S29PL127J60BFI130 [SPANSION]

Flash, 8MX16, 60ns, PBGA80,;
S29PL127J60BFI130
型号: S29PL127J60BFI130
厂家: SPANSION    SPANSION
描述:

Flash, 8MX16, 60ns, PBGA80,

文件: 总100页 (文件大小:2296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29PL-J  
128/128/64/32 Megabit (8/8/4/2M x 16-Bit)  
CMOS 3.0 Volt-Only, Simultaneous-Read/Write  
Flash Memory with Enhanced VersatileIO™ Control  
S29PL-J Cover Sheet  
Data Sheet  
Notice to Readers: This document states the current technical specifications regarding the Spansion  
product(s) described herein. Each product described herein may be designated as Advance Information,  
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S29PL-J_00  
Revision A  
Amendment 16  
Issue Date April 18, 2013  
D a t a S h e e t  
Notice On Data Sheet Designations  
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of  
product information or intended specifications throughout the product life cycle, including development,  
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify  
that they have the latest information before finalizing their design. The following descriptions of Spansion data  
sheet designations are presented here to highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion Inc. is developing one or more specific  
products, but has not committed any design to production. Information presented in a document with this  
designation is likely to change, and in some cases, development on the product may discontinue. Spansion  
Inc. therefore places the following conditions upon Advance Information content:  
“This document contains information on one or more products under development at Spansion Inc.  
The information is intended to help you evaluate this product. Do not design in this product without  
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a commitment  
to production has taken place. This designation covers several aspects of the product life cycle, including  
product qualification, initial production, and the subsequent phases in the manufacturing process that occur  
before full production is achieved. Changes to the technical specifications presented in a Preliminary  
document should be expected while keeping these aspects of production under consideration. Spansion  
places the following conditions upon Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. The Preliminary status of this document indicates that product qualification has been  
completed, and that initial production has begun. Due to the phases of the manufacturing process that  
require maintaining efficiency and quality, this document may be revised by subsequent versions or  
modifications due to changes in technical specifications.”  
Combination  
Some data sheets contain a combination of products with different designations (Advance Information,  
Preliminary, or Full Production). This type of document distinguishes these products and their designations  
wherever necessary, typically on the first page, the ordering information page, and pages with the DC  
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first  
page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal changes  
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include  
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed  
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a  
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following  
conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s)  
described herein. Spansion Inc. deems the products to have been in sufficient production volume such  
that subsequent versions of this document are not expected to change. However, typographical or  
specification corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local sales office.  
2
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
S29PL-J  
128/128/64/32 Megabit (8/8/4/2M x 16-Bit)  
CMOS 3.0 Volt-Only, Simultaneous-Read/Write  
Flash Memory with Enhanced VersatileIO™ Control  
Data Sheet  
Distinctive Characteristics  
Architectural Advantages  
Performance Characteristics  
128/128/64/32 Mbit Page Mode devices  
– Page size of 8 words: Fast page read access from random locations  
within the page  
High Performance  
– Page access times as fast as 20 ns  
– Random access times as fast as 55 ns  
Power consumption (typical values at 10 MHz)  
– 45 mA active read current  
Single power supply operation  
– Full Voltage range: 2.7 to 3.6 volt read, erase, and program operations  
for battery-powered applications  
– 17 mA program/erase current  
– 0.2 µA typical standby mode current  
Dual Chip Enable inputs (only in PL129J)  
Two CE# inputs control selection of each half of the memory space  
Simultaneous Read/Write Operation  
– Data can be continuously read from one bank while executing erase/  
program functions in another bank  
– Zero latency switching from write to read operations  
FlexBank Architecture (PL127J/PL064J/PL032J)  
– 4 separate banks, with up to two simultaneous operations per device  
– Bank A:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
– Bank B:  
Software Features  
Software command-set compatible with JEDEC 42.4 standard  
– Backward compatible with Am29F, Am29LV, Am29DL, and AM29PDL  
families and MBM29QM/RM, MBM29LV, MBM29DL, MBM29PDL  
families  
CFI (Common Flash Interface) compliant  
– Provides device-specific information to the system, allowing host  
software to easily reconfigure for different Flash devices  
Erase Suspend / Erase Resume  
– Suspends an erase operation to allow read or program operations in  
other sectors of same bank  
Program Suspend / Program Resume  
– Suspends a program operation to allow read operation from sectors  
other than the one being programmed  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
– Bank C:  
PL127J - 48 Mbit (32 Kw x 96)  
Unlock Bypass Program command  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
– Reduces overall programming time when issuing multiple program  
command sequences  
– Bank D:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
FlexBank Architecture (PL129J)  
– 4 separate banks, with up to two simultaneous operations per device  
– CE#1 controlled banks:  
Bank 1A: PL129J - 16Mbit (4Kw x 8 and 32Kw x 31)  
Bank 1B: PL129J - 48Mbit (32Kw x 96)  
– CE#2 controlled banks:  
Hardware Features  
Ready/Busy# pin (RY/BY#)  
– Provides a hardware method of detecting program or erase cycle  
completion  
Hardware reset pin (RESET#)  
– Hardware method to reset the device to reading array data  
WP#/ ACC (Write Protect/Acceleration) input  
– At V , hardware level protection for the first and last two 4K word  
IL  
Bank 2A: PL129J - 48 Mbit (32Kw x 96)  
Bank 2B: PL129J - 16Mbit (4Kw x 8 and 32Kw x 31)  
sectors.  
– At V , allows removal of sector protection  
IH  
– At V , provides accelerated programming in a factory setting  
HH  
Persistent Sector Protection  
– A command sector protection method to lock combinations of individual  
sectors and sector groups to prevent program or erase operations within  
that sector  
Enhanced VersatileI/O (V ) Control  
IO  
– Output voltage generated and input voltages tolerated on all control  
inputs and I/Os is determined by the voltage on the V pin  
IO  
– V options at 1.8 V and 3 V I/O for PL127J and PL129J devices  
IO  
– 3V V for PL064J and PL032J devices  
IO  
– Sectors can be locked and unlocked in-system at V level  
Secured Silicon Sector region  
CC  
– Up to 128 words accessible through a command sequence  
– Up to 64 factory-locked words  
– Up to 64 customer-lockable words  
Both top and bottom boot blocks in one device  
Manufactured on 110 nm process technology  
Data Retention: 20 years typical  
Password Sector Protection  
– A sophisticated sector protection method to lock combinations of  
individual sectors and sector groups to prevent program or erase  
operations within that sector using a user-defined 64-bit password  
Package options  
– Standard discrete pinouts  
11 x 8 mm, 80-ball Fine-pitch BGA (PL127J) (VBG080)  
8.15 x 6.15 mm, 48-ball Fine pitch BGA (PL064J/PL032J)  
(VBK048)  
Cycling Endurance: 1 million cycles per sector typical  
– MCP-compatible pinout  
8 x 11.6 mm, 64-ball Fine-pitch BGA (PL127J)  
7 x 9 mm, 56-ball Fine-pitch BGA (PL064J and PL032J)  
Compatible with MCP pinout, allowing easy integration of RAM into  
existing designs  
– 20 x 14 mm, 56-pin TSOP (PL127J) (TS056)  
Publication Number S29PL-J_00  
Revision A  
Amendment 16  
Issue Date April 18, 2013  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient pro-  
duction volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid com-  
binations offered may occur.  
D a t a S h e e t  
General Description  
The PL127J/PL129J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page Mode and Simultaneous  
Read/Write Flash memory device organized as 8/8/4/2 Mwords. The devices are offered in the following  
packages:  
– 11 mm x 8 mm, 80-ball Fine-pitch BGA standalone (PL127J)  
– 8 mm x 11.6 mm, 64-ball Fine-pitch BGA multi-chip compatible (PL127J)  
– 8.15 mm x 6.15 mm, 48-ball Fine-pitch BGA standalone (PL064J/PL032J)  
– 7 mm x 9 mm, 56-ball Fine-pitch BGA multi-chip compatible (PL064J and PL032J)  
– 20 mm x 14 mm, 56-pin TSOP (PL127J)  
The word-wide data (x16) appears on DQ15-DQ0. This device can be programmed in-system or in standard  
EPROM programmers. A 12.0 V VPP is not required for write or erase operations.  
The device offers fast page access times of 20 to 30 ns, with corresponding random access times of 55 to  
70 ns, respectively, allowing high speed microprocessors to operate without wait states. To eliminate bus  
contention the device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.  
Note: Device PL129J has 2 chip enable inputs (CE1#, CE2#).  
4
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table of Contents  
Distinctive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.  
Simultaneous Read/Write Operation with Zero Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1  
1.2  
Page Mode Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Standard Flash Memory Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.  
3.  
4.  
5.  
6.  
7.  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Simultaneous Read/Write Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Simultaneous Read/Write Block Diagram (PL129J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Special Package Handling Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
80-Ball Fine-Pitch BGA—PL127J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
64-Ball Fine-Pitch BGA—MCP Compatible—PL127J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
48-Ball Fine-Pitch BGA, PL064J and PL032J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
56-Pin TSOP 20 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
56-Ball Fine-Pitch Ball Grid Array, PL064J and PL032J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.  
9.  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10. Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.1 Requirements for Reading Array Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10.2 Simultaneous Read/Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10.3 Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.4 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.5 Automatic Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.6 RESET#: Hardware Reset Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.7 Output Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10.8 Autoselect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
10.9 Selecting a Sector Protection Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
11. Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.1 Persistent Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.2 Password Sector Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.3 WP# Hardware Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
11.4 Selecting a Sector Protection Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
12. Persistent Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.1 Persistent Protection Bit (PPB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.2 Persistent Protection Bit Lock (PPB Lock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.3 Dynamic Protection Bit (DYB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
12.4 Persistent Sector Protection Mode Locking Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
13. Password Protection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.1 Password and Password Mode Locking Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.2 64-bit Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13.3 Write Protect (WP#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.4 High Voltage Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
13.5 Temporary Sector Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.6 Secured Silicon Sector Flash Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13.7 Hardware Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14. Common Flash Memory Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
15. Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
15.1 Reading Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
5
D a t a S h e e t  
15.2 Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
15.3 Autoselect Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
15.4 Enter/Exit Secured Silicon Sector Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
15.5 Word Program Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
15.6 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
15.7 Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
15.8 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
15.9 Program Suspend/Program Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
15.10 Command Definitions Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
16. Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
16.1 DQ7: Data# Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
16.2 RY/BY#: Ready/Busy#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
16.3 DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
16.4 DQ2: Toggle Bit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
16.5 Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
16.6 DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
16.7 DQ3: Sector Erase Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
17. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
18. Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
19. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
20. AC Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
20.1 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
20.2 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
20.3 Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
20.4 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
20.5 Erase/Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
20.6 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
21. Protect/Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
21.1 Controlled Erase Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
22. Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
22.1 BGA Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
22.2 TSOP Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
23. Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
23.1 VBG080—80-Ball Fine-pitch Ball Grid Array 8 x 11 mm Package (PL127J). . . . . . . . . . . . . 90  
23.2 VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm package (PL127J). . . . . . . . . . . . 91  
23.3 VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm package  
(PL032J and PL064J). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
23.4 VBU056—56-Ball Fine-pitch BGA 7 x 9mm package (PL064J and PL032J) . . . . . . . . . . . . 93  
23.5 TS056—20 x 14 mm, 56-pin TSOP (PL127J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
24. Revision Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.1 Revision A0 (January 29, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.2 Revision A1 (February 12, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.3 Revision A2 (February 17, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.4 Revision A3 (February 25, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
24.5 Revision A4 (February 27, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
24.6 Revision A5 (March 15, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
24.7 Revision A6 (August 30, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
24.8 Revision A7 (March 2, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
24.9 Revision A8 (July 29, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
24.10 Revision A9 (September 22, 2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
24.11 Revision A10 (September 7, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
24.12 Revision A11 (September 10, 2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
24.13 Revision A12 (December 18, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
24.14 Revision A13 (Febuary 1, 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
24.15 Revision A14 (July 8, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
24.16 Revision A15 (March 14, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
24.17 Revision A16 (April 9, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
7
D a t a S h e e t  
Figures  
Figure 7.1  
Figure 7.2  
Figure 7.3  
Figure 7.4  
Figure 7.5  
80-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL127J . . . . . . . . . . . . . . . . . . . . . 17  
64-Ball Fine-Pitch BGA, MCP Compatible, Top View, Balls Facing Down—PL127J . . . . . . 18  
48-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL064J—PL032J: C4(A21)=NC . . . 19  
56-Pin TSOP 20 x 14 mm Configuration—PL127J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
56-ball Fine-Pitch BGA, Top View, Balls Facing Down,—PL064J and PL032J,. . . . . . . . . . . 21  
Figure 13.1 In-System Sector Protection/Sector Unprotection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 13.2 Temporary Sector Unprotect Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 13.3 Secured Silicon Sector Protect Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 15.1 Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 15.2 Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 16.1 Data# Polling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 16.2 Toggle Bit Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 17.1 Maximum Overshoot Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 20.1 Test Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 20.2 Input Waveforms and Measurement Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 20.3 Read Operation Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 20.4 Page Read Operation Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 20.5 Reset Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 20.6 Program Operation Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 20.7 Accelerated Program Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 20.8 Chip/Sector Erase Operation Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 20.9 Back-to-back Read/Write Cycle Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 20.10 Data# Polling Timings (During Embedded Algorithms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 20.11 Toggle Bit Timings (During Embedded Algorithms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 20.12 DQ2 vs. DQ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 21.1 Temporary Sector Unprotect Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 21.2 Sector/Sector Block Protect and Unprotect Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 21.3 Alternate CE# Controlled Write (Erase/Program) Operation Timings . . . . . . . . . . . . . . . . . . 87  
Figure 21.4 Timing Diagram for Alternating Between CE1# and CE2# Control . . . . . . . . . . . . . . . . . . . . 88  
8
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Tables  
Table 10.1  
Table 10.2  
Table 10.3  
Table 10.4  
Table 10.5  
Table 10.6  
Table 10.7  
Table 10.8  
Table 10.9  
PL127J Device Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PL129J Device Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Page Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Bank Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PL127J Sector Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PL064J Sector Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
PL032J Sector Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
S29PL129J Sector Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Secured Silicon Sector Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 10.10 Autoselect Codes (High Voltage Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 10.11 Autoselect Codes for PL129J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 10.12 PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection . . . . . . . . . . . . . . 45  
Table 10.13 PL129J Boot Sector/Sector Block Addresses for Protection/Unprotection . . . . . . . . . . . . . . 46  
Table 10.14 PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection . . . . . . . . . . . . . . 47  
Table 10.15 Sector Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 14.1  
Table 14.2  
Table 14.3  
Table 14.4  
Table 15.1  
Table 15.2  
Table 16.1  
Table 19.1  
Table 20.1  
Table 20.2  
Table 20.3  
Table 20.4  
Table 20.5  
Table 21.1  
Table 21.2  
Table 21.3  
Table 21.4  
CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Memory Array Command Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Sector Protection Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CMOS Compatible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Test Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Key To Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Read-Only Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Erase and Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Temporary Sector Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Alternate CE# Controlled Erase and Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
CE1#/CE2# Timing (S29PL129J only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Erase And Programming Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
9
D a t a S h e e t  
1. Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation by dividing the memory space  
into 4 banks, which can be considered to be four separate memory arrays as far as certain operations are  
concerned. The device can improve overall system performance by allowing a host system to program or  
erase in one bank, then immediately and simultaneously read from another bank with zero latency (with two  
simultaneous operations operating at any one time). This releases the system from waiting for the completion  
of a program or erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The banks are organized as  
follows:  
Bank  
PL127J Sectors  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
PL064J Sectors  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
24 Mbit (32 Kw x 48)  
PL032J Sectors  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
12 Mbit (32 Kw x 24)  
A
B
C
D
48 Mbit (32 Kw x 96)  
24 Mbit (32 Kw x 48)  
12 Mbit (32 Kw x 24)  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
Bank  
1A  
PL129J Sectors  
CE# Control  
CE1#  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
1B  
CE1#  
2A  
48 Mbit (32 Kw x 96)  
CE2#  
2B  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
CE2#  
1.1  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode operation provides fast  
read access speed of random locations within that page.  
