S71PL129JA0BAI9P4 [SPANSION]

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-64;
S71PL129JA0BAI9P4
型号: S71PL129JA0BAI9P4
厂家: SPANSION    SPANSION
描述:

Memory Circuit, 8MX16, CMOS, PBGA64, 8 X 11.60 MM, 1.20 MM HEIGHT, LEAD FREE, FBGA-64

静态存储器 内存集成电路
文件: 总157页 (文件大小:4196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71PL129JC0/S71PL129JB0/  
S71PL129JA0  
Stacked Multi-Chip Product (MCP) Flash Memory and pSRAM  
128 Megabit (8M x 16-bit) CMOS 3.0 Volt-only Simultaneous  
Operation, Page Mode Flash Memory with  
64/32/16 Megabit (4M/2M/1M x 16-bit) Pseudo-Static RAM  
ADVANCE  
Distinctive Characteristics  
„
„
Package  
— 8 x 11.6 x 1.2 mm 64 ball FBGA  
MCP Features  
„
Power supply voltage of 2.7 to 3.1 volt  
Operating Temperature  
„
High performance  
— –25°C to +85°C (Wireless)  
— –40°C to +85°C (Industrial)  
— 65ns (65ns Flash, 70ns pSRAM)  
„ Dual CE# Flash memory  
General Description  
The S71PL129J series is a product line of stacked Multi-Chip Product (MCP) pack-  
ages and consists of:  
„ One S29PL129J Flash memory die  
„ One 16M, 32M, or 64M pSRAM  
The products covered by this document are listed in the table below. For details  
about their specifications, please refer to the individual constituent datasheets for  
further details.  
Flash Memory Density  
128Mb  
64Mb  
32Mb  
16Mb  
S71PL129JC0  
S71PL129JB0  
S71PL129JA0  
pSRAM  
Density  
Publication Number S71PL129Jxx_00 Revision A Amendment 2 Issue Date July 21, 2004  
P r e l i m i n a r y  
Product Selector Guide  
128 Mb Flash Memory  
Device-Model#  
S71PL129JA0-9P  
S71PL129JB0-9Z  
S71PL129JB0-9U  
S71PL129JC0-9Z  
S71PL129JC0-9U  
pSRAM density Flash Access time (ns) (p)SRAM Access time (ns) pSRAM type Package  
16M pSRAM  
32M pSRAM  
32M pSRAM  
64M pSRAM  
64M pSRAM  
65  
65  
65  
65  
65  
70  
70  
70  
70  
70  
Type 7  
Type 7  
Type 6  
Type 7  
Type 6  
TLA064  
TLA064  
TLA064  
TLA064  
TLA064  
2
S71PL129JC0/S71PL129JB0/S71PL129JA0  
S71PL129Jxx_00_A2_E July 21, 2004  
A d v a n c e I n f o r m a t i o n  
Selecting a Sector Protection Mode .............................................................40  
S71PL129JC0/S71PL129JB0/S71PL129JA0  
Persistent Sector Protection . . . . . . . . . . . . . . . . 41  
Persistent Protection Bit (PPB) .......................................................................41  
Persistent Protection Bit Lock (PPB Lock) ..................................................41  
Persistent Sector Protection Mode Locking Bit .......................................43  
Password Protection Mode . . . . . . . . . . . . . . . . . 43  
Password and Password Mode Locking Bit ................................................43  
64-bit Password ..................................................................................................44  
Write Protect (WP#) .......................................................................................44  
Persistent Protection Bit Lock ...................................................................44  
High Voltage Sector Protection .....................................................................45  
Figure 1. In-System Sector Protection/Sector Unprotection  
Algorithms........................................................................ 46  
Temporary Sector Unprotect ........................................................................47  
Figure 2. Temporary Sector Unprotect Operation ................... 47  
SecSi™ (Secured Silicon) Sector Flash Memory Region ..........................47  
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . 1  
MCP Features ........................................................................................................ 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . .2  
128 Mb Flash Memory ..........................................................................................2  
MCP Block Diagram .............................................................................................6  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . .7  
Input/Output Description . . . . . . . . . . . . . . . . . . . 8  
Pin Description ......................................................................................................8  
Logic Symbol ...........................................................................................................8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .9  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 11  
TLA064—64-ball Fine-Pitch Ball Grid Array (FBGA)  
8 x 11.6 mm Package ............................................................................................ 11  
Factory-Locked Area (64 words) ..............................................................47  
Customer-Lockable Area (64 words) ......................................................48  
SecSi Sector Protection Bits .......................................................................48  
Figure 3. SecSi Sector Protect Verify.................................... 49  
Hardware Data Protection .............................................................................49  
Low VCC Write Inhibit ................................................................................49  
Write Pulse “Glitch” Protection ...............................................................49  
Logical Inhibit ...................................................................................................49  
Power-Up Write Inhibit ...............................................................................49  
Common Flash Memory Interface (CFI) . . . . . . 50  
Table 13. CFI Query Identification String .............................. 50  
Table 14. System Interface String ........................................ 51  
Table 15. Device Geometry Definition ................................... 51  
Table 16. Primary Vendor-Specific Extended Query ................ 52  
S29PL127J/S29PL064J/S29PL032J for MCP  
General Description 14  
Simultaneous Read/Write Operation with Zero Latency ...................... 14  
Page Mode Features ........................................................................................... 14  
Standard Flash Memory Features ................................................................... 14  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 16  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Simultaneous Read/Write Block Diagram . . . . . 18  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .20  
Table 1. PL127J Device Bus Operations ................................ 20  
Requirements for Reading Array Data ........................................................ 20  
Random Read (Non-Page Read) ............................................................... 20  
Page Mode Read .............................................................................................. 21  
Table 2. Page Select .......................................................... 21  
Simultaneous Read/Write Operation ........................................................... 21  
Table 3. Bank Select .......................................................... 21  
Writing Commands/Command Sequences ................................................ 22  
Accelerated Program Operation .............................................................. 22  
Autoselect Functions .................................................................................... 22  
Standby Mode .......................................................................................................22  
Automatic Sleep Mode ......................................................................................23  
RESET#: Hardware Reset Pin .........................................................................23  
Output Disable Mode ........................................................................................23  
Table 4. PL127J Sector Architecture ..................................... 24  
Table 5. PL064J Sector Architecture ..................................... 31  
Table 6. PL032J Sector Architecture ..................................... 34  
Table 7. SecSiTM Sector Addresses ...................................... 35  
Autoselect Mode .................................................................................................36  
Table 8. Autoselect Codes (High Voltage Method) .................. 36  
Table 9. PL127J Boot Sector/Sector Block Addresses for  
Protection/Unprotection ..................................................... 37  
Table 10. PL064J Boot Sector/Sector Block Addresses for  
Protection/Unprotection ..................................................... 38  
Table 11. PL032J Boot Sector/Sector Block Addresses for  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 54  
Reading Array Data ...........................................................................................54  
Reset Command .................................................................................................54  
Autoselect Command Sequence .................................................................... 55  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence ................ 55  
Word Program Command Sequence ........................................................... 55  
Unlock Bypass Command Sequence ........................................................56  
Figure 4. Program Operation............................................... 57  
Chip Erase Command Sequence ................................................................... 57  
Sector Erase Command Sequence ................................................................58  
Figure 5. Erase Operation................................................... 59  
Erase Suspend/Erase Resume Commands ..................................................59  
Command Definitions Tables .........................................................................60  
Table 17. Memory Array Command Definitions ...................... 60  
Table 18. Sector Protection Command Definitions .................. 61  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 62  
DQ7: Data# Polling ............................................................................................62  
Figure 6. Data# Polling Algorithm........................................ 64  
RY/BY#: Ready/Busy# ........................................................................................65  
DQ6: Toggle Bit I ...............................................................................................65  
Figure 7. Toggle Bit Algorithm............................................. 66  
DQ2: Toggle Bit II ..............................................................................................66  
Reading Toggle Bits DQ6/DQ2 .....................................................................66  
DQ5: Exceeded Timing Limits ........................................................................67  
DQ3: Sector Erase Timer ................................................................................67  
Table 19. Write Operation Status ......................................... 68  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . .69  
Figure 8. Maximum Overshoot Waveforms............................ 69  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Industrial (I) Devices ..........................................................................................70  
Extended (E) Devices ........................................................................................70  
Protection/Unprotection ..................................................... 39  
Selecting a Sector Protection Mode ..............................................................39  
Table 12. Sector Protection Schemes ................................... 40  
Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Persistent Sector Protection ..........................................................................40  
Password Sector Protection ...........................................................................40  
WP# Hardware Protection ............................................................................40  
July 21, 2004 S71PL129Jxx_00_A2_E  
3
A d v a n c e I n f o r m a t i o n  
Supply Voltages ................................................................................................... 70  
AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . 91  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 20. CMOS Compatible ................................................ 71  
AC Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Test Conditions ...................................................................................................72  
Figure 9. Test Setups.......................................................... 72  
Table 21. Test Specifications ............................................... 72  
SWITCHING WAVEFORMS ..........................................................................73  
Table 22. KEY TO SWITCHING WAVEFORMS ......................... 73  
Figure 10. Input Waveforms and Measurement Levels............. 73  
VCC RampRate ...................................................................................................73  
Read Operations .................................................................................................74  
Table 23. Read-Only Operations .......................................... 74  
Figure 11. Read Operation Timings....................................... 74  
Figure 12. Page Read Operation Timings ............................... 75  
Reset .......................................................................................................................75  
Table 24. Hardware Reset (RESET#) .................................... 75  
Figure 13. Reset Timings..................................................... 76  
Erase/Program Operations ..............................................................................77  
Table 25. Erase and Program Operations .............................. 77  
Timing Diagrams ................................................................................................. 78  
Figure 14. Program Operation Timings.................................. 78  
Figure 15. Accelerated Program Timing Diagram .................... 78  
Figure 16. Chip/Sector Erase Operation Timings..................... 79  
Figure 17. Back-to-back Read/Write Cycle Timings ................. 79  
Figure 18. Data# Polling Timings (During Embedded  
Read Timings ........................................................................................................92  
Figure 23. Read Cycle ........................................................ 92  
Figure 24. Page Read Cycle (8 Words Access) ....................... 93  
Write Timings ......................................................................................................94  
Figure 25. Write Cycle #1 (WE# Controlled) (See Note 8)....... 94  
Figure 26. Write Cycle #2 (CE# Controlled) (See Note 8) ....... 95  
Deep Power-down Timing ..............................................................................95  
Figure 27. Deep Power Down Timing.................................... 95  
Power-on Timing ................................................................................................95  
Figure 28. Power-on Timing ................................................ 95  
Provisions of Address Skew ............................................................................96  
Read ....................................................................................................................96  
Figure 29. Read................................................................. 96  
Write ..................................................................................................................96  
Figure 30. Write ................................................................ 96  
pSRAM Type 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Functional Description . . . . . . . . . . . . . . . . . . . . . 98  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 98  
DC Characteristics (4Mb pSRAM  
Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
DC Characteristics (8Mb pSRAM  
Algorithms) ....................................................................... 80  
Figure 19. Toggle Bit Timings (During Embedded Algorithms) .. 80  
Figure 20. DQ2 vs. DQ6...................................................... 81  
Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
DC Characteristics (16Mb pSRAM  
Protect/Unprotect . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 26. Temporary Sector Unprotect ................................. 81  
Figure 21. Temporary Sector Unprotect Timing Diagram.......... 81  
Figure 22. Sector/Sector Block Protect and Unprotect Timing  
Diagram............................................................................ 82  
Controlled Erase Operations ..........................................................................83  
Table 27. Alternate CE# Controlled Erase and Program  
Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DC Characteristics (16Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
DC Characteristics (32Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
DC Characteristics (64Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Timing Test Conditions . . . . . . . . . . . . . . . . . . . 104  
Output Load Circuit .........................................................................................105  
Figure 31. Output Load Circuit........................................... 105  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . 105  
AC Characteristics (4Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
AC Characteristics (8Mb pSRAM  
Operations ....................................................................... 83  
Table 28. Alternate CE# Controlled Write (Erase/Program)  
Operation Timings ............................................................. 84  
Table 29. Erase And Programming Performance .................... 85  
BGA Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . 85  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . .86  
Revision A (April 1, 2004) . . . . . . . . . . . . . . . . . . . .86  
Revision A+1 (May 6, 2004) . . . . . . . . . . . . . . . . . . .86  
Table 8. Autoselect Codes (High Voltage Method) and Table 17.  
Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
AC Characteristics (16Mb pSRAM  
Memory Array Command Definitions .................................................... 86  
Asynchronous) . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
AC Characteristics (16Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
AC Characteristics (32Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
AC Characteristics (64Mb pSRAM Page  
Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
pSRAM Type 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Functional Description . . . . . . . . . . . . . . . . . . . . . 89  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 89  
DC Recommended Operating Conditions (Ta = -  
40°C to 85°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
DC Characteristics (Ta = -40°C to 85°C, VDD = 2.6  
to 3.3 V) (See Note 3 to 4) . . . . . . . . . . . . . . . . . . 89  
Capacitance (Ta = 25°C, f = 1 MHz) . . . . . . . . . . 90  
AC Characteristics and Operating  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Read Cycle ............................................................................................................117  
Figure 32. Timing of Read Cycle (CE# = OE# = VIL, WE# =  
ZZ# = VIH)..................................................................... 117  
Figure 33. Timing Waveform of Read Cycle (WE# =  
ZZ# = VIH)..................................................................... 118  
Figure 34. Timing Waveform of Page Mode Read Cycle (WE# =  
ZZ# = VIH)..................................................................... 119  
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
(Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 5 to 11) ............ 90  
4
S71PL129Jxx_00_A2_E July 21, 2004  
A d v a n c e I n f o r m a t i o n  
Figure 45. Timing Waveform of Read Cycle(2)..................... 135  
Write Cycle ........................................................................................................120  
Figure 35. Timing Waveform of Write Cycle (WE# Control,  
ZZ# = VIH) ..................................................................... 120  
Figure 36. Timing Waveform of Write Cycle (CE# Control,  
ZZ# = VIH) ..................................................................... 120  
Figure 37. Timing Waveform of Page Mode Write Cycle  
Figure 46. Timing Waveform of Read Cycle(2)..................... 135  
Write Timings .....................................................................................................136  
Figure 47. Write Cycle #1 (WE# Controlled)........................ 136  
Figure 48. Write Cycle #2 (CS1# Controlled) ...................... 136  
Figure 49. Timing Waveform of Write Cycle(3) (CS2  
(ZZ# = VIH).................................................................... 121  
Power Savings Modes (For 16M Page Mode,  
Controlled) ..................................................................... 137  
Figure 50. Timing Waveform of Write Cycle(4) (UB#, LB#  
Controlled) ..................................................................... 137  
32M and 64M Only) . . . . . . . . . . . . . . . . . . . . . . . . 121  
Partial Array Self Refresh (PAR) ....................................................................121  
Temperature Compensated Refresh (for 64Mb) ....................................122  
Deep Sleep Mode ..............................................................................................122  
Reduced Memory Size (for 32M and 16M) ................................................. 122  
Other Mode Register Settings (for 64M) ...................................................122  
Figure 38. Mode Register................................................... 123  
Figure 39. Mode Register Update Timings (UB#, LB#, OE# are  
Don’t Care) ..................................................................... 123  
Figure 40. Deep Sleep Mode - Entry/Exit Timings ................. 124  
pSRAM Type 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Functional Description . . . . . . . . . . . . . . . . . . . . . 139  
Power Down (for 32M, 64M Only) . . . . . . . . . . . . 139  
Power Down .......................................................................................................139  
Power Down Program Sequence ................................................................140  
Address Key ........................................................................................................140  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 141  
Recommended Operating Conditions (See  
Warning Below) . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Package Capacitance . . . . . . . . . . . . . . . . . . . . . . 141  
DC Characteristics (Under Recommended  
Conditions Unless Otherwise Noted) . . . . . . . . . 142  
AC Characteristics (Under Recommended  
Operating Conditions Unless Otherwise Noted) 143  
Read Operation .................................................................................................143  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 145  
Write Operation ...............................................................................................145  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 146  
Power Down Parameters ...............................................................................146  
Other Timing Parameters ...............................................................................146  
Mode Register Update and Deep Sleep  
Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Address Patterns for PASR (A4=1) (64M) . . . . . 125  
Deep ICC Characteristics (for 64Mb) . . . . . . . . 126  
Address Patterns for PAR (A3= 0, A4=1)  
(32M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Address Patterns for RMS (A3 = 1, A4 = 1)  
(32M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Low Power ICC Characteristics (32M) . . . . . . . 127  
Address Patterns for PAR (A3= 0, A4=1)  
(16M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Address Patterns for RMS (A3 = 1, A4 = 1)  
(16M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Low Power ICC Characteristics (16M) . . . . . . . 127  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 147  
AC Test Conditions .........................................................................................147  
AC Measurement Output Load Circuit .....................................................147  
Figure 51. AC Output Load Circuit...................................... 147  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Read Timings .......................................................................................................148  
Figure 52. Read Timing #1 (Basic Timing) .......................... 148  
Figure 53. Read Timing #2 (OE# Address Access................. 148  
Figure 54. Read Timing #3 (LB#/UB# Byte Access) ............. 149  
Figure 55. Read Timing #4 (Page Address Access after CE1#  
Control Access for 32M and 64M Only) ............................... 149  
Figure 56. Read Timing #5 (Random and Page Address  
Access for 32M and 64M Only) .......................................... 150  
Write Timings .....................................................................................................150  
Figure 57. Write Timing #1 (Basic Timing).......................... 150  
Figure 58. Write Timing #2 (WE# Control).......................... 151  
Figure 59. Write Timing #3-1 (WE#/LB#/UB# Byte Write  
pSRAM Type 2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Product Information . . . . . . . . . . . . . . . . . . . . . . 128  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . 129  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Power Up ............................................................................................................130  
Figure 41. Power Up 1 (CS1# Controlled)............................ 130  
Figure 42. Power Up 2 (CS2 Controlled) .............................. 130  
Functional Description . . . . . . . . . . . . . . . . . . . . 130  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 131  
DC Recommended Operating Conditions . . . . . 131  
Capacitance (Ta = 25°C, f = 1 MHz) . . . . . . . . . . 131  
DC and Operating Characteristics . . . . . . . . . . . 131  
Common ............................................................................................................... 131  
16M pSRAM ......................................................................................................... 132  
32M pSRAM ........................................................................................................ 132  
64M pSRAM .........................................................................................................133  
Control) ......................................................................... 151  
Figure 60. Write Timing #3-2 (WE#/LB#/UB# Byte Write  
Control) ......................................................................... 152  
Figure 61. Write Timing #3-3 (WE#/LB#/UB# Byte Write  
Control) ......................................................................... 152  
Figure 62. Write Timing #3-4 (WE#/LB#/UB# Byte Write  
Control) ......................................................................... 153  
Read/Write Timings ..........................................................................................153  
Figure 63. Read/Write Timing #1-1 (CE1# Control) ............. 153  
Figure 64. Read / Write Timing #1-2 (CE1#/WE#/OE#  
AC Operating Conditions . . . . . . . . . . . . . . . . . . 133  
Test Conditions (Test Load and Test Input/Output Reference) ........133  
Figure 43. Output Load ..................................................... 133  
ACC Characteristics (Ta = -40°C to 85°C, V = 2.7 to 3.1 V) ........ 134  
CC  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Read Timings .......................................................................................................135  
Figure 44. Timing Waveform of Read Cycle(1)...................... 135  
Control) ......................................................................... 154  
Figure 65. Read / Write Timing #2 (OE#, WE# Control) ....... 154  
July 21, 2004 S71PL129Jxx_00_A2_E  
5
A d v a n c e I n f o r m a t i o n  
Figure 66. Read / Write Timing #3 (OE#, WE#, LB#, UB#  
Revision Summary  
Control).......................................................................... 155  
Figure 67. Power-up Timing #1.......................................... 155  
Figure 68. Power-up Timing #2.......................................... 156  
Figure 69. Power Down Entry and Exit Timing...................... 156  
Figure 70. Standby Entry Timing after Read or Write............. 156  
Figure 71. Power Down Program Timing (for 32M/64M Only) . 157  
Revision A0 (June 9, 2004) . . . . . . . . . . . . . . . . . . 158  
Revision A1 (July 19, 2004) . . . . . . . . . . . . . . . . . . 158  
Revision A2 (July 20, 2004) . . . . . . . . . . . . . . . . . . 158  
6
S71PL129Jxx_00_A2_E July 21, 2004  
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram  
VCC  
f
VVCCC  
CE1#f  
CE2#f  
WP#/ACC  
RESET#  
Flash-only Address  
Flash 1  
Shared Address  
OE#  
WE#  
RY/BY#  
DQ15 to DQ0  
VCCS  
VCC  
pSRAM  
IO15-IO0  
CE#s  
UB#s  
CE#  
UB#  
LB#  
LB#s  
CE2#ps  
CEM1#ps  
July 21, 2004 S71PL129Jxx_00_A2_E  
6
A d v a n c e I n f o r m a t i o n  
Connection Diagram  
64-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
A1  
A10  
NC  
NC  
B5  
RFU  
B6  
RFU  
C6  
Legend  
C3  
A7  
D3  
A6  
E3  
A5  
F3  
A4  
G3  
C
4
C5  
C7  
A8  
C8  
A11  
D8  
LB#  
WP/ACC  
D5  
WE#  
D2  
A3  
D9  
D
4
D
6
D
7
Shared  
(Note 1)  
UB#  
E4  
RST#f  
E5  
CE2s  
A19  
E7  
A12  
E8  
A15  
E2  
A2  
F2  
A1  
G2  
E
6
E9  
A18  
F4  
RY/BY#  
A20  
A9  
A13  
F8  
A21  
F9  
Flash only  
RAM only  
F7  
A17  
G4  
A10  
G7  
A14  
G8  
CE2#  
G9  
A0  
H2  
VSS  
H3  
DQ1  
H4  
DQ6  
H7  
RFU  
H8  
A16  
H9  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
Reserved for  
Future Use  
CE1#f  
J2  
OE#  
J3  
DQ9  
J4  
DQ13  
J7  
DQ15  
J8  
RFU  
J9  
CE1#s  
DQ0  
K3  
DQ10  
K4  
VCCf  
K5  
VCCs  
K6  
DQ12  
K7  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
VCCf  
RFU  
M1  
NC  
M10  
NC  
Note: May be shared depending on density:  
— A21 is shared for the 64M pSRAM configuration.  
