
these conditions, the system must write the reset command to return to the read mode (or to the erase-  
suspend-read mode if a bank was previously in the erase-suspend-program mode).  
DQ3: Sector Erase Timeout State Indicator  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors  
are selected for erasure, the entire time-out also applies after each additional sector erase command. When  
the time-out period is complete, DQ3 switches from a 0 to a 1. If the time between additional sector erase  
commands from the system can be assumed to be less than tSEA, the system need not monitor DQ3. See the  
Sector Erase Command Sequence, for more details.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is  
1, the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until  
the erase operation is complete. If DQ3 is 0, the device accepts additional sector erase commands. To  
ensure the command has been accepted, the system software should check the status of DQ3 prior to and  
following each sub-sequent sector erase command. If DQ3 is high on the second status check, the last  
command might not have been accepted. Table 6.27 shows the status of DQ3 relative to the other status bits.  
DQ1: Write to Buffer Abort  
DQ1 indicates whether a Write to Buffer operation was aborted. Under these conditions DQ1 produces a 1.  
The system must issue the Write to Buffer Abort Reset command sequence to return the device to reading  
array data. See Write Buffer Programming Operation for more details.  
Table 6.27 Write Operation Status  
Status  
DQ7 (2)  
DQ6  
DQ5 (1)  
DQ3  
DQ2 (2)  
DQ1 (4)  
Embedded Program  
Algorithm  
DQ7#  
Toggle  
0
N/A  
No toggle  
0
Standard  
Mode  
Embedded Erase  
Algorithm  
0
Toggle  
0
1
Toggle  
N/A  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
Reading within Program  
Suspended Sector  
Program  
Suspend  
Mode  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
Reading within Non-Program  
Suspended Sector  
(3)  
Data  
1
Data  
Data  
0
Data  
N/A  
Data  
Data  
N/A  
Erase  
Suspended  
No toggle  
Toggle  
Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended  
Sector  
Data  
Data  
Data  
Data  
Data  
Data  
Erase-Suspend-Program  
BUSY State  
DQ7#  
DQ7#  
DQ7#  
DQ7#  
Toggle  
Toggle  
Toggle  
Toggle  
0
0
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
Write to  
Buffer  
(5)  
Exceeded Timing Limits  
ABORT State  
0
1
Notes  
1. DQ5 switches to 1 when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. Data are invalid for addresses in a Program Suspended sector.  
4. DQ1 indicates the Write to Buffer ABORT status during Write Buffer Programming operations.  
5. The data-bar polling algorithm should be used for Write Buffer Programming operations. Note that DQ7# during Write Buffer  
Programming indicates the data-bar for DQ7 data for the LAST LOADED WRITE-BUFFER ADDRESS location.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
49  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
6.6  
6.7  
Simultaneous Read/Write  
The simultaneous read/write feature allows the host system to read data from one bank of memory while  
programming or erasing another bank of memory. An erase operation may also be suspended to read from or  
program another location within the same bank (except the sector being erased). Figure 10.21, Back-to-Back  
Read/Write Cycle Timings, shows how read and write cycles may be initiated for simultaneous operation with  
zero latency. Refer to the DC Characteristics table for read-while-program and read-while-erase current  
specification.  
Writing Commands/Command Sequences  
When the device is in Asynchronous read, only Asynchronous write operations are allowed. During an  
asynchronous write operation, the system must drive CE# and WE# to VIL and OE# to VIH when providing an  
address, command, and data. Addresses are latched on the rising edge of AVD#, while data is latched on the  
rising edge of WE#. An erase operation can erase one sector, multiple sectors, or the entire device. Table 5.1  
Table 5.3 indicate the address space that each sector occupies. The device address space is divided into  
sixteen banks: for NS512P, all 16 banks contain 64-Kword sectors while for NS256P and NS128P, Banks 0  
through 14 contain only 64 Kword sectors, Bank 15 contains 16-Kword boot sectors in addition to 64 Kword  
sectors. A bank address is the set of address bits required to uniquely select a bank. Similarly, a sector  
address is the address bits required to uniquely select a sector. ICC2 in the DC Characteristics section  
represents the active current specification for the write mode. AC Characteristics-Synchronous and AC  
Characteristics-Asynchronous contain timing specification tables and timing diagrams for write operations.  
6.8  
6.9  
Handshaking  
The handshaking feature allows the host system to detect when data is ready to be read by simply monitoring  
the RDY pin which is a dedicated output and is controlled by CE#.  
Hardware Reset  
The RESET# input provides a hardware method of resetting the device to reading array data. When RESET#  
is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates  
all outputs, resets the configuration register, and ignores all read/write commands for the duration of the  
RESET# pulse. The device also resets the internal state machine to reading array data.  
To ensure data integrity the operation that was interrupted should be reinitiated once the device is ready to  
accept another command sequence.  
When RESET# is held at VSS, the device draws CMOS standby current (ICC4). If RESET# is held at VIL, but  
not at VSS, the standby current is greater.  
RESET# may be tied to the system reset circuitry which enables the system to read the boot-up firmware  
from the Flash memory upon a system reset.  
See Figures 10.5 and 10.11 for timing diagrams.  
6.10 Software Reset  
Software reset is part of the command set (see Table 11.1) that also returns the device to array read mode  
and must be used for the following conditions:  
1. to exit Autoselect mode  
2. when DQ5 goes high during write status operation that indicates program or erase cycle was not  
successfully completed  
3. exit sector lock/unlock operation.  
4. to return to erase-suspend-read mode if the device was previously in Erase Suspend mode.  
5. after any aborted operations  
6. exiting read configuration registration Mode  
50  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Software Functions and Sample Code  
Table 6.28 Reset  
(LLD Function = lld_ResetCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
Reset Command  
Write  
Base + xxxh  
Base + xxxh  
00F0h  
Note  
Base = Base Address.  
The following is a C source code example of using the reset function. Refer to the Spansion Low Level Driver  
User’s Guide (www.spansion.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: Reset (software reset of Flash state machine) */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0;  
The following are additional points to consider when using the reset command:  
„ This command resets the banks to the read and address bits are ignored.  
„ Reset commands are ignored once erasure has begun until the operation is complete.  
„ Once programming begins, the device ignores reset commands until the operation is complete  
„ The reset command may be written between the cycles in a program command sequence before  
programming begins (prior to the third cycle). This resets the bank to which the system was writing to the  
read mode.  
„ If the program command sequence is written to a bank that is in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-suspend-read mode.  
„ The reset command may be also written during an Autoselect command sequence.  
„ If a bank has entered the Autoselect mode while in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode.  
„ If DQ1 goes high during a Write Buffer Programming operation, the system must write the Write to Buffer  
Abort Reset command sequence to RESET the device to reading array data. The standard RESET  
command does not work during this condition.  
„ To exit the unlock bypass mode, the system must issue a two-cycle unlock bypass reset command  
sequence [see command table for details].  
6.11 Programmable Output Slew Rate Control  
This feature allows the user to change the output slew rate during a read operation by setting the  
configuration register bit CR1.4. It allows 2 programmable slew rates. This feature is for users who do not  
want to run the part at its maximum speed and could live with a slower output slew rate thereby reducing  
noise variations at the output.  
Table 6.29 Programmable Output Slew Rate  
Mode  
Description  
Full Drive (Default)  
Half Drive  
I
& I  
OL OH  
1
2
100 µA  
50 µA  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
51  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
7. Advanced Sector Protection/Unprotection  
The Advanced Sector Protection/Unprotection feature disables or enables programming or erase operations  
in any or all sectors and can be implemented through software and/or hardware methods, which are  