10  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
1.2  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both read and write functions.  
Internally generated and regulated voltages are provided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 single-power-supply Flash standard.  
Commands are written to the command register using standard microprocessor write timing. Register  
contents serve as inputs to an internal state-machine that controls the erase and programming circuitry. Write  
cycles also internally latch addresses and data needed for the programming and erase operations. Reading  
data out of the device is similar to reading from other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The Unlock Bypass mode  
facilitates faster programming times by requiring only two write cycles to program data instead of four. Device  
erasure occurs by executing the erase command sequence.  
The host system can detect whether a program or erase operation is complete by reading the DQ7 (Data#  
Polling) and DQ6 (toggle) status bits. After a program or erase cycle has been completed, the device is  
ready to read array data or accept another command.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the  
data contents of other sectors. The device is fully erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automatically inhibits write operations  
during power transitions. The hardware sector protection feature disables both program and erase operations  
in any combination of sectors of memory. This can be achieved in-system or via programming equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to  
read data from, or program data to, any sector that is not selected for erasure. True background erase can  
thus be achieved. If a read is needed from the Secured Silicon Sector area (One Time Program area) after an  
erase suspend, then the user must use the proper command sequence to enter and exit this region.  
The Program Suspend/Program Resume feature enables the user to hold the program operation to read  
data from any sector that is not selected for programming. If a read is needed from the Secured Silicon Sector  
area, Persistent Protection area, Dynamic Protection area, or the CFI area, after a program suspend, then the  
user must use the proper command sequence to enter and exit this region.  
The device offers two power-saving features. When addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode. The system can also place the device into the standby  
mode. Power consumption is greatly reduced in both these modes.  
The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data  
is programmed using hot electron injection.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
11  
D a t a S h e e t  
2. Ordering Information  
The order number (Valid Combination) is formed by a valid combinations of the following:  
S29PL-J  
55  
BA  
W
00  
0
Packing Type  
0
1
2
3
= Tray  
= Tube  
= 7-inch Tape and Reel  
= 13-inch Tape and Reel  
Model Number (Additional Ordering Options)  
00 = 3.0V V , 80-ball 11 x 8 mm FBGA (VBG080)  
IO  
01 = 1.8V V , 80-ball 11 x 8 mm FBGA (VBG080)  
IO  
02 = 3.0V V , 64-ball 8 x 11.6 mm FBGA (VBH064)  
IO  
12 = 3.0V V , 48-ball 8 x 6 mm FBGA (VBK048)  
IO  
13 = 3.0V V , 56-pin 20 x 14 mm TSOP (TS056)  
IO  
15 = 3.0V V , 56-ball 7 x 9 mm FBGA (VBU056)  
IO  
Temperature Range  
W = Wireless (–25°C to +85°C)  
I
= Industrial (–40°C to +85°C)  
Package Type  
BA = Fine-Pitch Grid Array (FBGA),  
Standard  
BF = Fine-Pitch Grid Array (FBGA)  
Lead (Pb)-free  
TA = Thin Small Outline Package (TSOP) Standard Pinout  
Standard  
TF = Thin Small Outline Package (TSOP) Standard Pinout  
Lead (Pb)-free  
Clock Speed  
55 = 55 ns (Contact factory for availability)  
60 = 60 ns  
65 = 65 ns  
70 = 70 ns  
80 = 80 ns  
Device Number/Description  
128 Megabit (8 M x 16-Bit), 64 Megabit (4 M x 16-Bit), 32 Megabit (2 M x 16-Bit)  
CMOS Flash Memory, Simultaneous-Read/Write, Page-Mode Flash Memory,  
3.0 Volt-only Read, Program, and Erase  
Valid Combinations to be Supported for this Device  
128 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Package  
Type  
Temperature  
Range  
Additional  
Ordering Options  
CE#  
Configuration  
Speed (ns)  
60, 65, 70  
80  
S29PL127J  
S29PL127J  
BA, BF, TA, TF  
BA, BF  
W, I  
W, I  
00, 13  
01  
Single CE#  
Single CE#  
64 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Package  
Type  
Temperature  
Range  
Additional  
Ordering Options  
Speed (ns)  
S29PL064J  
55, 60, 70  
BA, BF  
W, I  
12, 15  
32 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Package  
Type  
Temperature  
Range  
Additional  
Ordering Options  
Speed (ns)  
S29PL032J  
55, 60, 70  
BA, BF  
W, I  
12, 15  
12  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Valid Combinations for BGA Packages  
Order Number (Note 1)  
Speed (ns)  
55, 60, 65, 70 (3)  
80  
V
Range  
IO  
PL129J, PL127J,PL064J, PL032J  
PL129J, PL127J  
2.7–3.6  
1.65–1.95  
Notes  
1. Please contact the factory for PL129J availability.  
2. BGA package marking omits leading S29 and packing type designator from ordering part number.  
3. 55 ns speed only supported for PL032J and PL127J.  
Valid Combinations for TSOP Packages  
Order Number  
Speed (ns)  
V
Range  
IO  
S29PL127J  
60, 70  
2.7–3.6  
Note  
TSOP package markings omit packing type designator from ordering part number.  
3. Product Selector Guide  
Part Number  
S29PL032J/S29PL064J/S29PL0127J/S29PL129J  
55  
V
,V = 2.7 V – 3.6 V  
60  
65  
70  
CC IO  
(See Note)  
Speed Option  
V
V
= 2.7 V – 3.6 V,  
= 1.65 V – 1.95 V  
CC  
80  
IO  
(PL127J and PL129J only)  
Max Access Time, ns (t  
)
55  
ACC  
60  
25  
65  
80  
30  
70  
30  
(See Note)  
Max CE# Access, ns (t  
)
CE  
Max Page Access, ns (t  
)
PACC  
20  
(See Note)  
Max OE# Access, ns (t  
)
OE  
Note  
55 ns speed bin only supported for PL032J and PL064J.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
13  
D a t a S h e e t  
4. Block Diagram  
DQ15–DQ0  
RY/BY#  
V
CC  
V
SS  
Sector  
Switches  
V
IO  
Input/Output  
Buffers  
RESET#  
WE#  
Erase Voltage  
Generator  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Data Latch  
Y-Gating  
Y-Decoder  
X-Decoder  
V
CC  
Detector  
Timer  
Amax–A3  
Cell Matrix  
A2–A0  
Notes  
1. RY/BY# is an open drain output.  
2. Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
3. For PL129J there are two CE# (CE1# and CE2#)  
14  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
5. Simultaneous Read/Write Block Diagram  
V
V
CC  
OE#  
SS  
Mux  
Bank A  
Bank A Address  
Amax–A0  
X-Decoder  
Bank B Address  
RY/BY#  
Bank B  
X-Decoder  
Amax–A0  
RESET#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
Status  
WE#  
DQ15–DQ0  
CE#  
WP#/ACC  
Control  
Mux  
X-Decoder  
Bank C  
DQ0–DQ15  
Bank C Address  
Bank D Address  
X-Decoder  
Bank D  
Amax–A0  
Mux  
Note  
Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
15  
D a t a S h e e t  
6. Simultaneous Read/Write Block Diagram (PL129J)  
V
V
CC  
OE#  
SS  
CE1#=L  
CE2#=H  
Mux  
Bank 1A  
Bank 1A Address  
Bank 1B Address  
A21–A0  
X-Decoder  
RY/BY#  
Bank 1B  
X-Decoder  
A21–A0  
RESET#  
WE#  
CE1#  
STATE  
CONTROL  
&
Status  
DQ15–DQ0  
CE2#  
COMMAND  
REGISTER  
Control  
Mux  
WP#/ACC  
CE1#=H  
CE2#=L  
X-Decoder  
Bank 2A  
DQ0–DQ15  
Bank 2A Address  
Bank 2B Address  
X-Decoder  
Bank 2B  
A21–A0  
Mux  
Note  
Amax = A21 (PL129J)  
16  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
7. Connection Diagrams  
7.1  
7.1.1  
Special Package Handling Instructions  
TSOP, BGA, PDIP, SSOP, and PLCC Packages  
Special handling is required for Flash Memory products in molded packages.  
The package and/or data integrity may be compromised if the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
7.1.2  
FBGA Packages  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The  
package and/or data integrity may be compromised if the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
7.2  
80-Ball Fine-Pitch BGA—PL127J  
Figure 7.1 80-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL127J  
A8  
NC  
B8  
NC  
C8  
NC  
D8  
E8  
F8  
G8  
H8  
NC  
J8  
K8  
NC  
L8  
M8  
NC  
A22  
NC  
V
IO  
V
SS  
NC  
NC  
A7  
NC  
B7  
NC  
C7  
D7  
E7  
F7  
G7  
H7  
NC  
J7  
K7  
L7  
M7  
NC  
A13  
A12  
A14  
A15  
A16  
DQ15  
V
SS  
NC  
C6  
A9  
D6  
A8  
E6  
F6  
G6  
H6  
J6  
K6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
K5  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
C4  
D4  
E4  
F4  
G4  
H4  
J4  
K4  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
C3  
A7  
D3  
E3  
A6  
F3  
A5  
G3  
H3  
J3  
K3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
NC  
B2  
NC  
C2  
A3  
D2  
A4  
E2  
A2  
F2  
A1  
G2  
A0  
H2  
J2  
K2  
L2  
M2  
NC  
CE#  
OE#  
V
NC  
SS  
A1  
NC  
B1  
NC  
C1  
NC  
D1  
NC  
E1  
F1  
G1  
NC  
H1  
J1  
K1  
NC  
L1  
M1  
NC  
NC  
NC  
V
IO  
NC  
NC  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
17  
D a t a S h e e t  
7.3  
64-Ball Fine-Pitch BGA—MCP Compatible—PL127J  
Figure 7.2 64-Ball Fine-Pitch BGA, MCP Compatible, Top View, Balls Facing Down—PL127J  
A1  
NC  
A10  
NC  
B5  
B6  
RFU  
RFU  
C3  
A7  
C4  
C5  
C6  
C7  
A8  
C8  
A11  
RFU  
WP#/ACC WE#  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
D8  
D9  
A12  
A15  
RFU  
RESET# RFU  
A19  
E2  
A2  
E3  
A5  
E4  
E5  
E6  
E7  
A9  
E8  
E9  
RY/BY # A20  
A13  
A21  
A18  
F2  
A1  
F3  
A4  
F4  
F7  
F8  
F9  
A17  
A10  
A14  
A22  
G2  
A0  
G3  
G4  
G7  
G8  
G9  
VSS  
DQ1  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
VCCf  
J2  
J3  
J4  
DQ10  
K4  
J5  
VCCf  
K5  
J6  
J7  
DQ12  
K7  
J8  
J9  
RFU  
DQ0  
K3  
RFU  
K6  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
RFU  
RFU  
M1  
NC  
M10  
NC  
18  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
7.4  
48-Ball Fine-Pitch BGA, PL064J and PL032J  
Figure 7.3 48-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL064J—PL032J: C4(A21)=NC  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A13  
A12  
A14  
A15  
A16  
NC  
DQ15  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
VSS  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
19  
D a t a S h e e t  
7.5  
56-Pin TSOP 20 x 14 mm  
Figure 7.4 56-Pin TSOP 20 x 14 mm Configuration—PL127J  
RESET#  
RY/BY#  
A0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
WP#/ACC  
WE#  
NC  
A22  
A21  
A20  
OE#  
NC  
CE#  
VSS  
DQ15  
DQ14  
DQ13  
DQ12  
VSSQ  
VCCQ  
DQ11  
DQ10  
DQ9  
DQ8  
VCC  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
A1  
A2  
A3  
A4  
A5  
VCC  
DQ0  
DQ1  
DQ2  
DQ3  
VSSQ  
VCCQ  
DQ4  
DQ5  
DQ6  
DQ7  
VSS  
NC  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
For this family of products, a single multi-chip compatible package (TSOP) is offered for each density to allow  
both standalone and multi-chip qualification using a single, adaptable package. This new methodology allows  
package standardization resulting in faster development. The multi-chip compatible package includes all the  
pins required for standalone device operation and verification. In addition, extra pins are included for insertion  
of common data storage or logic devices to be used for multi-chip products. If a standalone device is required,  
the extra multi-chip specific pins are not connected and the standalone device operates normally. The multi-  
chip compatible package sizes were chosen to serve the largest number of combinations possible. There are  
only a few cases where a larger package size would be required to accommodate the multi-chip combination.  
This multi-chip compatible package set does not allow for direct package migration from the Am29BDS128H,  
Am29BDS128G, Am29BDS640G products, which use legacy standalone packages.  
20  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
7.6  
56-Ball Fine-Pitch Ball Grid Array, PL064J and PL032J  
Figure 7.5 56-ball Fine-Pitch BGA, Top View, Balls Facing Down,—PL064J and PL032J,  
A2  
A7  
B2  
A6  
C2  
A3  
RFU  
B3  
A4  
WP/ACC  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
C1  
A2  
D1  
A1  
B6  
B8  
A15  
C8  
RFU  
C3  
RST#  
C4  
RFU  
C5  
A19  
C6  
A12  
C7  
A5  
D2  
A4  
A18  
D3  
RY/BY#  
A20  
A9  
D6  
A13  
D7  
A21  
D8  
A17  
A10  
A14  
RFU  
E1  
A0  
E2  
E3  
E6  
E7  
E8  
VSS  
DQ1  
DQ6  
RFU  
A16  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
CE1#f  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
G8  
G1  
G2  
G3  
DQ10  
H3  
G4  
G5  
G6  
G7  
RFU  
DQ0  
VCCf  
RFU  
DQ12  
DQ7  
VSS  
H7  
H2  
H4  
H6  
H5  
DQ14  
DQ8  
DQ2  
DQ5  
DQ11  
RFU  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
21  
D a t a S h e e t  
8. Pin Description  
Amax–A0  
DQ15–DQ0  
CE#  
Address bus  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
OE#  
WE#  
VSS  
Device Ground  
Not Connected. No device internal signal is connected to the package connector nor is there any future plan to  
use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed  
Circuit Board (PCB).  