— A20 is shred for the 32M pSRAM configuration.  
— A19 is shared for the 16M pSRAM configuration.  
MCP  
S71PL129JC0  
Flash-only Addresses  
Shared Addresses  
A21-A0  
A22  
S71PL129JB0  
S71PL129JA0  
A22-A21  
A22-A20  
A20-A0  
A19-A0  
Note: It is advised to tie J5 and L5 together on the board.  
7
S71PL129Jxx_00_A2_E July 21, 2004  
A d v a n c e I n f o r m a t i o n  
Input/Output Description  
Pin Description  
A21–A0  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
22 Address Inputs (Common)  
16 Data Inputs/Outputs (Common)  
Chip Enable 1 (Flash)  
Chip Enable 2 (Flash)  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
Write Enable (Common)  
DQ15–DQ0  
CE1#f  
CE2#f  
CE1#ps  
CE2ps  
OE#  
WE#  
RY/BY#  
UB#  
LB#  
RESET#  
WP#/ACC  
Ready/Busy Output  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin, Active Low (Flash 1)  
Hardware Write Protect/Acceleration Pin (Flash)  
Flash 3.0 volt-only single power supply (see Product  
Selector Guide for speed options and voltage supply  
tolerances)  
VCC  
f
VCCps  
VSS  
NC  
=
=
=
pSRAM Power Supply  
Device Ground (Common)  
Pin Not Connected Internally  
Logic Symbol  
22  
A21–A0  
16  
CE1#f  
DQ15–DQ0  
R Y/BY#  
CE2#f  
CE1#ps  
CE2ps  
OE#  
WE#  
WP#/ACC  
RESET#  
UB#  
LB#  
July 21, 2004 S71PL129Jxx_00_A2_E  
8
A d v a n c e I n f o r m a t i o n  
Ordering Information  
The order number is formed by a valid combinations of the following:  
S71PL  
129  
J
B0 BA  
W
9
Z
0
PACKING TYPE  
0
2
3
4
=
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
10” Tape and Reel  
MODEL NUMBER  
See valid combinations table.  
PACKAGE MODIFIER  
9
=
8 x 11.6 mm, 1.2 mm height, 64 balls (TLA064)  
TEMPERATURE RANGE  
W
I
=
=
Wireless (-25  
Industrial (-40  
°
C to +85  
°
C)  
C)  
°C to +85  
°
PACKAGE TYPE  
BA  
BF  
=
=
Fine-pitch BGA Lead (Pb)-free compliant package  
Fine-pitch BGA Lead (Pb)-free package  
pSRAM DENSITY  
C0  
B0  
A0  
=
=
=
64 Mb pSRAM  
32 Mb pSRAM  
16 Mb pSRAM  
PROCESS TECHNOLOGY  
110 nm, Floating Gate Technology  
J
=
FLASH DENSITY  
129 128Mb, dual CE#  
=
PRODUCT FAMILY  
S71PL Multi-chip Product (MCP)  
3.0-volt Simultaneous Read/Write, Page Mode Flash Memory and RAM  
July 21, 2004 S71PL129Jxx_00_A2_E  
9
A d v a n c e I n f o r m a t i o n  
S71PL129J Valid Combinations  
(p)SRAM  
Type/Access  
Time (ns)  
Base Ordering  
Part Number  
Package &  
Package Modifier/  
Model Number  
Speed Options  
(ns)  
Package  
Marking  
Temperature  
Packing Type  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
S71PL129JA0  
S71PL129JB0  
S71PL129JB0  
S71PL129JC0  
S71PL129JC0  
9P  
9Z  
9U  
9Z  
9U  
9P  
9Z  
9U  
9Z  
9U  
9P  
9Z  
9U  
9Z  
9U  
9P  
9Z  
9U  
9Z  
9U  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
pSRAM 7 / 70  
pSRAM 6 / 70  
BAW  
BFW  
BAI  
0, 2, 3, 4 (Note 1)  
65  
65  
65  
65  
0, 2, 3, 4 (Note 1)  
0, 2, 3, 4 (Note 1)  
0, 2, 3, 4 (Note 1)  
(Note 2)  
BFI  
Notes:  
Valid Combinations  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
10  
S71PL129Jxx_00_A2_E July 21, 2004  
A d v a n c e I n f o r m a t i o n  
Physical Dimensions  
TLA064—64-ball Fine-Pitch Ball Grid Array (FBGA)  
8 x 11.6 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
B
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
64X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
TLA 064  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
64  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B2,B3,B4,B7,B8,B9,B10  
C1,C2,C9,C10,D1,D10,E1,E10,  
F1,F5,F6,F10,G1,G5,G6,G10  
H1,H10,J1,J10,K1,K2,K9,K10  
L1,L2,L3,L4,L7,L8,L9,L10  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
M2,M3,M4,M5,M6,M7,M8,M9  
3352 \ 16-038.22a  
July 21, 2004 S71PL129Jxx_00_A2_E  
11  
S29PL127J/S29PL064J/S29PL032J for MCP  
128/128/64/32 Megabit (8/4/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory with Enhanced VersatileIOTM Control  
PRELIMINARY  
Distinctive Characteristics  
ARCHITECTURAL ADVANTAGES  
PERFORMANCE CHARACTERISTICS  
„
„
„
128/64/32 Mbit Page Mode devices  
— Page size of 8 words: Fast page read access from  
random locations within the page  
„
High Performance  
— Page access times as fast as 20 ns  
— Random access times as fast as 55 ns  
Single power supply operation  
— Full Voltage range: 2.7 to 3.6 volt read, erase, and  
program operations for battery-powered applications  
„
Power consumption (typical values at 10 MHz)  
— 45 mA active read current  
— 17 mA program/erase current  
— 0.2 µA typical standby mode current  
Simultaneous Read/Write Operation  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank  
— Zero latency switching from write to read operations  
SOFTWARE FEATURES  
„
Software command-set compatible with JEDEC  
42.4 standard  
„
FlexBank Architecture (PL127J/PL064J/PL032J)  
— 4 separate banks, with up to two simultaneous  
operations per device  
— Backward compatible with Am29F, Am29LV, Am29DL,  
and AM29PDL families and MBM29QM/RM, MBM29LV,  
MBM29DL, MBM29PDL families  
— Bank A:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
„
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
— Bank B:  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
„
„
Erase Suspend / Erase Resume  
— Suspends an erase operation to allow read or program  
operations in other sectors of same bank  
— Bank C:  
Unlock Bypass Program command  
— Reduces overall programming time when issuing  
multiple program command sequences  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
— Bank D:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
„
„
Enhanced VersatileI/OTM (VIO) Control  
— Output voltage generated and input voltages  
tolerated on all control inputs and I/Os is determined  
by the voltage on the VIO pin  
— VIO options at 1.8 V and 3 V I/O for PL127J devices  
— 3V VIO for PL064J and PL032J devices  
SecSiTM (Secured Silicon) Sector region  
— Up to 128 words accessible through a command  
sequence  
— Up to 64 factory-locked words  
— Up to 64 customer-lockable words  
„
„
„
„
Both top and bottom boot blocks in one device  
Manufactured on 110 nm process technology  
Data Retention: 20 years typical  
Cycling Endurance: 1 million cycles per sector  
typical  
Publication Number S29PL127J_064J_032J_MCP Revision A Amendment +1 Issue Date May 6, 2004  
P r e l i m i n a r y  
HARDWARE FEATURES  
„
„
„
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting program or erase cycle completion  
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading array data  
WP#/ ACC (Write Protect/Acceleration) input  
— At VIL, hardware level protection for the first and last two 4K word sectors.  
— At VIH, allows removal of sector protection  
— At VHH, provides accelerated programming in a factory setting  
„
Persistent Sector Protection  
— A command sector protection method to lock combinations of individual sectors and sector groups to prevent program  
or erase operations within that sector  
— Sectors can be locked and unlocked in-system at VCC level  
„
„
Password Sector Protection  
— A sophisticated sector protection method to lock combinations of individual sectors and sector groups to prevent  
program or erase operations within that sector using a user-defined 64-bit password  
Package options  
— Standard discrete pinouts  
11 x 8 mm, 80-ball Fine-pitch BGA (PL127J) (VBG080)  
8 x 6 mm, 48-ball Fine pitch BGA (PL064J/PL032J)  
(VBK048)  
— MCP-compatible pinout  
8 x 11.6 mm, 64-ball Fine-pitch BGA (PL127J) 7 x 9 mm, 56-ball Fine-pitch BGA (PL064J and PL032J)  
Compatible with MCP pinout, allowing easy integration of RAM into existing designs  
13  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
General Description  
The PL127J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device organized as 8/8/4/2  
Mwords. The devices are offered in the following packages:  
„ 11mm x 8mm, 64-ball Fine-pitch BGA standalone (all)  
„ 9mm x 8mm, 80-ball Fine-pitch BGA standalone (PL127J)  
„ 8mm x 11.6mm, 64-ball Fine pitch BGA multi-chip compatible (PL127J)  
The word-wide data (x16) appears on DQ15-DQ0. This device can be pro-  
grammed in-system or in standard EPROM programmers. A 12.0 V VPP is not  
required for write or erase operations.  
The device offers fast page access times of 20 to 30 ns, with corresponding ran-  
dom access times of 55 to 70 ns, respectively, allowing high speed  
microprocessors to operate without wait states. To eliminate bus contention the  
device has separate chip enable (CE#), write enable (WE#) and output enable  
(OE#) controls.  
Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into 4 banks, which can be considered to be four  
separate memory arrays as far as certain operations are concerned. The device  
can improve overall system performance by allowing a host system to program  
or erase in one bank, then immediately and simultaneously read from another  
bank with zero latency (with two simultaneous operations operating at any one  
time). This releases the system from waiting for the completion of a program or  
erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The  
banks are organized as follows:  
Bank  
A
PL127J Sectors  
PL064J Sectors  
PL032J Sectors  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
24 Mbit (32 Kw x 48)  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
12 Mbit (32 Kw x 24)  
B
C
48 Mbit (32 Kw x 96)  
24 Mbit (32 Kw x 48)  
12 Mbit (32 Kw x 24)  
D
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode  
operation provides fast read access speed of random locations within that page.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both  
read and write functions. Internally generated and regulated voltages are pro-  
vided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 single-  
power-supply Flash standard. Commands are written to the command regis-  
ter using standard microprocessor write timing. Register contents serve as inputs  
to an internal state-machine that controls the erase and programming circuitry.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
14  
P r e l i m i n a r y  
Write cycles also internally latch addresses and data needed for the programming  
and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The  
Unlock Bypass mode facilitates faster programming times by requiring only two  
write cycles to program data instead of four. Device erasure occurs by executing  
the erase command sequence.  
The host system can detect whether a program or erase operation is complete by  
reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program  
or erase cycle has been completed, the device is ready to read array data or ac-  
cept another command.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold for any period of time to read data from, or program data to, any sector that  
is not selected for erasure. True background erase can thus be achieved. If a read  
is needed from the SecSi Sector area (One Time Program area) after an erase  
suspend, then the user must use the proper command sequence to enter and exit  
this region.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consumption  
is greatly reduced in both these modes.  
The device electrically erases all bits within a sector simultaneously via Fowler-  
Nordheim tunneling. The data is programmed using hot electron injection.  
15  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Product Selector Guide  
Part Number  
S29PL032J/S29PL064J/S29PL127J  
V
,V = 2.7–3.6 V  
55 (Note)  
60  
70  
CC IO  
Speed Option  
V
V
= 2.7–3.6 V,  
= 1.65–1.95 V (PL127J only)  
CC  
IO  
65  
65  
70  
70  
Max Access Time, ns (tACC  
Max CE# Access, ns (tCE  
Max Page Access, ns (tPACC  
Max OE# Access, ns (tOE  
)
55 (Note)  
20 (Note)  
60  
25  
70  
30  
)
)
30  
30  
)
Note: Contact factory for availability  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
16  
P r e l i m i n a r y  
Block Diagram  
DQ15–DQ0  
RY/BY# (See Note)  
V
CC  
V
SS  
Sector  
Switches  
V
IO  
Input/Output  
Buffers  
RESET#  
WE#  
Erase Voltage  
Generator  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Data Latch  
Y-Gating  
Y-Decoder  
X-Decoder  
V
Detector  
Timer  
CC  
Amax–A3  
Cell Matrix  
A2–A0  
Notes:  
1. RY/BY# is an open drain output.  
2. Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
17  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Simultaneous Read/Write Block Diagram  
V
V
CC  
SS  
OE#  
Mux  
Bank A  
Bank A Address  
Amax–A0  
X-Decoder  
Bank B Address  
RY/BY#  
Bank B  
X-Decoder  
Amax–A0  
RESET#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
Status  
WE#  
DQ15–DQ0  
CE#  
WP#/ACC  
Control  
Mux  
X-Decoder  
Bank C  
DQ0–DQ15  
Bank C Address  
Bank D Address  
X-Decoder  
Bank D  
Amax–A0  
Mux  
Note: Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
Note: Pinout shown for PL127J.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
18  
P r e l i m i n a r y  
Pin Description  
Amax–A0  
=
=
=
=
=
=
=
=
Address bus  
DQ15–DQ0  
CE#  
OE#  
WE#  
VSS  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
Device Ground  
Pin Not Connected Internally  
NC  
RY/BY#  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept  
read operations and commands. When RY/BY#=  
VOL, the device is either executing an embedded  
algorithm or the device is executing a hardware  
reset operation.  
WP#/ACC  
=
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two  
4K-word sectors are write protected regardless of  
other sector protection configurations. When WP#/  
ACC= VIH, these sector are unprotected unless the  
DYB or PPB is programmed. When WP#/ACC= 12V,  
program and erase operations are accelerated.  
VIO  
=
=
Input/Output Buffer Power Supply  
(1.65 V to 1.95 V (for PL127J) or 2.7 V to 3.6 V (for  
all PLxxxJ devices)  
VCC  
Chip Power Supply  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
CE#1  
=
=
Hardware Reset Pin  
Chip Enable Inputs  
Notes:  
1. Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
Logic Symbol  
max+1  
Amax–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
RY/BY#  
VIO (VCCQ  
)
19  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. PL127J Device Bus Operations  
Addresses  
(Amax–A0)  
DQ15–  
DQ0  
Operation  
CE#  
L
OE#  
L
WE#  
RESET#  
WP#/ACC  
X
Read  
Write  
H
L
H
H
AIN  
DOUT  
DIN  
L
H
X (Note 2)  
AIN  
VIO  
0.3 V  
VIO  
0.3 V  
Standby  
X
X
X (Note 2)  
X
High-Z  
Output Disable  
Reset  
L
X
X
H
X
X
H
X
X
H
L
X
X
X
X
X
High-Z  
High-Z  
DIN  
Temporary Sector Unprotect (High Voltage)  
VID  
AIN  
Legend: L= Logic Low = VIL, H = Logic High = VIH, VID = 11.5-12.5 V, VHH = 8.5-9.5 V, X = Don’t Care, SA =  
Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the  
High Voltage Sector Protection section.  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appro-  
priate CE# pins. OE# is the output control and gates array data to the output  
pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. Each bank remains enabled for read access until the command register  
contents are altered.  
Refer to Table 23 for timing specifications and to Figure 11 for the timing diagram.  
ICC1 in the DC Characteristics table represents the active current specification for  
reading array data.  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid  
output data. The chip enable access time (tCE) is the delay from the stable ad-  
dresses and stable CE# to valid data at the output inputs. The output enable  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
20  
P r e l i m i n a r y  
access time is the delay from the falling edge of the OE# to valid data at the out-  
put inputs (assuming the addresses have been stable for at least tACC–tOE time).  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. Address bits Amax–A3 select an 8 word page,  
and address bits A2–A0 select a specific word within that page. This is an asyn-  
chronous operation with the microprocessor supplying the specific word location.  
The random or initial page access is tACC or tCE and subsequent page read ac-  
cesses (as long as the locations specified by the microprocessor falls within that  
page) is equivalent to tPACC. Fast page mode accesses are obtained by keeping  
Amax–A3 constant and changing A2–A0 to select the specific word within that  
page.  
Table 2. Page Select  
Word  
A2  
0
A1  
0
0
1
1
0
0
1
1
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read, and  
erase-suspend program), the device is capable of reading data from one bank of  
memory while a program or erase operation is in progress in another bank of  
memory (simultaneous operation). The bank can be selected by bank addresses  
(PL127J: A22–A20, L064J: A21–A19, PL032J: A20–A18) with zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Table 3. Bank Select  
PL127J: A22–A20  
PL064J: A21–A19  
PL032J: A20–A18  
Bank  
Bank A  
Bank B  
Bank C  
Bank D  
000  
001, 010, 011  
100, 101, 110  
111  
21  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once a bank enters the Unlock Bypass mode, only two write cycles are required  
to program a word, instead of four. The “Word Program Command Sequence”  
section has details on programming data to the device using both standard and  
Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 4 indicates the set of address space that each sector occupies. A “bank ad-  
dress” is the set of address bits required to uniquely select a bank. Similarly, a  
“sector address” refers to the address bits required to uniquely select a sector.  
The “Command Definitions” section has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
ICC2 in the DC Characteristics table represents the active current specification for  
the write mode. See the timing specification tables and timing diagrams in the  
Reset for write operations.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
function is primarily intended to allow faster manufacturing throughput at the  
factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the time required for program  
operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin re-  
turns the device to normal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left floating or unconnected; incon-  
sistent behavior of the device may result.  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ15–DQ0. Standard  
read cycle timings apply in this mode. Refer to the SecSiTM Sector Addresses and  
Autoselect Command Sequence for more information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at VIO ± 0.3 V. (Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device  
will be in the standby mode, but the standby current will be greater. The device  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
22  
P r e l i m i n a r y  
requires standard access time (tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
ICC3 in “DC Characteristics” represents the CMOS standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Note that during automatic sleep mode, OE# must be at VIH before  
the device reduces current to the stated sleep mode specification. ICC5 in “DC  
Characteristics” represents the automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/  
BY# to determine whether the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing (RY/BY# pin is “1”), the reset  
operation is completed within a time of tREADY (not during Embedded Algorithms).  
The system can read data tRH after the RESET# pin returns to VIH.  