independent of each other. This section describes the various methods of protecting data stored in the  
memory array. An overview of these methods in shown in Figure 7.1.  
Figure 7.1 Advanced Sector Protection/Unprotection  
Hardware Methods  
Software Methods  
Lock Register  
(One Time Programmable)  
V
= V  
IL  
PP  
All sectors locked)  
Persistent Method  
Password Method  
(
(DQ1)  
(DQ2)  
WP# = V  
IL  
(All boot  
sectors locked)  
64-bit Password  
(One Time Protect)  
1. Bit is volatile, and defaults to 1 on  
reset.  
PPB Lock Bit1,2,3  
2. Programming to 0 locks all PPBs to  
their current state.  
0 = PPBs Locked  
1 = PPBs Unlocked  
3. Once programmed to 0, requires  
hardware reset to unlock.  
Persistent  
Protection Bit  
(PPB)4,5  
Dynamic  
Protection Bit  
(DYB)6,7,8  
Memory Array  
Sector 0  
Sector 1  
Sector 2  
PPB 0  
PPB 1  
PPB 2  
DYB 0  
DYB 1  
DYB 2  
Sector N-2  
Sector N-1  
PPB N-2  
PPB N-1  
PPB N  
DYB N-2  
DYB N-1  
DYB N  
Sector N3  
3. N = Highest Address Sector.  
4. 0 = Sector Protected,  
1 = Sector Unprotected.  
6. 0 = Sector Protected,  
1 = Sector Unprotected.  
5. PPBs programmed individually,  
but cleared collectively  
7. Protect effective only if PPB Lock Bit  
is unlocked and corresponding PPB  
is 1 (unprotected).  
8. Volatile Bits: defaults to protected  
after power up.  
7.1  
Lock Register  
The Lock Register consists of 5 bits. The Secured Silicon Sector Protection Bit is DQ0, Persistent Protection  
Mode Lock Bit is DQ1, Password Protection Mode Lock Bit is DQ2, Persistent Sector Protection OTP bit is  
DQ3 and Volatile Sector Protection Boot bit is DQ4. If DQ0 is 0, it means that the Customer Secured Silicon  
area is locked and if DQ0 is 1, it means that it is unlocked. When DQ2 is set to 1 and DQ1 is set to 0, the  
52  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
device can only be used in the Persistent Protection Mode. When the device is set to Password Protection  
Mode, DQ1 is required to be set to 1 and DQ2 is required to be set to 0. DQ3 is programmed in the Spansion  
factory. When the device is programmed to disable all PPB erase command, DQ3 outputs a 0, when the lock  
register bits are read. Similarly, if the device is programmed to enable all PPB erase command, DQ3 outputs  
a 1 when the lock register bits are read. Likewise the DQ4 bit is also programmed in the Spansion Factory.  
DQ4 is the bit which indicates whether Volatile Sector Protection Bit (DYB) is protected or not after boot up.  
When the device is programmed to set all Volatile Sector Protection Bit protected after power up, DQ4  
outputs a 0 when the lock register bits are read. Similarly, when the device is programmed to set all Volatile  
Sector Protection Bit unprotected after power up, DQ4 outputs a 1. Each of these bits in the lock register are  
non-volatile. DQ15 – DQ5 are reserved and are 1s.  
Lock Register  
DQ15-5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
PPB One Time  
Programmable Bit  
DYB Lock Boot Bit  
0 = DYB bits power up  
protected (Default)  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
Secured  
Silicon Sector  
Protection Bit  
0 = All PPB Erase  
Command disabled  
1s  
1 = DYB bits power up  
unprotected  
1 = All PPB Erase  
Command enabled  
For programming lock register bits refer to Table 11.2.  
Notes  
1. If the password mode is chosen, the password must be programmed and verified before setting the  
corresponding lock register bit.  
2. It is recommended that a sector protection method to be chosen by programming DQ1 or DQ2  
prior to shipment  
3. After the Lock Register Bits Command Set Entry command sequence is written, reads and writes  
for Bank 0 are disabled, while reads from other banks are allowed until exiting this mode.  
4. If both lock bits are selected to be programmed (to zeros) at the same time, the operation aborts.  
5. Once the Password Mode Lock Bit is programmed, the Persistent Mode Lock Bit is permanently  
disabled, and no changes to the protection scheme are allowed. Similarly, if the Persistent Mode  
Lock Bit is programmed, the Password Mode is permanently disabled.  
6. During erase/program suspend, ASP entry commands are not allowed.  
7. Data Polling can be done immediately after the lock register programming command sequence (no  
delay required). Note that status polling can be done only in bank 0.  
8. Reads from other banks (simultaneous operation) are not allowed during lock register  
programming. This restriction applies to both synchronous and asynchronous read operations.  
After selecting a sector protection method, each sector can operate in any of the following three states:  
1. Constantly locked. The selected sectors are protected and can not be reprogrammed unless PPB  
lock bit is cleared via a password, hardware reset, or power cycle.  
2. Dynamically locked. The selected sectors are protected and can be altered via software  
commands.  
3. Unlocked. The sectors are unprotected and can be erased and/or programmed.  
These states are controlled by the bit types described in Sections 7.2 7.6.  
7.2  
Persistent Protection Bits  
The Persistent Protection Bits are unique and nonvolatile for each sector and have the same endurances as  
the Flash memory. Preprogramming and verification prior to erasure are handled by the device, and therefore  
do not require system monitoring.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
53  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Notes  
1. Each PPB is individually programmed and all are erased in parallel.  
2. While programming PPB for a sector, array data can be read from any other bank, except Bank 0  
(used for Data# Polling) and the bank in which sector PPB is being programmed.  
3. Entry command disables reads and writes for the bank selected.  
4. Reads within that bank return the PPB status for that sector.  
5. Reads from other banks are allowed while writes are not allowed.  
6. All Reads must be performed using the Asynchronous mode.  
7. The specific sector address (Amax – A14) are written at the same time as the program command.  
8. If the PPB Lock Bit is set, the PPB Program or erase command does not execute and time out  
without programming or erasing the PPB.  
9. There are no means for individually erasing a specific PPB and no specific sector address is  
required for this operation.  
10.PPB exit command must be issued after the execution which resets the device to read mode and  
re-enables reads and writes for Bank 0  
11.The programming state of the PPB for a given sector can be verified by writing a PPB Status Read  
Command to the device as described by the flow chart shown in Figure 7.2.  
12.During PPB program/erase data polling can be done synchronously.  
13.If customers attempt to program or erase a protected sector, the device ignores the command and  
returns to read mode.  
54  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 7.2 PPB Program/Erase Algorithm  
Enter PPB  
Command Set.  
Addr = BA  
Program PPB Bit.  
Addr = SA  
Read Byte Twice  
Addr = SA0  
No  
DQ6 =  
Toggle?  
Yes  
No  
DQ5 = 1?  
Wait 500 µs  
Yes  
Read Byte Twice  
Addr = SA0  
No  
Read Byte.  
Addr = SA  
DQ6 =  
Toggle?  
Yes  
DQ0 =  
No  
'1' (Erase)  
'0' (Pgm.)?  
FAIL  
Yes  
PASS  
Exit PPB  
Command Set  
7.3  
Dynamic Protection Bits  
Dynamic Protection Bits are volatile and unique for each sector and can be individually modified. DYBs only  
control the protection scheme for unprotected sectors that have their PPBs cleared (erased to 1). By issuing  
the DYB Set or Clear command sequences, the DYBs are set (programmed to 0) or cleared (erased to 1),  
thus placing each sector in the protected or unprotected state respectively. This feature allows software to  
easily protect sectors against inadvertent changes yet does not prevent the easy removal of protection when  
changes are needed.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
55  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Notes  
1. The DYBs can be set (programmed to 0) or cleared (erased to 1) as often as needed.  
2. When the parts are first shipped, the DYBs are set and programmed to 0 upon power up or reset.  
3. The default state of DYB is protected after power up and all sectors can be modified depending on  
the status of PPB bit for that sector, (erased to 1). Then the sectors can be modified depending  
upon the PPB state of that sector (see Table 7.1).  
4. It is possible to have sectors that are persistently locked with sectors that are left in the dynamic  
state.  
5. The DYB Set or Clear commands for the dynamic sectors signify protected or unprotectedstate of  
the sectors respectively. However, if there is a need to change the status of the persistently locked  
sectors, a few more steps are required. First, the PPB Lock Bit must be cleared by either putting  
the device through a power cycle, or hardware reset. The PPBs can then be changed to reflect the  
desired settings. Setting the PPB Lock Bit once again locks the PPBs, and the device operates  
normally again.  
6. To achieve the best protection, it is recommended to execute the PPB Lock Bit Set command early  