NC  
Reserved for Future Use. Not currently connected internally but the pin/ball location should be left  
unconnected and unused by PCB routing channel for future compatibility. The pin/ball may be  
used by a signal in the future.  
RFU  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept read operations and commands. When RY/  
BY#= VOL, the device is either executing an embedded algorithm or the device is executing a  
hardware reset operation.  
RY/BY#  
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two 4K-word sectors are write protected regardless  
of other sector protection configurations. When WP#/ACC= VIH, these sector are unprotected  
unless the DYB or PPB is programmed. When WP#/ACC= VHH, program and erase operations  
are accelerated.  
WP#/ACC  
VIO  
Input/Output Buffer Power Supply  
(1.65 V to 1.95 V (for PL127J and PL129J) or 2.7 V to 3.6 V (for all PLxxxJ devices))  
Chip Power Supply  
VCC  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
Hardware Reset Pin  
Chip Enable Inputs.  
CE1#, CE2#  
CE1# controls the 64Mb in Banks 1A and 1B.  
CE2# controls the 64 Mb in Banks 2A and 2B. (Only for PL129J)  
Note  
Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
9. Logic Symbol  
max+1  
Amax–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
RY/BY#  
V
(V  
)
CCQ  
IO  
22  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
10. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the  
internal command register. The command register itself does not occupy any addressable memory location.  
The register is a latch used to store the commands, along with the address and data information needed to  
execute the command. The contents of the register serve as inputs to the internal state machine. The state  
machine outputs dictate the function of the device. Table 10.1 lists the device bus operations, the inputs and  
control levels they require, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Table 10.1 PL127J Device Bus Operations  
Addresses  
(Amax–A0)  
DQ15–  
DQ0  
Operation  
CE#  
OE#  
L
WE#  
H
RESET#  
WP#/ACC  
Read  
L
H
H
X
A
A
D
OUT  
IN  
IN  
Write  
L
H
L
X (Note 2)  
D
IN  
Standby  
V
± 0.3 V  
X
X
V
± 0.3 V  
X (Note 2)  
X
High-Z  
High-Z  
High-Z  
IO  
IO  
Output Disable  
Reset  
L
H
H
H
L
X
X
X
X
X
X
X
Temporary Sector Unprotect  
(High Voltage)  
X
X
X
V
X
A
D
IN  
ID  
IN  
Table 10.2 PL129J Device Bus Operations  
Addresses  
(A21–A0)  
DQ15–  
DQ0  
Operation  
CE1#  
CE2#  
OE#  
WE#  
RESET#  
WP#/ACC  
L
H
L
H
L
Read  
L
H
H
X
A
A
D
OUT  
IN  
IN  
H
L
X
Write  
H
X
L
H
D
IN  
(Note 2)  
H
V
± ±  
V
±
V
±
IO  
0.3 V  
IO  
0.3 V  
IO  
0.3 V  
Standby  
X
X
X
High-Z  
Output Disable  
Reset  
L
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
X
Temporary Sector Unprotect  
(High Voltage)  
X
X
X
X
V
X
A
D
IN  
ID  
IN  
Legend:  
L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 8.5–9.5 V, X = Don’t Care, SA = Sector Address, A = Address In, D  
IL  
IH  
ID  
HH  
IN  
IN  
= Data In, D  
= Data Out  
OUT  
Notes  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See High Voltage Sector  
Protection on page 52.  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
10.1 Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appropriate CE# pins (For PL129J -  
CE1#/CE2# pins) to VIL. In PL129J, CE1# and CE2# are the power control and select the lower (CE1#) or  
upper (CE2#) halves of the device. CE# is the power control. OE# is the output control and gates array data  
to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory content occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses  
on the device address inputs produce valid data on the device data outputs. Each bank remains enabled for  
read access until the command register contents are altered.  
Refer to Table 21.3 on page 88 for timing specifications and to Figure 20.3 on page 77 for the timing diagram.  
ICC1 in the DC Characteristics table represents the active current specification for reading array data.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
23  
D a t a S h e e t  
10.1.1  
10.1.2  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid output data. The chip enable  
access time (tCE) is the delay from the stable addresses and stable CE# to valid data at the output inputs. The  
output enable access time is the delay from the falling edge of the OE# to valid data at the output inputs  
(assuming the addresses have been stable for at least tACC–tOE time).  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page mode Mask ROM read  
operation. This mode provides faster read access speed for random locations within a page. Address bits  
Amax–A3 select an 8 word page, and address bits A2–A0 select a specific word within that page. This is an  
asynchronous operation with the microprocessor supplying the specific word location.  
The random or initial page access is tACC or tCE and subsequent page read accesses (as long as the  
locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# (CE1# and  
CE#2 in PL129J) is deasserted (=VIH), the reassertion of CE# (CE1# or CE#2 in PL129J) for subsequent  
access has access time of tACC or tCE. Here again, CE# (CE1# /CE#2 in PL129J)selects the device and OE#  
is the output control and should be used to gate data to the output inputs if the device is selected. Fast page  
mode accesses are obtained by keeping Amax–A3 constant and changing A2–A0 to select the specific word  
within that page.  
Table 10.3 Page Select  
Word  
A2  
0
A1  
0
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
10.2 Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read, erase-suspend program, and  
program-suspend read), the device is capable of reading data from one bank of memory while a program or  
erase operation is in progress in another bank of memory (simultaneous operation). The bank can be  
selected by bank addresses (PL127J: A22–A20, PL129J and PL064J: A21–A19, PL032J: A20–A18) with  
zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Table 10.4 Bank Select  
Bank  
PL127J: A22–A20, PL064J: A21–A19, PL032J: A20–A18  
Bank A  
Bank B  
Bank C  
Bank D  
000  
001, 010, 011  
100, 101, 110  
111  
Bank  
CE1#  
CE2#  
PL129J: A21–A20  
Bank 1A  
Bank 1B  
Bank 2A  
Bank 2B  
0
0
1
1
1
1
0
0
00  
01, 10, 11  
00, 01, 10  
11  
24  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
10.3 Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device and erasing  
sectors of memory), the system must drive WE# and CE# (CE1# or CE#2 in PL129J) to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming. Once a bank enters the  
Unlock Bypass mode, only two write cycles are required to program a word, instead of four. Word Program  
Command Sequence on page 61 has details on programming data to the device using both standard and  
Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 10.4 on page 24  
indicates the set of address space that each sector occupies. A “bank address” is the set of address bits  
required to uniquely select a bank. Similarly, a “sector address” refers to the address bits required to uniquely  
select a sector. Command Definitions on page 59 has details on erasing a sector or the entire chip, or  
suspending/resuming the erase operation.  
ICC2 in the DC Characteristics on page 75 represents the active current specification for the write mode. See  
the timing specification tables and timing diagrams in section Reset on page 79 for write operations.  
10.3.1  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This function is primarily  
intended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors, and uses the higher voltage on the pin to reduce the  
time required for program operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin returns the device to normal  
operation. Note that VHH must not be asserted on WP#/ACC for operations other than accelerated  
programming, or device damage may result. In addition, the WP#/ACC pin should be raised to VCC when not  
in use. That is, the WP#/ACC pin should not be left floating or unconnected; inconsistent behavior of the  
device may result.  
10.3.2  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system  
can then read autoselect codes from the internal register (which is separate from the memory array) on  
DQ15–DQ0. Standard read cycle timings apply in this mode. Refer to the Table 10.9, Secured Silicon Sector  
Addresses on page 43 and Autoselect Command Sequence on page 60 for more information.  
10.4 Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state,  
independent of the OE# input.  
The device enters the CMOS standby mode when the CE# (CE1#,CE#2 in PL129J) and RESET# pins are  
both held at VIO 0.3 V. (Note that this is a more restricted voltage range than VIH.) If CE# (CE1#,CE#2 in  
PL129J) and RESET# are held at VIH, but not within VIO 0.3 V, the device will be in the standby mode, but  
the standby current will be greater. The device requires standard access time (tCE) for read access when the  
device is in either of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation  
is completed.  
ICC3 in DC Characteristics on page 75 represents the CMOS standby current specification.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
25  
D a t a S h e e t  
10.5 Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables  
this mode when addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the  
CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are  
changed. While in sleep mode, output data is latched and always available to the system. Note that during  
automatic sleep mode, OE# must be at VIH before the device reduces current to the stated sleep mode  
specification. ICC5 in DC Characteristics on page 75 represents the automatic sleep mode current  
specification.  
10.6 RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When the  
RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in  
progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The operation that was interrupted  
should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS 0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS 0.3 V, the standby current  
will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a time of tREADY (during Embedded Algorithms). The  
system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is  
asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is  
completed within a time of tREADY (not during Embedded Algorithms). The system can read data tRH after the  
RESET# pin returns to VIH.  
Refer to the tables in AC Characteristic on page 76 for RESET# parameters and to Figure 20.5 on page 79  
for the timing diagram.  
10.7 Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins (except for RY/BY#) are  
placed in the highest Impedance state  
Table 10.5 PL127J Sector Architecture (Sheet 1 of 7)  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
4
4
SA1  
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
26  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 2 of 7)  
Bank  
Sector  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
Sector Address (A22-A12)  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
Sector Size (Kwords)  
Address Range (x16)  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
27  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 2 of 7)  
Bank  
Sector  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
Sector Address (A22-A12)  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
Sector Size (Kwords)  
Address Range (x16)  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
28  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 3 of 7)  
Bank  
Sector  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
Sector Address (A22-A12)  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
Sector Size (Kwords)  
Address Range (x16)  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
29  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 4 of 7)  
Bank  
Sector  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
Sector Address (A22-A12)  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
Sector Size (Kwords)  
Address Range (x16)  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
30  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 5 of 7)  
Bank  
Sector  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
Sector Address (A22-A12)  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
Sector Size (Kwords)  
Address Range (x16)  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
31  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 6 of 7)  
Bank  
Sector  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
Sector Address (A22-A12)  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
Sector Size (Kwords)  
Address Range (x16)  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.5 PL127J Sector Architecture (Sheet 7 of 7)  
Bank  
Sector  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Sector Address (A22-A12)  
11111111000  
Sector Size (Kwords)  
Address Range (x16)  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
4
4
4
4
4
4
4
4
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
Table 10.6 PL064J Sector Architecture (Sheet 1 of 4)  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
33  
D a t a S h e e t  
Table 10.6 PL064J Sector Architecture (Sheet 2 of 4)  
Bank  
Sector  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
Sector Address (A22-A12)  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
Sector Size (Kwords)  
Address Range (x16)  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
34  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.6 PL064J Sector Architecture (Sheet 3 of 4)  
Bank  
Sector  
SA86  
Sector Address (A22-A12)  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
Sector Size (Kwords)  
Address Range (x16)  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
35  
D a t a S h e e t  
Table 10.6 PL064J Sector Architecture (Sheet 4 of 4)  
Bank  
Sector  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
Sector Address (A22-A12)  
1111111001  
Sector Size (Kwords)  
Address Range (x16)  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
4
4
4
4
4
4
4
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
Table 10.7 PL032J Sector Architecture (Sheet 1 of 2)  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
36  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.7 PL032J Sector Architecture (Sheet 2 of 2)  
Bank  
Sector  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
Sector Address (A22-A12)  
011111XXX  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
Sector Size (Kwords)  
Address Range (x16)  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
Bank B  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
4
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
37  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 1 of 6)  
Bank  
Sector  
SA1-0  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sector Address (A21-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
4
SA1-1  
4
SA1-2  
4
SA1-3  
4
SA1-4  
4
SA1-5  
4
SA1-6  
4
SA1-7  
4
SA1-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
SA1-38  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
38  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 2 of 6)  
Bank  
Sector  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
SA1-83  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
SA1-96  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sector Address (A21-A12)  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
Sector Size (Kwords)  
Address Range (x16)  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
39  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 3 of 6)  
Bank  
Sector  
SA1-97  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
SA2-0  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
Sector Size (Kwords)  
Address Range (x16)  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA2-1  
SA2-2  
SA2-3  
SA2-4  
SA2-5  
SA2-6  
SA2-7  
SA2-8  
SA2-9  
SA2-10  
40  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 4 of 6)  
Bank  
Sector  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
SA2-36  
SA2-37  
SA2-38  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
Sector Size (Kwords)  
Address Range (x16)  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
41  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 5 of 6)  
Bank  
Sector  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
SA2-79  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
SA2-96  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
Sector Size (Kwords)  
Address Range (x16)  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
42  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.8 S29PL129J Sector Architecture (Sheet 6 of 6)  
Bank  
Sector  
CE1#  
1
CE2#  
0
Sector Address (A21-A12)  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
Sector Size (Kwords)  
Address Range (x16)  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
4
1
0
4
1
0
4
1
0
4
1
0
4
1
0
4
1
0
4
Table 10.9 Secured Silicon Sector Addresses  
Sector Size  
Address Range  
Factory-Locked Area  
Customer-Lockable Area  
64 words  
000000h-00003Fh  
000040h-00007Fh  
64 words  
10.8 Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to  
automatically match a device to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins  
must be as shown in Table 10.10 on page 44 and Table 10.11 on page 44. In addition, when verifying sector  
protection, the sector address must appear on the appropriate highest order address bits (see Table 10.4  
on page 24). Table 10.10 and Table 10.11 show the remaining address bits that are don’t care. When all  
necessary bits have been set as required, the programming equipment may then read the corresponding  
identifier code on DQ7–DQ0. However, the autoselect codes can also be accessed in-system through the  
command register, for instances when the device is erased or programmed in a system without access to  
high voltage on the A9 pin. The command sequence is illustrated in Table 15.1 on page 66. Note that if a  
Bank Address (BA) (on address bits PL127J: A22A20, PL129J and PL064J: A21A19, PL032J: A20–A18) is  
asserted during the third write cycle of the autoselect command, the host system can read autoselect data  
that bank and then immediately read array data from the other bank, without exiting the autoselect mode.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
43  
D a t a S h e e t  
To access the autoselect codes in-system, the host system can issue the autoselect command via the  
command register, as shown in Table 15.1 on page 66. This method does not require VID. Refer to the  
Autoselect Command Sequence on page 60 for more information.  