Refer to the AC Characteristic tables for RESET# parameters and to 13 for the  
timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
(except for RY/BY#) are placed in the highest Impedance state  
23  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
24  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
Sector Address (A22-A12)  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
Sector Size (Kwords)  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
25  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA79  
Sector Address (A22-A12)  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
Sector Size (Kwords)  
Address Range (x16)  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
26  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
Sector Address (A22-A12)  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
Sector Size (Kwords)  
Address Range (x16)  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
27  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
Sector Address (A22-A12)  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
28  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Sector Address (A22-A12)  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
29  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Sector Address (A22-A12)  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
Sector Size (Kwords)  
Address Range (x16)  
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
4
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
30  
P r e l i m i n a r y  
Table 5. PL064J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
31  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 5. PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
Sector Address (A22-A12)  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
Sector Size (Kwords)  
Address Range (x16)  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
32  
P r e l i m i n a r y  
Table 5. PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA96  
Sector Address (A22-A12)  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
Sector Size (Kwords)  
Address Range (x16)  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
4
4
4
4
4
4
4
33  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 6. PL032J Sector Architecture  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
34  
P r e l i m i n a r y  
Table 6. PL032J Sector Architecture (Continued)  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
4
4
4
4
4
4
4
Table 7. SecSiTM Sector Addresses  
Sector Size  
64 words  
Address Range  
Factory-Locked Area  
000000h-00003Fh  
000040h-00007Fh  
Customer-Lockable Area  
64 words  
35  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on ad-  
dress pin A9. Address pins must be as shown in Table 8 and Table 11. In addition,  
when verifying sector protection, the sector address must appear on the appro-  
priate highest order address bits (see Table 3). Table 8 and Table 11 show the  
remaining address bits that are don’t care. When all necessary bits have been set  
as required, the programming equipment may then read the corresponding iden-  
tifier code on DQ7–DQ0. However, the autoselect codes can also be accessed in-  
system through the command register, for instances when the device is erased  
or programmed in a system without access to high voltage on the A9 pin. The  
command sequence is illustrated in Table 17. Note that if a Bank Address (BA)  
(on address bits PL127J: A22A20, PL064J: A21A19, PL032J: A20–A18) is as-  
serted during the third write cycle of the autoselect command, the host system  
can read autoselect data that bank and then immediately read array data from  
the other bank, without exiting the autoselect mode.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 17. This method does  
not require VID. Refer to the Autoselect Command Sequence for more  
information.  
Table 8. Autoselect Codes (High Voltage Method)  
Amax  
to  
A12  
A5  
to  
A4  
A1  
0
DQ15  
to DQ0  
Description  
CE#  
OE#  
WE#  
A9 A8  
A7  
A6  
A3 A2  
A1  
A0  
Manufacturer ID:  
Spansion  
products  
L
L
L
L
H
BA  
BA  
X
X
VID  
X
X
L
L
X
L
L
L
L
L
L
L
L
H
L
0001h  
227Eh  
Read  
Cycle 1  
2220h (PL127J)  
2202h (PL064J)  
220Ah (PL032J)  
Read  
Cycle 2  
H
H
H
L
H
VID  
L
L
2200h (PL127J)  
2201h (PL064J)  
2201h (PL032J)  
Read  
L
L
H
L
H
L
H
H
H
L
Cycle 3  
Sector Protection  
Verification  
0001h (protected),  
0000h (unprotected)  
L
L
H
H
SA  
BA  
X
X
VID  
X
X
L
L
L
L
00C4h (factory and  
customer locked), 0084h  
(factory locked), 0004h  
(not locked)  
SecSi Indicator  
Bit (DQ7, DQ6)  
L
VID  
X
X
L
L
H
H
Legend: L = Logic Low = VIL, H = Logic High = VIH, BA = Bank Address, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
36  
P r e l i m i n a r y  
Table 9. PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector/  
Sector/  
Sector  
SA0  
A22-A12  
Sector Block Size  
Sector  
A22-A12  
Sector Block Size  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
4 Kwords  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
SA264  
4 Kwords  
SA265  
4 Kwords  
37  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 10. PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
SA131  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA132  
32 Kwords  
SA133  
32 Kwords  
SA134  
4 Kwords  
SA135  
4 Kwords  
SA136  
4 Kwords  
SA137  
4 Kwords  
SA138  
4 Kwords  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
38  
P r e l i m i n a r y  
Table 10. PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA139  
SA140  
SA141  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
1111111101  
1111111110  
1111111111  
4 Kwords  
4 Kwords  
Table 11. PL032J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA68  
32 Kwords  
SA69  
32 Kwords  
SA70  
4 Kwords  
SA71  
4 Kwords  
SA72  
4 Kwords  
SA73  
4 Kwords  
SA74  
4 Kwords  
SA75  
4 Kwords  
SA76  
4 Kwords  
SA77  
4 Kwords  
Selecting a Sector Protection Mode  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See the  
SecSiTM Sector Addresses for details.  
39  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 12. Sector Protection Schemes  
DYB  
0
PPB  
0
PPB Lock  
Sector State  
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
0
0
Unprotected—PPB not changeable, DYB is changeable  
0
1
1
0
Protected—PPB and DYB are changeable  
1
1
0
1
1
0
Protected—PPB not changeable, DYB is changeable  
1
1
Sector Protection  
The PL127J, PL064J, and PL032J features several levels of sector protection,  
which can disable both the program and erase operations in certain sectors or  
sector groups:  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled pro-  
tection method.  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors SA1-  
133, SA1-134, SA2-0 and SA2-1.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used. If the Persistent Sector Protection  
method is desired, programming the Persistent Sector Protection Mode Locking  
Bit permanently sets the device to the Persistent Sector Protection mode. If the  
Password Sector Protection method is desired, programming the Password Mode  
Locking Bit permanently sets the device to the Password Sector Protection mode.  
It is not possible to switch between the two protection modes once a locking bit  
has been set. One of the two modes must be selected when the device is first  
programmed. This prevents a program or virus from later setting the Password  
Mode Locking Bit, which would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Protection Mode.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
40  
P r e l i m i n a r y  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See Au-  
toselect Mode for details.  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection  
method in previous flash devices. This new method provides three different sec-  
tor protection states:  
„ Persistently Locked—The sector is protected and cannot be changed.  
„ Dynamically Locked—The sector is protected and can be changed by a simple  
command.  
„ Unlocked—The sector is unprotected and can be changed by a simple com-  
mand.  
To achieve these states, three types of “bits” are used:  
„ Persistent Protection Bit  
„ Persistent Protection Bit Lock  
„ Persistent Sector Protection Mode Locking Bit  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four  
sectors (see the sector address tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector Persistent Protection Bits  
(PPBs) for greater flexibility. Each PPB is individually modifiable through the PPB  
Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device  
must be instructed to preprogram all of the sector PPBs prior to PPB erasure. Oth-  
erwise, a previously erased sector PPBs can potentially be over-erased. The flash  
device does not have a built-in means of preventing sector PPBs over-erasure.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to  
“1, the PPBs cannot be changed. When cleared (“0”), the PPBs are changeable.  
There is only one PPB Lock bit per device. The PPB Lock is cleared after power-  
up or hardware reset. There is no command sequence to unlock the PPB Lock.  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYBs is “0. Each DYB is individually modifiable through  
the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and  
PPB Lock is defaulted to power up in the cleared state – meaning the PPBs are  
changeable.  
When the device is first powered on the DYBs power up cleared (sectors not pro-  
tected). The Protection State for each sector is determined by the logical OR of  
the PPB and the DYB related to that sector. For the sectors that have the PPBs  
cleared, the DYBs control whether or not the sector is protected or unprotected.  
By issuing the DYB Write command sequences, the DYBs will be set or cleared,  
thus placing each sector in the protected or unprotected state. These are the so-  
41  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
called Dynamic Locked or Unlocked states. They are called dynamic states be-  
cause it is very easy to switch back and forth between the protected and  
unprotected conditions. This allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared as often as needed.  
The PPBs allow for a more static, and difficult to change, level of protection. The  
PPBs retain their state across power cycles because they are non-volatile. Indi-  
vidual PPBs are set with a command but must all be cleared as a group through  
a complex sequence of program and erasing commands. The PPBs are also lim-  
ited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are pro-  
grammed to the desired settings, the PPB Lock may be set to “1. Setting the PPB  
Lock disables all program and erase commands to the non-volatile PPBs. In ef-  
fect, the PPB Lock Bit locks the PPBs into their current state. The only way to clear  
the PPB Lock is to go through a power cycle. System boot code can determine if  
any changes to the PPB are needed; for example, to allow new system code to  
be downloaded. If no changes are needed then the boot code can set the PPB  
Lock to disable any further changes to the PPBs during system operation.  
The WP#/ACC write protect pin adds a final level of hardware protection to sec-  
tors SA1-133, SA1-134, SA2-0 and SA2-1. When this pin is low it is not possible  
to change the contents of these sectors. These sectors generally hold system  
boot code. The WP#/ACC pin can prevent any changes to the boot code that could  
override the choices made while setting up sector protection during system  
initialization.  
For customers who are concerned about malicious viruses there is another level  
of security - the persistently locked state. To persistently protect a given sector  
or sector group, the PPBs associated with that sector need to be set to “1. Once  
all PPBs are programmed to the desired settings, the PPB Lock should be set to  
“1. Setting the PPB Lock automatically disables all program and erase commands  
to the Non-Volatile PPBs. In effect, the PPB Lock “freezes” the PPBs into their cur-  
rent state. The only way to clear the PPB Lock is to go through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Write command se-  
quence is all that is necessary. The DYB write command for the dynamic sectors  
switch the DYBs to signify protected and unprotected, respectively. If there is a  
need to change the status of the persistently locked sectors, a few more steps  
are required. First, the PPB Lock bit must be disabled by either putting the device  
through a power-cycle, or hardware reset. The PPBs can then be changed to re-  
flect the desired settings. Setting the PPB lock bit once again will lock the PPBs,  
and the device operates normally again.  
The best protection is achieved by executing the PPB lock bit set command early  
in the boot code, and protect the boot code by holding WP#/ACC = VIL.  
Table 17 contains all possible combinations of the DYB, PPB, and PPB lock relating  
to the status of the sector.  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and  
the protection can not be removed until the next power cycle clears the PPB lock.  
If the PPB is cleared, the sector can be dynamically locked or unlocked. The DYB  
then controls whether or not the sector is protected or unprotected.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
42  
P r e l i m i n a r y  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
after which the device returns to read mode without having erased the protected  
sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified  
by writing a DYB/PPB/PPB lock verify command to the device. There is an alter-  
native means of reading the protection status. Take RESET# to VIL and hold WE#  
at VIH.(The high voltage A9 Autoselect Mode also works for reading the status of  
the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) = (0, 1, 0) will  
produce a logical ‘1” code at device output DQ0 for a protected sector or a “0” for  
an unprotected sector. In this mode, the other addresses are don’t cares. Address  
location with A1 = VIL are reserved for autoselect manufacturer and device  
codes.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking  
bit exists to guarantee that the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit prevents programming of the  
password protection mode locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of se-  
curity than the Persistent Sector Protection Mode. There are two main differences  
between the Persistent Sector Protection and the Password Sector Protection  
Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock  
bit set to the locked state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password  
to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with  
no means to read, program, or erase it. The password is used to clear the PPB  
Lock bit. The Password Unlock command must be written to the flash, along with  
a password. The flash device internally compares the given password with the  
pre-programmed password. If they match, the PPB Lock bit is cleared, and the  
PPBs can be altered. If they do not match, the flash device does nothing. There  
is a built-in 2 µs delay for each “password check.This delay is intended to thwart  
any efforts to run a program that tries all possible combinations in order to crack  
the password.  
Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first  
program the password. The password may be correlated to the unique Electronic  
Serial Number (ESN) of the particular flash device. Each ESN is different for every  
43  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
flash device; therefore each password should be different for every flash device.  
While programming in the password region, the customer may perform Password  
Verify operations.  
Once the desired password is programmed in, the customer must then set the  
Password Mode Locking Bit. This operation achieves two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is  
not possible to reverse this function.  
Disables all further commands to the password region. All program, and read op-  
erations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Protection  
method is desired when setting the Password Mode Locking Bit. More importantly,  
the user must be sure that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations are disabled, there is no  
means to verify what the password is afterwards. If the password is lost after set-  
ting the Password Mode Locking Bit, there will be no way to clear the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password  
on the DQ bus and further password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit is programmed, the Persis-  
tent Sector Protection Locking Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Verify commands (see “Password Verify  
Command”). The password function works in conjunction with the Password  
Mode Locking Bit, which when set, prevents the Password Verify command from  
reading the contents of the password on the pins of the device.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper  
two and lower two sectors without using VID. This function is provided by the WP#  
pin and overrides the previously discussed High Voltage Sector Protection  
method.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the two outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously protected or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two  
and lower two sectors to whether they were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected using the method described in  
the High Voltage Sector Protection.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent  
behavior of the device may result.  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of  
the Password Mode Locking Bit after power-up reset. If the Password Mode Lock  
Bit is also set after a hardware reset (RESET# asserted) or a power-up reset, the  
ONLY means for clearing the PPB Lock Bit in Password Protection Mode is to issue  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
44  
P r e l i m i n a r y  
the Password Unlock command. Successful execution of the Password Unlock  
command clears the PPB Lock Bit, allowing for sector PPBs modifications. Assert-  
ing RESET#, taking the device through a power-on reset, or issuing the PPB Lock  
Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode Lock Bit  
is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode,  
the PPB Lock Bit is cleared after power-up or hardware reset. The PPB Lock Bit is  
set by issuing the PPB Lock Bit Set command. Once set the only means for clear-  
ing the PPB Lock Bit is by issuing a hardware or power-up reset. The Password  
Unlock command is ignored in Persistent Protection Mode.  
High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming  
equipment. The procedure requires high voltage (VID) to be placed on the RE-  
SET# pin. Refer to Figure 1 for details on this procedure. Note that for sector  
unprotect, all unprotected sectors must first be protected prior to the first sector  
write cycle.  
45  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/Sector Unprotection Algorithms  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
46  
P r e l i m i n a r y  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Sector Unprotect mode is activated by setting the  
RESET# pin to VID. During this mode, formerly protected sectors can be pro-  
grammed or erased by selecting the sector addresses. Once VID is removed from  
the RESET# pin, all the previously protected sectors are protected again. 2 shows  
the algorithm, and 21 shows the timing diagrams, for this feature. While PPB lock  
is set, the device cannot enter the Temporary Sector Unprotection Mode.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL, upper two and lower two  
sectors will remain protected).  
2. All previously protected sectors are protected once again  
Figure 2. Temporary Sector Unprotect Operation  
SecSi™ (Secured Silicon) Sector Flash Memory Region  
The SecSi (Secured Silicon) Sector feature provides a Flash memory region that  
enables permanent part identification through an Electronic Serial Number (ESN)  
The 128-word SecSi sector is divided into 64 factory-lockable words that can be  
programmed and locked by the customer. The SecSi sector is located at ad-  
dresses 000000h-00007Fh in both Persistent Protection mode and Password  
Protection mode. It uses indicator bits (DQ6, DQ7) to indicate the factory-locked  
and customer-locked status of the part.  
The system accesses the SecSi Sector through a command sequence (see the  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence). After the system  
has written the Enter SecSi Sector command sequence, it may read the SecSi  
Sector by using the addresses normally occupied by the boot sectors. This mode  
of operation continues until the system issues the Exit SecSi Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to the normal address  
space. Note that the ACC function and unlock bypass modes are not available  
when the SecSi Sector is enabled.  
Factory-Locked Area (64 words)  
The factory-locked area of the SecSi Sector (000000h-00003Fh) is locked when  
the part is shipped, whether or not the area was programmed at the factory. The  
47  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
SecSi Sector Factory-locked Indicator Bit (DQ7) is permanently set to a “1. Op-  
tional Spansion programming services can program the factory-locked area with  
a random ESN, a customer-defined code, or any combination of the two. Because  
only FASL can program and protect the factory-locked area, this method ensures  
the security of the ESN once the product is shipped to the field. Contact your local  
sales office for details on using Spansion’s programming services. Note that the  
ACC function and unlock bypass modes are not available when the SecSi sector  
is enabled.  
Customer-Lockable Area (64 words)  
The customer-lockable area of the SecSi Sector (000040h-00007Fh) is shipped  
unprotected, which allows the customer to program and optionally lock the area  
as appropriate for the application. The SecSi Sector Customer-locked Indicator  
Bit (DQ6) is shipped as “0” and can be permanently locked to “1” by issuing the  
SecSi Protection Bit Program Command. The SecSi Sector can be read any num-  
ber of times, but can be programmed and locked only once. Note that the  
accelerated programming (ACC) and unlock bypass functions are not available  
when programming the SecSi Sector.  
The Customer-lockable SecSi Sector area can be protected using one of the  
following procedures:  
„ Write the three-cycle Enter SecSi Sector Region command sequence, and  
then follow the in-system sector protect algorithm as shown in Figure 1, ex-  
cept that RESET# may be at either VIH or VID. This allows in-system protec-  
tion of the SecSi Sector Region without raising any device pin to a high  
voltage. Note that this method is only applicable to the SecSi Sector.  
„ To verify the protect/unprotect status of the SecSi Sector, follow the algo-  
rithm shown in Figure 3.  
Once the SecSi Sector is locked and verified, the system must write the Exit SecSi  
Sector Region command sequence to return to reading and writing the remainder  
of the array.  
The SecSi Sector lock must be used with caution since, once locked, there is no  
procedure available for unlocking the SecSi Sector area and none of the bits in  
the SecSi Sector memory space can be modified in any way.  
SecSi Sector Protection Bits  
The SecSi Sector Protection Bits prevent programming of the SecSi Sector mem-  
ory area. Once set, the SecSi Sector memory area contents are non-modifiable.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
48  
P r e l i m i n a r y  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. SecSi Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental erasure or programming,  
which might otherwise be caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE#, or WE# do not initiate a  
write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# =  
VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
49  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Tables 13–16. To  
terminate reading CFI data, the system must write the reset command. The CFI  
Query mode is not accessible when the device is executing an Embedded Program  
or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 13–16. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Contact your local sales office for copies of these documents.  
Table 13. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
Primary OEM Command Set  
13h  
14h  
0002h  
0000h  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
50  
P r e l i m i n a r y  
Table 14. System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 15. Device Geometry Definition  
Addresses  
Data  
Description  
0018h (PL127J)  
0017h (PL064J)  
0016h (PL032J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (PL127J)  
007Dh (PL064J)  
003Dh (PL032J)  
31h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
51  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 16. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
0002h  
0001h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
0001h  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
00E7h (PL127J)  
0077h (PL064J)  
003Fh (PL032J)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
4Eh  
0000h  
0002h (PLxxxJ)  
0085h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
0001h  
0004h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0027h (PL127J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
58h  
59h  
5Ah  
0060h (PL127J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
0060h (PL127J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
52  
P r e l i m i n a r y  
Table 16. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
0027h (PL127J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
5Bh  
53  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 17 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state. A reset com-  
mand is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristic section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. The system can read  
array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing  
a programming operation in the Erase Suspend mode, the system may once  
again read array data with the same exception. See the Erase Suspend/Erase Re-  
sume Commands section for more information.  
The system must issue the reset command to return a bank to the read (or erase-  
suspend-read) mode if DQ5 goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The AC Characteristic table provides the read  
parameters, and Figure 12 shows the timing diagram.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the bank to which  
the system was writing to the read mode. If the program command sequence is  
written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
54  
P r e l i m i n a r y  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in the  
other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read any number of autoselect codes without reinitiating the command sequence.  