in the boot code and protect the boot code by holding WP# = VIL.  
7. Data polling is not available for DYB program/erase.  
8. DYB read data can be done synchronously.  
9. If customers attempt to program or erase a protected sector, the device ignores the command and  
returns to read mode.  
7.4  
Persistent Protection Bit Lock Bit  
The Persistent Protection Bit Lock Bit is a global volatile bit for all sectors. When set (programmed to 0), it  
locks all PPBs and when cleared (programmed to 1), allows the PPBs to be changed. There is only one PPB  
Lock Bit per device.  
Notes  
1. If the password mode is chosen, then the password must be programmed and verified before  
setting the corresponding lock register bit.  
2. No software command sequence unlocks this bit unless the device is in the password protection  
mode; only a hardware reset or a power up clears this bit.  
3. The PPB Lock Bit must be set (programmed to 0) only after all PPBs are configured to the desired  
settings.  
7.5  
Password Protection Method  
The Password Protection Method allows an even higher level of security than the Persistent Sector Protection  
Mode by requiring a 64 bit password for unlocking the device PPB Lock Bit. In addition to this password  
requirement, after power up and reset, the PPB Lock Bit is set 0 to maintain the password mode of operation.  
Successful execution of the Password Unlock command by entering the entire password clears the PPB Lock  
Bit, allowing for sector PPBs modifications.  
Notes  
1. There is no special addressing order required for programming the password. Once the Password  
is written and verified, the Password Mode Locking Bit must be set in order to prevent access.  
2. The Password Program Command is only capable of programming 0s. Programming a 1 after a  
cell is programmed as a 0 results in a time out with the cell as a 0.  
3. The password is all 1s when shipped from the factory.  
4. All 64-bit password combinations are valid as a password.  
5. There is no means to verify what the password is after it is set.  
6. The Password Mode Lock Bit, once set, prevents reading the 64-bit password on the data bus and  
further password programming.  
56  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
7. The Password Mode Lock Bit is not erasable.  
8. The lower two address bits (A1 – A0) are valid during the Password Read, Password Program, and  
Password Unlock.  
9. The exact password must be entered in order for the unlocking function to occur.  
10.The Password Unlock command cannot be issued any faster than 1 µs at a time to prevent a  
hacker from running through all the 64-bit combinations in an attempt to correctly match a  
password.  
11.Approximately 1 µs is required for unlocking the device after the valid 64-bit password is given to  
the device.  
12.Password verification is only allowed during the password programming operation.  
13.All further commands to the password region are disabled and all operations are ignored.  
14.If the password is lost after setting the Password Mode Lock Bit, there is no way to clear the PPB  
Lock Bit.  
15.Entry command sequence must be issued prior to any of any operation and it disables reads and  
writes for Bank 0. Reads and writes for other banks excluding Bank 0 are allowed.  
16.If the user attempts to program or erase a protected sector, the device ignores the command and  
returns to read mode.  
17.A program or erase command to a protected sector enables status polling and returns to read  
mode without having modified the contents of the protected sector.  
18.The programming of the DYB, PPB, and PPB Lock for a given sector can be verified by writing  
individual status read commands DYB Status, PPB Status, and PPB Lock Status to the device.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
57  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 7.3 Lock Register Program Algorithm  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write  
Enter Lock Register Command:  
Address 555h, Data 40h  
XXXh = Address don’t care  
Program Lock Register Data  
Address XXXh, Data A0h  
Address 77h*, Data PD  
* Not on future devices  
Program Data (PD): See text for Lock Register  
definitions  
Caution: Lock register can only be progammed  
once.  
Wait 4 μs (recommended)  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Write Lock Register  
Exit Command:  
FAIL. Write rest command  
to return to reading array.  
Address XXXh, Data 90h  
Address XXXh, Data 00h  
Device returns to reading array.  
7.6  
Advanced Sector Protection Software Examples  
Table 7.1 Sector Protection Schemes  
Unique Device PPB Lock Bit  
0 = locked  
Sector PPB  
0 = protected  
1 = unprotected  
Sector DYB  
0 = protected  
1 = unprotected  
Sector Protection Status  
1 = unlocked  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
x
x
1
0
x
x
0
1
Protected through PPB  
Protected through PPB  
Unprotected  
Protected through DYB  
Protected through PPB  
Protected through PPB  
Protected through DYB  
Unprotected  
58  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 7.1 contains all possible combinations of the DYB, PPB, and PPB Lock Bit relating to the status of the  
sector.  
7.7  
Hardware Data Protection Methods  
The device offers two main types of data protection at the sector level via hardware control:  
„ When WP# is at VIL, the highest two sectors are locked (device specific).  
„ When VPP is at VIL, all sectors are locked.  
There are additional methods by which intended or accidental erasure of any sectors can be prevented via  
hardware means. The following subsections describes these methods:  
WP# Method  
The Write Protect feature provides a hardware method of protecting the highest two sectors (NS256P and  
NS128P). This function is provided by the WP# pin and overrides the previously discussed Sector Protection/  
Unprotection method.  
If the system asserts VIL on the WP# pin, the device disables program and erase functions in the highest two  
sectors (NS256P and NS128P) as well as Secured Silicon Area.  
If the system asserts VIH on the WP# pin, the device reverts to whether the boot sectors were last set to be  
protected or unprotected. That is, sector protection or unprotection for these sectors depends on whether  
they were last protected or unprotected.  
Note that the WP# pin must not be left floating or unconnected as inconsistent behavior of the device may  
result.  
The WP# pin must be held stable during a command sequence execution  
V
Method  
PP  
This method is similar to above, except it protects all sectors (including the Secured Silicon Area). Once VPP  
input is set to VIL, all program and erase functions are disabled and hence all sectors are protected.  
Low V Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC  
power up and power down.  
The command register and all internal program/erase circuits are disabled, and the device resets to reading  
array data. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the  
proper signals to the control inputs to prevent unintentional writes when VCC is greater than VLKO  
.
Write Pulse Glitch Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Power-Up Write Inhibit  
If WE# = CE# = RESET# = VIL and OE# = VIH during power up, the device does not accept commands on the  
rising edge of WE#. The internal state machine is automatically reset to the read mode on power up.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
59  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
8. Power Conservation Modes  
8.1  
8.2  
8.3  
Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state,  
independent of the OE# input. The device enters the CMOS standby mode when the CE# and RESET#  
inputs are both held at VCC 0.2 V. The device requires standard access time (tCE) for read access, before it  
is ready to read data. If the device is deselected during erasure or programming, the device draws active  
current until the operation is completed. ICC3 in the DC Characteristics section represents the standby current  
specification  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption while in asynchronous mode. the  
device automatically enables this mode when addresses remain stable for tACC + 20 ns. The automatic sleep  
mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide  
new data when addresses are changed. While in sleep mode, output data is latched and always available to  
the system. While in synchronous mode, the automatic sleep mode is disabled. Note that a new burst  
operation is required to provide new data. ICC6 in the DC Characteristics section represents the automatic  
sleep mode current specification.  
Hardware RESET# Input Operation  
The RESET# input provides a hardware method of resetting the device to reading array data. When RESET#  
is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates  
all outputs, resets the configuration register, and ignores all read/write commands for the duration of the  
RESET# pulse. The device also resets the internal state machine to reading array data. The operation that  