Table 10.10 Autoselect Codes (High Voltage Method)  
Amax  
to  
A5  
to  
DQ15  
Description  
CE# OE# WE#  
A12  
A10 A9 A8 A7 A6 A4 A3 A2 A1 A0  
to DQ0  
Manufacturer ID:  
Spansion products  
V
I
L
L
L
L
H
H
BA  
BA  
SA  
X
X
X
X
L
L
L
L
X
L
L
L
L
L
L
L
L
0001h  
227Eh  
D
Read Cycle 1  
H
2220h (PL127J)  
2202h (PL064J)  
220Ah (PL032J)  
Read Cycle 2  
L
H
H
H
L
V
I
D
2200h (PL127J)  
2201h (PL064J)  
2201h (PL032J)  
Read Cycle 3  
L
L
H
L
H
L
H
H
H
L
Sector Protection  
Verification  
V
0001h (protected),  
0000h (unprotected)  
I
L
L
H
H
X
X
X
X
L
L
L
L
D
DQ7=1  
(factory locked),  
DQ6=1  
(factory and  
customer locked)  
Secured Silicon  
BA  
(See Note)  
V
I
L
X
X
L
L
H
H
Indicator Bit  
(DQ7, DQ6)  
D
Legend  
L = Logic Low = V , H = Logic High = V , BA = Bank Address, SA = Sector Address, X = Don’t care.  
IL  
IH  
Note  
When Polling the Secured Silicon indicator bit the Bank Address (BA) should be set within the address range 004000h-03FFFFh.  
Table 10.11 Autoselect Codes for PL129J  
A21  
to  
A5  
to  
DQ15  
Description  
CE1# CE2# OE# WE#  
A12  
A10 A9 A8 A7 A6 A4 A3 A2 A1 A0  
to DQ0  
Manufacturer ID:  
Spansion  
products  
L
H
L
V
I
L
L
H
H
X
X
X
X
X
X
L
L
L
L
X
L
L
L
L
L
0001h  
D
H
L
H
L
H
L
Read  
Cycle 1  
L
H
H
L
H
H
L
H
H
H
L
227Eh  
2221h  
2200h  
H
L
Read  
Cycle 2  
V
I
D
H
L
H
L
Read  
Cycle 3  
H
H
L
H
0001h  
Sector Protection  
Verification  
V
(protected),  
0000h  
(unprotected)  
I
L
L
H
H
SA  
X
X
X
X
L
L
L
L
L
L
L
L
H
H
L
D
H
L
L
H
DQ7=1  
(factory locked),  
DQ6=1  
(factory and  
customer locked)  
Secured Silicon  
Indicator Bit  
(DQ7, DQ6)  
X
V
I
X
X
H
(Note 1)  
D
H
L
Legend  
L = Logic Low = V , H = Logic High = V , BA = Bank Address, SA = Sector Address, X = Don’t care.  
IL  
IH  
Note  
1. When Polling the Secured Silicon indicator bit the A21 to A12 should be set within the address range 004000h-03FFFFh.  
2. The autoselect codes may also be accessed in-system by using the command sequences  
44  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 10.12 PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector/  
Sector/  
Sector  
SA0  
A22-A12  
Sector Block Size  
Sector  
A22-A12  
Sector Block Size  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
4 Kwords  
4 Kwords  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
SA1  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
SA264  
4 Kwords  
SA265  
4 Kwords  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
45  
D a t a S h e e t  
Table 10.13 PL129J Boot Sector/Sector Block Addresses for Protection/Unprotection  
CE1# Control  
A21-12  
CE2# Control  
Sector Group  
SA1-0  
Sector/Sector Block Size  
4 Kwords  
Sector Group  
SA2-0–SA2-3  
A21-12  
Sector/Sector Block Size  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1-1  
4 Kwords  
SA2-4–SA2-7  
SA1-2  
4 Kwords  
SA2-8–SA2-11  
SA2-12–SA2-15  
SA2-16–SA2-19  
SA2-20–SA2-23  
SA2-24–SA2-27  
SA2-28–SA2-31  
SA2-32–SA2-35  
SA2-36–SA2-39  
SA2-40–SA2-43  
SA2-44–SA2-47  
SA2-48–SA2-51  
SA2-52–SA2-55  
SA2-56–SA2-59  
SA2-60–SA2-63  
SA2-64–SA2-67  
SA2-68–SA2-71  
SA2-72–SA2-75  
SA2-76–SA2-79  
SA2-80–SA2-83  
SA2-84–SA2-87  
SA2-88–SA2-91  
SA2-92–SA2-95  
SA2-96–SA2-99  
SA1-3  
4 Kwords  
SA1-4  
4 Kwords  
SA1-5  
4 Kwords  
SA1-6  
4 Kwords  
SA1-7  
4 Kwords  
SA1-8  
32 Kwords  
SA1-9  
32 Kwords  
SA1-10  
32 Kwords  
SA1-11 - SA1-14  
SA1-15 - SA1-18  
SA1-19 - SA1-22  
SA1-23 - SA1-26  
SA1-27 - SA1-30  
SA1-31 - SA1-34  
SA1-35 - SA1-38  
SA1-39 - SA1-42  
SA1-43 - SA1-46  
SA1-47 - SA1-50  
SA1-51 - SA1-54  
SA1-55 - SA1-58  
SA1-59 - SA1-62  
SA1-63 - SA1-66  
SA1-67 - SA1-70  
SA1-71 - SA1-74  
SA1-75 - SA1-78  
SA1-79 - SA1-82  
SA1-83 - SA1-86  
SA1-87 - SA1-90  
SA1-91 - SA1-94  
SA1-95 - SA1-98  
SA1-99 - SA1-102  
SA1-103 - SA1-106  
SA1-107 - SA1-110  
SA1-111 - SA1-114  
SA1-115 - SA1-118  
SA1-119 - SA1-122  
SA1-123 - SA1-126  
SA1-127 - SA1-130  
SA1-131 - SA1-134  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-100–SA2-103 11001XXXXX  
SA2-104–SA2-107 11010XXXXX  
SA2-108–SA2-111 11011XXXXX  
SA2-112–SA2-115 11100XXXXX  
SA2-116–SA2-119 11101XXXXX  
SA2-120–SA2-123 11110XXXXX  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
32 Kwords  
32 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
46  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
10.9 Selecting a Sector Protection Mode  
Table 10.14 PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
SA131  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA132  
32 Kwords  
SA133  
32 Kwords  
SA134  
4 Kwords  
SA135  
4 Kwords  
SA136  
4 Kwords  
SA137  
4 Kwords  
SA138  
4 Kwords  
SA139  
4 Kwords  
SA140  
4 Kwords  
SA141  
4 Kwords  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
47  
D a t a S h e e t  
The device is shipped with all sectors unprotected. Optional Spansion programming services enable  
programming and protecting sectors at the factory prior to shipping the device. Contact your local sales office  
for details.  
It is possible to determine whether a sector is protected or unprotected. See the Table 10.9, Secured Silicon  
Sector Addresses on page 43 for details.  
Table 10.15 Sector Protection Schemes  
DYB  
PPB  
PPB Lock  
Sector State  
0
0
0
1
1
0
1
1
0
0
1
0
1
1
0
1
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
Unprotected—PPB not changeable, DYB is changeable  
Protected—PPB and DYB are changeable  
Protected—PPB not changeable, DYB is changeable  
11. Sector Protection  
The PL127J, PL129J, PL064J, and PL032J features several levels of sector protection, which can disable  
both the program and erase operations in certain sectors or sector groups:  
11.1 Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled protection method.  
11.2 Password Sector Protection  
A highly sophisticated protection method that requires a password before changes to certain sectors or sector  
groups are permitted  
11.3 WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors SA1-133, SA1-134, SA2-0 and  
SA2-1.  
The WP# Hardware Protection feature is always available, independent of the software managed protection  
method chosen.  
11.4 Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The customer must then choose if the  
Persistent or Password Protection method is most desirable. There are two one-time programmable non-  
volatile bits that define which sector protection method will be used. If the Persistent Sector Protection  
method is desired, programming the Persistent Sector Protection Mode Locking Bit permanently sets the  
device to the Persistent Sector Protection mode. If the Password Sector Protection method is desired,  
programming the Password Mode Locking Bit permanently sets the device to the Password Sector Protection  
mode. It is not possible to switch between the two protection modes once a locking bit has been set. One of  
the two modes must be selected when the device is first programmed. This prevents a program or virus from  
later setting the Password Mode Locking Bit, which would cause an unexpected shift from the default  
Persistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Optional Spansion programming services enable  
programming and protecting sectors at the factory prior to shipping the device. Contact your local sales office  
for details.  
It is possible to determine whether a sector is protected or unprotected. See Autoselect Mode on page 43 for  
details.  
48  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
12. Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection method in previous flash  
devices. This new method provides three different sector protection states:  
Persistently Locked—The sector is protected and cannot be changed.  
Dynamically Locked—The sector is protected and can be changed by a simple command.  
Unlocked—The sector is unprotected and can be changed by a simple command.  
To achieve these states, three types of “bits” are used:  
Persistent Protection Bit  
Persistent Protection Bit Lock  
Persistent Sector Protection Mode Locking Bit  
12.1 Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four sectors (see the sector  
address tables for specific sector protection groupings). All 4 Kword boot-block sectors have individual sector  
Persistent Protection Bits (PPBs) for greater flexibility. Each PPB is individually modifiable through the PPB  
Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device must be instructed to  
preprogram all of the sector PPBs prior to PPB erasure. Otherwise, a previously erased sector PPBs can  
potentially be over-erased. The flash device does not have a built-in means of preventing sector PPBs over-  
erasure.  
12.2 Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to “1”, the PPBs cannot be  
changed. When cleared (“0”), the PPBs are changeable. There is only one PPB Lock bit per device. The PPB  
Lock is cleared after power-up or hardware reset. There is no command sequence to unlock the PPB Lock.  
12.3 Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all  
DYBs is “0”. Each DYB is individually modifiable through the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and PPB Lock is defaulted to  
power up in the cleared state – meaning the PPBs are changeable.  
When the device is first powered on the DYBs power up cleared (sectors not protected). The Protection State  
for each sector is determined by the logical OR of the PPB and the DYB related to that sector. For the sectors  
that have the PPBs cleared, the DYBs control whether or not the sector is protected or unprotected. By  
issuing the DYB Write command sequences, the DYBs will be set or cleared, thus placing each sector in the  
protected or unprotected state. These are the so-called Dynamic Locked or Unlocked states. They are called  
dynamic states because it is very easy to switch back and forth between the protected and unprotected  
conditions. This allows software to easily protect sectors against inadvertent changes yet does not prevent  
the easy removal of protection when changes are needed. The DYBs maybe set or cleared as often as  
needed.  
The PPBs allow for a more static, and difficult to change, level of protection. The PPBs retain their state  
across power cycles because they are non-volatile. Individual PPBs are set with a command but must all be  
cleared as a group through a complex sequence of program and erasing commands. The PPBs are also  
limited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are programmed to the desired  
settings, the PPB Lock may be set to “1”. Setting the PPB Lock disables all program and erase commands to  
the non-volatile PPBs. In effect, the PPB Lock Bit locks the PPBs into their current state. The only way to  
clear the PPB Lock is to go through a power cycle. System boot code can determine if any changes to the  
PPB are needed; for example, to allow new system code to be downloaded. If no changes are needed then  
the boot code can set the PPB Lock to disable any further changes to the PPBs during system operation.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
49  
D a t a S h e e t  
The WP#/ACC write protect pin adds a final level of hardware protection to sectors SA1-133, SA1-134, SA2-  
0 and SA2-1. When this pin is low it is not possible to change the contents of these sectors. These sectors  
generally hold system boot code. The WP#/ACC pin can prevent any changes to the boot code that could  
override the choices made while setting up sector protection during system initialization.  
For customers who are concerned about malicious viruses there is another level of security - the persistently  
locked state. To persistently protect a given sector or sector group, the PPBs associated with that sector need  
to be set to “1”. Once all PPBs are programmed to the desired settings, the PPB Lock should be set to “1”.  
Setting the PPB Lock automatically disables all program and erase commands to the Non-Volatile PPBs. In  
effect, the PPB Lock “freezes” the PPBs into their current state. The only way to clear the PPB Lock is to go  
through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state.  
The sectors in the dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB  
Write command sequence is all that is necessary. The DYB write command for the dynamic sectors switch  
the DYBs to signify protected and unprotected, respectively. If there is a need to change the status of the  
persistently locked sectors, a few more steps are required. First, the PPB Lock bit must be disabled by either  
putting the device through a power-cycle, or hardware reset. The PPBs can then be changed to reflect the  
desired settings. Setting the PPB lock bit once again will lock the PPBs, and the device operates normally  
again.  
The best protection is achieved by executing the PPB lock bit set command early in the boot code, and  
protect the boot code by holding WP#/ACC = VIL.  
Table 10.15 on page 48 contains all possible combinations of the DYB, PPB, and PPB lock relating to the  
status of the sector.  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and the protection can not be  
removed until the next power cycle clears the PPB lock. If the PPB is cleared, the sector can be dynamically  
locked or unlocked. The DYB then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores the command and returns to  
read mode. A program command to a protected sector enables status polling for approximately 1 µs before  
the device returns to read mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs after which the device returns  
to read mode without having erased the protected sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified by writing a DYB/PPB/  
PPB lock verify command to the device. There is an alternative means of reading the protection status. Take  
RESET# to VIL and hold WE# at VIH. (The high voltage A9 Autoselect Mode also works for reading the status  
of the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) = (0, 1, 0) will produce a logical ‘1” code  
at device output DQ0 for a protected sector or a “0” for an unprotected sector. In this mode, the other  
addresses are don’t cares. Address location with A1 = VIL are reserved for autoselect manufacturer and  
device codes.  
12.4 Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking bit exists to guarantee that  
the device remain in software sector protection. Once set, the Persistent Sector Protection locking bit  
prevents programming of the password protection mode locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
50  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
13. Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of security than the Persistent  
Sector Protection Mode. There are two main differences between the Persistent Sector Protection and the  
Password Sector Protection Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock bit set to the locked state,  
rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with no means to read,  
program, or erase it. The password is used to clear the PPB Lock bit. The Password Unlock command must  
be written to the flash, along with a password. The flash device internally compares the given password with  
the pre-programmed password. If they match, the PPB Lock bit is cleared, and the PPBs can be altered. If  
they do not match, the flash device does nothing. There is a built-in 2 µs delay for each “password check.”  
This delay is intended to thwart any efforts to run a program that tries all possible combinations in order to  
crack the password.  
13.1 Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first program the password. The  
password may be correlated to the unique Electronic Serial Number (ESN) of the particular flash device.  
Each ESN is different for every flash device; therefore each password should be different for every flash  
device. While programming in the password region, the customer may perform Password Verify operations.  
Once the desired password is programmed in, the customer must then set the Password Mode Locking Bit.  
This operation achieves two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is not possible to reverse this  
function.  