Table 17 shows the address and data requirements. To determine sector protec-  
tion information, the system must write to the appropriate bank address (BA) and  
sector address (SA). Table 3 shows the address range and bank number associ-  
ated with each sector.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the bank was previously in Erase Suspend).  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence  
The SecSi Sector region provides a secured data area containing a random, eight  
word electronic serial number (ESN). The system can access the SecSi Sector re-  
gion by issuing the three-cycle Enter SecSi Sector command sequence. The  
device continues to access the SecSi Sector region until the system issues the  
four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command  
sequence returns the device to normal operation. The SecSi Sector is not acces-  
sible when the device is executing an Embedded Program or embedded Erase  
algorithm. Table 17 shows the address and data requirements for both command  
sequences. See also “SecSi™ (Secured Silicon) Sector Flash Memory Region” for  
further information. Note that the ACC function and unlock bypass modes are not  
available when the SecSi Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 17 shows the address and  
data requirements for the program command sequence. Note that the SecSi Sec-  
tor, autoselect, and CFI functions are unavailable when a [program/erase]  
operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to the  
Write Operation Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program  
55  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
operation. The program command sequence should be reinitiated once that bank  
has returned to the read mode, to ensure data integrity. Note that the SecSi Sec-  
tor, autoselect and CFI functions are unavailable when the SecSi Sector is  
enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read will show that the data  
is still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster  
than using the standard program command sequence. The unlock bypass com-  
mand sequence is initiated by first writing two unlock cycles. This is followed by  
a third write cycle containing the unlock bypass command, 20h. That bank then  
enters the unlock bypass mode. A two-cycle unlock bypass program command  
sequence is all that is required to program in this mode. The first cycle in this se-  
quence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two unlock cycles required in  
the standard program command sequence, resulting in faster total programming  
time. Table 17 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table 18)  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at VHH any operation other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
4 illustrates the algorithm for the program operation. Refer to the Erase/Program  
Operations table in the AC Characteristics section for parameters, and Figure 14  
for timing diagrams.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
56  
P r e l i m i n a r y  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 17 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 17 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to the Write  
Operation Status section for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that  
SecSi Sector, autoselect, and CFI functions are unavailable when a [program/  
erase] operation is in progress. However, note that a hardware reset immedi-  
ately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity.  
57  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
5 illustrates the algorithm for the erase operation. Refer to the Erase/Program  
Operations tables in the AC Characteristics section for parameters, and Figure 16  
section for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 17 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets that bank to the read mode. The system must rewrite the com-  
mand sequence and any additional addresses and commands. Note that SecSi  
Sector, autoselect, and CFI functions are unavailable when a [program/erase]  
operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
bank. The system can determine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to the Write Operation Sta-  
tus section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
5 illustrates the algorithm for the erase operation. Refer to the Erase/Program  
Operations tables in the AC Characteristics section for parameters, and Figure 16  
section for timing diagrams.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
58  
P r e l i m i n a r y  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 17 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation or Embedded Program  
algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a maximum of 20 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation. Addresses are “don’t-cares” when writing the Erase suspend  
command.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
59  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
operation using the DQ7 or DQ6 status bits, just as in the standard Word Program  
operation. Refer to the Write Operation Status section for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. The device allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored in the memory array. When  
the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to the SecSiTM Sector Ad-  
dresses and the Autoselect Command Sequence sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command (address bits are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command. Further writes of the  
Resume command are ignored. Another Erase Suspend command can be written  
after the chip has resumed erasing.  
If the Persistent Sector Protection Mode Locking Bit is verified as programmed  
without margin, the Persistent Sector Protection Mode Locking Bit Program Com-  
mand should be reissued to improve program margin. If the SecSi Sector  
Protection Bit is verified as programmed without margin, the SecSi Sector Pro-  
tection Bit Program Command should be reissued to improve program margin.  
µµAfter programming a PPB, two additional cycles are needed to determine  
whether the PPB has been programmed with margin. If the PPB has been pro-  
grammed without margin, the program command should be reissued to improve  
the program margin. Also note that the total number of PPB program/erase cycles  
is limited to 100 cycles. Cycling the PPBs beyond 100 cycles is not guaranteed.  
After erasing the PPBs, two additional cycles are needed to determine whether  
the PPB has been erased with margin. If the PPBs has been erased without mar-  
gin, the erase command should be reissued to improve the program margin. The  
programming of either the PPB or DYB for a given sector or sector group can be  
verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming  
of a DYB for a given sector group.  
Command Definitions Tables  
Table 17. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
01  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(Note  
10)  
(BA)  
X0F  
(Note  
10)  
Device ID (Note 10)  
227E  
Autoselect  
(Note 7)  
SecSi Sector Factory  
Protect (Note 8)  
(BA)  
555  
(Note  
8)  
AA  
X03  
Sector Group Protect  
Verify (Note 9)  
(BA)  
555  
(SA) XX00/  
X02  
AAA  
XX01  
Program  
4
6
6
1
1
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
Chip Erase  
Sector Erase  
555  
555  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
AA  
Program/Erase Suspend (Note 11)  
Program/Erase Resume (Note 12)  
BA  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
60  
P r e l i m i n a r y  
Table 17. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
CFI Query (Note 13)  
1
2
3
2
2
1
2
55  
XX  
98  
A0  
AA  
A0  
80  
98  
90  
Accelerated Program (Note 15)  
Unlock Bypass Entry (Note 15)  
Unlock Bypass Program (Note 15)  
Unlock Bypass Erase (Note 15)  
Unlock Bypass CFI (Notes 13, 15)  
Unlock Bypass Reset (Note 15)  
PA  
2AA  
PA  
PD  
55  
PD  
10  
555  
XX  
555  
20  
XX  
XX  
XX  
XXX  
XXX  
00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass  
RA = Read Address (Amax:A0).  
mode, or erase operation. Determined by PL127J: Amax:A20,  
PL064J: Amax:A19, PL032J: Amax:A18.  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect  
mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for  
specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
PA = Program Address (Amax:A0). Addresses latch on falling  
edge of WE# or CE# pulse, whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data  
latches on rising edge of WE# or CE# pulse, whichever happens  
first.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector group and 01h for  
a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL127J  
(X0Eh = 2220h, X0Fh = 2200h),PL064J (X0Eh = 2202h,  
X0Fh = 2201h), PL032J (X0Eh = 220Ah, X0Fh = 2201h).  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
4. During unlock and command cycles, when lower address bits  
are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than  
DQ7 are don’t cares.  
11. System may read and program in non-erasing sectors, or  
enter autoselect mode, when in Program/Erase Suspend  
mode. Program/Erase Suspend command is valid only  
during a sector erase operation, and requires bank address.  
5. No unlock or command cycles required when bank is reading  
array data.  
12. Program/Erase Resume command is valid only during Erase  
Suspend mode, and requires bank address.  
6. The Reset command is required to return to reading array  
(or to erase-suspend-read mode if previously in Erase  
Suspend) when bank is in autoselect mode, or if DQ5 goes  
high (while bank is providing status information).  
13. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
14. WP#/ACC must be at V during the entire operation of  
ID  
command.  
7. Fourth cycle of autoselect command sequence is a read  
cycle. System must provide bank address to obtain  
manufacturer ID or device ID information. See Autoselect  
Command Sequence section for more information.  
15. Unlock Bypass Entry command is required prior to any  
Unlock Bypass operation. Unlock Bypass Reset command is  
required to return to the reading array.  
8. The data is C4h for factory and customer locked, 84h for  
factory locked and 04h for not locked.  
Table 18. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command (Notes)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
4
XXX  
555  
555  
F0  
AA  
AA  
SecSi Sector Entry  
SecSi Sector Exit  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
XX  
00  
68  
SecSi Protection Bit  
Program (Notes 5, 6)  
6
5
4
4
7
6
555  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
555  
60  
60  
38  
C8  
28  
60  
OW  
OW  
OW  
48  
OW  
RD(0)  
SecSi Protection Bit  
Status  
OW  
48  
RD(0)  
Password Program  
(Notes 5, 7, 8)  
XX[0-3]  
PD[0-3]  
Password Verify (Notes  
6, 8, 9)  
PWA[0-3] PWD[0-3]  
Password Unlock (Notes  
7, 10, 11)  
PWA[0]  
(SA)WP  
PWD[0] PWA[1] PWD[1] PWA[2] PWD[2] PWA[3] PWD[3]  
68 (SA)WP 48 (SA)WP RD(0)  
PPB Program (Notes 5,  
6, 12)  
61  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 18. Sector Protection Command Definitions  
PPB Status  
4
6
3
4
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
90  
60  
78  
58  
(SA)WP  
RD(0)  
All PPB Erase (Notes 5,  
6, 13, 14)  
WP  
60  
(SA)  
40  
(SA)WP RD(0)  
PPB Lock Bit Set  
PPB Lock Bit Status  
(Note 15)  
SA  
RD(1)  
DYB Write (Note 7)  
DYB Erase (Note 7)  
DYB Status (Note 6)  
4
4
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
48  
48  
58  
SA  
SA  
SA  
X1  
X0  
RD(0)  
PPMLB Program (Notes  
5, 6, 12)  
6
5
6
5
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
60  
60  
60  
60  
PL  
PL  
SL  
SL  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
PPMLB Status (Note 5)  
RD(0)  
48  
SPMLB Program (Notes  
5, 6, 12)  
SPMLB Status (Note 5)  
RD(0)  
Legend:  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address  
bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is  
(00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is  
(00001010)  
Notes:  
1. See Table 1 for description of bus operations.  
9. Command sequence returns FFh if PPMLB is set.  
2. All values are in hexadecimal.  
10. The password is written over four consecutive cycles, at  
addresses 0-3.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
11. A 2 µs timeout is required between any two portions of  
password.  
4. During unlock and command cycles, when lower address bits  
are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than  
DQ7 are don’t cares.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have  
been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6,  
erase command must be issued and verified again. Before  
issuing erase command, all PPBs should be programmed to  
prevent PPB overerasure.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6  
validate bit has been fully programmed when DQ0 = 1. If  
DQ0 = 0 in cycle 6, program command must be issued and  
verified again.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion  
of password.  
Write Operation Status  
The device provides several bits to determine the status of a program or erase opera-  
tion: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 19 and the following subsections describe  
the function of these bits. DQ7 and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in progress. The device also provides a  
hardware-based output signal, RY/BY#, to determine whether an Embedded Program  
or Erase operation is in progress or has been completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Pro-  
gram or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the com-  
mand sequence.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
62  
P r e l i m i n a r y  
During the Embedded Program algorithm, the device outputs on DQ7 the complement  
of the datum programmed to DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is complete, the device out-  
puts the datum programmed to DQ7. The system must provide the program address  
to read valid status information on DQ7. If a program address falls within a protected  
sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns  
to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ15–DQ0 on the following read cycles. Just prior to the  
completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ15–DQ0 while Output Enable (OE#) is asserted low. That is,  
the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status  
or valid data. Even if the device has completed the program or erase operation  
and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid  
data on DQ15–DQ0 will appear on successive read cycles.  
Table 19 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling  
algorithm. 18 in the AC Characteristic section shows the Data# Polling timing  
diagram.  
63  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is  
any sector address within the sector being erased. During chip erase, a valid address is  
any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously  
with DQ5.  
Figure 6. Data# Polling Algorithm  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
64  
P r e l i m i n a r y  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or one of the banks is in the  
erase-suspend-read mode.  
Table 19 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 19 shows the outputs for Toggle Bit I on DQ6. Figure 7 shows the toggle bit  
algorithm. Figure 19 in “Read Operation Timings” shows the toggle bit timing di-  
agrams. Figure 20 shows the differences between DQ2 and DQ6 in graphical  
form. See also the DQ2: Toggle Bit II.  
65  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5 = “1” because the toggle  
bit may stop toggling as DQ5 changes to “1.” See the DQ6: Toggle Bit I and DQ2:  
Toggle Bit II for more information.  
Figure 7. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 19 to compare outputs for DQ2 and DQ6.  
Figure 7 shows the toggle bit algorithm in flowchart form, and the DQ2: Toggle  
Bit II explains the algorithm. See also the DQ6: Toggle Bit I. Figure 19 shows the  
toggle bit timing diagram. Figure 20 shows the differences between DQ2 and DQ6  
in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
66  
P r e l i m i n a r y  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 7).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1,indicating that the  
program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.See also  
the Sector Erase Command Sequence.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 19 shows the status of DQ3 relative to the other status bits.  
67  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Table 19. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
68  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Storage Temperature Plastic Packages . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground  
VCC (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
A9, OE#, and RESET# (Note 2) . . . . . . . . . . . . . . . . . . . . .0.5 V to +13.0 V  
WP#/ACC (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions,  
input or I/O pins may overshoot VSS to –2.0 V for periods of up to 20 ns. Maximum  
DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions, input or  
I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 8.  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V.  
During voltage transitions, A9, OE#, WP#/ACC, and RESET# may overshoot VSS  
to –2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on  
pin A9, OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for periods  
up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the  
short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this data sheet is not implied. Exposure of the device to absolute max-  
imum rating conditions for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
Figure 8. Maximum Overshoot Waveforms  
69  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Operating Ranges  
Operating ranges define those limits between which the functionality of the de-  
vice is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (E) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Supply Voltages  
VCC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7–3.6 V  
VIO (see Note). .1.65–1.95 V (for PL127J) or 2.7–3.6 V (for all PLxxxJ devices)  
Notes:  
For all AC and DC specifications, VIO = VCC; contact your local sales office for other  
VIO options.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
70  
P r e l i m i n a r y  
DC Characteristics  
Table 20. CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
Input Load Current  
1.0  
µA  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
1.0  
µA  
5 MHz  
20  
45  
15  
30  
55  
25  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
VCC Active Read Current (Notes 1, 2)  
mA  
10 MHz  
ICC2  
ICC3  
ICC4  
ICC5  
VCC Active Write Current (Notes 2, 3)  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
OE# = VIH, WE# = VIL  
mA  
µA  
µA  
µA  
CE#, RESET#, WP#/ACC  
= VIO 0.3 V  
0.2  
0.2  
0.2  
5
5
5
RESET# = VSS 0.3 V  
VIH = VIO 0.3 V;  
VIL = VSS 0.3 V  
Automatic Sleep Mode (Notes 2, 4)  
5 MHz  
10 MHz  
5 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
VCC Active Read-While-Program Current  
(Notes 1, 2)  
ICC6  
OE# = VIH  
,
,
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2)  
ICC7  
OE# = VIH  
OE# = VIH  
mA  
mA  
10 MHz  
VCC Active Program-While-Erase-  
Suspended Current (Notes 2, 5)  
ICC8  
ICC9  
17  
10  
25  
VCC Active Page Read Current (Note 2)  
OE# = VIH, 8 word Page Read  
VIO = 1.65–1.95 V (PL127J)  
VIO = 2.7–3.6 V  
15  
0.4  
mA  
V
–0.4  
–0.5  
VIL  
Input Low Voltage  
0.8  
V
VIO = 1.65–1.95 V (PL127J)  
VIO = 2.7–3.6 V  
VIO–0.4  
2.0  
VIO+0.4  
VCC+0.3  
9.5  
V
VIH  
Input High Voltage  
V
VHH  
VID  
Voltage for ACC Program Acceleration  
VCC = 3.0 V ± 10%  
8.5  
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VCC = 3.0 V 10%  
11.5  
12.5  
0.1  
V
V
V
V
IOL = 100 µA, VCC = VCC min, VIO = 1.65–  
1.95 V (PL127J)  
VOL  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
0.4  
IOH = –100 µA, VCC = VCC min, VIO = 1.65–  
1.95 V (PL127J)  
VIO–0.1  
VOH  
Output High Voltage  
IOH = –2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
2.4  
2.3  
V
V
VLKO  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
Notes:  
1. The ICC current listed is typically less than 5 mA/MHz, with OE# at VIH  
2. Maximum ICC specifications are tested with VCC = VCCmax  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
.
.
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep  
mode current is 1 mA.  
5. Not 100% tested.  
6. Valid CE1#/CE2# conditions: (CE1# = VIL, CE2# = VIH,) or (CE1# = VIH, CE2# = VIL) or (CE1# = VIH, CE2# = VIH  
)
71  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
AC Characteristic  
Test Conditions  
3.6 V  
2.7 kΩ  
Device  
Under  
Test  
Device  
Under  
Test  
C
L
C
6.2 kΩ  
L
VIO = 3.0 V  
Note: Diodes are IN3064 or equivalent  
VIO = 1.8 V (PL127J)  
Figure 9. Te s t Se tu ps  
Table 21. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
30  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
pF  
ns  
VIO = 1.8 V  
(PL127J)  
Input Rise and Fall Times  
5
VIO = 3.0 V  
VIO = 1.8 V  
(PL127J)  
0.0 - 1.8  
Input Pulse Levels  
V
VIO = 3.0 V  
0.0–3.0  
VIO/2  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
VIO/2  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
72  
P r e l i m i n a r y  
SWITCHING WAVEFORMS  
Table 22. KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VIO  
VIO/2  
VIO/2  
In  
Measurement Level  
Output  
0.0 V  
Figure 10. Input Waveforms and Measurement Levels  
VCC RampRate  
All DC characteristics are specified for a VCC ramp rate > 1V/100 µs and VCC  
>=VCCQ - 100 mV. If the VCC ramp rate is < 1V/100 µs, a hardware reset  
required.+  
73  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Read Operations  
Table 23. Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVQV  
tELQV  
Std. Description  
tRC Read Cycle Time (Note 1)  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
tPACC Page Access Time  
tOE Output Enable to Output Delay  
tDF  
Te s t S e tup  
55  
55  
55  
55  
20  
20  
60  
60  
60  
60  
25  
25  
65  
65  
65  
65  
70  
70  
70  
70  
Unit  
ns  
Min  
Max  
Max  
Max  
Max  
Max  
CE#, OE# = VIL  
OE# = VIL  
ns  
ns  
30  
30  
ns  
tGLQV  
tEHQZ  
ns  
Chip Enable to Output High Z (Note 3)  
16  
16  
ns  
Output Enable to Output High Z (Notes 1,  
3)  
tGHQZ  
tDF  
Max  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 9 and Table 21 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of VCC /2. The time from OE#  
high to the data bus driven to VCC /2 is taken as tDF  
.
4. For 70pF Output Load Capacitance, 2 ns will be added to the above tACC,tCE,tPACC,tOE values for all speed grades  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOH  
HIGH Z  
HIGH Z  
Valid Data  
RESET#  
RY/BY#  
0 V  
Figure 11. Read Operation Timings  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
74  
P r e l i m i n a r y  
Same Page  
Ab  
Amax  
-
-
A3  
A0  
A2  
Ad  
Aa  
tACC  
Ac  
tPACC  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Figure 12. Page Read Operation Timings  
Reset  
Table 24. Hardware Reset (RESET#)  
Parameter  
JEDEC Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
75  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 13. Reset Timings  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
76  
P r e l i m i n a r y  
Erase/Program Operations  
Table 25. Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVWL  
Std  
tWC  
tAS  
Description  
55  
60  
65  
70  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
55  
60  
65  
70  
0
ns  
Address Setup Time to OE# low during toggle bit  
polling  
tASO  
tAH  
Min  
Min  
Min  
15  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
30  
25  
35  
30  
Address Hold Time From CE# or OE# high during  
toggle bit polling  
tAHT  
0
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
35  
20  
40  
25  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
0
6
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 2)  
tWHWH1 Accelerated Programming Operation (Note 2)  
tWHWH2 Sector Erase Operation (Note 2)  
4
0.5  
50  
0
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
77  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Timing Diagrams  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
78  
P r e l i m i n a r y  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”  
Figure 16. Chip/Sector Erase Operation Timings  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 17. Back-to-back Read/Write Cycle Timings  
79  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
tRC  
VA  
tACC  
tCE  
Addresses  
CE#  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and  
array data read cycle  
Figure 18. Data# Polling Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes:  
1. VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle  
Figure 19. Toggle Bit Timings (During Embedded Algorithms)  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
80  
P r e l i m i n a r y  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note:Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE#  
or CE# to toggle DQ2 and DQ6.  