was interrupted should be reinitiated once the device is ready to accept another command sequence to  
ensure data integrity.  
When RESET# is held at VSS 0.2 V, the device draws CMOS standby current (ICC4). If RESET# is held at  
VIL but not within VSS 0.2 V, the standby current is greater.  
RESET# may be tied to the system reset circuitry and thus, a system reset also resets the Flash memory,  
enabling the system to read the boot-up firmware from the Flash memory.  
8.4  
Output Disable (OE#)  
When the OE# input is at VIH, output from the device is disabled. The outputs are placed in the high  
impedance state.  
60  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
9. Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector provides an extra Flash memory region that enables permanent part identification  
through an Electronic Serial Number (ESN). The Secured Silicon Sector is 256 words in length that consists  
of 128 words for factory data and 128 words for customer-secured areas. All Secured Silicon reads outside of  
the 256-word address range returns invalid data. The Factory Indicator Bit, DQ7, (at Autoselect address 03h)  
is used to indicate whether or not the Factory Secured Silicon Sector is locked when shipped from the factory.  
The Customer Indicator Bit (DQ6) is used to indicate whether or not the Customer Secured Silicon Sector is  
locked when shipped from the factory.  
Please note the following general conditions:  
„ While Secured Silicon Sector access is enabled, simultaneous operations are allowed except for Bank 0.  
„ On power-up, or following a hardware reset, the device reverts to sending commands to the normal  
address space.  
„ Reads can be performed in the Asynchronous or Synchronous mode.  
„ Burst mode reads within Secured Silicon Sector wrap from address FFh back to address 00h.  
„ Reads outside of sector 0 return memory array data.  
„ Continuous burst read past the maximum address is undefined.  
„ Sector 0 is remapped from memory array to Secured Silicon Sector array.  
„ Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit command  
must be issued to exit Secured Silicon Sector Mode.  
„ The Secured Silicon Sector is not accessible when the device is executing an Embedded Program or  
Embedded Erase algorithm.  
Table 9.1 Secured Silicon SectorSecure Sector Addresses  
Sector  
Customer  
Factory  
Sector Size  
128 words  
128 words  
Address Range  
000080h-0000FFh  
000000h-00007Fh  
9.1  
Factory Secured Silicon Sector  
The Factory Secured Silicon Sector is always protected when shipped from the factory and has the Factory  
Indicator Bit (DQ7) permanently set to a 1. This prevents cloning of a factory locked part and ensures the  
security of the ESN and customer code once the product is shipped to the field.  
These devices are available pre programmed with one of the following:  
„ A random, 8 Word secure ESN only within the Factory Secured Silicon Sector  
„ Customer code within the Customer Secured Silicon Sector through the SpansionTM programming service.  
„ Both a random, secure ESN and customer code through the Spansion programming service.  
Customers may opt to have their code programmed through the Spansion programming services. Spansion  
programs the customer's code, with or without the random ESN. The devices are then shipped from the  
Spansion factory with the Factory Secured Silicon Sector and Customer Secured Silicon Sector permanently  
locked. Contact your local representative for details on using Spansion programming services.  
9.2  
Customer Secured Silicon Sector  
The Customer Secured Silicon Sector is typically shipped unprotected (DQ6 set to 0), allowing customers to  
utilize that sector in any manner they choose. If the security feature is not required, the Customer Secured  
Silicon Sector can be treated as an additional Flash memory space.  
Please note the following:  
„ Once the Customer Secured Silicon Sector area is protected, the Customer Indicator Bit is permanently  
set to 1.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
61  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
„ The Customer Secured Silicon Sector can be read any number of times, but can be programmed and  
locked only once. The Customer Secured Silicon Sector lock must be used with caution as once locked,  
there is no procedure available for unlocking the Customer Secured Silicon Sector area and none of the  
bits in the Customer Secured Silicon Sector memory space can be modified in any way.  
„ The accelerated programming (VPP) and unlock bypass functions are not available when programming the  
Customer Secured Silicon Sector, but reading in Banks 1 through 15 is available.  
„ Once the Customer Secured Silicon Sector is locked and verified, the system must write the Exit Secured  
Silicon Sector Region command sequence which return the device to the memory array at sector 0.  
9.3  
Secured Silicon Sector Entry and Exit Command Sequences  
The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon Sector region until the  
system issues the four-cycle Exit Secured Silicon Sector command sequence.  
See Command Definition Table [Secured Silicon Sector Command Table, Appendix  
Table 11.1 for address and data requirements for both command sequences.  
The Secured Silicon Sector Entry Command allows the following commands to be executed  
„ Read customer and factory Secured Silicon areas  
„ Program the customer Secured Silicon Sector  
After the system has written the Enter Secured Silicon Sector command sequence, it may read the Secured  
Silicon Sector by using the addresses normally occupied by sector SA0 within the memory array. This mode  
of operation continues until the system issues the Exit Secured Silicon Sector command sequence, or until  
power is removed from the device.  
Software Functions and Sample Code  
The following are C functions and source code examples of using the Secured Silicon Sector Entry, Program,  
and exit commands. Refer to the Spansion Low Level Driver User’s Guide (www.spansion.com) for general  
information on Spansion Flash memory software development guidelines.  
Table 9.2 Secured Silicon Sector Entry (LLD Function = lld_SecSiSectorEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
00AAh  
0055h  
0088h  
Unlock Cycle 1  
Unlock Cycle 2  
Entry Cycle  
Write  
Write  
Note  
Base = Base Address.  
/* Example: Secured Silicon Sector Entry Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0088;  
/* write unlock cycle 1  
/* write unlock cycle 2  
*/  
*/  
/* write Secured Silicon Sector Entry  
Cmd  
*/  
Table 9.3 Secured Silicon Sector Program (LLD Function = lld_ProgramCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
Data  
00AAh  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Program  
Write  
0055h  
Write  
00A0h  
Write  
Data Word  
Note  
Base = Base Address.  
62  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
/* Once in the Secured Silicon Sector mode, you program */  
/* words using the programming algorithm.  
*/  
Table 9.4 Secured Silicon Sector Exit (LLD Function = lld_SecSiSectorExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Any address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Any address  
Data  
00AAh  
0055h  
0090h  
0000h  
Unlock Cycle 1  
Unlock Cycle 2  
Exit Cycle 3  
Exit Cycle 4  
Write  
Write  
Write  
Note  
Base = Base Address.  
/* Example: Secured Silicon Sector Exit Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0090;  
cycle 3 */  
/* write unlock cycle 1  
/* write unlock cycle 2  
*/  
*/  
/* write Secured Silicon Sector Exit  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
cycle 4 */  
/* write Secured Silicon Sector Exit  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
63  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
10. Electrical Specifications  
10.1 Absolute Maximum Ratings  
Storage Temperature Plastic Packages  
Ambient Temperature with Power Applied  
–65°C to +150°C  
–65°C to +125°C  
–0.5 V to + 2.5 V  
Voltage with Respect to Ground: All Inputs and I/Os except as noted below (1)  
(1)  
V
–0.5 V to +2.5 V  
–0.5 V to +9.5 V  
100 mA  
CC  
V
(2)  
PP  
Output Short Circuit Current (3)  
Notes  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or I/Os may undershoot V to –2.0 V for periods of up  
SS  
to 20 ns. See Figure 10.1. Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions outputs may overshoot to V  
CC  
CC  
+ 2.0 V for periods up to 20 ns. See Figure 10.2.  
2. Minimum DC input voltage on pin V is –0.5V. During voltage transitions, V may overshoot V to –2.0 V for periods of up to 20 ns.  
PP  
PP  
SS  
See Figure 10.1. Maximum DC voltage on pin V is +9.5 V, which may overshoot to 10.5 V for periods up to 20 ns.  
PP  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not  
implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.  
Figure 10.1 Maximum Negative Overshoot Waveform  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Figure 10.2 Maximum Positive Overshoot Waveform  
20 ns  
V
+2.0 V  
CC  
V
+0.5 V  
CC  
1.0 V  
20 ns  
20 ns  
10.2 Operating Ranges  
Wireless (I) Devices  
Ambient Temperature (T )  
–25°C to +85°C  