Disables all further commands to the password region. All program, and read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead to unrecoverable errors. The  
user must be sure that the Password Protection method is desired when setting the Password Mode Locking  
Bit. More importantly, the user must be sure that the password is correct when the Password Mode Locking  
Bit is set. Due to the fact that read operations are disabled, there is no means to verify what the password is  
afterwards. If the password is lost after setting the Password Mode Locking Bit, there will be no way to clear  
the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password on the DQ bus and further  
password programming. The Password Mode Locking Bit is not erasable. Once Password Mode Locking Bit  
is programmed, the Persistent Sector Protection Locking Bit is disabled from programming, guaranteeing that  
no changes to the protection scheme are allowed.  
13.2 64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through the use of the Password  
Program and Verify commands (see “Password Verify Command”). The password function works in  
conjunction with the Password Mode Locking Bit, which when set, prevents the Password Verify command  
from reading the contents of the password on the pins of the device.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
51  
D a t a S h e e t  
13.3 Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper two and lower two sectors  
without using VID. This function is provided by the WP# pin and overrides the previously discussed High  
Voltage Sector Protection on page 52 method.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the two  
outermost 4 Kword sectors on both ends of the flash array independent of whether it was previously protected  
or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two and lower two sectors to  
whether they were last set to be protected or unprotected. That is, sector protection or unprotection for these  
sectors depends on whether they were last protected or unprotected using the method described in the High  
Voltage Sector Protection on page 52.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may  
result.  
13.3.1  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of the Password Mode Locking  
Bit after power-up reset. If the Password Mode Lock Bit is also set after a hardware reset (RESET# asserted)  
or a power-up reset, the ONLY means for clearing the PPB Lock Bit in Password Protection Mode is to issue  
the Password Unlock command. Successful execution of the Password Unlock command clears the PPB  
Lock Bit, allowing for sector PPBs modifications. Asserting RESET#, taking the device through a power-on  
reset, or issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode  
Lock Bit is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode, the PPB Lock Bit is cleared  
after power-up or hardware reset. The PPB Lock Bit is set by issuing the PPB Lock Bit Set command. Once  
set the only means for clearing the PPB Lock Bit is by issuing a hardware or power-up reset. The Password  
Unlock command is ignored in Persistent Protection Mode.  
13.4 High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming equipment. The procedure  
requires high voltage (VID) to be placed on the RESET# pin. Refer to Figure 13.1 on page 53 for details on  
this procedure. Note that for sector unprotect, all unprotected sectors must first be protected prior to the first  
sector write cycle.  
52  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Figure 13.1 In-System Sector Protection/Sector Unprotection Algorithms  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
Yes  
Set up first sector  
address  
A7-A0 = 00000010  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Remove V  
ID  
Data = 00h?  
Yes  
from RESET#  
No  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Remove V  
from RESET#  
ID  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Protect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
53  
D a t a S h e e t  
13.5 Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the sector addresses. Once VID is removed from the  
RESET# pin, all the previously protected sectors are protected again. Figure 13.2 on page 54 shows the  
algorithm, and Figure 21.1 on page 85 shows the timing diagrams, for this feature. While PPB lock is set, the  
device cannot enter the Temporary Sector Unprotection Mode.  
Figure 13.2 Temporary Sector Unprotect Operation  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = V , upper two and lower two sectors will remain protected).  
IL  
2. All previously protected sectors are protected once again  
13.6 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables permanent part  
identification through an Electronic Serial Number (ESN) The 128-word Secured Silicon sector is divided into  
64 factory-lockable words that can be programmed and locked by the customer. The Secured Silicon sector  
is located at addresses 000000h-00007Fh in both Persistent Protection mode and Password Protection  
mode. Indicator bits DQ6 and DQ7 are used to indicate the factory-locked and customer locked status of the  
part.  
The system accesses the Secured Silicon Sector through a command sequence (see the Enter/Exit Secured  
Silicon Sector Command Sequence on page 60). After the system has written the Enter Secured Silicon  
Sector command sequence, it may read the Secured Silicon Sector by using the addresses normally  
occupied by the boot sectors. This mode of operation continues until the system issues the Exit Secured  
Silicon Sector command sequence, or until power is removed from the device. Once the Enter SecSi Sector  
Command sequence has been entered, the standard array cannot be accessed until the Exit SecSi Sector  
command has been entered or the device has been reset. On power-up, or following a hardware reset, the  
device reverts to sending commands to the normal address space. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
54  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
13.6.1  
13.6.2  
Factory-Locked Area (64 words)  
The factory-locked area of the Secured Silicon Sector (000000h-00003Fh) is locked when the part is shipped,  
whether or not the area was programmed at the factory. The Secured Silicon Sector Factory-locked Indicator  
Bit (DQ7) is permanently set to a “1”. Optional Spansion programming services can program the factory-  
locked area with a random ESN, a customer-defined code, or any combination of the two. Because only  
Spansion can program and protect the factory-locked area, this method ensures the security of the ESN once  
the product is shipped to the field. Contact your local sales office for details on using Spansion’s programming  
services. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon  
sector is enabled.  
Customer-Lockable Area (64 words)  
The customer-lockable area of the Secured Silicon Sector (000040h-00007Fh) is shipped unprotected, which  
allows the customer to program and optionally lock the area as appropriate for the application. The Secured  
Silicon Sector Customer-locked Indicator Bit (DQ6) is shipped as “0” and can be permanently locked to “1” by  
issuing the Secured Silicon Protection Bit Program Command. The Secured Silicon Sector can be read any  
number of times, but can be programmed and locked only once. Note that the accelerated programming  
(ACC) and unlock bypass functions are not available when programming the Secured Silicon Sector.  
The Customer-lockable Secured Silicon Sector area can be protected using one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then follow the in-  
system sector protect algorithm as shown in Figure 13.1 on page 53, except that RESET# may be at either  
VIH or VID. This allows in-system protection of the Secured Silicon Sector Region without raising any device  
pin to a high voltage. Note that this method is only applicable to the Secured Silicon Sector.  
To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm shown in Figure  
on page 55.  
Once the Secured Silicon Sector is locked and verified, the system must write the Exit Secured Silicon  
Sector Region command sequence to return to reading and writing the remainder of the array.  
The Secured Silicon Sector lock must be used with caution since, once locked, there is no procedure  
available for unlocking the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector  
memory space can be modified in any way.  
13.6.3  
Secured Silicon Sector Protection Bits  
The Secured Silicon Sector Protection Bits prevent programming of the Secured Silicon Sector memory area.  
Once set, the Secured Silicon Sector memory area contents are non-modifiable.  
Figure 13.3 Secured Silicon Sector Protect Verify  
START  
If data = 00h,  
RESET# =  
SecSi Sector is  
VIH or VID  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
Write reset  
with A6 = 0,  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Read from SecSi  
Protect Verify  
Sector address  
complete  
with A6 = 0,  
A1 = 1, A0 = 0  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
55  
D a t a S h e e t  
13.7 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection  
against inadvertent writes. In addition, the following hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system noise.  
13.7.1  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC  
power-up and power-down. The command register and all internal program/erase circuits are disabled, and  
the device resets to the read mode. Subsequent writes are ignored until VCC is greater than VLKO. The  
system must provide the proper signals to the control pins to prevent unintentional writes when VCC is greater  
than VLKO  
.
13.7.2  
13.7.3  
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE#, (CE1#, CE2# in PL129J) or WE# do not initiate a write  
cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# (CE1# = CE2# in PL129J)= VIH or  
WE# = VIH. To initiate a write cycle, CE# (CE1# / CE2# in PL129J) and WE# must be a logical zero while  
OE# is a logical one.  
13.7.4  
Power-Up Write Inhibit  
If WE# = CE# (CE1#, CE2# in PL129J) = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on  
power-up.  
14. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation  
handshake, which allows specific vendor-specified software algorithms to be used for entire families of  
devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address  
55h, any time the device is ready to read array data. The system can read CFI information at the addresses  
given in Table 14.1 on page 57 to Table 14.4 on page 58. To terminate reading CFI data, the system must  
write the reset command. The CFI Query mode is not accessible when the device is executing an Embedded  
Program or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read CFI data at the addresses given in Table 14.1 to  
Table 14.4. The system must write the reset command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100. Contact your local sales  
office for copies of these documents.  
56  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 14.1 CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 14.2 System Interface String  
Addresses  
Data  
Description  
V
Min. (write/erase)  
CC  
1Bh  
0027h  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
1Ch  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
PP  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
57  
D a t a S h e e t  
Table 14.3 Device Geometry Definition  
Addresses  
Data  
Description  
0018h (PL127J)  
0018h (PL129J)  
0017h (PL064J)  
0016h (PL032J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (PL127J)  
00FDh (PL129J)  
007Dh (PL064J)  
003Dh (PL032J)  
31h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
Table 14.4 Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
0002h  
0001h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
0001h  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
00E7h (PL127J)  
00E7h (PL129J)  
0077h (PL064J)  
003Fh (PL032J)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
4Eh  
0000h  
0002h (PLxxxJ)  
0085h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
58  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 14.4 Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
0001h  
0004h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
58h  
59h  
5Ah  
5Bh  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
15. Command Definitions  
Writing specific address and data commands or sequences into the command register initiates device  
operations. Table 15.1 on page 66 defines the valid register command sequences. Writing incorrect  
address and data values or writing them in the improper sequence may place the device in an unknown  
state. A reset command is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE# (CE1# / CE2# in PL129J), whichever happens  
later. All data is latched on the rising edge of WE# or CE# (CE1# / CE2# in PL129J), whichever happens first.  
Refer to AC Characteristic on page 76 for timing diagrams.  
15.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data after completing an Embedded Program or Embedded  
Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank enters the erase-suspend-  
read mode, after which the system can read data from any non-erase-suspended sector within the same  
bank. The system can read array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing a programming operation in  
the Erase Suspend mode, the system may once again read array data with the same exception. See Erase  
Suspend/Erase Resume Commands on page 64 for more information.  
After the device accepts a Program Suspend command, the corresponding bank enters the program-  
suspend-read mode, after which the system can read data from any non-program-suspended sector within  
the same bank. See Program Suspend/Program Resume Commands on page 65 for more information.  
The system must issue the reset command to return a bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase operation, or if the bank is in the autoselect mode. See the next  
section, Reset Command on page 60, for more information.  
See also Requirements for Reading Array Data on page 23 for more information. The table AC Characteristic  
on page 76 provides the read parameters, and Figure 16.2 on page 70 shows the timing diagram.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
59  
D a t a S h e e t  
15.2 Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read mode. Address bits are don’t  
cares for this command.  
The reset command may be written between the sequence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the system was writing to the read mode. Once erasure begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command sequence before  
programming begins. This resets the bank to which the system was writing to the read mode. If the program  
command sequence is written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins, however, the device ignores  
reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must be written to return to the read mode. If a bank  
entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns that bank  
to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the banks to the  
read mode (or erase-suspend-read mode if that bank was in Erase Suspend and program-suspend-read  
mode if that bank was in Program Suspend).  
15.3 Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device codes,  
and determine whether or not a sector is protected. The autoselect command sequence may be written to an  
address within a bank that is either in the read or erase-suspend-read mode. The autoselect command may  
not be written while the device is actively programming or erasing in the other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the autoselect command. The bank then enters the autoselect  
mode. The system may read any number of autoselect codes without reinitiating the command sequence.  
Table 15.1 on page 66 shows the address and data requirements. To determine sector protection  
information, the system must write to the appropriate bank address (BA) and sector address (SA). Table 10.4  
on page 24 shows the address range and bank number associated with each sector.  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
15.4 Enter/Exit Secured Silicon Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing a random, eight word electronic  
serial number (ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle  
Enter Secured Silicon Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector command sequence. The Exit  
Secured Silicon Sector command sequence returns the device to normal operation. The Secured Silicon  
Sector is not accessible when the device is executing an Embedded Program or embedded Erase algorithm.  
Table 15.1 on page 66 shows the address and data requirements for both command sequences. See also  
Secured Silicon Sector Flash Memory Region on page 54 for further information. Note that the ACC function  
and unlock bypass modes are not available when the Secured Silicon Sector is enabled.  
60  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
15.5 Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up command. The program address and data are written  
next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further  
controls or timings. The device automatically provides internally generated program pulses and verifies the  
programmed cell margin. Table 15.1 on page 66 shows the address and data requirements for the program  
command sequence. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable  
when a [program/erase] operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to the read mode and addresses  
are no longer latched. The system can determine the status of the program operation by using DQ7, DQ6, or  
RY/BY#. Refer to Write Operation Status on page 68 for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program operation. The program command sequence should be  
reinitiated once that bank has returned to the read mode, to ensure data integrity. Note that the Secured  
Silicon Sector, autoselect and CFI functions are unavailable when the Secured Silicon Sector is enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from  
“0” back to a “1.Attempting to do so may cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6  
status bits to indicate the operation was successful. However, a succeeding read will show that the data is still  
“0.” Only erase operations can convert a “0” to a “1.”  
15.5.1  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster than using the standard  
program command sequence. The unlock bypass command sequence is initiated by first writing two unlock  
cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. That bank then  
enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is  
required to program in this mode. The first cycle in this sequence contains the unlock bypass program  
command, A0h; the second cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required in the standard program  
command sequence, resulting in faster total programming time. Table 15.1 on page 66 shows the  
requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are  
valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command  
sequence. (See Table 15.2 on page 67)  
The device offers accelerated program operations through the WP#/ACC pin. When the system asserts VHH  
on the WP#/ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write  
the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP#/  
ACC pin to accelerate the operation. Note that the WP#/ACC pin must not be at VHH any operation other than  
accelerated programming, or device damage may result. In addition, the WP#/ACC pin must not be left  
floating or unconnected; inconsistent behavior of the device may result.  
Figure 15.1 on page 62 illustrates the algorithm for the program operation. Refer to the table Erase/Program  
Operations on page 80 for parameters, and Figure 20.6 on page 81 for timing diagrams.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
61  
D a t a S h e e t  
Figure 15.1 Program Operation  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note  
See Table 15.1 on page 66 for program command sequence.  
15.6 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical erase. The system is not required to provide any  
controls or timings during these operations. Table 15.1 on page 66 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no  
longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or  
RY/BY#. Refer to Write Operation Status on page 68 for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that Secured Silicon Sector,  
autoselect, and CFI functions are unavailable when a [program/erase] operation is in progress. However,  
note that a hardware reset immediately terminates the erase operation. If that occurs, the chip erase  
command sequence should be reinitiated once that bank has returned to reading array data, to ensure data  
integrity.  
Figure 15.2 on page 63 illustrates the algorithm for the erase operation. Refer to the tables in Erase/Program  
Operations on page 80 for parameters, and Figure 20.8 on page 82 for timing diagrams.  
62  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
15.7 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed  
by the address of the sector to be erased, and the sector erase command. Table 15.1 on page 66 shows the  
address and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase.  