Figure 20. DQ2 vs. DQ6  
Protect/Unprotect  
Table 26. Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 21. Temporary Sector Unprotect Timing Diagram  
81  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
60h 60h  
Verify  
40h  
Data  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes:  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 22. Sector/Sector Block Protect and Unprotect Timing Diagram  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
82  
P r e l i m i n a r y  
Controlled Erase Operations  
Table 27. Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
Speed Options  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
55  
60  
65  
70  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
55  
60  
65  
70  
0
ns  
30  
25  
35  
30  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
µs  
sec  
WE# Hold Time  
tCP  
CE# Pulse Width  
35  
20  
40  
25  
tEHEL  
tCPH  
CE# Pulse Width High  
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH1  
tWHWH2  
Programming Operation (Note 2)  
Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
6
4
0.5  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
83  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device  
Table 28. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
84  
P r e l i m i n a r y  
Table 29. Erase And Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
sec  
sec  
Comments  
0.5  
135  
71  
2
Sector Erase Time  
PL127J  
PL064J  
PL032J  
216  
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
113.6  
62.4  
39  
Excludes system level  
overhead (Note 5)  
Word Program Time  
6
100  
µs  
Accelerated Word Program Time  
PL127J  
4
60  
µs  
50.4  
25.2  
12.6  
200  
50.4  
25.2  
sec  
sec  
sec  
Chip Program Time  
PL064J  
PL032J  
(Note 3)  
Notes:  
1. Typical program and erase times assume the following conditions: 25×C, 3.0 V VCC, 100,000 cycles. Additionally,  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90×C, VCC = 2.7 V, 100,000 cycles. All values are subject to change.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 17 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Te s t Se t up  
VIN = 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Output Capacitance  
VOUT = 0  
VIN = 0  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
8
pF  
VIN = 0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
85  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCPA+1 May 6, 2004  
P r e l i m i n a r y  
Revision Summary  
Revision A (April 1, 2004)  
Initial release.  
Revision A+1 (May 6, 2004)  
Table 8. Autoselect Codes (High Voltage Method) and Table 17. Memory Array  
Command Definitions  
Changed The DQ15 to DQ0 for SecSi Indicator Bit to 00C4h(factory and customer  
locked), 0084h (factory locked) and added 0004h (not locked).  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
FASL LLC. FASL LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is  
without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of  
third-party rights, or any other warranty, express, implied, or statutory. FASL LLC assumes no liability for any damages of any kind arising out of the use of  
the information in this document.  
Copyright © 2004 FASL LLC. All rights reserved.  
Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of FASL LLC. Other company and product names used in this  
publication are for identification purposes only and may be trademarks of their respective companies.  
May 6, 2004 S29PL127J_064J_032J_MCPA+1  
S29PL127J/S29PL064J/S29PL032J for MCP  
86  
P r e l i m i n a r y  
pSRAM Type 6  
2M Word by 16-bit Cmos Pseudo Static RAM (32M Density)  
4M Word by 16-bit Cmos Pseudo Static RAM (64M Density)  
Features  
„ Single power supply voltage of 2.6 to 3.3 V  
„ Direct TTL compatibility for all inputs and outputs  
„ Deep power-down mode: Memory cell data invalid  
„ Page operation mode:  
— Page read operation by 8 words  
„ Logic compatible with SRAM R/W () pin  
„ Standby current  
— Standby = 70 µA (32M)  
— Standby = 100 µA (64M)  
— Deep power-down Standby = 5 µA  
„ Access Times  
32M  
64M  
Access Time  
70 ns  
70 ns  
25 ns  
30 ns  
CE1# Access Time  
OE# Access Time  
Page Access Time  
Pin Description  
Pin Name  
Description  
A0 to A21  
A0 to A2  
I/O1 to I/O16  
CE1#  
Address Inputs  
Page Address Inputs  
Data Inputs/Outputs  
Chip Enable Input  
Chip select Input  
Write Enable Input  
Output Enable Input  
Data Byte Control Inputs  
Power Supply  
CE2  
WE#  
OE#  
LB#,UB#  
VDD  
GND  
Ground  
NC  
Not Connection  
April 26, 2004 pSRAM_Type06_14_A0  
pSRAM Type 6  
88  
P r e l i m i n a r y  
Functional Description  
Mode  
Read (Word)  
CE1#  
CE2  
H
OE#  
L
WE#  
LB#  
L
UB# Address  
I/O1-8  
DOUT  
I/O9-16  
DOUT  
Power  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDSD  
L
L
L
L
L
L
L
H
H
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (Lower Byte)  
Read (Upper Byte)  
Write (Word)  
H
L
L
DOUT  
High-Z  
DOUT  
H
L
H
L
High-Z  
DIN  
H
X
L
DIN  
Write (Lower Byte)  
Write (Upper Byte)  
Outputs Disabled  
Standby  
H
X
L
L
H
L
DIN  
Invalid  
DIN  
H
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
H
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
H
X
Deep Power-down Standby  
L
X
X
Legend:L = Low-level Input (VIL), H = High-level Input (VIH), X = VIL or VIH, High-Z = High Impedance.  
Absolute Maximum Ratings  
Symbol  
VDD  
VIN  
Rating  
Value  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-40 to 85  
-55 to 150  
0.6  
Unit  
V
Power Supply Voltage  
Input Voltage  
V
VOUT  
Topr  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
Tstrg  
PD  
IOUT  
Short Circuit Output Current  
50  
mA  
DC Recommended Operating Conditions (Ta = -40°C to 85°C)  
Symbol  
VDD  
Parameter  
Min  
2.6  
Typ  
2.75  
Max  
Unit  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
3.3  
VDD + 0.3 (Note)  
0.4  
VIH  
2.0  
V
VIL  
-0.3 (Note)  
Note: VIH (Max) VDD = 1.0 V with 10 ns pulse width. VIL (Min) -1.0 V with 10 ns pulse width.  
DC Characteristics (Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 3 to 4)  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
Unit  
Input Leakage  
Current  
IIL  
VIN = 0 V to VDD  
-1.0  
+1.0  
µA  
Output Leakage  
Current  
ILO  
Output disable, VOUT = 0 V to VDD  
IOH = - 0.5 mA  
-1.0  
2.0  
¾
+1.0  
V
µA  
V
VOH  
Output High Voltage  
89  
pSRAM Type 6  
pSRAM_Type06_14_A0 April 26, 2004  
P r e l i m i n a r y  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
0.4  
40  
Unit  
VOL  
Output Low Voltage  
IOL = 1.0 mA  
V
ET5UZ8A-43DS  
ET5VB5A-43DS  
CE1#= VIL, CE2 = VIH, IOUT = 0  
mA, tRC = min  
IDDO1 Operating Current  
mA  
mA  
50  
Page Access  
IDDO2  
CE1#= VIL, CE2 = VIH, IOUT = 0 mA  
Page add. cycling, tRC = min  
25  
Operating Current  
ET5UZ8A-43DS  
ET5VB5A-43DS  
70  
mA  
µA  
Standby Current  
(MOS)  
CE1# = VDD - 0.2 V,  
CE2 = VDD - 0.2 V  
IDDS  
100  
Deep Power-down  
IDDSD  
CE2 = 0.2 V  
5
µA  
Standby Current  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
Max  
10  
Unit  
Input Capacitance  
Output Capacitance  
VIN = GND  
pF  
pF  
COUT  
VOUT = GND  
10  
Note: This parameter is sampled periodically and is not 100% tested.  
AC Characteristics and Operating Conditions  
(Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 5 to 11)  
Symbol  
tRC  
Parameter  
Min  
70  
Max  
Unit  
Read Cycle Time  
10000  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tACC  
tCO  
tOE  
Address Access Time  
Chip Enable (CE1#) Access Time  
Output Enable Access Time  
70  
25  
tBA  
Data Byte Control Access Time  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
Output Data Hold Time  
25  
tCOE  
tOEE  
tBE  
10  
0
0
tOD  
tODO  
tBD  
20  
20  
20  
tOH  
tPM  
10  
70  
30  
Page Mode Time  
10000  
tPC  
Page Mode Cycle Time  
tAA  
Page Mode Address Access Time  
Page Mode Output Data Hold Time  
Write Cycle Time  
30  
tAOH  
tWC  
10  
70  
10000  
April 26, 2004 pSRAM_Type06_14_A0  
pSRAM Type 6  
90  
P r e l i m i n a r y  
Symbol  
tWP  
Parameter  
Min  
50  
70  
60  
60  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
µs  
Write Pulse Width  
tCW  
tBW  
tAW  
tAS  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
Write Recovery Time  
tWR  
tCEH  
tWEH  
tODW  
tOEW  
tDS  
0
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
WE# High to Output Active  
Data Set-up Time  
10  
6
0
20  
30  
0
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
CE2 Hold from CE1#  
CE2 Hold from Power On  
30  
AC Test Conditions  
Parameter  
Output load  
Condition  
30 pF + 1 TTL Gate  
VDD - 0.2 V, 0.2 V  
VDD x 0.5  
Input pulse level  
Timing measurements  
Reference level  
tR, tF  
VDD x 0.5  
5 ns  
91  
pSRAM Type 6  
pSRAM_Type06_14_A0 April 26, 2004  
P r e l i m i n a r y  
Timing Diagrams  
Read Timings  
t
RC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
t
ACC  
OH  
t
CO  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
t
t
OD  
OE  
t
ODO  
t
BA  
,
UB# LB#  
t
BE  
t
BD  
t
OEE  
D
OUT  
Hi-Z  
VALID DATA OUT  
Hi-Z  
t
COE  
I/O1 to I/O16  
INDETERMINATE  
Figure 23. Read Cycle  
April 26, 2004 pSRAM_Type06_14_A0  
pSRAM Type 6  
92  
P r e l i m i n a r y  
t
PM  
Address  
A0 to A2  
t
t
t
t
PC  
PC  
PC  
RC  
Address  
A3 to A20(32M)  
A3 to A21(64M)  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
UB#, LB#  
t
t
OD  
OE  
t
BD  
t
BA  
t
t
t
AOH  
AOH  
AOH  
t
t
OEE  
OH  
t
BE  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
t
t
t
ODO  
CO  
AA  
AA  
AA  
* Maximum 8 words  
t
ACC  
Figure 24. Page Read Cycle (8 Words Access)  
93  
pSRAM Type 6  
pSRAM_Type06_14_A0 April 26, 2004  
P r e l i m i n a r y  
Write Timings  
t
WC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
t
WEH  
AW  
t
t
t
t
AS  
WP  
WR  
WE#  
t
CW  
WR  
CE1#  
t
CH  
CE2  
t
t
BW  
WR  
UB#, LB#  
t
t
OEW  
ODW  
D
OUT  
(See Note 10)  
Hi-Z  
(See Note 11)  
I/O1 to I/O16  
t
t
DH  
DS  
D
IN  
(See Note 9)  
VALID DATA IN  
(See Note 9)  
I/O1 to I/O16  
Figure 25. Write Cycle #1 (WE# Controlled) (See Note 8)  
April 26, 2004 pSRAM_Type06_14_A0  
pSRAM Type 6  
94  
P r e l i m i n a r y  
t
WC  
Address  
A0 to A20(32M)  
A0 to A21(64M)  
t
AW  
t
t
t
t
AS  
WP  
WR  
WE#  
t
CEH  
t
CW  
WR  
CE1#  
CE2  
t
CH  
t
t
BW  
WR  
UB#, LB#  
t
t
ODW  
BE  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O16  
t
COE  
t
t
DH  
DS  
D
IN  
(See Note 9)  
VALID DATA IN  
I/O1 to I/O16  
Figure 26. Write Cycle #2 (CE# Controlled) (See Note 8)  
Deep Power-down Timing  
CE1#  
t
DPD  
CE2  
t
t
CH  
CS  
Figure 27. Deep Power Down Timing  
Power-on Timing  
V
min  
DD  
V
DD  
CE1#  
CE2  
t
CHC  
t
CH  
t
CHP  
Figure 28. Power-on Timing  
95  
pSRAM Type 6  
pSRAM_Type06_14_A0 April 26, 2004  
P r e l i m i n a r y  
Provisions of Address Skew  
Read  
In case multiple invalid address cycles shorter than tRC min sustain over 10 µs in  
an active status, at least one valid address cycle over tRC min is required during  
10µs.  
over 10µs  
CE1#  
WE#  
Address  
t min  
RC  
Figure 29. Read  
Write  
In case multiple invalid address cycles shorter than tWC min sustain over 10 µs in  
an active status, at least one valid address cycle over tWC min is required during  
10 µs.  
CE1#  
WE#  
t min  
WP  
Address  
t min  
WC  
Figure 30. Write  
Notes:  
1. Stresses greater than listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
2. All voltages are reference to GND.  
3. IDDO depends on the cycle time.  
4. IDDO depends on output loading. Specified values are defined with the output open condition.  
5. AC measurements are assumed tR, tF = 5 ns.  
6. Parameters tOD, tODO, tBD and tODW define the time at which the output goes the open condition and are not output voltage  
reference levels.  
7. Data cannot be retained at deep power-down stand-by mode.  
8. If OE# is high during the write cycle, the outputs will remain at high impedance.  
9. During the output state of I/O signals, input signals of reverse polarity must not be applied.  
10. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.  
11. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance.  
April 26, 2004 pSRAM_Type06_14_A0  
pSRAM Type 6  
96  
P r e l i m i n a r y  
pSRAM Type 1  
4Mbit (256K Word x 16-bit)  
8Mbit (512K Word x 16-bit)  
16Mbit (1M Word x 16-bit)  
32Mbit (2M Word x 16-bit)  
64Mbit (4M Word x 16-bit)  
Features  
„ Fast Cycle Times  
— TACC < 70 nS  
— TACC < 65 nS  
— TACC < 60 nS  
— TACC < 55 nS  
„ Very low standby current  
— ISB < 120 µA (64M and 32M)  
— ISB < 100 µA (16M)  
„ Very low operating current  
— Icc < 25mA  
Functional Description  
Mode  
CE#  
CE2/ZZ#  
OE#  
L
WE# UB#  
LB#  
L
Addresses  
I/O 1-8  
Dout  
I/O 9-16  
Dout  
Power  
IACTIVE  
Read (word)  
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read (lower byte)  
Read (upper byte)  
Write (word)  
L
L
Dout  
High-Z  
Dout  
IACTIVE  
L
H
L
High-Z  
Din  
IACTIVE  
X
L
Din  
IACTIVE  
Write (lower byte)  
Write (upper byte)  
Outputs disabled  
Standby  
X
L
H
L
L
Din  
Invalid  
Din  
IACTIVE  
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
IACTIVE  
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
IACTIVE  
X
ISTANDBY  
IDEEP SLEEP  
Deep power down  
X
X
Absolute Maximum Ratings  
Item  
Voltage on any pin relative to VSS  
Voltage on VCC relative to VSS  
Power dissipation  
Symbol  
Vin, Vout  
VCC  
Ratings  
Units  
V
-0.2 to VCC +0.3  
-0.2 to 3.6  
1
V
PD  
W
Storage temperature  
TSTG  
-55 to 150  
-25 to 85  
°C  
°C  
Operating temperature  
TA  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
98  
P r e l i m i n a r y  
DC Characteristics (4Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
Units  
Power Supply  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
1.4 Vccq  
-0.3  
VCC + 0.3  
0.4  
VIL  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA  
IOH = -0.2 mA  
IOH = -0.5 mA  
Output High  
Voltage  
VOH  
0.8 Vccq  
V
V
I
I
I
OL = 2.0 mA  
OL = 0.2 mA  
OL = 0.5 mA  
Output Low  
Voltage  
VOL  
0.2  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
CC = 3.0 V  
VCC = 3.3 V  
25  
70  
mA  
µA  
V
ISTANDBY Standby Current  
IDEEP  
SLEEP  
Deep Power  
x
x
x
µA  
µA  
µA  
Down Current  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
99  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
DC Characteristics (8Mb pSRAM Asynchronous)  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
Units  
Min  
2.7  
Units  
Min  
2.7  
Units  
Power Supply  
3.3  
V
V
V
3.6  
V
V
V
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
2.2  
VCC + 0.3  
0.6  
2.2  
VCC + 0.3  
0.6  
1.4  
VCC+0.3  
0.4  
VIL  
-0.3  
-0.3  
-0.3  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
0.5  
0.5  
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA VCC-0.4  
OH = -0.2 mA  
VCC-0.4  
VOH  
Output High Voltage  
Output Low Voltage  
I
V
V
V
V
0.8 VCCQ  
V
V
IOH = -0.5 mA  
IOL = 2.0 mA  
0.4  
0.4  
VOL  
I
OL = 0.2 mA  
0.2  
IOL = 0.5 mA  
VCC = 3.3 V  
IACTIVE Operating Current  
ISTANDBY Standby Current  
25  
60  
mA  
µA  
23  
60  
mA  
µA  
25  
60  
mA  
µA  
V
CC = 3.0 V  
VCC = 3.3 V  
IDEEP  
SLEEP  
Deep Power Down  
Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
1/2 Array PAR  
Current  
IPAR 1/2  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
100  
P r e l i m i n a r y  
DC Characteristics (16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-55  
16Mb pSRAM  
-70  
16Mb pSRAM  
Symbol  
VCC  
VIH  
Parameter  
Power Supply  
Conditions  
Minimum Maximum  
Units  
V
Minimum Maximum Units  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
2.7  
2.2  
3.6  
VCC + 0.3  
0.6  
V
V
Input High Level  
V
VIL  
Input Low Level  
-0.3  
V
-0.3  
V
IIL  
Input Leakage Current  
Output Leakage Current  
Vin = 0 to VCC  
OE = VIH or Chip Disabled  
IOH = -1.0 mA  
0.5  
µA  
µA  
0.5  
µA  
µA  
ILO  
0.5  
0.5  
VCC-0.4  
VCC-0.4  
VOH  
Output High Voltage  
Output Low Voltage  
I
I
OH = -0.2 mA  
OH = -0.5 mA  
V
V
V
V
IOL = 2.0 mA  
IOL = 0.2 mA  
IOL = 0.5 mA  
VCC = 3.3 V  
0.4  
0.4  
VOL  
IACTIVE  
Operating Current  
Standby Current  
25  
mA  
µA  
23  
mA  
µA  
V
CC = 3.0 V  
100  
100  
ISTANDBY  
VCC = 3.3 V  
IDEEP SLEEP Deep Power Down Current  
x
x
x
µA  
µA  
µA  
x
x
x
µA  
µA  
µA  
IPAR 1/4  
IPAR 1/2  
1/4 Array PAR Current  
1/2 Array PAR Current  
101  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
DC Characteristics (16Mb pSRAM Page Mode)  
Page Mode  
-65  
Performance Grade  
Density  
-60  
16Mb pSRAM  
Max  
-70  
16Mb pSRAM  
Max  
16Mb pSRAM  
Max  
Symbol  
Parameter  
Conditions  
Min  
Units  
Min  
Units  
Min  
Units  
VCC  
Power Supply  
2.7  
3.3  
V
2.7  
3.3  
V
2.7  
3.3  
V
Input High  
Level  
VIH  
VIL  
IIL  
0.8 Vccq VCC + 0.2  
V
V
0.8 Vccq VCC + 0.2  
V
V
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
1
V
V
Input Low  
Level  
-0.2  
0.2 Vccq  
1
-0.2  
0.2 Vccq  
1
Input Leakage  
Current  
Vin = 0 to VCC  
µA  
µA  
µA  
Output  
Leakage  
Current  
OE = VIH or  
ILO  
1
µA  
V
1
µA  
V
1
µA  
V
Chip Disabled  
IOH = -1.0 mA  
Output High  
Voltage  
VOH  
I
I
OH = -0.2 mA  
OH = -0.5 mA 0.8 Vccq  
0.8 Vccq  
0.8 Vccq  
IOL = 2.0 mA  
Output Low  
Voltage  
VOL  
I
I
OL = 0.2 mA  
OL = 0.5 mA  
V
V
V
0.2 Vccq  
25  
0.2 Vccq  
25  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
mA  
µA  
mA  
µA  
mA  
µA  
VCC = 3.0 V  
VCC = 3.3 V  
Standby  
Current  
ISTANDBY  
100  
10  
100  
10  
100  
10  
IDEEP  
SLEEP  
Deep Power  
Down Current  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
65  
80  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
102  
P r e l i m i n a r y  
DC Characteristics (32Mb pSRAM Page Mode)  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
32Mb pSRAM  
-65  
32Mb pSRAM  
Min Max Units  
-70  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
Symbol Parameter  
Conditions  
Min  
Max  
Units  
Min  
Max  
Units  
Power  
VCC  
VIH  
VIL  
IIL  
2.7  
1.4  
3.6  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
0.8 Vccq  
-0.2  
3.3  
V
V
2.7  
3.3  
V
V
Supply  
VCC  
+
0.2  
Input High  
Level  
VCC  
+
VCC  
+ 0.2  
VCC  
+ 0.2  
0.8  
Vccq  
0.2  
Input Low  
Level  
0.2  
Vccq  
0.2  
Vccq  
0.2  
Vccq  
-0.2  
0.4  
0.5  
V
V
V
-0.2  
V
Input  
Leakage  
Current  
Vin = 0 to VCC  
µA  
1
1
µA  
1
1
µA  
1
1
µA  
Output  
Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
0.5  
µA  
V
µA  
V
µA  
V
µA  
V
IOH = -1.0 mA  
0.8  
Vccq  
Output High IOH = -0.2 mA  
Voltage  
VOH  
0.8  
Vccq  
IOH = -0.5 mA  
IOL = 2.0 mA  
0.8 Vccq  
0.8 Vccq  
Output Low  
Voltage  
IOL = 0.2 mA  
IOL = 0.5 mA  
0.2  
25  
VOL  
V
V
V
V
0.2  
0.2  
0.2  
Vccq  
Vccq  
Vccq  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
25  
mA  
µA  
VCC = 3.0 V  
VCC = 3.3 V  
Standby  
Current  
ISTANDBY  
100  
10  
120  
10  
120  
10  
100  
10  
Deep Power  
Down  
Current  
IDEEP  
SLEEP  
µA  
µA  
µA  
µA  
1/4 Array  
IPAR 1/4  
65  
80  
µA  
µA  
75  
90  
µA  
µA  
75  
90  
µA  
µA  
65  
80  
µA  
µA  
PAR Current  
1/2 Array  
PAR Current  
IPAR 1/2  
103  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
DC Characteristics (64Mb pSRAM Page Mode)  
Page Mode  
-70  
Performance Grade  
Density  
64Mb pSRAM  
Max  
Symbol  
VCC  
Parameter  
Power Supply  
Conditions  
Min  
2.7  
Units  
3.3  
V
V
V
VIH  
Input High Level  
Input Low Level  
0.8 Vccq  
-0.2  
VCC + 0.2  
0.2 Vccq  
VIL  
Input Leakage  
Current  
IIL  
Vin = 0 to VCC  
1
1
µA  
µA  
Output Leakage  
Current  
OE = VIH or  
Chip Disabled  
ILO  
IOH = -1.0 mA  
IOH = -0.2 mA  
IOH = -0.5 mA  
Output High  
Voltage  
VOH  
V
V
0.8 Vccq  
I
I
I
OL = 2.0 mA  
OL = 0.2 mA  
OL = 0.5 mA  
Output Low  
Voltage  
VOL  
0.2 Vccq  
25  
Operating  
Current  
IACTIVE  
VCC = 3.3 V  
CC = 3.0 V  
VCC = 3.3 V  
mA  
µA  
V
ISTANDBY Standby Current  
120  
10  
IDEEP  
SLEEP  
Deep Power  
Down Current  
µA  
µA  
µA  
1/4 Array PAR  
Current  
IPAR 1/4  
65  
80  
1/2 Array PAR  
Current  
IPAR 1/2  
Timing Test Conditions  
Item  
Input Pulse Level  
0.1 VCC to 0.9 VCC  
5ns  
Input Rise and Fall Time  
Input and Output Timing Reference Levels  
Operating Temperature  
0.5 VCC  
-25°C to +85°C  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
104  
P r e l i m i n a r y  
Output Load Circuit  
VCC  
14.5K  
I/O  
14.5K  
30 pF  
Output Load  
Figure 31. Output Load Circuit  
Power Up Sequence  
After applying power, maintain a stable power supply for a minimum of 200 µs  
after CE# > VIH.  
105  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (4Mb pSRAM Page Mode)  
Asynchronous  
-70  
Performance Grade  
Density  
4Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
trc  
Read cycle time  
70  
ns  
ns  
Address Access  
Time  
taa  
tco  
toe  
tba  
tlz  
70  
70  
20  
70  
Chip select to  
output  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
Output hold from  
Address Change  
10  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
106  
P r e l i m i n a r y  
Asynchronous  
Performance Grade  
Density  
-70  
4Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
twc  
tcw  
Write cycle time  
70  
ns  
Chipselect to end  
of write  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
20  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
x
Page address  
access time  
x
twpc  
tcp  
Page write cycle  
x
x
Chip select high  
pulse width  
107  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (8Mb pSRAM Asynchronous)  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Max  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
70  
ns  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
70  
70  
70  
20  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
20  
20  
20  
25  
25  
25  
0
20  
20  
20  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
10  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
108  
P r e l i m i n a r y  
Asynchronous  
Version  
Performance Grade  
Density  
B
C
-70  
-55  
8Mb pSRAM  
Max  
-70  
8Mb pSRAM  
Max  
8Mb pSRAM  
Max  
3 Volt  
Symbol  
Parameter  
Min  
Units  
Min  
Units  
Min  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
70  
ns  
70  
ns  
Chip select to  
end of write  
45  
0
ns  
ns  
ns  
55  
0
ns  
ns  
ns  
70  
0
ns  
ns  
ns  
Address set up  
Time  
tas  
Address valid to  
end of write  
taw  
45  
55  
70  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
45  
45  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
70  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
20  
ns  
ns  
ns  
Data to write  
time overlap  
40  
0
40  
0
ns  
ns  
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
x
x
Chip select high  
pulse width  
109  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (16Mb pSRAM Asynchronous)  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
Max  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Units  
trc  
Read cycle time  
55  
ns  
ns  
70  
ns  
Address Access  
Time  
taa  
55  
55  
30  
55  
70  
70  
35  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
5
5
5
0
5
5
5
0
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
25  
25  
25  
25  
25  
25  
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
ns  
ns  
0
ns  
ns  
Output hold from  
Address Change  
10  
10  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
110  
P r e l i m i n a r y  
Asynchronous  
Performance Grade  
Density  
-55  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
tcw  
Write cycle time  
55  
ns  
ns  
70  
ns  
ns  
Chipselect to end  
of write  
50  
0
55  
0
Address set up  
Time  
tas  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
55  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
55  
55  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
25  
ns  
ns  
ns  
25  
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
25  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
output Low-Z  
Write high pulse  
width  
x
x
x
ns  
x
x
x
ns  
tpc  
tpa  
Page read cycle  
x
x
Page address  
access time  
twpc  
tcp  
Page write cycle  
x
x
x
x
Chip select high  
pulse width  
111  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (16Mb pSRAM Page Mode)  
Page Mode  
-65  
Performance Grade  
Density  
-60  
-70  
16Mb pSRAM  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
trc  
Read cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
60  
60  
25  
60  
65  
65  
25  
65  
70  
70  
25  
70  
Chip select to  
output  
tco  
toe  
tba  
tlz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
112  
P r e l i m i n a r y  
Page Mode  
-65  
Performance Grade  
Density  
-60  
16Mb pSRAM  
-70  
16Mb pSRAM  
16Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max  
Units  
Min  
Max  
Units  
Min  
Max  
Units  
twc  
tcw  
Write cycle time  
60  
20k  
ns  
ns  
65  
20k  
ns  
ns  
70  
20k  
ns  
ns  
Chipselect to end  
of write  
50  
0
60  
0
60  
0
Address set up  
Time  
tas  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to  
end of write  
taw  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
113  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (32Mb pSRAM Page Mode)  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
Min  
Max Units  
trc  
Read cycle time  
65  
20k  
65  
ns  
ns  
60  
20k  
60  
ns  
ns  
65  
20k  
65  
ns  
ns  
70  
20k  
70  
ns  
ns  
Address Access  
Time  
taa  
Chip select to  
output  
tco  
toe  
tba  
tlz  
65  
20  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
65  
25  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
10  
10  
5
10  
10  
5
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
20  
20  
20  
0
5
5
5
0
5
5
5
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
0
ns  
0
ns  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
0
5
ns  
ns  
Output hold from  
Address Change  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
114  
P r e l i m i n a r y  
Page Mode  
Version  
Performance Grade  
Density  
C
-65  
E
-60  
32Mb pSRAM  
Min Max Units  
-65  
-70  
32Mb pSRAM  
32Mb pSRAM  
Min Max Units  
32Mb pSRAM  
3 Volt  
Symbol  
Parameter  
Min  
Max Units  
Min  
Max Units  
twc  
tcw  
Write cycle time  
65  
55  
20k  
ns  
ns  
60  
50  
20k  
ns  
ns  
65  
60  
20k  
ns  
ns  
70  
60  
20k  
ns  
ns  
Chipselect to end  
of write  
Address set up  
Time  
tas  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
0
ns  
ns  
Address valid to  
end of write  
taw  
55  
50  
60  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
55  
55  
0
ns  
ns  
ns  
50  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
5
ns  
ns  
ns  
Data to write  
time overlap  
25  
0
20  
0
20  
0
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
5
5
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
7.5  
ns  
7.5  
ns  
7.5  
ns  
tpc  
tpa  
Page read cycle  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
25  
20k  
25  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
25  
10  
20k  
Chip select high  
pulse width  
115  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
AC Characteristics (64Mb pSRAM Page Mode)  
Page Mode  
-70  
Performance Grade  
Density  
Parameter  
64Mb pSRAM  
3 Volt  
Symbol  
Min  
Max  
Units  
trc  
Read cycle time  
70  
20k  
ns  
ns  
Address Access  
Time  
taa  
tco  
toe  
tba  
tlz  
70  
70  
25  
70  
Chip select to  
output  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output enable to  
valid output  
UB#, LB# Access  
time  
Chip select to  
Low-z output  
10  
10  
5
UB#, LB# Enable  
to Low-Z output  
tblz  
tolz  
thz  
Output enable to  
Low-Z output  
Chip enable to  
High-Z output  
0
5
5
5
UB#, LB#  
disable to High-Z  
output  
tbhz  
0
ns  
Output disable to  
High-Z output  
tohz  
toh  
0
5
ns  
ns  
Output hold from  
Address Change  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
116  
P r e l i m i n a r y  
Page Mode  
Performance Grade  
Density  
Parameter  
-70  
64Mb pSRAM  
3 Volt  
Symbol  
Min  
Max  
Units  
twc  
Write cycle time  
70  
20k  
ns  
ns  
Chipselect to end  
of write  
tcw  
tas  
60  
0
Address set up  
Time  
ns  
ns  
Address valid to  
end of write  
taw  
60  
UB#, LB# valid  
to end of write  
tbw  
twp  
twr  
60  
50  
0
ns  
ns  
ns  
Write pulse width  
20k  
5
Write recovery  
time  
Write to output  
High-Z  
twhz  
tdw  
tdh  
ns  
ns  
ns  
Data to write  
time overlap  
20  
0
Data hold from  
write time  
End write to  
tow  
tow  
5
output Low-Z  
Write high pulse  
width  
7.5  
ns  
tpc  
tpa  
Page read cycle  
20  
20k  
20  
ns  
ns  
ns  
ns  
Page address  
access time  
twpc  
tcp  
Page write cycle  
20  
10  
20k  
Chip select high  
pulse width  
Timing Diagrams  
Read Cycle  
tRC  
Address  
tAA  
tOH  
Previous Data Valid  
Data Valid  
Data Out  
Figure 32. Timing of Read Cycle (CE# = OE# = V , WE# = ZZ# = V  
)
IH  
IL  
117  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
tRC  
Address  
tAA  
CE#  
tCO  
tLZ  
tHZ  
tOE  
OE#  
tOLZ  
tOHZ  
tLB, UB  
t
LB#, UB#  
Data Out  
tBHZ  
Data Valid  
tBLZ  
High-Z  
Figure 33. Timing Waveform of Read Cycle (WE# = ZZ# = V  
)
IH  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
118  
P r e l i m i n a r y  
tPGMAX  
Page Address (A4 - A20)  
tRC  
tPC  
Word Address (A0 - A3)  
tAA  
tPA  
tHZ  
CE#  
tCO  
tOE  
tOHZ  
OE#  
tOLZ  
tLB, UB  
tBHZ  
t
LB#, UB#  
tBLZ,  
High-Z  
Data Out  
Figure 34. Timing Waveform of Page Mode Read Cycle (WE# = ZZ# = V  
)
IH  
119  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
Write Cycle  
tWC  
Address  
tWR  
tAW  
CE#  
tCW  
tBW  
LB#, UB#  
tAS  
tWP  
WE#  
tDW  
tDH  
High-Z  
Data Valid  
Data In  
Data Out  
tWHZ  
tOW  
High-Z  
Figure 35. Timing Waveform of Write Cycle (WE# Control, ZZ# = V  
)
IH  
tWC  
Address  
CE#  
tAW  
tWR  
tCW  
tAS  
tBW  
LB#, UB#  
WE#  
tWP  
tDW  
tDH  
Data Valid  
Data In  
tWHZ  
High-Z  
Figure 36. Timing Waveform of Write Cycle (CE# Control, ZZ# = V  
Data Out  
)
IH  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
120  
P r e l i m i n a r y  
tPGMAX  
Page Address  
(A4 - A20)  
tWC  
tPWC  
Wor d Address  
(A0 - A3 )  
tAS  
tCW  
CE#  
tWP  
WE#  
tLBW, UBW  
t
LB#, UB#  
tDW  
tDH tPDW tPDH  
tPDW tPDH  
High-Z  
Data Out  
Figure 37. Timing Waveform of Page Mode Write Cycle (ZZ# = V  
)
IH  
Power Savings Modes (For 16M Page Mode, 32M and 64M Only)  
There are several power savings modes.  
„ Partial Array Self Refresh  
„ Temperature Compensated Refresh (64M)  
„ Deep Sleep Mode  
„ Reduced Memory Size (32M, 16M)  
The operation of the power saving modes ins controlled by the settings of bits  
contained in the Mode Register. This definition of the Mode Register is shown in  
Figure 38 and the various bits are used to enable and disable the various low  
power modes as well as enabling Page Mode operation. The Mode Register is set  
by using the timings defined in Figure xxx.  
Partial Array Self Refresh (PAR)  
In this mode of operation, the internal refresh operation can be restricted to a  
16Mb, 32Mb, or 48Mb portion of the array. The array partition to be refreshed is  
determined by the respective bit settings in the Mode Register. The register set-  
tings for the PASR operation are defined in Table xxx. In this PASR mode, when  
ZZ# is active low, only the portion of the array that is set in the register is re-  
121  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
freshed. The data in the remainder of the array will be lost. The PASR operation  
mode is only available during standby time (ZZ# low) and once ZZ# is returned  
high, the device resumes full array refresh. All future PASR cycles will use the  
contents of the Mode Register that has been previously set. To change the ad-  
dress space of the PASR mode, the Mode Register must be reset using the  
previously defined procedures. For PASR to be activated, the register bit, A4 must  
be set to a one (1) value, “PASR Enabled. If this is the case, PASR will be acti-  
vated 10 µs after ZZ# is brought low. If the A4 register bit is set equal to zero  
(0), PASR will not be activated.  
Temperature Compensated Refresh (for 64Mb)  
In this mode of operation, the internal refresh rate can be optimized for the op-  
eration temperature used and this can then lower standby current. The DRAM  
array in the PSRAM must be refreshed internally on a regular basis. At higher  
temperatures, the DRAM cell must be refreshed more often than at lower tem-  
peratures. By setting the temperature of operation in the Mode Register, this  
refresh rate can be optimized to yield the lowest standby current at the given op-  
erating temperature. There are four different temperature settings that can be  
programmed in to the PSRAM. These are defined in Figure 38.  
Deep Sleep Mode  
In this mode of operation, the internal refresh is turned off and all data integrity  
of the array is lost. Deep Sleep is entered by bringing ZZ# low with the A4 reg-  
ister bit set to a zero (0), “Deep Sleep Enabled. If this is the case, Deep Sleep  
will be entered 10 µs after ZZ# is brought low. The device will remain in this mode  
as long as ZZ# remains low. If the A4 register bit is set equal to one (1), Deep  
Sleep will not be activated.  
Reduced Memory Size (for 32M and 16M)  
In this mode of operation, the 32Mb PSRAM can be operated as a 8Mb or 16Mb  
device. The mode and array size are determined by the settings in the VA register.  
The VA register is set according to the following timings and the bit settings in  
the table “Address Patterns for RMS. The RMS mode is enabled at the time of ZZ  
transitioning high and the mode remains active until the register is updated. To  
return to the full 32Mb address space, the VA register must be reset using the  
previously defined procedures. While operating in the RMS mode, the unselected  
portion of the array may not be used.  
Other Mode Register Settings (for 64M)  
The Page Mode operation can also be enabled and disabled using the Mode Reg-  
ister. Register bit A7 controls the operation of Page Mode and setting this bit to a  
one (1), enables Page Mode. If the register bit A7 is set to a zero (0), Page Mode  
operation is disabled.  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
122  
P r e l i m i n a r y  
64 Mb  
32 Mb / 16 Mb  
A21 - A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Array Mode  
for ZZ#  
Reserved  
Must set to all 0  
Temp  
Compensated  
Refresh  
0 = PAR (default)  
1 = RMS  
PAR Section  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1 = Top 1/4 array  
0 = Top 1/2 array  
1 = Top 3/4 array  
0 = No PAR  
1 = Bottom 1/4 array  
0 = Bottom 1/2 array  
1 = Bottom 3/4 array  
0 = Full array (default)  
1
0
0
1
0 = 15oC  
1 = 45oC  
0 = 70oC  
1 = 85oC (default)  
Page Mode  
0 = Page Mode Disabled (default)  
1 = Page Mode Enabled  
Deep Sleep Enable/Disable  
0 = Deep Sleep Enabled  
1 = Deep Sleep Disabled (default)  
Figure 38. Mode Register  
t
WC  
Address  
t
AW  
t
AS  
t
WR  
CE#  
t
WP  
WE#  
ZZ#  
t
ZZWE  
t
CDZZ  
Figure 39. Mode Register Update Timings (UB#, LB#, OE# are Don’t Care)  
123  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
t
ZZMIN  
ZZ#  
CE#  
t
t
R
CDZZ  
Figure 40. Deep Sleep Mode - Entry/Exit Timings  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
124  
P r e l i m i n a r y  
Mode Register Update and Deep Sleep Timings  
Item  
Chip deselect to ZZ# low  
ZZ# low to WE# low  
Symbol  
tCDZZ  
tZZWE  
tWC  
Min  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Note  
10  
500  
Write register cycle time  
Chip enable to end of write  
Address valid to end of write  
Write recovery time  
70/85  
70/85  
70/85  
0
1
1
1
tCW  
tAW  
tWR  
Address setup time  
tAS  
0
Write pulse width  
tWR  
40  
Deep Sleep Pulse Width  
Deep Sleep Recovery  
tZZMIN  
tR  
10  
150  
Notes:  
1. Minimum cycle time for writing register is equal to speed grade of product.  
Address Patterns for PASR (A4=1) (64M)  
A2 A1 A0  
Active Section  
Top quarter of die  
Top half of die  
Reserved  
Address Space  
300000h-3FFFFFh  
200000h-3FFFFFh  
Size  
Density  
16Mb  
32Mb  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1Mb x 16  
2Mb x 16  
No PASR  
None  
0
0
Bottom quarter of die  
Bottom half of die  
Reserved  
000000h-0FFFFFh  
000000h-1FFFFFh  
1Mb x 16  
2Mb x 16  
16Mb  
32Mb  
Full array  
000000h-3FFFFFh  
4Mb x 16  
64Mb  
125  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
Deep ICC Characteristics (for 64Mb)  
Item  
Symbol  
Test  
Array Partition Typ Max Unit  
None  
10  
75  
1/4 Array  
1/2 Array  
Full Array  
PASR Mode Standby Current  
IPASR  
VIN = VCC or 0V, Chip Disabled, tA = 85°C  
µA  
90  
120  
Item  
Symbol  
Max Temperature  
15°C  
Typ  
Max  
50  
Unit  
45°C  
60  
Temperature Compensated Refresh Current  
ITCR  
µA  
70°C  
80  
85°C  
120  
Item  
Symbol  
Test  
Typ  
Max  
10  
Unit  
Deep Sleep Current  
IZZ  
VIN = VCC or 0V, Chip in ZZ# mode, tA = 25°C  
µA  
Address Patterns for PAR (A3= 0, A4=1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
512Kb x 16  
1Mb x 16  
2Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
000000h - 0FFFFFh  
000000h - 1FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
32Mb  
8Mb  
One-quarter of die  
One-half of die  
16Mb  
Address Patterns for RMS (A3 = 1, A4 = 1) (32M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
000000h - 07FFFFh  
Size  
Density  
8Mb  
0
0
1
1
1
1
1
1
1
0
1
0
512Kb x 16  
1Mb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
One-quarter of die  
One-half of die  
000000h - 0FFFFFh  
180000h - 1FFFFFh  
100000h - 1FFFFFh  
16Mb  
8Mb  
16Mb  
May 17, 2004 pSRAM_Type01_12_A0  
pSRAM Type 1  
126  
P r e l i m i n a r y  
Low Power ICC Characteristics (32M)  
Item  
Symbol  
Te s t  
Array Partition  
1/4 Array  
Typ  
Max  
65  
Unit  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current IPAR  
RMS Mode Standby Current IRMSSB  
1/2 Array  
80  
µA  
4Mb Device  
8Mb Device  
40  
µA  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
50  
µA  
VIN = VCC or 0V,  
Chip in ZZ mode, tA= 85oC  
Deep Sleep Current  
IZZ  
10  
µA  
Address Patterns for PAR (A3= 0, A4=1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
x
1
1
1
1
0
1
1
1
0
0
1
0
256Kb x 16  
512Kb x 16  
1Mb x 16  
One-half of die  
Full die  
00000h - 7FFFFh  
00000h - FFFFFh  
C0000h - FFFFh  
80000h - 1FFFFFh  
8Mb  
162Mb  
4Mb  
One-quarter of die  
One-half of die  
256Kb x 16  
512Kb x 16  
8Mb  
Address Patterns for RMS (A3 = 1, A4 = 1) (16M)  
A2 A1 A0  
Active Section  
One-quarter of die  
Address Space  
00000h - 0FFFFh  
Size  
Density  
4Mb  
0
0
1
1
1
1
1
1
1
0
1
0
256Kb x 16  
512Kb x 16  
256Kb x 16  
512Kb x 16  
One-half of die  
One-quarter of die  
One-half of die  
00000h - 7FFFFh  
C0000h - FFFFFh  
80000h - FFFFFh  
8Mb  
4Mb  
8Mb  
Low Power ICC Characteristics (16M)  
Item  
Symbol  
Te s t  
Array Partition  
1/4 Array  
Typ  
Max  
Unit  
65  
80  
40  
50  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
PAR Mode Standby Current  
IPAR  
µA  
1/2 Array  
4Mb Device  
8Mb Device  
VIN = VCC or 0V,  
Chip Disabled, tA= 85oC  
RMS Mode Standby Current  
Deep Sleep Current  
IRMSSB  
µA  
µA  
VIN = VCC or 0V,  
Chip in ZZ# mode, tA= 85oC  
IZZ  
10  
127  
pSRAM Type 1  
pSRAM_Type01_12_A0 May 17, 2004  
P r e l i m i n a r y  
pSRAM Type 2  
16Mb (1Mb Word x 16-bit)  
32Mb (2Mb Word x 16-bit)  
64Mb (4Mb Word x 16-bit)  
Features  
„ Process Technology: CMOS  
„ Organization: x16 bit  
„ Power Supply Voltage: 2.7~3.1V  
„ Three State Outputs  
„ Compatible with Low Power SRAM  
Product Information  
Standby  
Operating  
Density  
16Mb  
16Mb  
32Mb  
32Mb  
64Mb  
64Mb  
V
Range  
(ISB1, Max.)  
(ICC2, Max.)  
Mode  
Dual CS  
CC  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
80 µA  
80 µA  
100 µA  
100 µA  
TBD  
30 mA  
35 mA  
35 mA  
40 mA  
TBD  
Dual CS and Page Mode  
Dual CS  
Dual CS and Page Mode  
Dual CS  
TBD  
TBD  
Dual CS and Page Mode  
Pin Description  
Pin Name  
Description  
I/O  
CS1#, CS2  
OE#  
Chip Select  
I
I
I
I
Output Enable  
Write Enable  
WE#  
LB#, UB#  
Lower/Upper Byte Enable  
A0-A19 (16M)  
A0-A20 (32M)  
A0-A21 (64M)  
Address Inputs  
I
I/O0-I/O15  
VCC/VCCQ  
VSS/VSSQ  
NC  
Data Inputs/Outputs  
Power Supply  
Ground  
I/O  
Not Connection  
Do Not Use  
DNU  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
128  
P r e l i m i n a r y  
Power Up Sequence  
1. Apply power.  
2. Maintain stable power (VCC min.=2.7V) for a minimum 200 µs with  
CS1#=high or CS2=low.  
129  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
P r e l i m i n a r y  
Timing Diagrams  
Power Up  
Min. 200 s  
VCC(Min)  
VCC  
CS1#  
CS2  
Power Up Mode  
Normal Operation  
Figure 41. Power Up 1 (CS1# Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS1# high. Then the device gets into the normal operation.  
Min. 200 s  
VCC(Min)  
VCC  
CS1#  
CS2  
Power Up Mode  
Normal Operation  
Figure 42. Power Up 2 (CS2 Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS2 low. Then the device gets into the normal operation.  
Functional Description  
Mode  
CS1#  
CS2  
X
OE#  
X
WE#  
LB#  
X
UB#  
X
I/O1-8  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
I/O9-16  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
Power  
Standby  
Standby  
Standby  
Active  
Deselected  
Deselected  
Deselected  
H
X
X
L
L
L
L
L
L
L
L
X
X
X
H
H
H
H
H
L
L
X
X
X
X
X
H
L
H
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
H
L
H
X
L
Active  
H
L
H
L
Active  
H
L
H
L
High-Z  
DOUT  
Active  
H
L
L
DOUT  
Active  
Lower Byte Write  
Upper Byte Write  
Word Write  
H
X
L
H
L
DIN  
High-Z  
DIN  
Active  
H
X
L
H
L
High-Z  
DIN  
Active  
H
X
L
L
DIN  
Active  
Legend:X = Don’t care (must be low or high state).  
May 3, 2004 pSRAM_Type02_15A0 pSRAM Type 2  
130  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Item  
Symbol  
VIN , VOUT  
VCC  
Ratings  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
-0.2 to VCC+0.3V  
-0.2 to 3.6V  
1.0  
V
PD  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute  
maximum rating conditions longer than 1 second may affect reliability.  
DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
Typ  
2.9  
0
Max  
Unit  
2.7  
3.1  
VSS  
0
2.2  
0
VCC + 0.3 (Note 2)  
0.6  
V
VIH  
Input High Voltage  
Input Low Voltage  
VIL  
-0.2 (Note 3)  
Notes:  
1. TA=-40 to 85°C, otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
8
Unit  
pF  
Input Capacitance  
COIO  
Input/Output Capacitance  
VOUT = 0V  
10  
pF  
Note: This parameter is sampled periodically and is not 100% tested.  
DC and Operating Characteristics  
Common  
Item  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input Leakage Current  
ILI  
VIN=VSS to VCC  
-1  
1
1
µA  
CS1#=VIH or CS2=VIL or OE#=VIH or WE#=VIL or  
LB#=UB#=VIH, VIO=VSS to VCC  
Output Leakage Current  
ILO  
-1  
µA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL=2.1mA  
0.4  
V
V
IOH=-1.0mA  
2.4  
131  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
P r e l i m i n a r y  
16M pSRAM  
Item  
Symbol  
Test Conditions  
Cycle time=1µs, 100% duty, IIO=0mA,  
Min Typ Max Unit  
ICC1  
CS1# 0.2V, LB# 0.2V and/or UB# 0.2V,  
7
mA  
CS2 VCC-0.2V, VIN 0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
30 mA  
35 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
80 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
32M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
7
mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
35 mA  
40 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
100 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
132  
P r e l i m i n a r y  
64M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
TBD mA  
TBD mA  
TBD mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL,  
VIN-VIH or VIL  
Page  
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
TBD mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
AC Operating Conditions  
Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.4 to 2.2V  
„ Input rising and falling time: 5ns  
„ Input and output reference voltage: 1.5V  
„ Output load (See Figure 43): CL=50pF  
Dout  
CL  
Figure 43. Output Load  
Note: Including scope and jig capacitance.  
133  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
P r e l i m i n a r y  
ACC Characteristics (Ta = -40°C to 85°C, VCC = 2.7 to 3.1 V)  
Speed Bins  
70ns  
Symbol  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
Read Cycle Time  
70  
70  
70  
35  
70  
tAA  
Address Access Time  
tCO  
tOE  
Chip Select to Output  
Output Enable to Valid Output  
UB#, LB# Access Time  
Chip Select to Low-Z Output  
tBA  
tLZ  
10  
tBLZ  
tOLZ  
tHZ  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold from Address Change  
Page Cycle Time  
10  
5
0
25  
25  
25  
tBHZ  
tOHZ  
tOH  
tPC  
0
0
5
25  
tPA  
Page Access Time  
20  
tWC  
tCW  
tAS  
Write Cycle Time  
70  
Chip Select to End of Write  
Address Set-up Time  
60  
0
tAW  
tBW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
tOW  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
60  
60  
55 (Note 1)  
Write Recovery Time  
0
0
Write to Output High-Z  
25  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
30  
0
5
Notes:  
1. tWP (min)=70ns for continuous write operation over 50 times.  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
134  
P r e l i m i n a r y  
Timing Diagrams  
Read Timings  
tRC  
Address  
Data Out  
tAA  
tOH  
Data Valid  
Previous Data Valid  
Figure 44. Timing Waveform of Read Cycle(1)  
Notes:  
1. Address Controlled, CS1#=OE#=VIL, CS2=WE#=VIH, UB# and/or LB#=VIL.  
tRC  
Address  
tOH  
tAA  
tCO  
CS1#  
CS2  
tHZ  
tBA  
UB#, LB#  
tBHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
High-Z  
Data out  
Data Valid  
Figure 45. Timing Waveform of Read Cycle(2)  
Notes:  
1. WE#=VIH  
.
Address1)  
A1~A0  
Valid  
Address  
Valid  
Valid  
Valid  
Valid  
Address  
Address Address Address  
t
AA  
t
PC  
CS1#  
CS2  
t
CO  
OE#  
t
PA  
t
OHZ  
t
OE  
High Z  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
DQ15~DQ0  
Figure 46. Timing Waveform of Read Cycle(2)  
Notes:  
135  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
P r e l i m i n a r y  
1. 16Mb: A2 ~ A19, 32Mb: A2 ~ A20, 64Mb: A2 ~ A21.  
tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to  
output voltage levels.  
At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device  
to device interconnection.  
tOE(max) is met only when OE# becomes enabled after tAA(max).  
If invalid address signals shorter than min. T.RC are continuously repeated for over 4µs, the device needs a normal read  
timing (tRC) or needs to sustain standby state for min. tRC at least once in every 4µs.  
Write Timings  
tWC  
Address  
tCW  
tWR  
CS1#  
CS2  
tAW  
tBW  
UB#, LB#  
tWP  
WE#  
tAS  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
tWHZ  
tOW  
Data Undefined  
Data out  
Figure 47. Write Cycle #1 (WE# Controlled)  
tWC  
Address  
tWR  
tAS  
tCW  
tAW  
CS1#  
CS2  
tBW  
UB#, LB#  
tWP  
WE#  
tDW  
tDH  
Data Valid  
Data in  
High-Z  
Data out  
Figure 48. Write Cycle #2 (CS1# Controlled)  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
136  
P r e l i m i n a r y  
tWC  
Address  
tWR  
tAS  
tCW  
tAW  
CS1#  
CS2  
tBW  
UB#, LB#  
WE#  
tWP(1)  
tDW  
tDH  
Data Valid  
Data in  
Data out  
High-Z  
Figure 49. Timing Waveform of Write Cycle(3) (CS2 Controlled)  
t
WC  
Address  
CS1#  
t
WR  
t
CW  
t
AW  
CS2  
t
BW  
UB#, LB#  
t
AS  
t
WP  
WE#  
t
DH  
t
DW  
Data Valid  
Data in  
Data out  
High-Z  
Figure 50. Timing Waveform of Write Cycle(4) (UB#, LB# Controlled)  
Notes:  
1. A write occurs during the overlap (tWP) of low CS1# and low WE#. A write begins when CS1# goes low and WE# goes low  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A  
write ends at the earliest transition when CS1# goes high and WE# goes high. The tWP is measured from the beginning of  
write to the end of write.  
2. tCW is measured from the CS1# going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS1# or WE# going  
high.  
137  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
P r e l i m i n a r y  
pSRAM Type 7  
16Mb (1M word x 16-bit)  
32Mb (2M word x 16-bit)  
64Mb (4M word x 16-bit)  
CMOS 1M/2M/4M-Word x 16 bit Fast Cycle Random Access Memory with Low  
Power SRAM Interface  
Features  
„ Asynchronous SRAM Interface  
„ Fast Access Time  
— tCE = tAA = 60ns max (16M)  
— tCE = tAA = 65ns max (32M/64M)  
„ 8 words Page Access Capability  
— tPAA = 20ns max (32M/64M)  
„ Low Voltage Operating Condition  
— VDD = +2.7V to +3.1V  
„ Wide Operating Temperature  
— TA = -30°C to +85°C  
„ Byte Control by LB and UB  
„ Low Power Consumption  
— IDDA1 = 20mA max (16M)  
— IDDA1 = 30mA max (32M)  
— IDDA1 =TBDmA max (64M)  
— IDDS1 = 100µA max (16M)  
— IDDS1 = 80µA max (32M)  
— IDDS1 = TBDµA max (64M)  
„ Various Power Down mode  
— Sleep, 4M-bit Partial or 8M-bit Partial (32M)  
— Sleep, 8M-bit Partial or 16M-bit Partial (64M  
Pin Description  
Pin Name  
A21 to A0  
CE1#  
CE2#  
WE#  
Description  
Address Input: A19 to A0 for 16M, A20 to A0 for 32M, A21 to A0 for 64M  
Chip Enable (Low Active)  
Chip Enable (High Active)  
Write Enable (Low Active)  
OE#  
Output Enable (Low Active)  
UB#  
Upper Byte Control (Low Active)  
Lower Byte Control (Low Active)  
Upper Byte Data Input/Output  
Lower Byte Data Input/Output  
Power Supply  
LB#  
DQ16 9  
-
DQ8-1  
VDD  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
138  
P r e l i m i n a r y  
Pin Name  
Description  
VSS  
Ground  
Functional Description  
Mode  
Standby (Deselect)  
CE2#  
CE1#  
H
WE#  
OE#  
X
LB#  
X
UB#  
X
A21-0  
X
DQ8-1  
High-Z  
DQ16-9  
High-Z  
H
H
L
X
H
Output Disable (Note 1)  
Output Disable (No Read)  
Read (Upper Byte)  
Read (Lower Byte)  
Read (Word)  
H
X
X
Note 3  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
X
High-Z  
High-Z  
H
H
L
H
L
High-Z  
High-Z  
High-Z  
Output Valid  
High-Z  
H
L
H
L
Output Valid  
L
L
Output Valid Output Valid  
No Write  
H
H
L
H
L
Invalid  
Invalid  
Invalid  
Input Valid  
Invalid  
Write (Upper Byte)  
Write (Lower Byte)  
Write (Word)  
L
H (Note 4)  
H
L
Input Valid  
Input Valid  
High-Z  
L
Input Valid  
High-Z  
Power Down  
X
X
X
X
X
Legend:L = VIL, H = VIH, X can be either VIL or VIH, High-Z = High Impedance.  
Notes:  
1. Should not be kept this logic condition longer than 1ms. Please contact local Spansion representative for the relaxation of  
1ms limitation.  
2. Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the  
selection of Power Down Program, 16M has data retention in all modes except Power Down. Refer to POWER DOWN for the  
detail.  
3. Can be either VIL or VIH but must be valid before Read or Write.  
4. OE# can be VIL during Write operation if the following conditions are satisfied:  
(1) Write pulse is initiated by CE1# (refer to CE1# Controlled Write timing), or cycle time of the previous operation cycle is  
satisfied.  
(2) OE# stays VIL during Write cycle  
Power Down (for 32M, 64M Only)  
Power Down  
The Power Down is low power idle state controlled by CE2. CE2 Low drives the  
device in power down mode and maintains low power idle state as long as CE2 is  
kept Low. CE2 High resumes the device from power down mode. These devices  
have three power down mode. These can be programmed by series of read/write  
operation. Each mode has following features.  
32M  
Retention Data  
No  
64M  
Retention Data  
No  
Mode  
Retention Address  
N/A  
Mode  
Retention Address  
N/A  
Sleep (default)  
4M Partial  
Sleep (default)  
8M Partial  
4M bit  
00000h to 3FFFFh  
00000h to 7FFFFh  
8M bit  
00000h to 7FFFFh  
00000h to FFFFFh  
8M Partial  
8M bit  
16M Partial  
16M bit  
139  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
The default state is Sleep and it is the lowest power consumption but all data will  
be lost once CE2 is brought to Low for Power Down. It is not required to program  
to Sleep mode after power-up.  
Power Down Program Sequence  
The program requires total 6 read/write operation with unique address. Between  
each read/write operation requires that device be in standby mode. Following  
table shows the detail sequence.  
Cycle #  
1st  
Operation  
Read  
Address  
3FFFFFh (MSB)  
3FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
3rd  
Write  
Write  
Write  
Write  
Read  
3FFFFFh  
RDa  
4th  
3FFFFFh  
Don’t Care (X)  
X
5th  
3FFFFFh  
6th  
Address Key  
Read Data (RDb)  
The first cycle is to read from most significant address (MSB).  
The second and third cycle are to write back the data (RDa) read by first cycle.  
If the second or third cycle is written into the different address, the program is  
cancelled and the data written by the second or third cycle is valid as a normal  
write operation.  
The forth and fifth cycle is to write to MSB. The data of forth and fifth cycle is  
don’t-care. If the forth or fifth cycle is written into different address, the program  
is also cancelled but write data may not be wrote as normal write operation.  
The last cycle is to read from specific address key for mode selection.  
Once this program sequence is performed from a Partial mode to the other Partial  
mode, the written data stored in memory cell array may be lost. So, it should per-  
form this program prior to regular read/write operation if Partial mode is used.  
Address Key  
The address key has following format.  
Mode  
Address  
32M  
Sleep (default)  
4M Partial  
8M Partial  
N/A  
64M  
Sleep (default)  
N/A  
A21  
1
A20  
1
A19  
1
A18 - A0  
Binary  
1
1
1
1
3FFFFFh  
37FFFFh  
2FFFFFh  
27FFFFh  
1
1
0
8M Partial  
16M Partial  
1
0
1
1
0
0
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
140  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Item  
Voltage of VDD Supply Relative to VSS  
Voltage at Any Pin Relative to VSS  
Short Circuit Output Current  
Storage temperature  
Symbol  
VDD  
Value  
Unit  
V
-0.5 to +3.6  
-0.5 to +3.6  
±50  
VIN, VOUT  
IOUT  
V
mA  
°C  
TSTG  
-55 to +125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions (See Warning Below)  
Parameter  
Symbol  
VDD  
VSS  
VIH  
Min  
2.7  
Max  
3.1  
Unit  
V
Supply Voltage  
0
0
V
High Level Input Voltage (Note 1)  
High Level Input Voltage (Note 1)  
Ambient Temperature  
VDD 0.8  
-0.3  
-30  
VDD+0.2  
VDD 0.2  
85  
V
VIL  
V
TA  
°C  
Notes:  
1. Maximum DC voltage on input and I/O pins are VDD+0.2V. During voltage transitions, inputs may positive overshoot to  
DD+1.0V for periods of up to 5 ns.  
V
2. Minimum DC voltage on input or I/O pins are -0.3V. During voltage transitions, inputs may negative overshoot VSS to -1.0V  
for periods of up to 5ns.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the de-  
vice’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may  
adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their FUJITSU representative before-  
hand.  
Package Capacitance  
Test conditions: TA = 25°C, f = 1.0 MHz  
Symbol  
Description  
Te s t S e tup  
VIN = 0V  
VIN = 0V  
VIO = 0V  
Typ  
Max  
5
Unit  
pF  
CIN1  
CIN2  
CIO  
Address Input Capacitance  
Control Input Capacitance  
Data Input/Output Capacitance  
5
pF  
8
pF  
141  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
DC Characteristics (Under Recommended Conditions Unless Otherwise  
Noted)  
16M  
32M  
64M  
Parameter  
Symbol  
Test Conditions  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Input Leakage  
Current  
ILI  
VIN = VSS to VDD  
-1.0  
+1.0  
-1.0  
+1.0  
-1.0  
+1.0  
µ
A
A
Output Leakage  
Current  
VOUT = VSS to VDD, Output  
Disable  
ILO  
VOH  
VOL  
-1.0  
2.2  
+1.0  
-1.0  
2.4  
+1.0  
-1.0  
2.4  
+1.0  
µ
Output High  
Voltage Level  
VDD = VDD(min), IOH = –  
0.5mA  
V
Output Low  
Voltage Level  
IOL = 1mA  
0.4  
10  
0.4  
0.4  
V
IDDPS  
IDDP4  
IDDP8  
SLEEP  
10  
40  
50  
TBD  
µ
A
A
A
VDD = VDD(26)  
max.,  
VIN = VIH or VIL,  
4M Partial  
8M Partial  
N/A  
N/A  
N/A  
µ
µ
VDD Power Down  
Current  
TBD  
TBD  
CE2  
0.2V  
16M  
Partial  
IDDP16  
N/A  
N/A  
µA  
VDD = VDD(26) max.,  
VIN = VIH or VIL  
CE1 = CE2 = VIH  
IDDS  
1
100  
20  
3
1.5  
80  
30  
3
TBD  
TBD  
TBD  
TBD  
mA  
VDD Standby  
Current  
VDD = VDD(26) max.,  
IDDS1  
IDDA1  
IDDA2  
VIN  
CE1 = CE2  
0.2V or VIN  
VDD – 0.2V,  
µA  
VDD – 0.2V  
tRC / tWC  
=
minimum  
VDD = VDD(26)  
max.,  
VIN = VIH or VIL,  
CE1 = VIL and  
CE2= VIH,  
mA  
mA  
VDD Active  
Current  
tRC / tWC  
=
1µs  
IOUT=0mA  
VDD = VDD(26) max., VIN = VIH  
or VIL,  
CE1 = VIL and CE2= VIH,  
IOUT=0mA, tPRC = min.  
VDD Page Read  
Current  
IDDA3  
N/A  
10  
TBD  
mA  
Notes:  
1. All voltages are referenced to VSS  
.
2. DC Characteristics are measured after following POWER-UP timing.  
3. IOUT depends on the output load conditions.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
142  
P r e l i m i n a r y  
AC Characteristics (Under Recommended Operating Conditions Unless  
Otherwise Noted)  
Read Operation  
16M  
32M  
64M  
Parameter  
Read Cycle Time  
Symbol  
tRC  
Min.  
65  
20  
5
Max.  
1000  
65  
Min.  
65  
20  
5
Max.  
1000  
65  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
70  
1000  
60  
1, 2  
CE1# Access Time  
tCE  
3
OE# Access Time  
tOE  
40  
40  
40  
3
3, 5  
3
Address Access Time  
LB# / UB# Access Time  
Page Address Access Time  
Page Read Cycle Time  
Output Data Hold Time  
CE1# Low to Output Low-Z  
OE# Low to Output Low-Z  
tAA  
60  
65  
65  
tBA  
30  
30  
30  
tPAA  
tPRC  
tOH  
N/A  
N/A  
20  
20  
3,6  
1, 6, 7  
3
1000  
1000  
5
5
0
tCLZ  
tOLZ  
5
5
4
0
0
4
LB# / UB# Low to Output  
Low-Z  
tBLZ  
0
0
0
ns  
4
CE1# High to Output High-Z  
OE# High to Output High-Z  
tCHZ  
tOHZ  
20  
20  
20  
15  
20  
20  
ns  
ns  
3
3
LB# / UB# High to Output  
High-Z  
tBHZ  
-5  
20  
20  
20  
ns  
ns  
3
Address Setup Time to CE1#  
Low  
tASC  
–5  
–5  
Address Setup Time to OE#  
Low  
tASO  
tAX  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
Address Invalid Time  
5, 8  
9
Address Hold Time from CE1#  
High  
tCHAH  
-6  
–6  
–6  
Address Hold Time from OE#  
High  
tOHAH  
-6  
–6  
–6  
ns  
WE# High to OE# Low Time  
for Read  
tWHOL  
tCP  
10  
10  
1000  
12  
12  
12  
12  
ns  
ns  
10  
CE1# High Pulse Width  
Notes:  
1. Maximum value is applicable if CE#1 is kept at Low without change of address input of A3 to A21. If needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Address should not be changed within minimum tRC  
.
3. The output load 50pF.  
4. The output load 5pF.  
143  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
5. Applicable to A3 to A21 (32M and 64M) when CE1# is kept at Low.  
6. Applicable only to A0, A1 and A2 (32M and 64M) when CE1# is kept at Low for the page address access.  
7. In case Page Read Cycle is continued with keeping CE1# stays Low, CE1# must be brought to High within 4µs. In other  
words, Page Read Cycle must be closed within 4µs.  
8. Applicable when at least two of address inputs among applicable are switched from previous state.  
9. tRC(min) and tPRC(min) must be satisfied.  
10. If actual value of tWHOL is shorter than specified minimum values, the actual tAA of following Read may become longer by the  
amount of subtracting actual value from specified minimum value.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
144  
P r e l i m i n a r y  
AC Characteristics  
Write Operation  
16M  
32M  
64M  
Parameter  
Write Cycle Time  
Symbol  
tWC  
Min.  
70  
0
Max.  
1000  
Min.  
65  
0
Max.  
1000  
Min.  
65  
0
Max.  
1000  
Unit  
ns  
Notes  
1,2  
3
Address Setup Time  
CE1# Write Pulse Width  
WE# Write Pulse Width  
LB#/UB# Write Pulse Width  
tAS  
ns  
tCW  
45  
45  
45  
40  
40  
40  
40  
40  
40  
ns  
3
tWP  
ns  
3
tBW  
ns  
3
LB#/UB# Byte Mask Setup  
Time  
tBS  
-5  
-5  
–5  
–5  
–5  
–5  
ns  
ns  
4
LB#/UB# Byte Mask Hold  
Time  
tBH  
5
6
Write Recovery Time  
CE1# High Pulse Width  
WE# High Pulse Width  
LB#/UB# High Pulse Width  
Data Setup Time  
tWR  
tCP  
0
10  
7.5  
10  
15  
0
0
12  
7.5  
12  
12  
0
0
12  
7.5  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
tWHP  
tBHP  
tDS  
1000  
1000  
1000  
1000  
1000  
1000  
7
Data Hold Time  
tDH  
OE# High to CE1# Low Setup  
Time for Write  
tOHCL  
-5  
0
–5  
0
–5  
0
ns  
ns  
ns  
8
9
OE# High to Address Setup  
Time for Write  
tOES  
LB# and UB# Write Pulse  
Overlap  
tBWO  
30  
30  
30  
Notes:  
1. Maximum value is applicable if CE1# is kept at Low without any address change. If the relaxation is needed by system  
operation, please contact local Spansion representative for the relaxation of 1µs limitation.  
2. Minimum value must be equal or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWR).  
3. Write pulse is defined from High to Low transition of CE1#, WE#, or LB#/UB#, whichever occurs last.  
4. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1# or WE# whichever  
occurs last.  
5. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1# or WE# whichever  
occurs first.  
6. Write recovery is defined from Low to High transition of CE1#, WE#, or LB#/UB#, whichever occurs first.  
7. tWPH minimum is absolute minimum value for device to detect High level. And it is defined at minimum VIH level.  
8. If OE# is Low after minimum tOHCL, read cycle is initiated. In other words, OE# must be brought to High within 5ns after  
CE1# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.  
9. If OE# is Low after new address input, read cycle is initiated. In other word, OE# must be brought to High at the same time  
or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum tRC is met and data  
bus is in High-Z.  
145  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
AC Characteristics  
Power Down Parameters  
16M  
Symbol Min.  
32M  
64M  
Parameter  
Max.  
Min. Max. Min.  
Max.  
Unit  
ns  
Note  
CE2 Low Setup Time for Power Down Entry  
CE2 Low Hold Time after Power Down Entry  
tCSP  
10  
80  
10  
65  
10  
65  
tC2LP  
ns  
CE1# High Hold Time following CE2 High after Power  
Down Exit [SLEEP mode only]  
tCHH  
tCHHP  
tCHS  
300  
300  
1
300  
1
µ
s
s
1
2
1
CE1# High Hold Time following CE2 High after Power  
Down Exit [not in SLEEP mode]  
N/A  
µ
CE1# High Setup Time following CE2 High after  
Power Down Exit  
0
0
0
ns  
Notes:  
1. Applicable also to power-up.  
2. Applicable when 4M and 8M Partial mode is programmed.  
Other Timing Parameters  
16M  
32M  
64M  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Note  
CE1# High to OE# Invalid Time  
for Standby Entry  
tCHOX  
10  
10  
10  
10  
50  
ns  
ns  
CE1# High to WE# Invalid  
Time for Standby Entry  
tCHWX  
10  
10  
50  
1
CE2 Low Hold Time after  
Power-up  
tC2LH  
N/A  
µ
s
s
CE1# High Hold Time following  
CE2 High after Power-up  
tCHH  
tT  
300  
1
300  
1
300  
1
µ
Input Transition Time  
25  
25  
25  
ns  
2
Notes:  
1. Some data might be written into any address location if tCHWX(min) is not satisfied.  
2. The Input Transition Time (tT) at AC testing is 5ns as shown in below. If actual tT is longer than 5ns, it may violate AC  
specification of some timing parameters.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
146  
P r e l i m i n a r y  
AC Characteristics  
AC Test Conditions  
Symbol  
VIH  
Description  
Te s t S e tup  
Value  
Unit  
V
Note  
Input High Level  
VDD * 0.8  
VDD * 0.2  
VDD * 0.5  
5
VIL  
Input Low Level  
V
VREF  
tT  
Input Timing Measurement Level  
Input Transition Time  
V
Between VIL and VIH  
ns  
AC Measurement Output Load Circuit  
VDD  
DEVICE  
UNDER  
TEST  
OUT  
0.1µF  
VSS  
50pF  
Figure 51. AC Output Load Circuit  
147  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
Timing Diagrams  
Read Timings  
tRC  
ADDRESS VALID  
ADDRESS  
tASC  
tCE  
tCHAH  
tASC  
CE1#  
OE#  
tCP  
tCHZ  
tOE  
tOHZ  
tBHZ  
tBA  
LB#/UB#  
tBLZ  
tOLZ  
DQ  
(Output)  
tCLZ  
VALID DATA OUTPUT  
Figure 52. Read Timing #1 (Basic Timing)  
tOH  
Note: This timing diagram assumes CE2=H and WE#=H.  
tAx  
tRC  
tRC  
ADDRESS  
ADDRESS VALID  
ADDRESS VALID  
tAA  
tAA  
tOHAH  
CE1#  
Low  
tASO  
tOE  
OE#  
LB#/UB#  
tOLZ  
tOH  
tOHZ  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
Figure 53. Read Timing #2 (OE# Address Access  
VALID DATA OUTPUT  
Note: This timing diagram assumes CE2=H and WE#=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
148  
P r e l i m i n a r y  
tAX  
tRC  
tAx  
ADDRESS  
ADDRESS VALID  
tAA  
Low  
CE1#, OE#  
tBA  
tBA  
LB#  
tBA  
UB#  
tBHZ  
tOH  
tBHZ  
tOH  
tBLZ  
tBLZ  
DQ1-8  
(Output)  
VALID DATA  
OUTPUT  
tBHZ  
VALID DATA  
OUTPUT  
tOH  
tBLZ  
DQ9-16  
(Output)  
VALID DATA OUTPUT  
Figure 54. Read Timing #3 (LB#/UB# Byte Access)  
Note: This timing diagram assumes CE2=H and WE#=H.  
tRC  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
tRC  
tPRC  
tPRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
tASC  
tCHAH  
tPAA  
tPAA  
tPAA  
CE1#  
OE#  
tCHZ  
tCE  
LB#/UB#  
tOH  
tCLZ  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 55. Read Timing #4 (Page Address Access after CE1# Control Access  
for 32M and 64M Only)  
Note: This timing diagram assumes CE2=H and WE#=H.  
149  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
tRC  
tAX  
tRC  
tAx  
ADDRESS  
(A21-A3)  
ADDRESS VALID  
ADDRESS VALID  
tRC  
tPRC  
tRC  
tPRC  
ADDRESS  
(A2-A0)  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
tAA  
tPAA  
tAA  
tPAA  
CE1#  
Low  
tASO  
tOE  
OE#  
tBA  
LB#/UB#  
tOLZ  
tBLZ  
tOH  
tOH  
tOH  
tOH  
DQ  
(Output)  
VALID DATA OUTPUT  
(Page Access)  
VALID DATA OUTPUT  
(Normal Access)  
Figure 56. Read Timing #5 (Random and Page Address Access for 32M and  
64M Only)  
Notes:  
1. This timing diagram assumes CE2=H and WE#=H.  
2. Either or both LB# and UB# must be Low when both CE1# and OE# are Low.  
Write Timings  
tWC  
ADDRESS  
CE1#  
ADDRESS VALID  
tAS  
tCW  
tWR  
tWR  
tWR  
tAS  
tCP  
tAS  
tWP  
tAS  
WE#  
tWHP  
tAS  
tBW  
tAS  
LB#, UB#  
tBHP  
tOHCL  
OE#  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 57. Write Timing #1 (Basic Timing)  
Note: This timing diagram assumes CE2=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
150  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
tOHAH  
Low  
tAS  
tWP  
tWR  
tAS  
tWP  
tWR  
WE#  
tWHP  
LB#, UB#  
OE#  
tOES  
tOHZ  
tDS  
tDH  
tDS  
tDH  
DQ  
(Input)  
VALID DATA INPUT  
Figure 58. Write Timing #2 (WE# Control)  
VALID DATA INPUT  
Note:This timing diagram assumes CE2=H.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tAS  
tWP  
tAS  
tWP  
tWHP  
tBS  
WE#  
LB#  
tBH  
tWR  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
Figure 59. Write Timing #3-1 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
151  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
tWR  
tWR  
WE#  
LB#  
tWHP  
tAS  
tBW  
tBS  
tBH  
tAS  
tBW  
tBH  
tBS  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 60. Write Timing #3-2 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tWHP  
tAS  
tBW  
tWR  
tBS  
tBH  
tAS  
tBW  
tWR  
tBS  
tBH  
UB#  
tDS  
tDH  
DQ1-8  
(Input)  
VALID DATA INPUT  
tDS  
tDH  
DQ9-16  
(Input)  
VALID DATA INPUT  
Figure 61. Write Timing #3-3 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
152  
P r e l i m i n a r y  
tWC  
tWC  
ADDRESS VALID  
ADDRESS VALID  
ADDRESS  
CE1#  
Low  
WE#  
LB#  
tAS  
tBW  
tWR  
tAS  
tBW  
tWR  
tDH  
tBHP  
tBWO  
tDS  
tDH  
tDS  
DQ1-8  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
tAS  
tBW  
tWR  
tAS  
tWR  
tBWO  
tBW  
UB#  
tBHP  
tDS  
tDH  
tDS  
tDH  
DQ9-16  
(Input)  
VALID  
DATA INPUT  
VALID  
DATA INPUT  
Figure 62. Write Timing #3-4 (WE#/LB#/UB# Byte Write Control)  
Note: This timing diagram assumes CE2=H and OE#=H.  
Read/Write Timings  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tCW  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tCHZ  
tOH  
tDS  
tDH  
tCLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 63. Read/Write Timing #1-1 (CE1# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. Write address is valid from either CE1# or WE# of last falling edge.  
153  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tCHAH  
tAS  
tWR  
tASC  
tCE  
tCHAH  
tCP  
tCP  
tWP  
WE#  
UB#, LB#  
OE#  
tOHCL  
tOE  
tCHZ  
tOH  
tDS  
tDH  
tOLZ  
tOH  
DQ  
READ DATA OUTPUT  
WRITE DATA INPUT  
READ DATA OUTPUT  
Figure 64. Read / Write Timing #1-2 (CE1#/WE#/OE# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. OE# can be fixed Low during write operation if it is CE1# controlled write at Read-Write-Read sequence.  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tOHAH  
tOHAH  
tAA  
Low  
tAS  
tWR  
tWP  
WE#  
UB#, LB#  
OE#  
tOES  
tASO  
tOE  
tWHOL  
tOHZ  
tOH  
tOHZ  
tOH  
tDS  
tDH  
tOLZ  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 65. Read / Write Timing #2 (OE#, WE# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
154  
P r e l i m i n a r y  
tWC  
tRC  
ADDRESS  
CE1#  
WRITE ADDRESS  
READ ADDRESS  
tAA  
tOHAH  
tOHAH  
Low  
WE#  
tOES  
tAS  
tBW  
tWR  
tBA  
UB#, LB#  
OE#  
tBHZ  
tASO  
tWHOL  
tBHZ  
tOH  
tDS  
tDH  
tBLZ  
tOH  
DQ  
READ DATA OUTPUT  
READ DATA OUTPUT  
WRITE DATA INPUT  
Figure 66. Read / Write Timing #3 (OE#, WE#, LB#, UB# Control)  
Notes:  
1. This timing diagram assumes CE2=H.  
2. CE1# can be tied to Low for WE# and OE# controlled operation.  
CE1#  
tCHS  
tC2LH  
tCHH  
CE2  
VDD  
VDD min  
0V  
Figure 67. Power-up Timing #1  
Note: The tC2LH specifies after VDD reaches specified minimum level.  
155  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
P r e l i m i n a r y  
CE1#  
CE2  
VDD  
tCHH  
VDD min  
0V  
Figure 68. Power-up Timing #2  
Note: The tCHH specifies after VDD reaches specified minimum level and applicable to both CE1# and CE2.  
CE1#  
tCHS  
CE2  
tCSP  
tC2LP  
tCHH (tCHHP)  
High-Z  
DQ  
Power Down Entry  
Power Down Mode  
Power Down Exit  
Figure 69. Power Down Entry and Exit Timing  
Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and  
Power-Down program was not performed prior to this reset.  
CE1#  
tCHOX  
tCHWX  
OE#  
WE#  
Active (Read)  
Standby  
Active (Write)  
Standby  
Figure 70. Standby Entry Timing after Read or Write  
Note: Both tCHOX and tCHWX define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes  
tRC (min) period for Standby mode from CE1# Low to High transition.  
May 4, 2004 pSRAM_Type07_13_A0  
pSRAM Type 7  
156  
P r e l i m i n a r y  
tRC  
tWC  
tWC  
tWC  
tWC  
tRC  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
MSB*1  
Key*2  
ADDRESS  
CE1#  
tCP*3  
tCP  
tCP  
tCP  
tCP  
tCP  
OE#  
WE#  
LB#, UB#  
DQ*3  
RDa  
Cycle #1  
RDa  
Cycle #2  
RDa  
Cycle #3  
X
X
RDb  
Cycle #6  
Cycle #4  
Cycle #5  
Figure 71. Power Down Program Timing (for 32M/64M Only)  
Notes:  
1. The all address inputs must be High from Cycle #1 to #5.  
2. The address key must confirm the format specified in page 140. If not, the operation and data are not guaranteed.  
3. After tCP following Cycle #6, the Power Down Program is completed and returned to the normal operation.  
157  
pSRAM Type 7  
pSRAM_Type07_13_A0 May 4, 2004  
A d v a n c e I n f o r m a t i o n  
Revision Summary  
Revision A0 (June 9, 2004)  
Initial release.  
Revision A1 (July 19, 2004)  
Global Change  
Change all instances of FASL to Spansion  
Added Colophon text.  
“Product Selector Guide” on page 2  
Replaced “S71PL129JA0-9Z” with “S71PL129JA0-9P.  
“Ordering Information” on page 9  
In Model Number section replaced pSRAM part number with “See valid combinations table.  
Revision A2 (July 21, 2004)  
“Connection Diagram” on page 7  
Changed Row D of pinout for accuracy.  
Added the following note: “May be shared depending on density:A21 is shared for the 64M pSRAM  
configuration;A20 is shred for the 32M pSRAM configuration; A19 is shared for the 16M pSRAM  
configuration.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright © 2003 Spansion LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Span-  
sion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective compa-  
nies.  
July 21, 2004 S71PL129Jxx_00_A1_E  
Revision Summary  
158  

相关型号:

S71PL129JA0BAI9U0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAI9U2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAI9U3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAI9Z0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAI9Z2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAI9Z3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9B0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9B2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9B3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P0

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P2

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION

S71PL129JA0BAW9P3

Stacked Multi-Chip Product (MCP) Flash Memory
SPANSION