A
Supply Voltages  
V
Supply Voltages  
+1.70 V to +1.95 V  
CC  
Note  
Operating ranges define those limits between which the functionality of the device is guaranteed.  
64  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
10.3 DC Characteristics  
10.3.1 CMOS Compatible  
Table 10.1 DC Characteristics—CMOS Compatible  
Parameter  
Description  
Test Conditions (1)  
Min  
Typ  
Max  
1
Unit  
µA  
I
Input Load Current  
V
V
= V to V , V = V max  
SS CC CC CC  
LI  
IN  
I
Output Leakage Current  
= V to V , V = V max  
1
µA  
LO  
OUT  
SS  
CC CC  
CC  
108 Mhz  
83 Mhz  
66 Mhz  
108 Mhz  
83 Mhz  
66 Mhz  
108 Mhz  
83 Mhz  
66 Mhz  
108 Mhz  
83 Mhz  
66 Mhz  
10 MHz  
5 MHz  
33  
26  
24  
30  
26  
24  
25  
28  
26  
32  
30  
28  
40  
20  
10  
1
44  
36  
33  
40  
38  
35  
33  
40  
37  
44  
42  
39  
80  
40  
20  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length =  
IH  
8
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length =  
IH  
16  
I
V
Active burst Read Current  
CC  
CCB  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length =  
IH  
32  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length =  
IH  
Continuous  
V
Active Asynchronous Read  
CE# = V , OE# = V  
,
,
CC  
IL  
IH  
IH  
I
CC1  
Current (2)  
WE# = V  
IH  
1 MHz  
V
PP  
CC  
CE# = V , OE# = V  
IL  
I
I
V
V
Active Write Current (3)  
Standby Current (4)  
CC2  
CC  
CC  
V
= VI  
PP  
H
V
<20  
1
<40  
5
mA  
µA  
V
CE# = RESET# =  
0.2 V  
PP  
CC3  
V
CC  
V
20  
150  
70  
250  
µA  
CC  
I
I
I
V
V
Reset Current  
Active Current  
RESET# = V CLK = V  
IL  
µA  
CC4  
CC5  
CC6  
CC  
CC  
IL,  
CE# = V , OE# = V , V = V , (7)  
50  
60  
mA  
IL  
IH  
PP  
IH  
(Read While Write)  
V
Sleep Current  
CE# = V , OE# = V  
5
40  
µA  
mA  
mA  
V
CC  
IL  
IH  
V
<7  
<10  
<20  
0.4  
PP  
Accelerated Program Current  
(5)  
CE# = V , OE# = V  
IL IH,  
I
PPW  
V
= 9.5 V  
PP  
V
<15  
CC  
V
Input Low Voltage  
–0.2  
IL  
V
0.4  
V
0.4  
+
CC  
CC  
V
Input High Voltage  
IH  
V
Output Low Voltage  
I
I
= 100 µA, V = V  
= V  
CC  
0.1  
V
V
OL  
OH  
OL  
CC  
CC min  
V
0.1  
CC  
V
Output High Voltage  
Voltage for Accelerated Program  
= –100 µA, V = V  
OH CC CC min  
V
8.5  
9.5  
1.4  
V
V
HH  
V
Low V Lock-out Voltage  
CC  
LKO  
Notes  
1. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
2. The I current listed is typically less than 2 mA/MHz, with OE# at V  
.
CC  
IH  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Device enters automatic sleep mode when addresses are stable for t  
+ 20 ns. Typical sleep mode current is equal to I  
.
ACC  
CC3  
5. Total current during accelerated programming is the sum of V and V currents.  
PP  
CC  
6.  
7. Clock frequency 66 Mhz and in Continuous Mode.  
8. For I , when V = V , V = V  
V
= V during all ICC measurements.  
CCQ CC  
.
SS  
CC6  
IH  
IO IL  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
65  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
10.4 Test Conditions  
Figure 10.3 Test Setup  
Device  
Under  
Test  
C
L
Table 10.2 Test Specifications  
Test Condition  
Output Load Capacitance, C (including jig capacitance)  
All Speed Options  
Unit  
pF  
ns  
V
30  
L,  
Input Rise and Fall Times  
Input Pulse Levels  
1.0 – 1.50  
0.0 – V  
CC  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
/2  
V
CC  
V
/2  
V
CCQ  
10.5 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
10.6 Switching Waveforms  
Figure 10.4 Input Waveforms and Measurement Levels  
VCC  
All Inputs and Outputs  
VCC/2  
VCCQ/2  
Input  
Measurement Level  
Output  
0.0 V  
Table 10.3 VCC Power-Up with No Ramp Rate Restriction  
Parameter  
Description  
Setup Time  
CC  
Test Setup  
Min  
Time  
Unit  
µs  
t
V
30  
VCS  
t
Time between RESET# (high) and CE# (low)  
Min  
200  
ns  
RH  
Note  
and V  
V
must be ramped simultaneously for proper power-up.  
CCQ  
CC  
66  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.5 VCC Power-Up Diagram  
tVCS  
VCC min  
VCC  
VIH  
RESET#  
tRH  
CE#  
10.7 CLK Characterization  
Table 10.4 CLK Characterization  
Parameter  
Description  
66 MHz  
83 MHz  
83  
108 MHz  
Unit  
Max  
Min  
66  
108  
MHz  
60 KHz in 8 word Burst,  
120 KHz in 16 word Burst,  
250 KHz in 32 word Burst,  
1 MHz in Continuous Mode  
f
CLK Frequency  
CLK  
t
CLK Period  
Min  
Min  
Max  
15.1  
3.0  
12.5  
9.26  
ns  
ns  
CLK  
0.40 t  
0.60 t  
CLK  
CLK  
t
/t  
CLK Low/High Time  
CL CH  
t
CLK Rise Time  
CLK Fall Time  
CR  
Max  
2.5  
1.5  
ns  
t
CF  
Figure 10.6 CLK Characterization  
tCLK  
tCH  
tCL  
CLK  
tCF  
tCR  
10.8 AC Characteristics  
10.8.1 Synchronous/Burst Read  
Table 10.5 Synchronous/Burst Read  
Parameter  
JEDEC Standard  
Description  
66 MHz  
83 MHz 108 MHz  
Unit  
t
Synchronous Access Time  
Max  
Max  
Min  
Min  
Min  
Max  
80  
ns  
ns  
ns  
ns  
ns  
ns  
IACC  
t
Burst Access Time Valid Clock to Output Delay  
Address Setup Time to CLK (1)  
Address Hold Time from CLK (1)  
Data Hold Time  
11.2  
9
4
7.6  
BACC  
t
ACS  
ACH  
BDH  
t
6
3
5
5
2
t
3
t
Chip Enable to RDY Active  
10  
RDY  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
67  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 10.5 Synchronous/Burst Read  
Parameter  
JEDEC Standard  
Description  
Output Enable to RDY Low  
66 MHz  
83 MHz 108 MHz  
Unit  
t
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
9
9
10  
10  
4
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OE  
t
Chip Enable to High Z  
Output Enable to High Z  
CE# Setup Time to CLK  
Ready Access Time from CLK  
CE# Setup Time to AVD#  
AVD# Low to CLK Setup Time  
AVD# Hold Time to CLK  
AVD# High to OE# Low  
AVD# Pulse  
10  
10  
10  
10  
CEZ  
OEZ  
CES  
t
t
t
11.2  
9
7.5  
RACC  
t
0
CAS  
AVDS  
AVDH  
t
5
t
3
t
0
AVD0  
t
6
AVD  
Notes  
1. Addresses are latched on the rising edge of CLK  
2. Synchronous Access Time is calculated using the formula (#of WS – 1)*(clock period) + (t  
or Clock to Out)  
BACC  
3. Not 100% tested for t  
, t  
.
CEZ OEZ  
Table 10.6 Synchronous Wait State Requirements  
Max Frequency  
Wait State Requirement  
Frequency 14 MHz  
2
3
4
5
6
7
8
9
14 < Frequency 27MHz  
27 MHz < Frequency 40 MHz  
40 MHz < Frequency 54 MHz  
54 MHz < Frequency 66 MHz  
66 MHz < Frequency 80 MHz  
80 MHz < Frequency 95 MHz  
95 MHz < Frequency 108 MHz  
Figure 10.7 8-Word Linear Synchronous Single Data Rate Burst with Wrap Around  
tCES  
7 cycles for initial access is shown as an illustration.  
CE#  
CLK  
1
2
3
4
5
6
7
tAVDS  
AVD#  
tAVD  
tACS  
AC  
Amax  
A16  
tACH  
tBACC  
DC  
AC  
A/DQ15  
A/DQ0  
DD  
DE  
DB  
tIACC  
tBDH  
OE#  
tRDY  
tRACC  
tOE  
Hi-Z  
RDY  
Notes  
1. Figure shows for illustration the total number of wait states set to seven cycles.  
2. The device is configured synchronous single data rate mode and RDY active with data.  
3. CE# (High) drives the RDY to Hi-Z while OE# (High) drives the A/DQ15 – A/DQ0 pins to Hi-Z  
68  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.8 8-Word Linear Single Data Read Synchronous Burst without Wrap Around  
7
cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVDS  
AVD#  
tAVD  
tACS  
AC  
Amax–  
A16  
tACH  
AC  
tBACC  
A/DQ15–  
A/DQ0  
DC  
DD  
DE  
DF  
D13  
tIACC  
D10  
tBDH  
OE#  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
RDY  
tRDYS  
Notes  
1. Figure shows for illustration the total number of wait states set to seven cycles.  
2. The device is configured synchronous single data rate mode and RDY active with data.  
3. CE# (High) drives the RDY to Hi-Z while OE# (High) drives the A/DQ15 – A/DQ0 pins to HI-Z  
10.8.2  
Asynchronous Mode Read  
Table 10.7 Asynchronous Mode Read  
Parameter  
Description  
66 MHz  
83 MHz 108 MHz Unit  
JEDEC Standard  
t
Access Time from CE# Low  
Typ  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
83  
80  
7.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CE  
t
Asynchronous Access Time  
ACC  
t
AVD# Low Time  
AVDP  
AAVDS  
AAVDH  
t
Address Setup Time to Rising Edge of AVD#  
Address Hold Time from Rising Edge of AVD#  
Output Enable to Output Valid  
t
3.5  
9
t
9
9
OE  
Read  
0
t
Output Enable Hold Time  
OEH  
Toggle and Data# Polling  
10  
10  
10  
10  
0
10  
10  
t
t
Output Enable to High Z  
CE# Setup Time to AVD#  
OEZ  
CAS  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
69  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.9 Asynchronous Mode Read with Latched Addresses  
CE#  
OE#  
WE  
tOE  
tOEH  
tCE  
tOEZ  
A/DQ15–  
A/DQ0  
RA  
RA  
Valid RD  
tACC  
Amax–  
A16  
tAAVDH =0ns  
tCAS  
AVD#  
tAVDP  
tAAVDS  
Note  
RA = Read Address, RD = Read Data.  
Figure 10.10 Asynchronous Mode Read  
CE#  
OE#  
WE#  
tOE  
tOEH  
tCE  
tOEZ  
A/DQ15–  
A/DQ0  
RA  
tACC  
Valid RD  
RA  
AmaxA16  
AVD#  
tAAVDH  
tAVDP  
tAAVDS  
Note  
RA = Read Address, RD = Read Data.  
10.8.3  
Hardware Reset (RESET#)  
Table 10.8 Warm Reset  
Parameter  
All Speed Options  
Unit  
Description  
JEDEC  
Std  
t
RESET# Pulse Width  
Min  
Min  
Min  
50  
200  
10  
ns  
ns  
µs  
RP  
RH  
t
Reset High Time Before Read  
RESET# Low to CE# Low  
t
RPH  
70  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.11 Reset Timings  
tRPH  
CE#, OE#  
tRH  
RESET#  
tRP  
10.8.4  
Erase/Program Timing  
Table 10.9 Erase/Program Timing  
Parameter  
66  
MHz  
83  
MHz  
108  
MHz  
Description  
Unit  
JEDEC  
Standard  
t
t
Write Cycle Time (1)  
Min  
Min  
60  
4
ns  
ns  
AVAV  
WC  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
t
t
Address Setup Time (2)  
AVWL  
AS  
4
3.5  
3.5  
6
ns  
t
t
Address Hold Time (2)  
Min  
WLAX  
AH  
t
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
AVDP  
t
t
Data Setup Time  
20  
0
DVWH  
DS  
DH  
t
t
Data Hold Time  
WHDX  
t
t
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
0
GHWL  
GHWL  
t
0
CAS  
t
t
t
0
WHEH  
WLWH  
WHWL  
CH  
t
Write Pulse Width  
25  
20  
0
WP  
t
t
Write Pulse Width High  
Latency Between Read and Write Operations  
WPH  
t
SR/W  
t
V
V
Rise and Fall Time  
500  
1
VID  
PP  
PP  
t
Setup Time (During Accelerated Programming)  
VIDS  
t
t
CE# Setup Time to WE#  
4
ELWL  
CS  
t
AVD# Setup Time to WE#  
6
AVSW  
AVHW  
t
AVD# Hold Time to WE#  
4
t
Sector Erase Accept Time out  
50  
20  
20  
280  
1
SEA  
t
t
Erase Suspend Latency  
ESL  
PSL  
ASP  
PSP  
ERS  
PRS  
Program Suspend Latency  
t
t
Toggle Time During Erase within a Protected Sector  
Toggle Time During Programming Within a Protected Sector  
Erase Resume to Erase Suspend  
Program Resume to Program Suspend  
t
t
30  
30  
Notes  
1. Not 100% tested.  
2. In asynchronous operation timing, addresses are latched on the rising edge of AVD#.  
3. See the Erase and Programming Performance section for more information. Does not include the preprogramming time.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
71  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.12 Asynchronous Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
AVD  
V
IL  
tAVSW  
tAVHW  
tAVDP  
tAH  
tAS  
Amax–  
A16  
PA  
PA  
VA  
VA  
VA  
VA  
555h  
555h  
In  
Progress  
A/DQ15–  
A/DQ0  
Complete  
A0h  
PD  
tDS  
tD  
tCAS  
CE#  
tCH  
OE#  
WE  
tW  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. In progress and complete refer to status of program operation.  
3. CLK can be either V or V  
IL  
.
IH  
Figure 10.13 Chip/Sector Erase Command Sequence  
Read Status Data  
Erase Command Sequence (last two cycles)  
tAVDP  
V
CLK IH  
V
IL  
AVD  
tAH  
tAS  
Amax–  
2AAh  
A16  
SA  
VA  
VA  
VA  
555h for  
chip erase  
10h for  
chip erase  
In  
A/DQ15–  
2AAh  
A/DQ0  
55h  
SA  
30h  
Complete  
VA  
Progress  
tDS  
tDH  
CE#  
tCH  
OE#  
tWP  
WE  
tWPH  
tWHWH2  
tCS  
tWC  
tVCS  
VCC  
Note  
SA is the sector address for Sector Erase.  
72  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.14 Accelerated Unlock Bypass Programming Timing  
CE#  
AVD#  
WE#  
Amax–  
A16  
PA  
PA  
A/DQ15–  
A/DQ0  
Don't Care  
tVIDS  
A0h  
PD  
Don't Care  
OE#  
VPP  
1 µs  
V
V
HH  
or V  
IL  
IH  
Note  
Use setup and hold times from conventional program operation.  
Figure 10.15 Data# Polling Timings (During Embedded Algorithm)  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE  
tOEH  
WE#  
tACC  
High Z  
Amax–  
A16  
VA  
VA  
VA  
High Z  
A/DQ15–  
A/DQ0  
Status Data  
Status Data  
VA  
Notes  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, and Data#  
Polling outputs true data.  
Figure 10.16 Toggle Bit Timings (During Embedded Algorithm)  
AVD#  
tCEZ  
tCE  
CE#  
tOEZ  
tCH  
tOE  
OE  
tOEH  
WE#  
tACC  
High Z  
Amax–  
A16  
VA  
VA  
VA  
VA  
High Z  
A/DQ15–  
A/DQ0  
Status Data  
Status Data  
Notes  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, the toggle  
bits stop toggling.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
73  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.17 Synchronous Data Polling Timings/Toggle Bit Timings  
CE#  
CLK  
AVD#  
Amax–  
A16  
VA  
VA  
VA  
OE#  
tIACC  
tIACC  
A/DQ15–  
A/DQ0  
Status Data  
VA  
Status Data  
RDY  
Notes  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is complete, the toggle  
bits stop toggling.  
3. RDY is active with data (D8 = 0 in the Configuration Register). When D8 = 1 in the Configuration Register, RDY is active one clock cycle  
before data.  
Figure 10.18 DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
DQ6  
Erase  
Erase Suspend  
Read  
DQ2  
Note  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
Figure 10.19 Latency with Boundary Crossing  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
Address  
7C  
7D  
7E  
7F  
7F  
80  
81  
82  
83  
(hex)  
CLK  
(stays high)  
AVD#  
tRACC  
tRACC  
latency  
tRACC  
RDY  
(Note 1)  
tRACC  
RDY  
(Note 2)  
latency  
D127  
Data  
D124  
D125  
D126  
D128  
D129  
D130  
Invalid  
OE#,  
CE#  
(stays low)  
Notes  
1. RDY active with data (CR0.8 = 0 in the Configuration Register).  
2. RDY active one clock cycle before data (CR0.8 = 1 in the Configuration Register).  
3. Figure shows the device not crossing a bank in the process of performing an erase or program.  
74  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.20 Wait State Configuration Register Setup  
Data  
D0  
D1  
Rising edge of next  
clock cycle following  
last wait state triggers  
next burst data  
AVD#  
OE#  
total number of clock cycles  
following addresses being latched  
1
2
3
4
5
6
7
CLK  
1
2
4
5
7
0
3
6
Total number of clock edges following addresses being latched  
Table 10.10 Example of Programmable Wait States  
Programmable  
Wait State  
CR1.0  
0000  
2nd  
(See Note)  
CR0.13  
CR0.12  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
3rd  
4th  
5th  
6th  
7th  
initial data is  
valid on the  
rising  
CLK edge  
after addresses are  
latched  
=
=
=
Reserved  
8th  
9th  
initial data is  
valid on the  
rising  
CLK edge  
after addresses are  
latched  
CR0.11  
initial data is  
valid on the  
rising  
CLK edge  
AVD# transition to V  
(Default)  
IH  
1101  
=
=
13th  
1110  
1111  
Reserved  
Note  
The addresses are latched by rising edge of CLK.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
75  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Figure 10.21 Back-to-Back Read/Write Cycle Timings  
Last Cycle in Program or  
Sector Erase Command  
Sequence  
Read status (at least two cycles)  
In same bank and/or array data  
from other bank  
Begin another  
write or program  
command sequence  
tWC  
tWC  
tRC  
tRC  
CE#  
OE#  
tOE  
tGHWL  
tOEH  
WE#  
tOEZ  
tWP  
tWP  
tDS  
tACC  
tOEH  
tDH  
RA  
A/DQ15–  
A/DQ0  
PA/SA  
555h  
PD/30h  
RD  
RA  
RA  
RD  
AAh  
tSR/W  
RA  
Amax–  
A16  
PA/SA  
tAS  
555h  
AVD#  
tAH  
Note  
Breakpoints in waveforms indicate that system may alternately read array data from the non-busy bank while checking the status of the  
program or erase operation in the busy bank. The system should read status twice to ensure valid information.  
76  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
10.9 Erase and Programming Performance  
Table 10.11 Erase and Programming Performance  
Parameter  
64 Kword  
Typ (1)  
0.8  
Max (2)  
3.5  
Unit  
Comments  
V
V
CC  
Excludes 00h  
programming prior to  
erasure (3)  
16 Kword  
64 Kword  
16 Kword  
64 Kword  
16 Kword  
64 Kword  
16 Kword  
0.15  
0.8  
2.0  
CC  
Sector Erase Time  
Sector Erase Time  
V
V
3.5  
PP  
PP  
CC  
CC  
0.15  
0.90  
0.45  
0.70  
0.35  
2.0  
s
V
V
5.00  
1.85  
3.75  
1.40  
Includes 00h  
programming prior to  
erasure (3)  
V
V
PP  
PP  
77 (NS128P)  
154 (NS256P)  
306 (NS512P)  
154 (NS128P)  
308 (NS256P)  
612 (NS512P)  
Chip Erase Time  
V
s
CC  
V
40  
24  
400  
240  
94  
CC  
Excludes system level  
overhead (4)  
Word Programming Time  
µs  
V
PP  
V
9.4  
6
CC  
Effective Word Programming Time  
utilizing Program Write Buffer  
V
60  
PP  
µs  
V
300  
192  
3000  
1920  
CC  
Total 32-Word Buffer Programming  
Time  
V
PP  
78.6 (NS128P)  
157.3 (NS256P)  
314.6 (NS512P)  
157.3 (NS128P)  
314.6 (NS256P)  
629.2 (NS512P)  
V
CC  
Chip Programming Time (using 32  
word buffer)  
Excludes system level  
overhead (4)  
s
51 (NS128P)  
101 (NS256P)  
202 (NS512P)  
102 (NS128P)  
202 (NS256P)  
404 (NS512P)  
V
PP  
Erase Suspend/Erase Resume  
Program Suspend/Program Resume  
Notes  
Min  
Min  
20  
20  
µs  
µs  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V V , 10,000 cycles using checkerboard patterns.  
CC  
2. Under worst case conditions of 90°C, V = 1.70 V, 100,000 cycles.  
CC  
3. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before erasure.  
4. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 11.1,  
Memory Array Commands on page 78 and Table 11.2, Sector Protection Commands on page 80for further information on command  
definitions.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
77  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
11. Appendix  
This section contains information relating to software control or interfacing with the Flash device. For  
additional information and assistance regarding software, see www.spansion.com.  
Table 11.1 Memory Array Commands  
Bus Cycles (1, 2, 3, 4, 5, 6)  
Command Sequence  
(Notes)  
First  
Data  
Second  
Third  
Fourth  
Fifth  
Data  
Sixth  
Data  
Data  
Data  
Data  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
(19)  
RD  
F0  
(19)  
(19)  
(19)  
(19)  
(19)  
Asynchronous Read (7)  
1
1
RA  
Reset (8)  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
Device ID (10)  
Indicator Bits  
4
6
4
4
4
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
90  
90  
90  
90  
90  
0001  
3x7E  
(12)  
(BA)  
555  
(BA)  
X01  
(BA)X  
0E  
(BA)  
X0F  
(10)  
(10)  
(BA)  
555  
(BA)  
X07  
Autoselect (9)  
(SA)  
555  
(SA)  
X02  
0000/  
0001  
Sector Unlock/Lock Verify  
(11)  
(BA)  
555  
(BA)  
X03  
Revision ID  
Single Word Program  
4
6
1
3
6
6
1
1
5
555  
555  
SA  
AA  
AA  
29  
2AA  
2AA  
55  
55  
555  
SA  
A0  
25  
PA  
SA  
Data  
WC  
Write to Buffer (17)  
PA  
PD  
WBL  
PD  
Write Buffer to Flash  
Write to Buffer Abort Reset (10)  
Chip Erase  
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
F0  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (15)  
Program/Erase Resume (16)  
Set Configuration Register (21, 22, 24)  
BA  
555  
AA  
2AA  
2AA  
55  
55  
555  
555  
D0  
C6  
X00  
CR0  
X01  
CR1  
X0  
(0 or  
1)  
CR  
(0 or  
1)  
Read Configuration Register  
4
555  
AA  
(BA)  
55  
CFI Query (17)  
1
3
2
98  
AA  
A0  
Unlock Bypass Entry (18)  
555  
XX  
2AA  
PA  
55  
555  
20  
Unlock Bypass Program  
(13), (14)  
PD  
Unlock Bypass Sector Erase  
(13), (14)  
2
2
XX  
XX  
80  
80  
SA  
30  
10  
Unlock Bypass  
Mode (23)  
Unlock Bypass Erase (13),  
(14)  
XXX  
Unlock Bypass CFI (13),  
(14)  
1
2
XX  
XX  
98  
90  
Unlock Bypass Reset  
XXX  
00  
Legend  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the rising edge of the AVD# pulse or active edge of CLK, whichever occurs first.  
PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first.  
SA = Sector Address. NS128P = A22 A14; NS256P = A23 A14.  
78  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
BA = Bank Address. NS128P = A22 A20, and A19; NS064P = A21, A20 A18; NS256P = A23 A20.CR = Configuration Register data  
bits D15 D0.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table 6.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the following, all bus cycles are write cycle: read cycle, fourth through sixth cycles of the Autoselect commands, fourth cycle of  
the configuration register verify and password verify commands, and any cycle reading at RD(0) and RD(1).  
4. Data bits DQ15 DQ8 are don’t care in command sequences, except for RD, PD, WD, PWD, and PWD3 PWD0.  
5. Unless otherwise noted, address bits Amax A14 are don’t cares.  
6. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The  
system must write the reset command to return the device to reading array data.  
7. No unlock or command cycles required when bank is reading array data.  
8. The Reset command is required to return to reading array data (or to the erase-suspend-read mode if previously in Erase Suspend) when  
a bank is in the autoselect mode, or if DQ5 goes high (while the bank is providing status information) or performing sector lock/unlock.  
9. The fourth cycle of the autoselect address is a read cycle. The system must provide the bank address.  
10. (BA) + 0Eh ----> For NS128 = 43h, NS256 = 41h, NS512 = 3Fh (BA) + 0Fh ----> For NS128/256/512 = 00h  
11. The data is 0000h for an unlocked sector and 0001h for a locked sector  
12. See Table 6.12, Autoselect Addresses on page 34.  
13. The Unlock Bypass command sequence is required prior to this command sequence.  
14. The Unlock Bypass Reset command is required to return to reading array data when the bank is in the unlock bypass mode.  
15. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The  
Program/Erase Suspend command is valid only during a program/ erase operation, and requires the bank address.  
16. The Program/Erase Resume command is valid only during the Program/Erase Suspend mode, and requires the bank address.  
17. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum  
number of cycles in the command sequence is 37.  
18. Write Buffer Programming can be initiated after Unlock Bypass Entry.  
19. Data is always output at the rising edge of clock.  
20. Do not enter wrong address or data cycles.  
21. Do not use 0x30 for CR data (otherwise in the erase suspend --> CR read or set sequence, the device will go into erase resume instead  
of CR read or set).  
22. Software reset is needed after CR read (otherwise the device is still in CR read mode).  
23. When device is in Unlock Bypass mode, do not enter another command before Unlock Bypass reset command is issued).  
24. Configuration Registers can not be programmed out of order. CR0 must be programmed prior to CR01 otherwise the configuration  
registers retain their previous settings.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
79  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 11.2 Sector Protection Commands  
Bus Cycles 1, 2, 3, 4, 5, 6  
Command Sequence  
(Notes)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Seventh  
Data  
(10)  
Data  
(10)  
Data  
(10)  
Data  
Data  
Data  
Data  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
Addr  
(10)  
PD  
00  
(10)  
(10)  
(10)  
Entry (5)  
Program  
Read  
3
4
1
4
555  
555  
00  
AA  
2AA  
2AA  
55  
555  
555  
88  
AA  
55  
A0  
PA  
XX  
data  
AA  
Exit (7)  
555  
2AA  
2AA  
00  
55  
55  
555  
555  
90  
40  
Register Command Set Entry  
(5)  
3
555  
AA  
Register Bits Program (6)  
Register Bits Read  
2
1
2
3
XX  
00  
A0  
data  
90  
data  
Register Command Set Exit (7)  
Protection Command Set Entry  
XX  
555  
XX  
00  
55  
AA  
2AA  
555  
60  
00/  
01/  
02/03  
PWD0/  
1/  
2/3/  
Program (9)  
2
4
XX  
00  
A0  
PWD  
0
PWD  
2
PWD  
3
Read Password (10)  
01  
PWD1  
02  
00  
03  
01  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
Unlock (9)  
7
2
3
00  
XX  
25  
90  
00  
XX  
03  
00  
55  
02  
03  
00  
29  
Protection Command Set Exit  
Non-Volatile Sector Protection  
Command Set Entry (5)  
(BA)  
555  
555  
AA  
2AA  
C0  
(BA)  
SA  
Program  
2
2
1
XX  
XX  
A0  
80  
00  
30  
All Erase (8)  
Status Read  
SA0  
XX  
(BA)  
SA  
RD(0)  
Non-Volatile Sector Protection  
Command Set Exit (7)  
2
3
XX  
90  
00  
Global Volatile Sector  
Protection Freeze Command  
Set Entry (5)  
555  
AA  
2AA  
XX  
55  
00  
555  
50  
Set  
2
1
XX  
XX  
A0  
Status Read  
RD(0)  
Global Volatile Sector  
Protection Freeze Command  
Set Exit (7)  
2
XX  
90  
XX  
00  
Volatile Sector Protection  
Command Set Entry (5)  
(BA)  
555  
3
2
2
1
2
555  
XX  
XX  
AA  
A0  
2AA  
55  
00  
01  
E0  
(BA)  
SA  
Set  
(BA)  
SA  
Clear  
A0  
(BA)  
SA  
Status Read  
RD(0)  
90  
Volatile Sector Protection  
Command Set Exit (7)  
XX  
XX  
00  
Program  
2
2
1
4
1
555  
555  
RA  
SA  
A0  
80  
PA  
SA  
Data  
30  
Sector Erase  
Asynchronous Read  
Write to Buffer  
RD  
25  
SA  
WC  
PA  
PD  
WBL  
PD  
Program Buffer to Flash  
SA  
29  
Legend  
X = Don’t care  
80  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the rising edge of the AVD# pulse or active edge of CLK, whichever occurs first.  
PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first.  
SA = Sector Address. NS128P = A22 A14, NS256P = A23 A14.  
BA = Bank Address. NS128P = A22 A20, and A19; NS256P = A23 A20.  
CR = Configuration Register data bits D15 D0.  
PWD3 PWD0 = Password Data. PD3 PD0 present four 16 bit combinations that represent the 64-bit Password  
PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0, if unprotected, DQ0 = 1.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes  
1. See Table 6.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the following, all bus cycles are write cycle: read cycle, fourth through sixth cycles of the Autoselect commands, fourth cycle of  
the configuration register verify and password verify commands, and any cycle reading at RD(0) and RD(1).  
4. Data bits DQ15 DQ8 are don’t care in command sequences, except for RD, PD, WD, PWD, and PWD3 PWD0.  
5. Unless otherwise noted, address bits Amax A14 are don’t cares.  
6. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The  
system must write the reset command to return the device to reading array data.  
7. No unlock or command cycles required when bank is reading array data.  
8. The data is 0000h for an unlocked sector and 0001h for a locked sector.  
9. The Exit command must be issued to reset the device into read mode, otherwise the device hangs.  
10. Data is always output at the rising edge of clock.  
11.1 Common Flash Memory Interface  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows specific vendor-specified soft-ware algorithms to be used for entire families of  
devices. Software support can then be device-independent, JEDEC ID-independent, and forward-compatible  
and backward-compatible for the specified flash device families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address  
(BA)55h any time the device is ready to read array data. The system can read CFI information at the  
addresses given in Tables 11.3 11.6) within that bank. All reads outside of the CFI address range, within the  
bank, returns non-valid data. Reads from other banks are allowed, writes are not. To terminate reading CFI  
data, the system must write the reset command.  
The following is a C source code example of using the CFI Entry and Exit functions. Refer to the Spansion  
Low Level Driver User’s Guide (www.spansion.com) for general information on Spansion Flash memory  
software development guidelines.  
/* Example: CFI Entry command */  
*( (UINT16 *)bank_addr + 0x0055 = 0x0098;  
/* write CFI entry command  
/* write cfi exit command  
*/  
/* Example: CFI Exit command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00F0;  
*/  
For further information, please refer to the CFI Specification (see JEDEC publications JEP137-A and  
JESD68.01and CFI Publication 100). Please contact your sales office for copies of these documents.  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
81  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 11.3 CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string QRY  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
Table 11.4 System Interface String  
Addresses  
Data  
Description  
V
Min. (write/erase)  
CC  
1Bh  
0017h  
D7 – D4: volt, D3 – D0: 100 millivolt  
V
Max. (write/erase)  
CC  
1Ch  
0019h  
D7 – D4: volt, D3 – D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0005h  
0009h  
000Ah  
0000h  
0003h  
0002h  
0002h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
PP  
Typical Program Time per single word write 2N µs (for example, 30 µs)  
Typical Program Time using buffer 2N µs (for example, 300us) (00h = not supported)  
Typical time for sector erase 2N ms  
Typical time for full chip erase 2N ms (00h = not supported)  
Max. Program Time per single word [2N times typical value]  
Max. Program Time using buffer [2N times typical value]  
Max. time for sector erase [2N times typical value]  
Max. time for full chip erase [2N times typical value] (00h = not supported)  
Table 11.5 Device Geometry Definition (Sheet 1 of 2)  
Addresses  
Data  
Description  
0018h (NS128P)  
0019h (NS256P)  
001Ah (NS512P)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface 0h=x8; 1h=x16; 2h=x8/x16; 3h=x32 [lower byte]  
[upper byte] (00h = not supported)  
2Ah  
2Bh  
0006h  
0000h  
Max. number of bytes in multi-byte buffer write = 2N [lower byte]  
[upper byte] (00h = not supported)  
0002h (NS128P)  
0002h (NS256P)  
0001h (NS512P)  
Number of Erase Block Regions within device  
01h = Uniform Sector; 02h = Boot + Uniform; 03h = Boot + Uniform + Boot  
2Ch  
2Dh  
007Eh (NS128P)  
00FEh (NS256P)  
01FFh (NS512P)  
Erase Block Region 1 Information (Large Sector Section)  
[lower byte] – Number of sectors. 00h=1 sector; 01h=2 sectors... 03h=4 sectors  
[upper byte]  
2Eh  
2Fh  
30h  
0000h  
0000h  
0002h  
[lower byte] – Equation =>(n = Density in Bytes of any 1 sector/256)h  
[upper byte]  
0003h (NS128P)  
0003h (NS256P)  
0000h (NS512P)  
Erase Block Region 2 Information (Small Sector Section)  
[lower byte] – Number of sectors.  
31h  
32h  
33h  
34h  
0000h  
0080h (NS128P)  
0080h (NS256P)  
0000h (NS512P)  
[upper byte]  
[lower byte] – Equation =>(n = Density in Bytes of any 1 sector/256)h  
[upper byte]  
0000h  
82  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 11.5 Device Geometry Definition (Sheet 2 of 2)  
Addresses  
Data  
Description  
Erase Block Region 3 Information  
[lower byte] – Number of sectors. 00h=1 sector; 01h=2 sectors... 03h=4 sectors  
[upper byte]  
[lower byte] – Equation =>(n = Density in Bytes of any 1 sector/256)h  
[upper byte]  
35h  
36h  
37h  
38h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
Table 11.6 Primary Vendor-Specific Extended Query (Sheet 1 of 2)  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string PRI  
43h  
44h  
0031h  
0034h  
Major CFI version number, ASCII  
Minor CFI version number, ASCII  
Address Sensitive Unlock (Bits 1 – 0)  
00b = Required, 01b = Not Required  
Silicon Technology (Bits 5 – 2) 0011b = 130 nm; 0100b = 110 nm; 0101b = 90 nm  
001010b = 000Ah  
45h  
0014h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
0002h  
0001h  
0000h  
0008h  
Sector Protection per Group  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
08h = Advanced Sector Protection; 07h = New Sector Protection Scheme  
0078h (NS128P)  
00F0h (NS256P)  
01E0h (NS512P)  
Simultaneous Operation  
Number of Sectors in all banks except bank0  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
0001h  
0000h  
0085h  
Not supported  
V
(Acceleration) Supply Minimum  
PP  
00h = Not Supported, D7 – D4: Volt, D3 – D0: 100 mV  
V
(Acceleration) Supply Maximum  
PP  
4Eh  
4Fh  
0095h  
00h = Not Supported, D7 – D4: Volt, D3 – D0: 100 mV  
Write Protect Function  
00h = No Boot, 01h = Dual Boot, 02h = Bottom Boot, 03h = Top Boot, 04h = Uniform  
Bottom, 05h = Uniform Top, 06h = All Sectors  
0003h (NS128P)  
0003h (NS256P)  
0005h (NS512P)  
50h  
51h  
52h  
53h  
0001h  
0001h  
0008h  
0014h  
Program Suspend. 00h = not supported  
Unlock Bypass  
00 = Not Supported, 01=Supported  
Secured Silicon Sector (Customer OTP Area) Size 2N bytes  
Hardware Reset Low Time-out during an embedded algorithm to read mode Maximum 2N  
ns (for example, 10 µs => n=14)  
Hardware Reset Low Time-out not during an embedded algorithm to read mode Maximum  
2N ns (for example, 10 µs => n=14)  
54h  
0014h  
55h  
56h  
57h  
0005h  
0005h  
0010h  
Erase Suspend Time-out Maximum 2N μs  
Program Suspend Time-out Maximum 2N μs  
Bank Organization: X = Number of banks  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
58h  
Bank 0 Region Information. X = Number of sectors in bank  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
83  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Table 11.6 Primary Vendor-Specific Extended Query (Sheet 2 of 2)  
Addresses  
Data  
Description  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
59h  
Bank 1 Region Information. X = Number of sectors in bank  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
Bank 2 Region Information. X = Number of sectors in bank  
Bank 3 Region Information. X = Number of sectors in bank  
Bank 4 Region Information. X = Number of sectors in bank  
Bank 5 Region Information. X = Number of sectors in bank  
Bank 6 Region Information. X = Number of sectors in bank  
Bank 7 Region Information. X = Number of sectors in bank  
Bank 8 Region Information. X = Number of sectors in bank  
Bank 9 Region Information. X = Number of sectors in bank  
Bank 10 Region Information. X = Number of sectors in bank  
Bank 11 Region Information. X = Number of sectors in bank  
Bank 12 Region Information. X = Number of sectors in bank  
Bank 13 Region Information. X = Number of sectors in bank  
Bank 14 Region Information. X = Number of sectors in bank  
Bank 15 Region Information. X = Number of sectors in bank  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
0008h (NS128P)  
0010h (NS256P)  
0020h (NS512P)  
000Bh (NS128P)  
0013h (NS256P)  
0020h (NS512P)  
84  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
12. Revision History  
Section  
Description  
Revision A (June 29, 2006)  
Initial release  
Revision A1 (February 20, 2007)  
The tAVDS specification is changed from 4 ns to 5 ns  
The wait state for 83 MHz is changed to 8  
ICC3(Max) is changed to 70 µA and ICC6(Max) is changed to 40 µA  
VIL (Min) is changed to -0.2 V  
tOE (Max) in both Asynchronous & Synchronous modes is changed to 9 ns across all frequencies  
tCEZ (Max) is changed to 10 ns across all frequencies  
tOEZ (Max) in both Asynchronous & Synchronous modes is changed to 10 ns across all frequencies  
tACH(Min) is changed to 6 ns (66 MHz) and 5 ns (83 MHz and 108 MHz)  
tRDY(Max) is changed to 10 ns  
Global  
tRACC(Max) is changed to 7.6 ns for 108 MHz  
tOEH(Min) in Asynchronous mode is changed to 10 ns for 108 MHz  
Erase and Programing Performance table is updated  
tCE in Asynchronous mode is changed to 83ns  
February 20, 2007 S29NS-P_00_A1  
S29NS-P MirrorBitTM Flash Family  
85  
D a t a S h e e t ( A d v a n c e I n f o r m a t i o n )  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2005-2007 Spansion Inc. All Rights Reserved. Spansion, the Spansion logo, MirrorBit, ORNAND, HD-SIM, and combinations  
thereof are trademarks of Spansion Inc. Other names are for informational purposes only and may be trademarks of their respective owners.  
86  
S29NS-P MirrorBitTM Flash Family  
S29NS-P_00_A1 February 20, 2007  

相关型号:

S29NS016J0LBAW000

Burst Mode Flash Memories
SPANSION

S29NS016J0LBAW002

Burst Mode Flash Memories
SPANSION

S29NS016J0LBAW003

Burst Mode Flash Memories
SPANSION

S29NS016J0LBFW000

Burst Mode Flash Memories
SPANSION

S29NS016J0LBFW002

Burst Mode Flash Memories
SPANSION

S29NS016J0LBFW003

Burst Mode Flash Memories
SPANSION

S29NS016J0LBJW00

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0LBJW000

Burst Mode Flash Memories
SPANSION

S29NS016J0LBJW002

Burst Mode Flash Memories
SPANSION

S29NS016J0LBJW003

Burst Mode Flash Memories
SPANSION

S29NS016J0PBAW000

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION

S29NS016J0PBAW002

110 nm CMOS 1.8-Volt only Simultaneous Read/Write, Burst Mode Flash Memories
SPANSION