The system is not required to provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may  
be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between  
these additional cycles must be less than 50 µs, otherwise erasure may begin. Any sector erase address and  
command following the exceeded time-out may or may not be accepted. It is recommended that processor  
interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be  
re-enabled after the last Sector Erase command is written. If any command other than 30h, B0h, F0h is  
input during the time-out period, the normal operation will not be guaranteed. The system must rewrite  
the command sequence and any additional addresses and commands. Note that Secured Silicon Sector,  
autoselect, and CFI functions are unavailable when a [program/erase] operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3:  
Sector Erase Timer). The time-out begins from the rising edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded Erase operation is in progress, the system can read data  
from the non-erasing bank. The system can determine the status of the erase operation by reading DQ7,  
DQ6, DQ2, or RY/BY# in the erasing bank. Refer to Write Operation Status on page 68 for information on  
these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands  
are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs,  
the sector erase command sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity.  
Figure 7.2 on page 18 illustrates the algorithm for the erase operation. Refer to the tables in Erase/Program  
Operations on page 80 for parameters, and Figure 20.8 on page 82 for timing diagrams.  
Figure 15.2 Erase Operation  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes  
1. See Table 15.1 on page 66 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
63  
D a t a S h e e t  
15.8 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected for erasure. The bank address is required when writing  
this command. This command is valid only during the sector erase operation, including the 50 µs time-out  
period during the sector erase command sequence. The Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device requires a  
maximum of 35 µs to suspend the erase operation. However, when the Erase Suspend command is written  
during the sector erase time-out, the device immediately terminates the time-out period and suspends the  
erase operation. Addresses are “don’t-cares” when writing the Erase suspend command.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system  
can read data from or program data to any sector not selected for erasure. (The device “erase suspends” all  
sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status  
information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is  
actively erasing or is erase-suspended. Refer to Write Operation Status on page 68 for information on these  
status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode.  
The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard Word Program operation. Refer to Write Operation Status on page 68 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence. The device  
allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in  
the memory array. When the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to Table 10.9, Secured Silicon Sector Addresses  
on page 43 and Autoselect Command Sequence on page 60 for details.  
To resume the sector erase operation, the system must write the Erase Resume command (address bits are  
don’t care). The bank address of the erase-suspended bank is required when writing this command. Further  
writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip  
has resumed erasing.  
If the Persistent Sector Protection Mode Locking Bit is verified as programmed without margin, the Persistent  
Sector Protection Mode Locking Bit Program Command should be reissued to improve program margin. If the  
Secured Silicon Sector Protection Bit is verified as programmed without margin, the Secured Silicon Sector  
Protection Bit Program Command should be reissued to improve program margin. µµAfter programming a  
PPB, two additional cycles are needed to determine whether the PPB has been programmed with margin. If  
the PPB has been programmed without margin, the program command should be reissued to improve the  
program margin. Also note that the total number of PPB program/erase cycles is limited to 100 cycles.  
Cycling the PPBs beyond 100 cycles is not guaranteed.  
After erasing the PPBs, two additional cycles are needed to determine whether the PPB has been erased  
with margin. If the PPBs has been erased without margin, the erase command should be reissued to improve  
the program margin. The programming of either the PPB or DYB for a given sector or sector group can be  
verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming of a DYB for a given sector  
group.  
64  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
15.9 Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded programming operation so that  
data can read from any non-suspended sector. When the Program Suspend command is written during a  
programming process, the device halts the programming operation within tPSL (program suspend latency)  
and updates the status bits. Addresses are “don’t-cares” when writing the Program Suspend command. After  
the programming operation has been suspended, the system can read array data from any non-suspended  
sector. The Program Suspend command may also be issued during a programming operation while an erase  
is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend.  
If a read is needed from the Secured Silicon Sector area, then user must use the proper command  
sequences to enter and exit this region. The system may also write the autoselect command sequence when  
the device is in Program Suspend mode. The device allows reading autoselect codes in the suspended  
sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode, the  
device reverts to Program Suspend mode, and is ready for another valid operation. See Autoselect  
Command Sequence on page 60 for more information. After the Program Resume command is written, the  
device reverts to programming. The system can determine the status of the program operation using the DQ7  
or DQ6 status bits, just as in the standard program operation. See Write Operation Status on page 68 for  
more information. The system must write the Program Resume command (address bits are “don’t care”) to  
exit the Program Suspend mode and continue the programming operation. Further writes of the Program  
Resume command are ignored. Another Program Suspend command can be written after the device has  
resumed programming.  
15.10 Command Definitions Tables  
Table 15.1 on page 66 contains the Memory Array Command Definitions.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
65  
D a t a S h e e t  
Table 15.1 Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Read (5)  
Addr Data Addr Data Addr Data  
Addr  
Data Addr Data Addr Data  
1
1
RA  
RD  
F0  
Reset (6)  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
Device ID (10)  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
01  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(BA)  
X0F  
227E  
(8)  
(10)  
(10)  
Secured Silicon Sector  
Factory Protect (8)  
(BA)  
555  
AA  
X03  
Sector Group  
Protect Verify(9)  
(BA)  
555  
XX00/  
XX01  
AAA  
(SA) X02  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
98  
A0  
AA  
A0  
80  
98  
90  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
AA  
AA  
Chip Erase  
555  
555  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (11)  
Program/Erase Resume (12)  
CFI Query (13)  
BA  
55  
Accelerated Program (15)  
Unlock Bypass Entry (15)  
Unlock Bypass Program (15)  
Unlock Bypass Erase (15)  
Unlock Bypass CFI (13)(15)  
Unlock Bypass Reset (15)  
Legend  
XX  
PA  
2AA  
PA  
PD  
55  
555  
XX  
555  
20  
PD  
10  
XX  
XX  
XX  
XXX  
XXX  
00  
BA = Address of bank switching to autoselect mode, bypass mode, or erase operation. Determined by PL127J: Amax:A20, PL064J and  
PL129J: Amax:A19, PL032J: Amax:A18.  
PA = Program Address (Amax:A0). Addresses latch on falling edge of WE# or CE# (CE1#/CE2# for PL129J) pulse, whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches on rising edge of WE# or CE# (CE1#/CE2# for PL129J) pulse,  
whichever happens first.  
RA = Read Address (Amax:A0).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes  
1. See Table 10.1 on page 23 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except  
where BA is required) and data bits higher than DQ7 are don’t cares.  
5. No unlock or command cycles required when bank is reading array data.  
6. The Reset command is required to return to reading array (or to erase-suspend-read mode if previously in Erase Suspend) when bank is  
in autoselect mode, or if DQ5 goes high (while bank is providing status information).  
7. Fourth cycle of autoselect command sequence is a read cycle. System must provide bank address to obtain manufacturer ID or device ID  
information. See Autoselect Command Sequence on page 60 for more information.  
8. The data is DQ6=1 for factory and customer locked and DQ7=1 for factory locked.  
9. The data is 00h for an unprotected sector group and 01h for a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL127J (X0Eh = 2220h, X0Fh = 2200h), PL129J (X0Eh = 2221h, X0Fh =  
2200h),PL064J (X0Eh = 2202h, X0Fh = 2201h), PL032J (X0Eh = 220Ah, X0Fh = 2201h).  
11. System may read and program in non-erasing sectors, or enter autoselect mode, when in Program/Erase Suspend mode. Program/Erase  
Suspend command is valid only during a sector erase operation, and requires bank address.  
12. Program/Erase Resume command is valid only during Erase Suspend mode, and requires bank address.  
13. Command is valid when device is ready to read array data or when device is in autoselect mode.  
14. WP#/ACC must be at V during the entire operation of command.  
ID  
15. Unlock Bypass Entry command is required prior to any Unlock Bypass operation. Unlock Bypass Reset command is required to return to  
the reading array.  
66  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 15.2 Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Reset  
1
3
XXX  
555  
F0  
Secured Silicon  
Sector Entry (16)  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
Secured Silicon  
Sector Exit (16)  
4
6
555  
555  
AA  
AA  
XX  
00  
68  
Secured Silicon  
Protection Bit  
RD  
(0)  
2AA  
55  
555  
60  
OW  
OW  
OW  
48  
OW  
Program (Notes 5, 6)  
Secured Silicon  
Protection Bit Status  
RD  
(0)  
5
4
4
7
6
4
555  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
60  
38  
C8  
28  
60  
90  
OW  
XX  
48  
Password Program  
(Notes 5, 7, 8)  
PD  
[0-3] [0-3]  
Password Verify  
(Notes 6, 8, 9)  
PWA PWD  
[0-3] [0-3]  
Password Unlock  
(Notes 7, 10, 11)  
PWA PWD PWA PWD PWA PWD PWA PWD  
[0]  
[0]  
[1]  
[1]  
[2]  
[2]  
[3]  
[3]  
PPB Program  
(Notes 5, 6, 11)  
(SA)  
WP  
(SA)  
WP  
(SA)  
WP  
68  
48  
RD(0)  
BA+  
555  
(SA)  
WP  
RD  
(0)  
PPB Status  
All PPB Erase  
(Notes 5, 6, 13, 14)  
(SA)  
WP  
6
3
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
60  
78  
58  
WP  
60  
(SA)  
40  
RD(0)  
PPB Lock Bit Set  
BA+  
555  
RD  
(1)  
PPB Lock Bit Status (15)  
SA  
DYB Write (7)  
DYB Erase (7)  
4
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
48  
48  
SA  
SA  
X1  
X0  
BA+  
555  
RD  
(0)  
DYB Status (6)  
4
6
5
6
5
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
58  
60  
60  
60  
60  
SA  
PL  
PL  
SL  
SL  
PPMLB Program  
(Notes 5, 6, 12)  
555  
555  
555  
555  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
RD  
(0)  
PPMLB Status (5)  
SPMLB Program  
(Notes 5, 6, 12)  
48  
RD  
(0)  
SPMLB Status (5)  
Legend  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
Notes  
1. See Table 10.1 on page 23 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
67  
D a t a S h e e t  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except  
where BA is required) and data bits higher than DQ7 are don’t cares.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6 validate bit has been fully programmed when DQ0 = 1. If DQ0 = 0 in cycle 6,  
program command must be issued and verified again.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of password.  
9. Command sequence returns FFh if PPMLB is set.  
10. The password is written over four consecutive cycles, at addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase command must  
be issued and verified again. Before issuing erase command, all PPBs should be programmed to prevent PPB overerasure.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
16. Once the Secured Silicon Sector Entry Command sequence has been entered, the standard array cannot be accessed until the Exit  
SecSi Sector command has been entered or the device has been reset.  
16. Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5,  
DQ6, and DQ7. Table 16.1 on page 72 and the following subsections describe the function of these bits. DQ7  
and DQ6 each offer a method for determining whether a program or erase operation is complete or in  
progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an  
Embedded Program or Erase operation is in progress or has been completed.  
16.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm  
is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising  
edge of the final WE# pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum  
programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7.  
The system must provide an address within any of the sectors selected for erasure to read valid status  
information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling  
on DQ7 is active for approximately 400 µs, then the bank returns to the read mode. If not all selected sectors  
are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the  
status may not be valid.  
When the system detects DQ7 has changed from the complement to true data, it can read valid data at  
DQ15–DQ0 on the following read cycles. Just prior to the completion of an Embedded Program or Erase  
operation, DQ7 may change asynchronously with DQ15–DQ0 while Output Enable (OE#) is asserted low.  
That is, the device may change from providing status information to valid data on DQ7. Depending on when  
the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed  
the program or erase operation and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid.  
Valid data on DQ15–DQ0 will appear on successive read cycles.  
Table 16.1 on page 72 shows the outputs for Data# Polling on DQ7. Figure 16.1 on page 69 shows the Data#  
Polling algorithm. Figure 20.10 on page 83 shows the Data# Polling timing diagram.  
68  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Figure 16.1 Data# Polling Algorithm  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being  
erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
16.2 RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the  
Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or one  
of the banks is in the erase-suspend-read mode.  
Table 16.1 on page 72 shows the outputs for RY/BY#.  
16.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is  
valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for  
approximately 400 µs, then returns to reading array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
69  
D a t a S h e e t  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use  
DQ7 (see the DQ7: Data# Polling on page 68).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program  
algorithm is complete.  
Table 16.1 on page 72 shows the outputs for Toggle Bit I on DQ6. Figure 16.2 on page 70 shows the toggle  
bit algorithm. Figure 20.11 on page 84 in shows the toggle bit timing diagrams. Figure 20.12 on page 84  
shows the differences between DQ2 and DQ6 in graphical form. See also the DQ2: Toggle Bit II on page 71.  
Figure 16.2 Toggle Bit Algorithm  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note:  
The system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes to “1.See the DQ6:  
Toggle Bit I on page 69 and DQ2: Toggle Bit II on page 71 for more information.  
70  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
16.4 DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that  
is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is  
valid after the rising edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure.  
(The system may use either OE# or CE# (CE1# / CE2# for PL129J) to control the read cycles.) But DQ2  
cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison,  
indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors  
are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to  
Table 16.1 on page 72 to compare outputs for DQ2 and DQ6.  
Figure 16.2 on page 70 shows the toggle bit algorithm in flowchart form, and the DQ2: Toggle Bit II  
on page 71 explains the algorithm. See also the DQ6: Toggle Bit I on page 69. Figure 20.11 on page 84  
shows the toggle bit timing diagram. Figure 20.12 on page 84 shows the differences between DQ2 and DQ6  
in graphical form.  
16.5 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 16.2 on page 70 for the following discussion. Whenever the system initially begins reading  
toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling.  
Typically, the system would note and store the value of the toggle bit after the first read. After the second  
read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling,  
the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on  
the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the  
system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as  
DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or  
erase operation. If it is still toggling, the device did not completed the operation successfully, and the system  
must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not  
gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles,  
determining the status as described in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algorithm when it returns to  
determine the status of the operation (top of Figure 16.2 on page 70).  
16.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a “1,” indicating that the program or erase cycle was not successfully  
completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was previously  
programmed to “0.” Only an erase operation can change a “0” back to a “1.” Under this condition, the  
device halts the operation, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return to the read mode (or to the  
erase-suspend-read mode if a bank was previously in the erase-suspend-program mode).  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
71  
D a t a S h e e t  
16.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors  
are selected for erasure, the entire time-out also applies after each additional sector erase command. When  
the time-out period is complete, DQ3 switches from a “0” to a “1.” See also the Sector Erase Command  
Sequence on page 63.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is  
“1,” the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,” the device will accept additional sector erase commands.  
To ensure the command has been accepted, the system software should check the status of DQ3 prior to and  
following each subsequent sector erase command. If DQ3 is high on the second status check, the last  
command might not have been accepted.  
Table 16.1 shows the status of DQ3 relative to the other status bits.  
Table 16.1 Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
(Note 2)  
RY/BY#  
Embedded Program  
Algorithm  
DQ7#  
0
Toggle  
0
0
N/A  
No toggle  
Toggle  
0
Standard  
Mode  
Embedded Erase  
Algorithm  
Toggle  
1
0
1
Erase  
Suspended  
1
No toggle  
0
N/A  
Toggle  
Erase  
Sector  
Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
Suspended  
Sector  
Erase-Suspend  
-Program  
DQ7#  
Toggle  
0
1
Reading within  
Program  
Suspended Sector  
Invalid  
(Not Allowed)  
Invalid  
(Not Allowed)  
Invalid  
(Not Allowed)  
Invalid  
(Not Allowed)  
Invalid  
(Not Allowed)  
Program  
Suspend  
Mode  
Reading within  
Non-program  
(Note 3)  
Data  
Data  
Data  
Data  
Data  
1
Suspended Sector  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to DQ5:  
Exceeded Timing Limits on page 71 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm is in  
progress. The device outputs array data if the system addresses a non-busy bank.  
72  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
17. Absolute Maximum Ratings  
Storage Temperature Plastic Packages  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground  
VCC (Note 1)  
–65°C to +150°C  
–65°C to +125°C  
–0.5 V to +4.0 V  
–0.5 V to +12.5 V  
–0.5 V to +10.5 V  
–0.5 V to VCC +0.5 V  
200 mA  
A9, OE#, and RESET# (Note 2)  
WP#/ACC (Note 2)  
All other pins (Note 1)  
Output Short Circuit Current (Note 3)  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V to –2.0 V for periods of  
SS  
up to 20 ns. Maximum DC voltage on input or I/O pins is V +0.5 V. During voltage transitions, input or I/O pins may overshoot to V  
CC  
CC  
+2.0 V for periods up to 20 ns. See Figure 17.1 on page 73.  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V. During voltage transitions, A9, OE#, WP#/ACC, and  
RESET# may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 17.1 on page 73. Maximum DC input voltage on pin A9,  
SS  
OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for periods up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V  
which may overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability  
Figure 17.1 Maximum Overshoot Waveforms  
20 ns  
20 ns  
20 ns  
V
+0.8 V  
CC  
+2.0 V  
V
–0.5 V  
–2.0 V  
CC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
73  
D a t a S h e e t  
18. Operating Ranges  
Operating ranges define those limits between which the functionality of the device is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA) ................–40°C to +85°C  
Wireless (W) Devices  
Ambient Temperature (TA) ................–25°C to +85°C  
Supply Voltages  
VCC ...................................................2.7–3.6 V  
VIO (see Note)...................................1.65–1.95 V (for PL127J and PL129J) or 2.7–3.6 V (for all PLxxxJ  
devices)  
Note:  
For all AC and DC specifications, V = V ; contact your local sales office for other V options.  
IO  
CC  
IO  
74  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
19. DC Characteristics  
Table 19.1 CMOS Compatible  
Parameter  
Parameter  
Description (notes)  
Test Conditions  
= V to V  
Min  
Typ  
Max  
Unit  
V
V
,
CC  
IN  
SS  
I
Input Load Current  
± 1.0  
µA  
LI  
= V  
= V  
= V  
CC  
CC max  
CC max  
CC max  
A9, OE#, RESET#  
Input Load Current  
I
V
V
; V = 12.5 V  
35  
35  
µA  
µA  
µA  
LIT  
CC  
ID  
I
Reset Leakage Current  
; V = 12.5 V  
ID  
LR  
LO  
CC  
V
V
= V to V , OE# = V  
SS CC IH  
OUT  
I
Output Leakage Current  
± 1.0  
= V  
CC  
CC max  
5 MHz  
20  
45  
15  
30  
55  
25  
V
(1, 2)  
Active Read Current  
CC  
I
OE# = V , V = V  
CC max  
mA  
CC1  
IH  
CC  
10 MHz  
I
I
I
I
V
V
V
Active Write Current (2, 3)  
Standby Current (2)  
Reset Current (2)  
OE# = V , WE# = V  
IL  
mA  
µA  
µA  
µA  
CC2  
CC3  
CC4  
CC5  
CC  
CC  
CC  
IH  
CE#, RESET#, WP#/ACC  
0.2  
0.2  
0.2  
5
5
5
= V ± ±0.3 V  
IO  
RESET# = V ± ±0.3 V  
SS  
Automatic Sleep Mode  
(Notes 2, 4)  
V
V
= V ± 0.3 V;  
SS  
IH  
IL  
IO  
= V ± ±0.3 V  
5 MHz  
10 MHz  
5 MHz  
10 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
V
Active Read-While-Program  
CC  
I
OE# = V  
,
,
mA  
mA  
CC6  
CC7  
IH  
Current (1, 2)  
V
Active Read-While-Erase  
CC  
I
OE# = V  
OE# = V  
IH  
IH  
Current (1, 2)  
V
Active Program-While-Erase-  
CC  
I
I
17  
10  
25  
15  
mA  
mA  
V
CC8  
Suspended Current (2, 5)  
V
Active Page Read Current (2)  
OE# = V , 8 word Page Read  
IH  
CC9  
CC  
V
= 1.65–1.95 V  
IO  
–0.4  
–0.5  
0.4  
0.8  
(PL127J and PL129J)  
V
Input Low Voltage  
Input High Voltage  
IL  
V
= 2.7–3.6 V  
V
IO  
V
= 1.65–1.95 V  
IO  
V
–0.4  
V
+0.4  
V
IO  
IO  
(PL127J AND PL129J)  
V
IH  
V
V
= 2.7–3.6 V  
2.0  
V
+0.3  
V
IO  
CC  
Voltage for ACC  
Program Acceleration  
V
= 3.0 V 10%  
8.5  
9.5  
V
HH  
CC  
Voltage for Autoselect and  
Temporary Sector Unprotect  
V
V
= 3.0 V ± 10%  
11.5  
12.5  
0.1  
V
V
V
V
ID  
CC  
I
= 100 µA, V = V  
CC  
= 1.65–1.95 V  
,
OL  
CC min  
V
IO  
(PL127J AND PL129J)  
V
Output Low Voltage  
Output High Voltage  
OL  
I
= 2.0 mA, V = V  
CC  
= 2.7–3.6 V  
,
OL  
CC min  
0.4  
V
IO  
I
= –100 µA, V = V  
CC  
= 1.65–1.95 V  
,
CC min  
OH  
V
V –0.1  
IO  
IO  
(PL127J AND PL129J)  
= ––100 µA, V = V  
CC min  
V
OH  
V
-
CC  
I
V
V
OH  
IO  
0.2V  
V
Low V Lock-Out Voltage (5)  
2.3  
2.5  
LKO  
CC  
Notes  
1. The I current listed is typically less than 5 mA/MHz, with OE# at V  
.
IH  
CC  
2. Maximum I specifications are tested with V = V .  
CCmax  
CC  
CC  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
5. Not 100% tested.  
+ 30 ns. Typical sleep mode current is 2 µA.  
ACC  
6. In S29PL129J there are two CE# (CE1#, CE2#).  
7. Valid CE1#/CE2# conditions: (CE1# = V CE2# = V ) or (CE1# = V CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL,  
IH,  
IH,  
IL  
IH,  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
75  
D a t a S h e e t  
20. AC Characteristic  
20.1 Test Conditions  
Figure 20.1 Test Setups  
3.6 V  
2.7 kΩ  
Device  
Under  
Test  
Device  
Under  
Test  
C
C
6.2 kΩ  
L
L
VIO = 3.0 V  
VIO = 1.8 V (PL127J and PL129J)  
Note  
Diodes are IN3064 or equivalent  
Table 20.1 Test Specifications  
Test Conditions  
All Speeds  
Unit  
Output Load  
Output Load Capacitance, C (including jig capacitance)  
1 TTL gate  
30  
pF  
ns  
L
V
= 1.8 V  
IO  
(PL127J AND PL129J)  
Input Rise and Fall Times  
Input Pulse Levels  
5
V
V
= 3.0 V  
= 1.8 V  
IO  
IO  
0.0 - 1.8  
0.0–3.0  
(PL127J AND PL129J)  
V
V
= 3.0 V  
IO  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
/2  
/2  
V
V
IO  
IO  
V
20.2 Switching Waveforms  
Table 20.2 Key To Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Changing, State Unknown  
Does Not Apply  
Center Line is High Impedance State (High Z)  
76  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Figure 20.2 Input Waveforms and Measurement Levels  
VIO  
VIO/2  
VIO/2  
Input  
Measurement Level  
Output  
0.0 V  
20.3 Read Operations  
Table 20.3 Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
Std.  
Description (Notes)  
Test Setup  
55 60 65 70 80 Unit  
t
t
Read Cycle Time (1)  
Min 55 60 65 70 80  
Max 55 60 65 70 80  
Max 55 60 65 70 80  
Max 20 25 25 30 30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
Address to Output Delay  
CE#, OE# = V  
IL  
AVQV  
ACC  
t
t
Chip Enable to Output Delay  
Page Access Time  
OE# = V  
IL  
ELQV  
CE  
t
PACC  
t
t
t
Output Enable to Output Delay  
Chip Enable to Output High Z (3)  
Output Enable to Output High Z (1, 3)  
Max 20 25  
Max  
30  
35  
GLQV  
EHQZ  
GHQZ  
OE  
t
t
16  
16  
DF  
DF  
t
Max  
Output Hold Time From Addresses,  
CE# or OE#, Whichever Occurs First (3)  
t
t
Min  
5
ns  
AXQX  
OH  
Read  
Min  
Min  
0
ns  
ns  
t
Output Enable Hold Time (1)  
OEH  
Toggle and Data# Polling  
10  
Notes  
1. Not 100% tested.  
2. See Figure 20.1 on page 76 and Table 20.1 on page 76 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of V /2. The time from OE# high to the data bus  
CC  
driven to V /2 is taken as t  
.
CC  
DF  
4. S29PL129J has two CE# (CE1#, CE2#).  
5. Valid CE1# / CE2# conditions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL  
IH  
IH  
IL  
IH,  
6. Valid CE1# / CE2# transitions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) to (CE1# = CE2# = V  
)
)
IL  
IH  
IH  
IL  
IH  
7. Valid CE1# / CE2# transitions: (CE1# = CE2# = V ) to (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V  
IL  
IH  
IL  
IH  
IH  
8. For 70 pF Output Load Capacitance, 2 ns will be added to the above t  
,t ,t  
,t values for all speed grades  
ACC CE PACC OE  
Figure 20.3 Read Operation Timings  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tD  
tOE  
OE#  
WE  
tOEH  
tCE  
tOH  
Valid Data  
High Z  
High Z  
Data  
RESET#  
RY/BY#  
0 V  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 20.4 Page Read Operation Timings  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
77  
D a t a S h e e t  
Same Page  
Amax  
-
-
A3  
A0  
A2  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
78  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
20.4 Reset  
Table 20.4 Hardware Reset (RESET#)  
Parameter  
JEDEC Std  
All Speed  
Options  
Description  
Unit  
RESET# Pin Low (During Embedded Algorithms) to Read Mode  
(See Note)  
t
Max  
Max  
20  
µs  
Ready  
Ready  
RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode  
(See Note)  
t
500  
ns  
t
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RP  
t
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Note  
Not 100% tested.  
Figure 20.5 Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the below waveform CE# = CE1# or CE2#  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
79  
D a t a S h e e t  
20.5 Erase/Program Operations  
Table 20.5 Erase and Program Operations  
Parameter  
Speed Options (ns)  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
55  
60  
65  
65  
0
70  
80 Unit  
Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
55  
60  
70  
80  
ns  
ns  
ns  
Address Setup Time  
tAVWL  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
30  
25  
35  
30  
tWLAX  
Address Hold Time From CE# (CE1#, CE#2 in PL129J) or OE# high  
during toggle bit polling  
Min  
0
ns  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
Output Enable High during toggle bit polling  
10  
tOEPH  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
Min  
0
ns  
tGHWL  
tGHWL  
CE# (CE1# or CE#2 in PL129J) Setup Time  
CE# (CE1# or CE#2 in PL129J) Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
Min  
Max  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
ns  
µs  
µs  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
35  
Write Pulse Width High  
20  
25  
tWPH  
tSR/W  
Latency Between Read and Write Operations  
Programming Operation (Note 4)  
Accelerated Programming Operation (Note 4)  
Sector Erase Operation (Note 4)  
0
6
tWHWH1 tWHWH1  
tWHWH1 tWHWH1  
tWHWH2 tWHWH2  
tVCS  
4
0.5  
50  
0
V
Setup Time (Note 1)  
CC  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tRB  
90  
35  
35  
35  
tBUSY  
Program Suspend Latency  
Erase Suspend Latency  
tPSL  
tESL  
Notes:  
1. Not 100% tested.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#).  
4. See Table 21.4 on page 88 for more information.  
80  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
20.6 Timing Diagrams  
Figure 20.6 Program Operation Timings  
Program Command Sequence (last two cycles) Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. PA = program address, PD = program data, D  
is the true data at the program address  
OUT  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 20.7 Accelerated Program Timing Diagram  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
tVHH  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
81  
D a t a S h e e t  
Figure 20.8 Chip/Sector Erase Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
VA  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status on page 68  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#.  
82  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Figure 20.9 Back-to-back Read/Write Cycle Timings  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 20.10 Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note  
VA = Valid address. The illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
83  
D a t a S h e e t  
Figure 20.11 Toggle Bit Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes  
1. VA = Valid address; not required for DQ6. The illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 20.12 DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
84  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
21. Protect/Unprotect  
Table 21.1 Temporary Sector Unprotect  
Parameter  
Unit  
JEDEC  
Std  
Description  
Rise and Fall Time (See Note)  
ID  
All Speed Options  
t
V
Min  
Min  
Min  
500  
250  
4
ns  
ns  
µs  
VIDR  
t
V
Rise and Fall Time (See Note)  
VHH  
HH  
t
RESET# Setup Time for Temporary Sector Unprotect  
RSP  
RESET# Hold Time from RY/BY# High for Temporary  
Sector Unprotect  
t
Min  
4
µs  
RRB  
Note  
Not 100% tested.  
Figure 21.1 Temporary Sector Unprotect Timing Diagram  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
85  
D a t a S h e e t  
Figure 21.2 Sector/Sector Block Protect and Unprotect Timing Diagram  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
86  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
21.1 Controlled Erase Operations  
Table 21.2 Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC Std  
Speed Options  
Description (Notes)  
55  
60  
65  
65  
0
70  
80  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
55  
60  
70  
80  
AVAV  
WC  
t
t
AVWL  
AS  
AH  
DS  
DH  
t
t
30  
25  
35  
30  
ELAX  
DVEH  
EHDX  
t
t
t
t
Data Hold Time  
0
0
0
0
t
t
t
Read Recovery Time Before Write (OE# High to WE# Low)  
WE# Setup Time  
GHEL  
GHEL  
t
WLEL  
WS  
WH  
t
t
WE# Hold Time  
EHWH  
t
t
CE# (CE1# or CE#2 in PL129J) Pulse Width  
CE# (CE1# or CE#2 in PL129J) Pulse Width High  
Programming Operation (Note 2)  
35  
20  
40  
25  
ELEH  
EHEL  
CP  
t
t
CPH  
t
t
t
t
t
t
6
4
WHWH1  
WHWH1  
WHWH2  
WHWH1  
WHWH1  
WHWH2  
Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
0.5  
Notes  
1. Not 100% tested.  
2. See Erase And Programming Performance on page 88 for more information.  
Figure 21.3 Alternate CE# Controlled Write (Erase/Program) Operation Timings  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device  
OUT  
4. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
5. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
87  
D a t a S h e e t  
Table 21.3 CE1#/CE2# Timing (S29PL129J only)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
t
CE1#/CE2# Recover Time (See Note)  
Min  
0
ns  
CCR  
Note  
This parameter is defined for CE1#/CE2# recover time for read/read, program/read, and read/program operations. Program/program operation are not allowed and  
only a single program operation is allowed at one time.  
Figure 21.4 Timing Diagram for Alternating Between CE1# and CE2# Control  
CE1#  
tCCR  
tCCR  
CE2#  
Table 21.4 Erase And Programming Performance  
Max  
Parameter  
Typ (Note 1)  
(Note 2)  
Unit  
sec  
sec  
sec  
sec  
Comments  
Sector Erase Time  
0.5  
135  
71  
2
PL127J/129J  
PL064J  
216  
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
113.6  
62.4  
PL032J  
39  
Excludes system level  
overhead (Note 5)  
Word Program Time  
6
100  
µs  
Accelerated Word Program Time  
PL127J/129J  
4
60  
µs  
50.4  
25.2  
12.6  
200  
50.4  
25.2  
sec  
sec  
sec  
Chip Program Time  
(Note 3)  
PL064J  
PL032J  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 100,000 cycles. Additionally, programming typicals  
CC  
assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90°C, V = 2.7 V, 1,000,000 cycles. All values are subject to change.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes program faster  
than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 15.1  
on page 66 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
88  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
22. Pin Capacitance  
22.1 BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
= 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
C
V
IN  
IN  
C
Output Capacitance  
V
= 0  
8
pF  
OUT  
OUT  
C
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
V
= 0  
8
pF  
IN2  
IN3  
IN  
IN  
C
V
= 0  
12  
pF  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
22.2 TSOP Pin Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
= 0  
Typ  
10  
Max  
10.5  
6.5  
10  
Unit  
pF  
C
Input Capacitance  
Output Capacitance  
V
IN  
IN  
C
V
= 0  
5.5  
8
pF  
OUT  
OUT  
C
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
V
= 0  
pF  
IN2  
IN3  
IN  
IN  
C
V
= 0  
9.5  
10  
pF  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
89  
D a t a S h e e t  
23. Physical Dimensions  
23.1 VBG080—80-Ball Fine-pitch Ball Grid Array 8 x 11 mm Package (PL127J)  
0.05  
C
D1  
D
A
(2X)  
e
8
7
6
5
4
3
2
1
e
7
SE  
E1  
E
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
INDEX MARK  
10  
PIN A1  
CORNER  
B
6
SD  
NXφb  
7
0.05  
(2X)  
C
φ±0.08  
φ±0.15  
M
M
C
C A  
B
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.10  
0.08  
C
C
A2  
A
C
A1  
SEATING PLANE  
NOTES:  
PACKAGE  
JEDEC  
VBG 080  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.00 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.00 BSC.  
8.00 BSC.  
8.80 BSC.  
5.60 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
80  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
8. NOT USED.  
(A3-A6,B3-B6,L3-L6,M3-M6) DEPOPULATED SOLDER BALLS  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3329 \ 16-038.25b  
90  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
23.2 VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm package (PL127J)  
0.05  
C
D1  
D
A
(2X)  
e
10  
9
e
7
8
SE  
7
6
E1  
E
5
4
3
2
1
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
B
SD  
7
6
0.05  
(2X)  
C
10  
NXφb  
φ 0.08  
φ 0.15  
M
M
C
TOP VIEW  
C A  
B
BOTTOM VIEW  
0.10  
C
A2  
A
0.08  
C
C
A1  
SEATING PLANE  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBH 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.60 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
10  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
(A2-9,B1-4,B7-10,C1-K1,  
M2-9,C10-K10,L1-4,L7-10,  
G5-6,F5-6)  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3330 \ 16-038.25b  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
91  
D a t a S h e e t  
23.3 VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm package  
(PL032J and PL064J)  
0.10 (4X)  
D1  
A
D
6
5
4
3
2
1
7
e
SE  
E1  
E
H
G
F
E
D
C
B
A
INDEX MARK  
10  
6
B
A1 CORNER  
PIN A1  
CORNER  
7
φb  
φ±0.08  
φ±0.15  
SD  
M
M
C
TOP VIEW  
C A B  
BOTTOM VIEW  
0.10  
C
A2  
A
SEATING PLANE  
SIDE VIEW  
0.08  
C
C
A1  
NOTES:  
PACKAGE  
JEDEC  
VBK 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
8.15 mm x 6.15 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
8.15 BSC.  
6.15 BSC.  
5.60 BSC.  
4.00 BSC.  
8
0.76  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
---  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3338 \ 16-038.25b  
92  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
23.4 VBU056—56-Ball Fine-pitch BGA 7 x 9mm package (PL064J and PL032J)  
D1  
A
D
e
0.05  
(2X)  
C
8
7
6
SE  
7
5
4
E
B
E1  
3
e
2
1
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
6
10  
NXφb  
SD  
7
φ 0.08  
φ 0.15  
M
C
0.05  
(2X)  
C
TOP VIEW  
M
C A B  
BOTTOM VIEW  
0.10  
C
C
A2  
A
0.08  
C
SEATING PLANE  
A1  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBU 056  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
9.00 mm x 7.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
1.00  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.17  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
56  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
A1,A8,D4,D5,E4,E5,H1,H8  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3440\ 16-038.25 \ 01.13.05  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
93  
D a t a S h e e t  
23.5 TS056—20 x 14 mm, 56-pin TSOP (PL127J)  
STANDARD PIN OUT (TOP VIEW)  
A2  
2
0.10 C  
1
N
SEE DETAIL B  
-A-  
-B-  
5
E
e
N
2
N
2
+1  
5
A1  
D1  
4
C
D
SEATING  
PLANE  
B
A
0.08MM (0.0031")  
M
C
A-B  
6
S
B
b
7
SEE DETAIL A  
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
R
SECTION B-B  
e/2  
c
GAGE LINE  
0.25MM (0.0098") BSC  
0˚  
-X-  
X = A OR B  
PARALLEL TO  
SEATING PLANE  
L
DETAIL A  
DETAIL B  
NOTES:  
Package  
TS 056  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (MM).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (B) EC  
Jedec  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
c1  
c
D
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN), INK OR LASER MARK.  
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15MM (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
13.90 14.00 14.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
D1  
E
e
7
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
R
N
0.50  
0˚  
0.60  
3˚  
0.70  
5˚  
8
9
LEAD COPLANARITY SHALL BE WITHIN 0.10MM (0.004") AS MEASURED FROM THE SEATING PLANE.  
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
0.20  
56  
94  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
24. Revision Summary  
24.1 Revision A0 (January 29, 2004)  
Initial release.  
24.2 Revision A1 (February 12, 2004)  
Software Features  
Included backward compatibility with MBM29xx families.  
General Description  
48-ball BGA package is not supported and was removed.  
Ordering Information  
Model numbers for the 48-ball BGA configurations were removed.  
64-Ball Fine Pitch BGA—MCP Compatible  
An illustration was added to show the pin-out configuration.  
Table 20  
Added the description of 01h for address 4Fh and removed the 0004 data.  
Table 34  
Provided the time units of measure for the erase and programming performances.  
24.3 Revision A2 (February 17, 2004)  
Memory Array Command Definitions, Table  
Corrected typo in device ID.  
24.4 Revision A3 (February 25, 2004)  
Architectural Advantages  
Added 3V VIO for PL064J and PL032J devices.  
Ordering Information  
Corrected the voltage rating, ball configuration, and physical dimensions for model numbers 12 and 13.  
Connection Diagrams  
Removed the 64-ball, 8x9 mm diagram.  
Operating Ranges  
Clarified the supply voltages that apply to the PL127J/PL129J and all other PLxxxJ products.  
BGA Pin Capacitance  
Added information applicable to the CIN3 symbol.  
Package Drawings  
Removed the 9x8 mm package drawing.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
95  
D a t a S h e e t  
24.5 Revision A4 (February 27, 2004)  
Connection Diagrams  
Added the 56-ball 7x9 mm pinout diagram.  
Package Options  
Updated to include the 8 x 6 mm, 48-ball Fine pitch BGA and 7 x 9 mm, 56-ball Fine-pitch BGA options.  
Physical Dimensions  
Added the VBK048 package drawing.  
24.6 Revision A5 (March 15, 2004)  
Connection Diagrams  
Changed names.  
24.7 Revision A6 (August 30, 2004)  
Global  
Removed VIO, added TSOP, fixed Secured Silicon DQ bits.  
Product Selector Guide  
Updated specs in this table.  
Ordering Information  
Updated the Model Number offerings.  
Valid Combinations Table (128Mb)  
Corrected the Package Markings for the 64-ball FBGA packages.  
Added combinations for the TLC056 package on the PL064J and PL032J devices.  
Valid Combinations for BGA Packages (128Mb)  
Updated information in this table.  
Package Options  
Added the 7 x 9mm 56-ball package.  
Connection Diagram  
56-ball connection diagram  
Erase/Programming Performance Table  
Notes 1 and 2 corrected to reflect accurate temperature ranges and cycling.  
24.8 Revision A7 (March 2, 2005)  
Ordering Information  
Updated the Model Number offerings  
Valid Combinations table  
Updated the Package Types information.  
Figure 6, In-System Sector Protection/Sector Unprotection Algorithms  
Updated the illustration.  
Program Suspend/Program Resume Commands  
New section added. Made global changes to include program suspend/resume commands.  
96  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
Table 29 on page 82  
Added Erase Suspend Latency.  
Table 32, CE1#/CE2# Timing (S29PL129J only)  
Updated table and added a notes section.  
Physical Dimensions  
Added the VBU056 package.  
24.9 Revision A8 (July 29, 2005)  
Autoselect Codes (High Voltage Method) Table  
Added note: When Polling the SecSi indicator bit the Bank Address (BA) should be set within the address  
range 004000h-03FFFFh.  
Autoselect Codes for PL129J Table  
Added note: When Polling the SecSi indicator bit the A21 to A12 should be set within the address range  
004000h-03FFFFh.  
Secured Silicon Sector Flash Memory Region  
Added sentence: Once the Enter Secured Silicon Sector Command sequence has been entered, the  
standard array cannot be accessed until the Exit Secured Silicon Sector command has been entered or the  
device has been reset.  
Sector Protection Command Definitions Table  
Added note 16: Once the Secured Silicon Sector Entry Command sequence has been entered, the standard  
array cannot be accessed until the Exit Secured Silicon Sector command has been entered or the device has  
been reset.  
Valid Combinations  
Content the same, tables consolidated to match Ordering Information Descriptions  
Connection Diagrams Section  
Consolidated Special Package Handling Instructions and put the information before the package/pinout  
descriptions.  
Added Figure numbers to the connection diagram graphics.  
Operating Ranges  
Updated operating temperatures.  
DC Characteristics Table  
Updated VOH parameter.  
Erase/Program Operations Table  
Added tESL parameter  
VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm package (PL032J and PL064J)  
Updated the product that uses this package from PL127J to PL064J and PL032J  
24.10 Revision A9 (September 22, 2006)  
64-Ball Fine-Pitch BGA—MCP Compatible—PL127J  
Changed ball F9 to A22  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
97  
D a t a S h e e t  
24.11 Revision A10 (September 7, 2007)  
Pin Description  
Corrected WP#/ACC description.  
24.12 Revision A11 (September 10, 2009)  
Global  
Changed data sheet status from Advanced Information to Full Production  
Ordering Information  
Modified/Added note to the Valid Combinations to be Supported for this Device tables  
V
Ramp Rate  
CC  
Removed Section  
Connection Diagram  
Corrected 64-Ball Fine-Pitch BGA ball description (H9 and L5)  
24.13 Revision A12 (December 18, 2009)  
Ordering Information  
Under Package Type, changed wording of “Lead (Pb)-free compliant” material type to “Standard”.  
24.14 Revision A13 (Febuary 1, 2011)  
Global  
Removed 55 ns as a valid speed supported by PL127J.  
Product Selector Guide  
Corrected the 55 ns Speed Option's Max Page Access and Max OE# Access time from 2 to 20 ns.  
Corrected the 65 ns Speed Option's Max Access and Max CE# Access time from 25 to 65 ns.  
Dynamic Protection Bit (DYB)  
Corrected reference to Table 17 to Table 10.15.  
Erase Suspend/Erase Resume Commands  
Corrected “This command is valid only during the sector erase operation, including the 80 µs time-out  
period...” to “This command is valid only during the sector erase operation, including the 50 µs time-out  
period...”.  
Command Definitions Tables  
In Table 15.2, corrected the value of the third bus cycle of the “PPB Status”, “PPB Lock Bit Status” and “DYB  
Status” commands from 555 to BA+555.  
Absolute Maximum Ratings  
Corrected the A9, OE# and RESET# “Voltage with Respect to Ground” maximum range value from +13.0V to  
+12.5V.  
98  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  
D a t a S h e e t  
24.15 Revision A14 (July 8, 2011)  
DQ6: Toggle Bit I  
Corrected Figure 16.2: Toggle Bit Algorithm.  
Pin Capacitance  
Added TSOP package pin capacitance values.  
24.16 Revision A15 (March 14, 2012)  
Ordering Information  
For model number 13, corrected “56-ball” TSOP package description to “56-pin”.  
24.17 Revision A16 (April 18, 2013)  
Global  
Changed 65 ns and 70 ns initial access time for VIO=1.8V to 80 ns.  
April 18, 2013 S29PL-J_00_A16  
S29PL-J  
99  
D a t a S h e e t  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as  
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor  
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design  
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal  
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,  
the prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under  
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this  
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,  
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any  
damages of any kind arising out of the use of the information in this document.  
Copyright © 2004-2013 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™ and  
combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used  
are for informational purposes only and may be trademarks of their respective owners.  
100  
S29PL-J  
S29PL-J_00_A16 April 18, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY