S71WS128JB0BAWAA1 [SPANSION]

Memory IC,;
S71WS128JB0BAWAA1
型号: S71WS128JB0BAWAA1
厂家: SPANSION    SPANSION
描述:

Memory IC,

文件: 总194页 (文件大小:2885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S71WS-J Based MCPs  
Stacked Multi-Chip Product (MCP)  
Package-on-Package (PoP)  
128/64 Megabit (8M/4M x 16-bit) CMOS 1.8 Volt-only,  
Simultaneous Read/Write, Burst Mode Flash Memory  
with CellularRAM  
ADVANCE  
INFORMATION  
Data Sheet  
Notice to Readers: The Advance Information status indicates that this  
document contains information on one or more products under development  
at Spansion LLC. The information is intended to help you evaluate this product.  
Do not design in this product without contacting the factory. Spansion LLC  
reserves the right to change or discontinue work on this proposed product  
without notice.  
Publication Number S71WS-J_03 Revision A Amendment 3 Issue Date November 28, 2005  
A d v a n c e I n f o r m a t i o n  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, in-  
cluding development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to high-  
light their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a doc-  
ument with this designation is likely to change, and in some cases, development on the product  
may discontinue. Spansion LLC therefore places the following conditions upon Advance Informa-  
tion content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the prod-  
uct life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon Prelimi-  
nary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with DC Characteristics table and AC Erase and Program table (in the table  
notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or V range. Changes  
IO  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
ii  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
S71WS-J Based MCPs  
Stacked Multi-Chip Product (MCP)  
Package-on-Package (PoP)  
128/64 Megabit (8M/4M x 16-bit) CMOS 1.8 Volt-only,  
Simultaneous Read/Write, Burst Mode Flash Memory with  
CellularRAM  
Data Sheet  
ADVANCE INFORMATION  
Distinctive Characteristics  
!
!
Packages  
MCP Features  
— 8 x 11.6mm, 84 ball FBGA  
— 12 x 12 x 1.10 mm, 128 ball PoP, 0.50 mm ball  
Operating Temperature  
!
Power supply voltage of 1.7 to 1.95V  
Speed: 66MHz  
!
— –25°C to +85°C  
General Description  
The S71WS series is a product line of stacked memory packages (MCP and PoP) and consists  
of:  
!
!
One or more flash memory die  
pSRAM  
The products covered by this document are listed in the table below. For details about their  
specifications, please refer to the individual constituent datasheets for further details:  
Flash Memory Density  
256Mb  
128Mb  
64Mb  
64Mb  
32Mb  
16Mb  
S71WS256JC0  
S71WS128JC0  
S71WS128JB0  
S71WS128JA0  
pSRAM  
Density  
S71WS064JB0  
S71WS064JA0  
Publication Number S71WS-J_03 Revision A Amendment 3 Issue Date November 28, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do not  
design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
Table of Contents  
S71WS-J Based MCPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i  
1
2
3
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Product Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Connection Diagram (CellularRAM Type-based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1 S71WS064JA0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.2 S71WS064JB0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.3 S71WS128J and S71WS256J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.4 Special Handling Instructions For FBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.5 S71WS064JA0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
MCP Lookahead Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Input/Output Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.1 TLA084 – 84-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 11.6 mm Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
7.2 FTA084 – 84-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 11.6 mm Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.3 TSC080 - Fine-Pitch Ball Grid Array (FBGA) 7 x 9 mm Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
7.4 ALG128 - 128-ball Fine-Pitch Ball Grid Array (FBGA) 12 x 12 mm Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4
5
6
7
S29WS128J/064J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8
9
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
10 Block Diagram of Simultaneous Operation Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
11 Device Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
11.1 Requirements for Asynchronous ReadOperation (Non-Burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
11.2 Requirements for Synchronous (Burst) Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
11.3 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
11.4 Handshaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
11.5 Simultaneous Read/Write Operations with Zero Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
11.6 Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
11.7 Accelerated Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.8 Autoselect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
11.9 Sector/Sector Block Protection and Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
12 Advanced Sector Protection/Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
12.1 Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
12.2 Persistent Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
12.3 Dynamic Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
12.4 Persistent Protection Bit Lock Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
12.5 Password Protection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
12.6 Advanced Sector Protection Software Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
12.7 Hardware Data Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13 Common Flash Memory Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
14 Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.1 Reading Array Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2 Set Configuration Register Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
14.2.1 Read Mode Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
14.2.2 Programmable Wait State Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
14.2.3 Standard wait-state Handshaking Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
14.2.4 Read Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
14.2.5 Burst Active Clock Edge Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
14.2.6 RDY Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
14.3 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
14.4 Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
14.5 Autoselect Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
2
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
14.6 Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.7 Program Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.7.1 Unlock Bypass Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
14.8 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
14.9 Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
14.10 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
14.11 Password Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
14.12 Password Verify Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.13 Password Protection Mode Locking Bit Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.14 Persistent Sector Protection Mode Locking Bit Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.15 Secured Silicon Sector Protection Bit Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
14.16 PPB Lock Bit Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.17 DPB Write/Erase/Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.18 Password Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
14.19 PPB Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.20 All PPB Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.21 PPB Status Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.22 PPB Lock Bit Status Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
14.23 Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
15 Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
15.1 DQ7: Data# Polling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
15.2 RDY: Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
15.3 DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
15.4 DQ2: Toggle Bit II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
15.5 Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
15.6 DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
15.7 DQ3: Sector Erase Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
16 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
17 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
18 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
18.1 CMOS Compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
19 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
20 Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
21 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
22 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
22.1 CLK Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
22.2 Synchronous/Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
22.3 Asynchronous Mode Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
22.4 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
22.5 Erase/Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
22.6 Temporary Sector Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
23 Erase and Programming Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
24 Flash Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
24.1 Revision A0 (July 22, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
24.2 Revision A1 (October 6, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
24.3 Revision A2 (December 10, 2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
24.4 Revision A3 (February 19, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
24.5 Revision A4 (June 24, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
CellularRAM Type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
25 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
26 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
26.1 Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
27 Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
27.1 Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
3
A d v a n c e I n f o r m a t i o n  
27.2 Page Mode Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
27.3 Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
27.4 Mixed-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
27.5 Wait Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
27.6 LB#/UB# Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
28 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
28.1 Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
28.2 Temperature Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
28.3 Partial Array Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
28.4 Deep Power-Down Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
29 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
29.1 Access Using CRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
29.2 Software Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
29.3 Bus Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
29.3.1 Burst Length (BCR[2:0]): Default = Continuous Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
29.3.2 Burst Wrap (BCR[3]): Default = No Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
29.3.3 Output Impedance (BCR[5]): Default = Outputs Use Full Drive Strength. . . . . . . . . . . . . . . . . . . . . . . 133  
29.3.4 Wait Configuration (BCR[8]): Default = Wait Transitions One Clock Before Data Valid/Invalid. . . . 133  
29.3.5 Wait Polarity (BCR[10]): Default = Wait Active High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
29.3.6 Latency Counter (BCR[13:11]): Default = Three-Clock Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
29.3.7 Operating Mode (BCR[15]): Default = Asynchronous Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
29.4 Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
29.4.1 Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
29.4.2 Deep Power-Down (RCR[4]): Default = DPD Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
29.4.3 Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC Operation . . . . . . . . . . . . . . . . . . . 136  
29.4.4 Page Mode Operation (RCR[7]): Default = Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
30 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
31 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
32 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
33 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
34 64M CellRAM Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Aysnc/Page CellularRAM Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
35 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
36 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
36.1 Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
37 Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
37.1 Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
37.2 Page Mode Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
37.3 LB#/UB# Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
38 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
38.1 Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
38.2 Temperature Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
38.3 Partial Array Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
38.4 Deep Power-Down Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
39 Configuration Register Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
39.1 Access Using ZZ# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
39.2 Software Access to the Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
39.3 Partial Array Refresh (CR[2:0]) Default = Full Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
39.4 Sleep Mode (CR[4]) Default = PAR Enabled, DPD Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
39.5 Temperature Compensated Refresh (CR[6:5]) Default = On-Chip Temperature Sensor. . . . . . . . . . . . . . . . .179  
39.6 Page Mode READ Operation (CR[7]) Default = Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
40 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
40.1 Maximum and Typical Standby Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
41 32/16M CellRAM Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
4
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
42 MCP Revision Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
42.1 Revision A0 (October 14, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
42.2 Revision A1 (June 15, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
42.3 Revision A2 (October 28, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
42.4 Revision A3 (November 28, 2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
5
A d v a n c e I n f o r m a t i o n  
Tables  
Table 11.1  
Table 11.2  
Table 11.3  
Table 11.4  
Table 11.5  
Table 12.1  
Table 12.2  
Table 13.1  
Table 13.2  
Table 13.3  
Table 13.4  
Table 13.5  
Table 13.6  
Table 14.1  
Table 14.2  
Table 14.3  
Table 14.4  
Table 14.5  
Table 15.1  
Table 15.2  
Table 19.1  
Table 25.1  
Table 25.2  
Table 25.3  
Table 29.1  
Table 29.2  
Table 29.3  
Table 29.4  
Table 29.5  
Table 31.1  
Table 31.2  
Table 31.3  
Table 32.1  
Table 32.2  
Table 32.3  
Table 32.4  
Table 32.5  
Table 32.6  
Table 33.1  
Table 35.1  
Table 35.2  
Table 39.1  
Table 39.2  
Table 40.1  
Table 40.2  
Table 40.3  
Table 40.4  
Table 40.5  
Table 40.6  
Table 40.7  
Table 40.8  
Table 40.9  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Autoselect Codes (High Voltage Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
S29WS128J/064J Boot Sector/Sector Block Addresses for Protection/Unprotection. . . . . . . . . . . . . . . . . . . 33  
S29WS064J Boot Sector/Sector Block Addresses for Protection/Unprotection. . . . . . . . . . . . . . . . . . . . . . . 35  
Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Sector Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Primary Vendor-Specific Extended Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
WS128J Sector Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
WS064J Sector Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Programmable Wait State Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wait States for Standard wait-state Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Read Mode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DQ6 and DQ2 Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Bus Operations—Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Bus Operations—Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Bus Configuration Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Sequence and Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Variable Latency Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Refresh Configuration Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
64Mb Address Patterns for PAR (RCR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Maximum Standby Currents for Applying PAR and TCR Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Deep Power-Down Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Output Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Asynchronous Read Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Burst Read Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Asynchronous Write Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Burst Write Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Initialization Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
32-Mb Address Patterns for PAR (CR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
16-Mb Address Patterns for PAR (CR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Maximum Standby Currents for Applying PAR and TCR Settings – 32Mb . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Maximum Standby Currents for Applying PAR and TCR Settings – 16Mb . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Deep Power-Down Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Capacitance Specifications and Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Output Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
READ Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
WRITE Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 40.10 Load Configuration Register Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 40.11 Deep Power-Down Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
6
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
Table 40.12 Power-Up Initialization Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 40.13 Load Configuration Register Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 40.14 Deep Power-Down Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 40.15 Single READ Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 40.16 Page Mode READ Timing Parameters (WE# = VIH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 40.17 WRITE Cycle Timing Parameters (WE# Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 40.18 WRITE Cycle Timing Parameters (CE# Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 40.19 WRITE Cycle Timing Parameters (LB#/UB# Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
7
A d v a n c e I n f o r m a t i o n  
Figures  
Figure 12.1  
Figure 12.2  
Figure 12.3  
Advanced Sector Protection/Unprotection .............................................................................................37  
PPB Program/Erase Algorithm.............................................................................................................40  
Lock Register Program Algorithm.........................................................................................................43  
Figure 14.1  
Figure 14.2  
Synchronous/Asynchronous State Diagram...........................................................................................64  
Program Operation............................................................................................................................70  
Figure 14.3  
Figure 15.1  
Figure 15.2  
Figure 16.1  
Figure 16.2  
Erase Operation................................................................................................................................73  
Data# Polling Algorithm.....................................................................................................................81  
Toggle Bit Algorithm..........................................................................................................................83  
Maximum Negative Overshoot Waveform .............................................................................................87  
Maximum Positive Overshoot Waveform...............................................................................................87  
Figure 19.1  
Figure 21.1  
Figure 22.1  
Figure 22.2  
Test Setup .......................................................................................................................................90  
Input Waveforms and Measurement Levels...........................................................................................90  
V
Power-up Diagram ......................................................................................................................91  
CC  
CLK Characterization .........................................................................................................................92  
CLK Synchronous Burst Mode Read (rising active CLK)...........................................................................93  
CLK Synchronous Burst Mode Read (Falling Active Clock) .......................................................................94  
Synchronous Burst Mode Read............................................................................................................94  
8-word Linear Burst with Wrap Around.................................................................................................95  
Linear Burst with RDY Set One Cycle Before Data..................................................................................95  
Asynchronous Mode Read with Latched Addresses .................................................................................96  
Asynchronous Mode Read...................................................................................................................97  
Figure 22.3  
Figure 22.4  
Figure 22.5  
Figure 22.6  
Figure 22.7  
Figure 22.8  
Figure 22.9  
Figure 22.10 Reset Timings...................................................................................................................................98  
Figure 22.11 Asynchronous Program Operation Timings: AVD# Latched Addresses.....................................................100  
Figure 22.12 Asynchronous Program Operation Timings: WE# Latched Addresses ......................................................101  
Figure 22.13 Synchronous Program Operation Timings: WE# Latched Addresses........................................................102  
Figure 22.14 Synchronous Program Operation Timings: CLK Latched Addresses.........................................................103  
Figure 22.15 Chip/Sector Erase Command Sequence..............................................................................................104  
Figure 22.16 Accelerated Unlock Bypass Programming Timing .................................................................................105  
Figure 22.17 Data# Polling Timings (During Embedded Algorithm)...........................................................................105  
Figure 22.18 Toggle Bit Timings (During Embedded Algorithm)................................................................................106  
Figure 22.19 Synchronous Data Polling Timings/Toggle Bit Timings ..........................................................................106  
Figure 22.20 DQ2 vs. DQ6..................................................................................................................................107  
Figure 22.21 Temporary Sector Unprotect Timing Diagram......................................................................................107  
Figure 22.22 Sector/Sector Block Protect and Unprotect Timing Diagram...................................................................108  
Figure 22.23 Latency with Boundary Crossing........................................................................................................108  
Figure 22.24 Latency with Boundary Crossing into Program/Erase Bank....................................................................109  
Figure 22.25 Example of Wait States Insertion ......................................................................................................110  
Figure 22.26 Back-to-Back Read/Write Cycle Timings .............................................................................................111  
Figure 25.1  
Figure 26.1  
Figure 27.1  
Figure 27.2  
Functional Block Diagram.................................................................................................................116  
Power-Up Initialization Timing...........................................................................................................120  
Read Operation (ADV# Low).............................................................................................................121  
Write Operation (ADV# Low) ............................................................................................................121  
Figure 27.3  
Figure 27.4  
Figure 27.5  
Figure 27.6  
Figure 27.7  
Figure 27.8  
Figure 29.1  
Figure 29.2  
Figure 29.3  
Figure 29.4  
Figure 29.5  
Figure 29.6  
Figure 29.7  
Page Mode Read Operation (ADV# Low).............................................................................................122  
Burst Mode Read (4-word burst) .......................................................................................................123  
Burst Mode Write (4-word burst).......................................................................................................124  
Wired or Wait Configuration..............................................................................................................124  
Refresh Collision During Read Operation.............................................................................................125  
Refresh Collision During Write Operation ............................................................................................126  
Configuration Register WRITE in Asynchronous Mode Followed by READ ARRAY Operation ........................128  
Configuration Register WRITE in Synchronous Mode Followed by READ ARRAY Operation..........................128  
Load Configuration Register..............................................................................................................129  
Read Configuration Register .............................................................................................................130  
Wait Configuration (BCR[8] = 0).......................................................................................................133  
Wait Configuration (BCR[8] = 1).......................................................................................................133  
Wait Configuration During Burst Operation .........................................................................................134  
8
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
Figure 29.8  
Latency Counter (Variable Initial Latency, No Refresh Collision).............................................................134  
Figure 31.1  
Figure 32.1  
Figure 32.2  
Typical Refresh Current vs. Temperature (I  
AC Input/Output Reference Waveform ...............................................................................................140  
Output Load Circuit .........................................................................................................................140  
)...................................................................................139  
TCR  
Figure 33.1  
Figure 33.2  
Figure 33.3  
Figure 33.4  
Figure 33.5  
Figure 33.6  
Figure 33.7  
Figure 33.8  
Figure 33.9  
Initialization Period..........................................................................................................................145  
Asynchronous Read.........................................................................................................................146  
Asynchronous Read Using ADV# .......................................................................................................147  
Page Mode Read .............................................................................................................................148  
Single-Access Burst Read Operation—Variable Latency.........................................................................149  
Four-word Burst Read Operation—Variable Latency..............................................................................150  
Four-word Burst Read Operation (with LB#/UB#)................................................................................151  
Refresh Collision During Write Operation ............................................................................................152  
Continuous Burst Read Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition.....................153  
Figure 33.10 CE#-Controlled Asynchronous Write ..................................................................................................154  
Figure 33.11 LB#/UB#-Controlled Asynchronous Write ...........................................................................................155  
Figure 33.12 WE#-Controlled Asynchronous Write..................................................................................................156  
Figure 33.13 Asynchronous Write Using ADV#.......................................................................................................157  
Figure 33.14 Burst Write Operation......................................................................................................................158  
Figure 33.15 Continuous Burst Write Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition ....................159  
Figure 33.16 Burst Write Followed by Burst Read...................................................................................................160  
Figure 33.17 Asynchronous Write Followed by Burst Read .......................................................................................161  
Figure 33.18 Asynchronous Write (ADV# Low) Followed By Burst Read.....................................................................162  
Figure 33.19 Burst Read Followed by Asynchronous Write (WE#-Controlled)..............................................................163  
Figure 33.20 Burst Read Followed by Asynchronous Write Using ADV# .....................................................................164  
Figure 33.21 Asynchronous Write Followed by Asynchronous Read—ADV# Low..........................................................165  
Figure 33.22 Asynchronous Write Followed by Asynchronous Read ...........................................................................166  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
9
A d v a n c e I n f o r m a t i o n  
1 Product Selector Guide  
pSRAM  
Density  
Flash Speed  
(MHz)  
pSRAM Speed  
(MHz/ns)  
Device-Model#  
S71WS064JA0KFW5A  
S71WS064JB0-2A  
Flash Density  
Supplier  
Package  
12x12x1.10 mm  
.50 mm ball size  
128-ball  
16Mb  
Cellular RAM Type 2  
Cellular RAM Type 2  
PoP  
64Mb  
7x9x1.2 mm  
80-ball, MCP  
32Mb  
66  
66/70  
S71WS128JA0-AA  
S71WS128JB0-AA  
S71WS128JC0-AA  
16Mb  
32Mb  
Cellular RAM Type 2  
Cellular RAM Type 2  
Cellular RAM Type 2  
8x11.6x1.2mm  
84-ball, MCP  
128Mb  
256Mb  
64Mb  
8x11.6x1.4mm  
84-ball, MCP  
S71WS256JC0-TA  
Cellular RAM Type 2  
10  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
2 Product Block Diagram  
V
f
CC  
Flash-only Address  
Shared Address  
V
V
ID  
CC  
DQ15 to DQ0  
CLK  
WP#  
A22  
16  
DQ15 to DQ0  
CLK  
WP#  
ACC  
(Note 2) CE#f1  
OE#  
ACC  
CE#  
OE#  
WE#  
Flash 1  
Flash 2  
(Note 3)  
WE#  
RESET#  
AVD#  
RESET#  
AVD#  
RDY  
RDY  
(Note 2) CE#f2  
V
SS  
V
s
CC  
A22  
V
V
CCQ  
CC  
(Note 5)  
CLK  
16  
CE#s  
CE#  
WE#  
OE#  
I/O15 to I/O0  
pSRAM  
UB#s  
LB#s  
UB#  
LB#  
V
SSQ  
(Note 5)  
AVD#  
CRE  
(Note 1) CREs  
Notes:  
1. CREs is only present in CellularRAM-compatible pSRAM.  
2. For 1 Flash = pSRAM, CE#f1 = CE#. For 2 Flash + pSRAM, CE# = CE#f1 and CE#f2 is the chip-enable pin for the  
second Flash.  
3. Only needed for S71WS256JC0.  
4. CLK and AVD# not applicable for 16Mb pSRAM.  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
11  
A d v a n c e I n f o r m a t i o n  
3 Connection Diagram (CellularRAM Type-based)  
3.1  
S71WS064JA0  
80-ball Fine-Pitch Ball Grid Array MCP  
(Top View, Balls Facing Down)  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
RFU  
CLK  
RFU  
RFU  
RFU  
RFU  
RFU  
AVD#  
B1  
B2  
A7  
B3  
R-LB#  
C3  
B4  
F-ACC  
C4  
B5  
WE#  
C5  
B6  
A8  
B7  
A11  
C7  
B8  
RFU  
C8  
F-WP#  
C1  
C2  
C6  
1st Flash only  
1st RAM only  
A3  
A6  
R-UB#  
D3  
F-RST#  
D4  
RFU  
D5  
A19  
D6  
A12  
D7  
A15  
D8  
D1  
A2  
D2  
A5  
A18  
E3  
RDY  
E4  
A20  
E5  
A9  
A13  
E7  
A21  
E8  
E1  
E2  
E6  
Reserved for  
Future Use  
RFU  
RFU  
A1  
A4  
A17  
F3  
A10  
F6  
A14  
F7  
RFU  
F8  
F1  
F2  
F4  
RFU  
G4  
F5  
RFU  
G5  
A0  
VSS  
G2  
OE#  
H2  
DQ1  
G3  
DQ6  
G6  
RFU  
G7  
A16  
All Shared  
G1  
G8  
R-CRE  
H8  
F-CE#  
H1  
DQ9  
H3  
DQ3  
H4  
DQ4  
H5  
DQ13  
H6  
DQ15  
H7  
R-CE1#  
J1  
DQ0  
J2  
DQ10  
J3  
F-VCC  
J4  
R-VCC  
J5  
DQ12  
J6  
DQ7  
J7  
VSS  
J8  
RFU  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
RFU  
K4  
K1  
K2  
K3  
K5  
K6  
K7  
K8  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
12  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
3.2  
S71WS064JB0  
80-ball Fine-Pitch Ball Grid Array MCP  
(Top View, Balls Facing Down)  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
RFU  
CLK  
RFU  
RFU  
RFU  
RFU  
RFU  
AVD#  
B1  
B2  
A7  
B3  
R-LB#  
C3  
B4  
F-ACC  
C4  
B5  
WE#  
C5  
B6  
A8  
B7  
A11  
C7  
B8  
RFU  
C8  
F-WP#  
C1  
C2  
C6  
1st Flash only  
1st RAM only  
A3  
A6  
R-UB#  
D3  
F-RST#  
D4  
RFU  
D5  
A19  
D6  
A12  
D7  
A15  
D8  
D1  
A2  
D2  
A5  
A18  
E3  
RDY  
E4  
A20  
E5  
A9  
A13  
E7  
A21  
E8  
E1  
E2  
E6  
Reserved for  
Future Use  
RFU  
RFU  
A1  
A4  
A17  
F3  
A10  
F6  
A14  
F7  
RFU  
F8  
F1  
F2  
F4  
RFU  
G4  
F5  
RFU  
G5  
A0  
VSS  
G2  
OE#  
H2  
DQ1  
G3  
DQ6  
G6  
RFU  
G7  
A16  
All Shared  
G1  
G8  
R-CRE  
H8  
F-CE#  
H1  
DQ9  
H3  
DQ3  
H4  
DQ4  
H5  
DQ13  
H6  
DQ15  
H7  
R-CE1#  
J1  
DQ0  
J2  
DQ10  
J3  
F-VCC  
J4  
R-VCC  
J5  
DQ12  
J6  
DQ7  
J7  
VSS  
J8  
RFU  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
RFU  
K4  
K1  
K2  
K3  
K5  
K6  
K7  
K8  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
13  
A d v a n c e I n f o r m a t i o n  
3.3  
S71WS128J and S71WS256J  
84-ball Fine-Pitch Ball Grid Array MCP  
(Top View, Balls Facing Down)  
A1  
A10  
NC  
NC  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
AVD#  
RFU  
CLK  
RFU  
RFU  
RFU  
RFU  
RFU  
Legend  
C2  
C3  
A7  
C4  
LB#  
D4  
C5  
ACC  
D5  
C6  
WE#  
D6  
C7  
A8  
C8  
A11  
D9  
C9  
RFU  
D10  
A15  
E9  
WP#  
D2  
D3  
D7  
1st Flash only  
1st RAM only  
A3  
A6  
UB#  
E4  
RST#  
E5  
RFU  
E6  
A19  
E7  
A12  
E8  
E2  
A2  
E3  
A5  
A18  
F4  
RDY  
F5  
A20  
F6  
A9  
A13  
F8  
A21  
F9  
F2  
F3  
F7  
Reserved for  
Future Use  
RFU  
RFU  
A1  
A4  
A17  
G4  
A10  
G7  
A14  
G8  
A22  
G9  
G2  
G3  
VSS  
H3  
G5  
RFU  
H5  
G6  
RFU  
H6  
A0  
DQ1  
H4  
DQ6  
H7  
RFU  
H8  
A16  
Flash/RAM Shared  
H2  
H9  
CREs  
J9  
CE1#f  
J2  
OE#  
J3  
DQ9  
J4  
DQ3  
J5  
DQ4  
J6  
DQ13  
J7  
DQ15  
J8  
CE1#s  
K2  
DQ0  
K3  
DQ10  
K4  
VCCf  
K5  
VCCs  
K6  
DQ12  
K7  
DQ7  
K8  
VSS  
K9  
RFU  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
RFU  
L5  
L2  
L3  
L4  
L6  
L7  
L8  
L9  
RFU  
RFU  
RFU  
VCCf  
RFU  
RFU  
RFU  
RFU  
M1  
NC  
M10  
NC  
Notes:  
1. In stacked products based on a single S29WS-J Flash Die, ball B5 is RFU. In MCP’s based on two S29WS-J (S71WS256J), ball  
B5 is CE#f2 or F2-CE#.  
2. Addresses are shared between Flash and RAM depending on the density of the pSRAM.  
MCP  
Flash-only Addresses  
Shared Addresses  
A19-A0  
S71WS064JA0  
S71WS128JA0  
S71WS128JB0  
S71WS128JC0  
S71WS256JC0  
A21-A20  
A22-A20  
A22-A21  
A22  
A19-A0  
A19-A0  
A21-A0  
A22  
A21-A0  
3.4 Special Handling Instructions For FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultra-  
sonic cleaning methods. The package and/or data integrity may be compromised  
if the package body is exposed to temperatures above 150°C for prolonged peri-  
ods of time.  
14  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
3.5  
S71WS064JA0  
128-ball Fine-Pitch Ball Grid Array PoP  
(Top View, Balls Facing Down)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
A
B
C
D
E
NC  
NC  
NC  
NC  
A0  
A2  
A3  
A4  
A5  
A6  
A7  
F-VCC  
F-VSS  
A8  
A9  
A10  
A11  
A12  
A13  
A14 F-VCC  
A15 F-VSS  
A16  
A17  
A18  
A19  
A20  
A21  
RFU  
RFU  
NC  
NC  
NC  
NC  
RFU  
RFU  
RFU  
R-VSS  
A1  
R-VSS  
RFU  
RFU  
RFU  
Legend  
P1-CRE  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
NOR  
F
Reserved for  
Future Use  
G
H
RFU  
F-VSS  
RFU  
R-VCC F-ADV  
F-WE#/ F-OE#/  
P1-CE#  
P-WE#  
P-OE#  
pSRAM  
J
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
K
L
RFU  
RFU  
F-CLK  
F1-CE#  
RFU  
NOR+pSRAM  
No Connect  
RFU  
RFU  
M
N
P
R
T
U
V
F-WAIT  
R-VSS  
F-VSS  
F-VCC2 R-VCC  
DQ14 DQ15  
VCCQ VSSQ  
R-VCC F-VCC1  
DQ1  
DQ0  
VSSQ VCCQ  
RFU  
NC  
NC  
RFU  
NC  
NC  
RFU  
NC  
NC  
RFU  
NC  
NC  
RFU  
RFU  
DQ13 DQ11 VSSQ  
DQ9  
RFU  
RFU  
F-WP#1  
RFU  
DQ7  
DQ6  
VSSQ  
VCCQ  
DQ5  
DQ4  
DQ3  
DQ2  
RFU  
RFU  
F-  
RST#  
DQ12 DQ10 VCCQ DQ8  
P-UB# F-VPP  
P-LB#  
Note: The V and V  
(V ) signals must be ramped simultaneously to ensure a successful power up sequence.  
CC  
CCQ  
IO  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
15  
A d v a n c e I n f o r m a t i o n  
4 MCP Lookahead Connection Diagram  
Contact your local Spansion representative for a complete PoP lookahead pinout.  
A2  
RFU  
B2  
A10  
RFU  
B10  
RFU  
A9  
RFU  
B9  
A1  
RFU  
B1  
Legend:  
X
RFU  
(Reserved for  
Future Use)  
RFU  
RFU  
C2  
RFU  
C9  
C8  
C3  
VSS  
D3  
A7  
C4  
CLK  
D4  
C5  
F2-CE#  
D5  
C6  
F-VCC  
D6  
C7  
X
AVD#  
D2  
F-CLK# R-OE# F2-OE#  
Code Flash Only  
D7  
A8  
D8  
A11  
E8  
D9  
F3-CE#  
E9  
WP#  
E2  
R-LB#  
D4  
ACC  
WE#  
E6  
X
E3  
E7  
C7  
MirrorBit Data  
Only  
A3  
A6  
R-UB# F-RST# R1-CE2  
F4 F5 F6  
A18 RDY/WAIT# A20  
A19  
A12  
A15  
F2  
F3  
F7  
F8  
F9  
X
A2  
A5  
A9  
A13  
A21  
Flash/Data  
Shared  
G2  
A1  
G3  
A4  
G4  
A17  
H4  
G5  
G6  
A23  
H6  
G7  
A10  
H7  
G8  
A14  
H8  
G9  
A22  
H9  
R2-CE1  
X
H2  
H3  
H5  
Flash/xRAM  
Shared  
A0  
VSS  
DQ1  
R2-VCC R2-CE2  
DQ6  
A24  
A16  
J9  
J3  
J4  
J5  
J6  
J7  
J8  
J2  
X
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15 R-CRE or  
R-MRS  
pSRAM Only  
K2  
R1-CE1#  
L2  
K3  
DQ0  
L3  
K4  
DQ10  
L4  
E6  
R1-VCC  
L6  
K7  
K8  
DQ7  
L8  
K9  
K5  
F-VCC  
L5  
DQ12  
VSS  
X
L7  
DQ5  
M7  
L9  
WP#  
M9  
xRAM Shared  
R-VCC  
M2  
DQ8  
M3  
DQ2  
M4  
DQ11  
M5  
A25  
DQ14  
M8  
M6  
A27  
A26  
VSS  
F-VCC  
F4-CE# R-VCCQ F-VCCQ R-CLK#  
N2  
N1  
N10  
F-DQS1  
P10  
N9  
RFU  
P9  
RFU  
P2  
F-DQS0  
P1  
RFU  
RFU  
RFU  
RFU  
Notes:  
1. F1 and F2 denote XIP/Code Flash, while F3 and F4 denote Data/Companion Flash.  
2. In addition to being defined as F2-CE#, Ball C5 can also be assigned as F1-CE2# for code flash that has two chip  
enable signals.  
3. For MCPs requiring 3.0V Vcc and 1.8V Vio, use the 1.8V Look-ahead Pinout in order to accommodate extra AVD,  
MRS and CLK pins for the pSRAM (if needed).  
4. Refer to Application Note on pinout subsets to match the package size offerings.  
16  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
5 Input/Output Descriptions  
A22-A0  
DQ15-DQ0  
OE#  
=
=
=
Address inputs  
Data input/output  
Output Enable input. Asynchronous relative to CLK  
for the Burst mode.  
WE#  
VSS  
NC  
=
=
=
=
Write Enable input.  
Ground  
No Connect; not connected internally  
Ready output. Indicates the status of the Burst read  
(shared with WAIT# pin of RAM).  
RDY  
CLK  
=
Clock input. In burst mode, after the initial word is  
output, subsequent active edges of CLK increment  
the internal address counter. Should be at VIL or VIH  
while in asynchronous mode  
AVD#  
=
Address Valid input. Indicates to device that the  
valid address is present on the address inputs.  
Low = for asynchronous mode, indicates valid  
address; for burst mode, causes starting address to  
be latched.  
High = device ignores address inputs  
RESET#  
WP#  
=
=
Hardware reset input. Low = device resets and  
returns to reading array data  
Hardware write protect input. At VIL, disables  
program and erase functions in the four outermost  
sectors. Should be at VIH for all other conditions.  
ACC  
=
Accelerated input. At VHH, accelerates  
programming; automatically places device in unlock  
bypass mode. At VIL, disables all program and erase  
functions. Should be at VIH for all other conditions.  
CE1#s  
CE#f1  
=
=
Chip-enable input for pSRAM.  
Chip-enable input for Flash 1. Asynchronous relative  
to CLK for Burst Mode.  
CREs  
=
=
=
=
=
=
Control Register Enable (pSRAM).  
Flash 1.8 Volt-only single power supply.  
pSRAM Power Supply.  
Upper Byte Control (pSRAM).  
Lower Byte Control (pSRAM).  
Chip-enable input for Flash 2. Asynchronous relative  
to CLK for burst mode (needed only for  
S71WS256J).  
VCC  
f
VCCs  
UB#s  
LB#s  
CE#f2  
RFU  
CE2s  
=
=
Reserved for future use.  
Chip-enable input for pSRAM  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
17  
A d v a n c e I n f o r m a t i o n  
6 Ordering Information  
The order number is formed by a valid combinations of the following:  
S71WS 256  
J
C0 BA  
W
A
K
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER  
CellularRAM 2, 66MHz  
A
=
PACKAGE MODIFIER  
A
T
2
5
=
=
=
=
8 x 11.6 mm, 1.2 mm height, 84 balls, MCP FBGA  
8 x 11.6 mm, 1.4 mm height, 84 balls, MCP FBGA  
7 x 9 mm, 1.2 mm height, 80 balls, MCP FBGA  
12x12 mm, 1.2 mm height, 128 balls, PoP FBGA, 0.50 mm ball size  
TEMPERATURE RANGE  
Wireless (-25 C to +85°C)  
W
=
°
PACKAGE TYPE  
BA  
BF  
KF  
=
=
=
Very-thin Fine-pitch BGA Lead (Pb)-free compliant package  
Very-thin Fine-pitch BGA Lead (Pb)-free package  
Fine-Pitch Package on Package (POP) Lead (Pb)-free package  
pSRAM DENSITY  
C0  
B0  
A0  
=
=
=
64 Mb pSRAM  
32 Mb pSRAM  
16 Mb pSRAM  
PROCESS TECHNOLOGY  
110 nm, Floating Gate Technology  
J
=
FLASH DENSITY  
256  
128  
064  
=
=
=
2x128Mb  
128Mb  
64Mb  
PRODUCT FAMILY  
S71WS Multi-chip Product (MCP)  
1.8-volt Simultaneous Read/Write, Burst Mode Flash Memory and pRAM  
Valid Combinations  
Base Ordering  
Part Number  
pSRAM Density  
Package Type  
Temperature  
Package Modifier  
Model Number  
Packing Type  
A0  
B0  
KF  
5
2
A
T
S71WS064J  
BA, BF  
BA, BF  
BA, BF  
W
A
0, 2, 3 1  
S71WS128J  
S71WS256J  
A0, B0, C0  
C0  
Notes:  
Valid Combinations  
1. Packing Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading “S” and packing type  
designator from ordering part number.  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult your local sales office to confirm avail-  
ability of specific valid combinations and to check on newly released  
combinations.  
18  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
7 Physical Dimensions  
7.1  
TLA084 – 84-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 11.6 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
7
6
5
4
3
2
1
SE  
7
E
E1  
eE  
L
J
H
G
F
E
D
C
B
A
M
K
INDEX MARK  
10  
PIN A1  
PIN A1  
CORNER  
B
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
6
84X  
b
0.15  
0.08  
M
C
C
A B  
M
NOTES:  
PACKAGE  
JEDEC  
TLA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
1.20  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10,  
E1,E10,F1,F10,G1,G10,  
H1,H10,J1,J10,K1,K10,L1,L10,  
M2,M3,M4,M5,M6,M7,M8,M9  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3372 \ 16-038.22a  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
19  
A d v a n c e I n f o r m a t i o n  
7.2 FTA084 – 84-ball Fine-Pitch Ball Grid Array (FBGA) 8 x 11.6 mm Package  
A
D1  
D
eD  
0.15  
(2X)  
C
10  
9
8
SE  
7
7
6
E
B
E1  
5
4
3
2
1
eE  
J
H
G
F
E
D
C
B
A
M
L K  
INDEX MARK  
10  
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
84X  
b
0.15  
M
C
C
A
B
0.08  
M
NOTES:  
PACKAGE  
JEDEC  
FTA 084  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
11.60 mm x 8.00 mm  
PACKAGE  
NOTE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
1.40  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
1.02  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
1.17  
BODY THICKNESS  
BODY SIZE  
D
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
10  
84  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
eE  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
A2,A3,A4,A5,A6,A7,A8,A9  
B1,B10,C1,C10,D1,D10,E1,E10  
F1,F10,G1,G10,H1,H10  
DEPOPULATED SOLDER BALLS  
9. N/A  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
J1,J10,K1,K10,L1,L10  
M2,M3,M4,M5,M6,M7,M8,M9  
3388 \ 16-038.21a  
20  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
A d v a n c e I n f o r m a t i o n  
7.3  
TSC080 - Fine-Pitch Ball Grid Array (FBGA) 7 x 9 mm Package  
D1  
A
D
eD  
0.15  
(2X)  
C
8
7
SE  
7
6
5
4
3
2
E
B
E1  
eE  
1
K
J
H
G
F
E
D
C
B
A
INDEX MARK  
9
PIN A1  
CORNER  
PIN A1  
CORNER  
7
SD  
0.15  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.20  
0.08  
C
C
A2  
A
C
A1  
SIDE VIEW  
6
80X  
b
0.15  
M
C
C
A
B
0.08  
M
NOTES:  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
PACKAGE  
JEDEC  
TSC 080  
N/A  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D x E  
9.00 mm x 7.00 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JEP95, SECTION 4.3,  
SPP-010.  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
0.17  
0.81  
---  
BALL HEIGHT  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
A2  
---  
0.97  
BODY THICKNESS  
BODY SIZE  
D
9.00 BSC.  
7.00 BSC.  
7.20 BSC.  
5.60 BSC.  
10  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
BODY SIZE  
D1  
E1  
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
MD  
ME  
n
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
8
80  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
Øb  
eE  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
0.80 BSC.  
0.80 BSC  
0.40 BSC.  
BALL PITCH  
eD  
SD / SE  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3496 \ 16-038.22 \ 5.20.05  
November 28, 2005 S71WS-J_03_A3  
S71WS-J Based MCPs  
21  
A d v a n c e I n f o r m a t i o n  
7.4 ALG128 - 128-ball Fine-Pitch Ball Grid Array (FBGA) 12 x 12 mm Package  
A
D
PIN A1  
CORNER  
D1  
PIN A1  
CORNER  
9
eD  
SD  
7
INDEX MARK  
A
B
C
D
E
F
SE  
7
G
H
J
E
B
E1  
K
L
M
N
P
R
T
eE  
U
V
0.10  
(2X)  
C
18 17 16  
14 13 12 11  
9
7
6
15  
10  
8
5
4
2
3
1
0.10  
(2X)  
C
TOP VIEW  
BOTTOM VIEW  
0.10  
0.10  
C
C
A2  
A
A1  
C
SIDE VIEW  
6
128X  
b
0.15  
0.08  
M
C
C
A
B
M
NOTES:  
PACKAGE  
JEDEC  
ALG128  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
D x E  
12.00 mm x 12.00 mm  
PACKAGE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
3. BALL POSITION DESIGNATION PER JEP95, SECTION  
3.0, SPP-010.  
SYMBOL  
MIN  
NOM  
---  
MAX  
NOTE  
A
A1  
A2  
D
---  
1.10  
---  
PROFILE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
0.40  
0.55  
---  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"  
DIRECTION.  
---  
0.65  
BODY THICKNESS  
BODY SIZE  
12.00 BSC.  
12.00 BSC.  
11.05 BSC.  
11.05 BSC.  
18  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
E
BODY SIZE  
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
D1  
E1  
MD  
ME  
n
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
N IS THE MAXIMUM NUMBER OF BALLS ON THE FBGA PACKAGE.  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
18  
128  
DATUM C IS THE SEATING PLANE AND IS DEFINED BY THE  
CROWNS OF THE SOLDER BALLS.  
N
128  
MAXIMUM NUMBER OF BALLS  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A  
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER  
BALL IN THE OUTER ROW.  
R
2
NUMBER OF LAND PERIMETERS  
BALL DIAMETER  
Øb  
eE  
eD  
SE / SD  
0.45  
0.50  
0.55  
0.65 BSC.  
0.65 BSC  
0.325 BSC.  
BALL PITCH  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW SD OR SE = 0.000.  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, SD OR SE = e/2  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
C3-C16,D3-D16,E3-E16,  
F3-F16,G3-G16,H3-H16,  
J3-J16,K3-K16,L3-L16,  
M3-M16,N3-N16,P3-P16,  
R3-R16,T3-T16  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
10 OUTLINE AND DIMENSIONS PER CUSTOMER REQUIREMENT.  
3526 16-038.24 \ 10.26.05  
22  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  
S29WS128J/064J  
128/64 Megabit (8/4 M x 16-Bit)  
CMOS 1.8 Volt-only Simultaneous Read/Write,  
Burst Mode Flash Memory  
Data Sheet  
Distinctive Characteristics  
Architectural Advantages  
Hardware Features  
!
Single 1.8 volt read, program and erase (1.65 to  
1.95 volt)  
!
!
!
Handshaking feature available  
Provides host system with minimum possible latency by  
monitoring RDY  
!
!
Manufactured on 0.11 µm process technology  
Hardware reset input (RESET#)  
Simultaneous Read/Write operation  
Hardware method to reset the device for reading array  
data  
— Data can be continuously read from one bank while  
executing erase/program functions in other bank  
— Zero latency between read and write operations  
WP# input  
— Write protect (WP#) function allows protection of  
four outermost boot sectors, regardless of sector  
protect status  
Four bank architecture: WS128J: 16Mb/48Mb/48Mb/  
16Mb, WS064J: 8Mb/24Mb/24Mb/8Mb  
!
Programable Burst Interface  
— 2 Modes of Burst Read Operation  
— Linear Burst: 8, 16, and 32 words with wrap-around  
!
Persistent Sector Protection  
A command sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector  
Continuous Sequential Burst  
!
!
Secured Silicon Sector region  
Sectors can be locked and unlocked in-system at V  
level  
CC  
— 128 words accessible through a command sequence,  
64words for the Factory Secured Silicon Sector and  
64words for the Customer Secured Silicon Sector.  
Sector Architecture  
!
!
Password Sector Protection  
A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector  
using a user-defined 64-bit password  
4 Kword x 16 boot sectors, eight at the top of the address  
range, and eight at the bottom of the address range  
WS128J: 4 Kword X 16, 32 Kword x 254 sectors  
ACC input: Acceleration function reduces  
programming time; all sectors locked when ACC =  
VIL  
Bank A : 4 Kword x 8, 32 Kword x 31 sectors  
Bank B : 32 Kword x 96 sectors  
!
!
CMOS compatible inputs, CMOS compatible outputs  
Low VCC write inhibit  
Bank C : 32 Kword x 96 sectors  
Bank D : 4 Kword x 8, 32 Kword x 31 sectors  
WS064J: 4 Kword x 16, 32 Kword x 126 sectors.  
Bank A : 4 Kword x 8, 32 Kword x 15 sectors  
Software Features  
!
Supports Common Flash Memory Interface (CFI)  
Bank B : 32 Kword x 48 sectors  
!
Software command set compatible with JEDEC  
42.4 standards  
Bank C : 32 Kword x 48 sectors  
Bank D : 4 Kword x 8, 32 Kword x 15 sectors  
Backwards compatible with Am29BDS, Am29BDD,  
Am29BL, and MBM29BS families  
!
!
Cyclling Endurance : 1,000,000 cycles per sector  
typical  
Data retention : 20-years typical  
!
!
Data# Polling and toggle bits  
— Provides a software method of detecting program  
and erase operation completion  
Performance Characteristics  
Erase Suspend/Resume  
!
Read access times at 80/66 MHz  
Synchronous latency of 71/56 ns (at 30 pF)  
Suspends an erase operation to read data from, or  
program data to, a sector that is not being erased, then  
resumes the erase operation  
— Asynchronous random access times of 55/55 ns (at  
30 pF)  
!
Unlock Bypass Program command  
Reduces overall programming time when issuing multiple  
program command sequences  
!
Power dissipation (typical values, CL = 30 pF)  
— Burst Mode Read: 18 mA @ 80Mhz  
— Simultaneous Operation: 60 mA @ 80Mhz  
— Program/Erase: 15 mA  
Standby mode: 0.2 µA  
Publication Number S29WS-J_M0 Revision A Amendment 4 Issue Date June 24, 2005  
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion LLC deems the products to have been in sufficient  
production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to  
the valid combinations offered may occur.  
D a t a S h e e t  
General Description  
The S29WS128J/064J/S29WS064J is a 128/64 Mbit, 1.8 Volt-only, simultaneous Read/Write,  
Burst Mode Flash memory device, organized as 8,388,608/4,194,304 words of 16 bits each. This  
device uses a single VCC of 1.65 to 1.95 V to read, program, and erase the memory array. A 12.0-  
volt VHH on ACC may be used for faster program performance if desired. The device can also be  
programmed in standard EPROM programmers.  
At 80 MHz, the device provides a burst access of 9.1 ns at 30 pF with a latency of 46 ns at 30 pF.  
At 66 MHz, the device provides a burst access of 11.2 ns at 30 pF with a latency of 56 ns at 30  
pF. The device operates within the wireless temperature range of -25°C to +85°C, and is offered  
in Various FBGA packages.  
The Simultaneous Read/Write architecture provides simultaneous operation by dividing the  
memory space into four banks. The device can improve overall system performance by allowing  
a host system to program or erase in one bank, then immediately and simultaneously read from  
another bank, with zero latency. This releases the system from waiting for the completion of pro-  
gram or erase operations.  
The device is divided as shown in the following table:  
Quantity  
Bank  
128Mb  
8
64 Mb  
8
Size  
4 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
A
31  
96  
96  
31  
8
15  
48  
48  
15  
8
B
C
D
The device uses Chip Enable (CE#), Write Enable (WE#), Address Valid (AVD#) and Output En-  
able (OE#) to control asynchronous read and write operations. For burst operations, the device  
additionally requires Ready (RDY), and Clock (CLK). This implementation allows easy interface  
with minimal glue logic to a wide range of microprocessors/microcontrollers for high performance  
read operations.  
The burst read mode feature gives system designers flexibility in the interface to the device. The  
user can preset the burst length and wrap through the same memory space, or read the flash  
array in continuous mode.  
The clock polarity feature provides system designers a choice of active clock edges, either rising  
or falling. The active clock edge initiates burst accesses and determines when data will be output.  
The device is entirely command set compatible with the JEDEC 42.4 single-power-supply  
Flash standard. Commands are written to the command register using standard microprocessor  
write timing. Register contents serve as inputs to an internal state-machine that controls the  
erase and programming circuitry. Write cycles also internally latch addresses and data needed for  
the programming and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
The Erase Suspend/Erase Resume feature enables the user to put erase or program on hold  
for any period of time to read data from, or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved. If a read is needed from the Secured Silicon  
Sector area (One Time Program area) after an erase suspend, then the user must use the proper  
command sequence to enter and exit this region. Program suspend is also offered.  
24  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
The hardware RESET# pin terminates any operation in progress and resets the internal state  
machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A sys-  
tem reset would thus also reset the device, enabling the system microprocessor to read boot-up  
firmware from the Flash memory device.  
The host system can detect whether a program or erase operation is complete by using the device  
status bit DQ7 (Data# Polling) and DQ6/DQ2 (toggle bits). After a program or erase cycle has  
been completed, the device automatically returns to reading array data.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without  
affecting the data contents of other sectors. The device is fully erased when shipped from the  
factory.  
Hardware data protection measures include a low VCC detector that automatically inhibits write  
operations during power transitions. The device also offers two types of data protection at the  
sector level. When at VIL, WP# locks the four outermost boot sectors.  
The device offers two power-saving features. When addresses have been stable for a specified  
amount of time, the device enters the automatic sleep mode. The system can also place the  
device into the standby mode. Power consumption is greatly reduced in both modes.  
Spansion™ Flash memory products combine years of Flash memory manufacturing experience to  
produce the highest levels of quality, reliability and cost effectiveness. The device electrically  
erases all bits within a sector simultaneously via Fowler-Nordheim tunnelling. The data is pro-  
grammed using hot electron injection.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
25  
D a t a S h e e t  
8 Product Selector Guide  
Synchronous/Burst  
Asynchronous  
Speed Option  
80MHz  
(Note)  
80 MHz  
(Note)  
Speed Option  
66 MHz  
66 MHz  
Max Latency, ns (tIACC  
)
56  
71  
Max Access Time, ns (tACC  
Max CE# Access, ns (tCE  
Max OE# Access, ns (tOE  
)
55  
55  
55  
55  
Max Burst Access Time, ns (tBACC  
)
11.2  
11.2  
9.1  
)
Max OE# Access, ns (tOE  
)
9.1  
)
11.2  
9.1  
Note: 80 MHz option is available for S29WS064J only.  
9 Block Diagram  
VCC  
VSS  
DQ15DQ0  
VSSIO  
RDY  
Buffer  
RDY  
Erase Voltage  
Generator  
Input/Output  
Buffers  
WE#  
RESET#  
WP#  
State  
Control  
ACC  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Y-Decoder  
Y-Gating  
VCC  
Detector  
Timer  
Cell Matrix  
X-Decoder  
Burst  
State  
Control  
Burst  
Address  
Counter  
AVD#  
CLK  
Amax–A0  
Amax: WS064J (A21), WS128J (A22)  
26  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
10 Block Diagram of Simultaneous Operation Circuit  
V
V
V
CC  
SS  
SSIO  
Bank A Address  
DQ15–DQ0  
Bank A  
Amax–A0  
X-Decoder  
OE#  
Bank B Address  
DQ15–DQ0  
Bank B  
WP#  
ACC  
X-Decoder  
Amax–A0  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
RESET#  
WE#  
DQ15–DQ0  
Status  
CE#  
AVD#  
RDY  
Control  
Amax–A0  
DQ15–DQ0  
X-Decoder  
Bank C  
DQ15–DQ0  
Bank C Address  
Amax–A0  
Amax–A0  
X-Decoder  
Bank D  
Bank D Address  
DQ15–DQ0  
Note: Amax: WS064J (A21), WS128J (A22)  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
27  
D a t a S h e e t  
11 Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated  
through the internal command register. The command register itself does not occupy any addres-  
sable memory location. The register is composed of latches that store the commands, along with  
the address and data information needed to execute the command. The contents of the register  
serve as inputs to the internal state machine. The state machine outputs dictate the function of  
the device. Table 11.1 lists the device bus operations, the inputs and control levels they require,  
and the resulting output. The following subsections describe each of these operations in further  
detail.  
Table 11.1 Device Bus Operations  
CLK  
(See Note)  
Operation  
CE#  
OE#  
WE#  
A22–0  
DQ15–0  
RESET#  
AVD#  
Asynchronous Read - Addresses Latched  
Asynchronous Read - Addresses Steady State  
Asynchronous Write  
L
L
L
L
H
H
L
Addr In  
Addr In  
Addr In  
Addr In  
HIGH Z  
HIGH Z  
I/O  
I/O  
H
H
H
H
H
L
X
X
X
L
L
L
H
H
X
X
I/O  
Synchronous Write  
L
L
I/O  
Standby (CE#)  
H
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
Hardware Reset  
Burst Read Operations  
Load Starting Burst Address  
L
L
X
L
H
H
Addr In  
HIGH Z  
X
H
H
Advance Burst to next address with appropriate Data  
presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start new  
Burst read cycle  
L
X
H
HIGH Z  
I/O  
H
Legend: L = Logic 0, H = Logic 1, X = Don’t Care  
Note: Default active edge of CLK is the rising edge.  
11.1 Requirements for Asynchronous ReadOperation (Non-Burst)  
To read data from the memory array, the system must first assert a valid address on Amax–  
A0(A22-A0 for WS128J and A21-A0 for WS064J), while driving AVD# and CE# to VIL. WE# should  
remain at VIH. The rising edge of AVD# latches the address. The data will appear on DQ15–DQ0.  
Since the memory array is divided into four banks, each bank remains enabled for read access  
until the command register contents are altered.  
Address access time (tACC) is equal to the delay from stable addresses to valid output data. The  
chip enable access time (tCE) is the delay from the stable addresses and stable CE# to valid data  
at the outputs. The output enable access time (tOE) is the delay from the falling edge of OE# to  
valid data at the output.  
The internal state machine is set for reading array data in asynchronous mode upon device  
power-up, or after a hardware reset. This ensures that no spurious alteration of the memory con-  
tent occurs during the power transition.  
28  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
11.2 Requirements for Synchronous (Burst) Read Operation  
The device is capable of continuous sequential burst operation and linear burst operation of a pre-  
set length. When the device first powers up, it is enabled for asynchronous read operation.  
Prior to entering burst mode, the system should determine how many wait states are desired for  
the initial word (tIACC) of each burst access, what mode of burst operation is desired, which edge  
of the clock will be the active clock edge, and how the RDY signal will transition with valid data.  
The system would then write the configuration register command sequence. See “Set Configura-  
tion Register Command Sequence” section on page 63 and “Command Definitions” section on  
page 63 for further details.  
Once the system has written the “Set Configuration Register” command sequence, the device is  
enabled for synchronous reads only.  
The initial word is output tIACC after the active edge of the first CLK cycle. Subsequent words are  
output tBACC after the active edge of each successive clock cycle, which automatically increments  
the internal address counter. Note that the device has a fixed internal address boundary that oc-  
curs every 64 words, starting at address 00003Fh.  
During the time the device is outputting data at this fixed internal address boundary (address  
00003Fh, 00007Fh, 0000BFh, etc.), a two cycle latency (66MHz) or a three cycle latency(80MHz)  
occurs before data appears for the next address (address 000040h, 000080h, 0000C0h, etc.).  
Additionally, when the device is read from an odd address, one wait state is inserted when the  
address pointer crosses the first boundary that occurs every 16 words. For instance, if the device  
is read from 000011h, 000013h, … ,00001Fh (odd), one wait state is inserted before the data of  
000020h is output. This wait is inserted only at the boundary of the first 16 words. Then, if the  
device is read from the odd address within the last 16 words of 64 word boundary (address  
000031h,000033h, … , 00003Fh), a three-cycle latency occurs before data appears for the next  
address (address 000040h). During the boundary crossing condition, the system must assert an  
additional wait state for WS128J model numbers 10 and 11.  
The RDY output indicates this condition to the system by pulsing deactive (low). See  
Figure 22.23, “Latency with Boundary Crossing,on page 108.  
The device will continue to output sequential burst data, wrapping around to address 000000h  
after it reaches the highest addressable memory location, until the system drives CE# high, RE-  
SET# low, or AVD# low in conjunction with a new address. See Table 11.1, “Device Bus  
Operations,on page 28.  
If the host system crosses the bank boundary while reading in burst mode, and the device is not  
programming or erasing, a two-cycle latency will occur as described above in the subsequent  
bank. If the host system crosses the bank boundary while the device is programming or erasing,  
the device will provide read status information. The clock will be ignored. After the host has com-  
pleted status reads, or the device has completed the program or erase operation, the host can  
restart a burst operation using a new address and AVD# pulse.  
8-, 16-, and 32-Word Linear Burst with Wrap Around  
The remaining three burst read modes are of the linear wrap around design, in which a fixed num-  
ber of words are read from consecutive addresses. In each of these modes, the burst addresses  
read are determined by the group within which the starting address falls. The groups are sized  
according to the number of words read in a single burst sequence for a given mode (see  
Table 11.2.)  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
29  
D a t a S h e e t  
Table 11.2 Burst Address Groups  
Mode  
Group Size  
Group Address Ranges  
0-7h, 8-Fh, 10-17h,...  
0-Fh, 10-1Fh, 20-2Fh,...  
00-1Fh, 20-3Fh, 40-5Fh,...  
8-word  
16-word  
32-word  
8 words  
16 words  
32 words  
As an example: if the starting address in the 8-word mode is 39h, the address range to be read  
would be 38-3Fh, and the burst sequence would be 39-3A-3B-3C-3D-3E-3F-38h-etc. The burst  
sequence begins with the starting address written to the device, but wraps back to the first ad-  
dress in the selected group. In a similar fashion, the 16-word and 32-word Linear Wrap modes  
begin their burst sequence on the starting address written to the device, and then wrap back to  
the first address in the selected address group. Note that in these three burst read modes  
the address pointer does not cross the boundary that occurs every 128 or 64 words;  
thus, no wait states are inserted (except during the initial access).  
The RDY pin indicates when data is valid on the bus.  
11.3 Configuration Register  
The device uses a configuration register to set the various burst parameters: number of wait  
states, burst read mode, active clock edge, RDY configuration, and synchronous mode active.  
11.4 Handshaking  
The device is equipped with a handshaking feature that allows the host system to simply monitor  
the RDY signal from the device to determine when the initial word of burst data is ready to be  
read. The host system should use the programmable wait state configuration to set the number  
of wait states for optimal burst mode operation. The initial word of burst data is indicated by the  
active edge of RDY after OE# goes low.  
For optimal burst mode performance, the host system must set the appropriate number of wait  
states in the flash device depending on clock frequency. See “Set Configuration Register Com-  
mand Sequence” section on page 63 for more information.  
11.5 Simultaneous Read/Write Operations with Zero Latency  
This device is capable of reading data from one bank of memory while programming or erasing  
in another bank of memory. An erase operation may also be suspended to read from or program  
to another location within the same bank (except the sector being erased). Figure 22.26, “Back-  
to-Back Read/Write Cycle Timings,on page 111 shows how read and write cycles may be initi-  
ated for simultaneous operation with zero latency. Refer to the DC Characteristics table for read-  
while-program and read-while-erase current specifications.  
11.6 Writing Commands/Command Sequences  
The device has the capability of performing an asynchronous or synchronous write operation.  
While the device is configured in Asynchronous read mode, it is able to perform Asynchronous  
write operations only. CLK is ignored in the Asynchronous programming mode. When in the Syn-  
chronous read mode configuration, the device is able to perform both Asynchronous and  
Synchronous write operations. CLK and WE# address latch is supported in the Synchronous pro-  
gramming mode. During a synchronous write operation, to write a command or command  
sequence (which includes programming data to the device and erasing sectors of memory), the  
system must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the de-  
vice, and drive WE# and CE# to VIL, and OE# to VIH. when writing commands or data. During an  
asynchronous write operation, the system must drive CE# and WE# to VIL and OE# to VIH when  
30  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
providing an address, command, and data. Addresses are latched on the last falling edge of WE#  
or CE#, while data is latched on the 1st rising edge of WE# or CE#. The asynchronous and syn-  
chronous programing operation is independent of the Set Device Read Mode bit in the  
Configuration Register (see Table 14.4, “Configuration Register,” on page 67).  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device en-  
ters the Unlock Bypass mode, only two write cycles are required to program a word, instead of  
four.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 13.5,  
“WS128J Sector Address Table,on page 49 and Table 13.6, “WS064J Sector Address Table,on  
page 57 indicate the address space that each sector occupies. The device address space is divided  
into four banks. A “bank address” is the address bits required to uniquely select a bank. Similarly,  
a “sector address” is the address bits required to uniquely select a sector.  
ICC2 in the “DC Characteristics” section on page 89 represents the active current specification for  
the write mode. The AC Characteristics section contains timing specification tables and timing di-  
agrams for write operations.  
11.7 Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. ACC is primarily in-  
tended to allow faster manufacturing throughput at the factory.  
If the system asserts VHH on this input, the device automatically enters the aforementioned Un-  
lock Bypass mode and uses the higher voltage on the input to reduce the time required for  
program operations. The system would use a two-cycle program command sequence as required  
by the Unlock Bypass mode. Removing VHH from the ACC input returns the device to normal op-  
eration. Note that sectors must be unlocked prior to raising ACC to VHH. Note that the ACC pin  
must not be at VHH for operations other than accelerated programming, or device damage may  
result. In addition, the ACC pin must not be left floating or unconnected; inconsistent behavior of  
the device may result.  
When at VIL, ACC locks all sectors. ACC should be at VIH for all other conditions.  
11.8 Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection ver-  
ification, through identifier codes output from the internal register (which is separate from the  
memory array) on DQ15–DQ0. This mode is primarily intended for programming equipment to  
automatically match a device to be programmed with its corresponding programming algorithm.  
However, the autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9. Ad-  
dress pins must be as shown in Table 11.3, “Autoselect Codes (High Voltage Method),on  
page 32. In addition, when verifying sector protection, the sector address must appear on the  
appropriate highest order address bits (see Table , “,on page 33 and Table , “,on page 35).  
Table 11.3 shows the remaining address bits that are don’t care. When all necessary bits have  
been set as required, the programming equipment may then read the corresponding identifier  
code on DQ15–DQ0. However, the autoselect codes can also be accessed in-system through the  
command register, for instances when the device is erased or programmed in a system without  
access to high voltage on the A9 pin. The command sequence is illustrated in Table 14.5, “Com-  
mand Definitions,on page 77. Note that if a Bank Address (BA) on address bits A22, A21, and  
A20 for the WS128J (A21:A19 for the WS064J) is asserted during the third write cycle of the au-  
toselect command, the host system can read autoselect data that bank and then immediately  
read array data from the other bank, without exiting the autoselect mode.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
31  
D a t a S h e e t  
To access the autoselect codes in-system, the host system can issue the autoselect command  
via the command register, as shown in Table 14.5, “Command Definitions,on page 77. This  
method does not require VID. Autoselect mode may only be entered and used when in the asyn-  
chronous read mode. Refer to the “Autoselect Command Sequence” section on page 68 for more  
information.  
Table 11.3 Autoselect Codes (High Voltage Method)  
Amax A11  
A5  
to  
to  
to  
DQ15  
to DQ0  
Description  
CE# OE# WE# RESET#  
A12  
A10 A9 A8 A7 A6 A4 A3 A2 A1 A0  
Manufacturer ID  
Spansion  
:
VID  
VID  
VID  
L
L
L
L
L
L
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
L
L
L
L
L
X
L
L
L
L
L
L
L
L
L
H
L
0001h  
227Eh  
Read Cycle 1  
Read Cycle 2  
2218h (WS128J)  
221Eh (WS064J)  
H
H
H
2200h (WS128J)  
2201h (WS064J)  
Read Cycle 3  
H
L
H
L
H
H
H
L
Sector Protection  
Verification  
0001h (protected),  
0000h (unprotected)  
SA  
DQ15 - DQ8 = 0  
DQ7 - Factory Lock Bit  
1 = Locked, 0 = Not Locked  
DQ6 -Customer Lock Bit  
1 = Locked, 0 = Not Locked  
DQ5 = Handshake Bit  
1 = Reserved, 0 = Standard  
Handshake  
VID  
Indicator Bits  
L
L
L
L
H
H
H
H
X
X
X
X
X
X
X
L
X
L
L
L
L
L
H
H
H
L
DQ4 & DQ3 - Boot Code  
DQ2 - DQ0 = 001  
Hardware Sector Group  
Protection  
0001h (protected),  
0000h (unprotected)  
VID  
SA  
X
Legend: L = Logic Low = V , H = Logic High = V , BA = Bank Address, SA = Sector Address, X = Don’t care.  
IL  
IH  
Notes:  
1. The autoselect codes may also be accessed in-system via command sequences.  
2. PPB Protection Status is shown on the data bus  
11.9 Sector/Sector Block Protection and Unprotection  
The hardware sector protection feature disables both programming and erase operations in any  
sector. The hardware sector unprotection feature re-enables both program and erase operations  
in previously protected sectors. Sector protection/unprotection can be implemented via two  
methods.  
(Note: For the following discussion, the term “sector” applies to both sectors and sector blocks.  
A sector block consists of two or more adjacent sectors that are protected or unprotected at the  
same time (see Table , “,on page 33 and Table , “,on page 35).)  
32  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 11.4 S29WS128J/064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 1 of 3)  
Sector/  
Sector  
SA0  
A22–A12  
Sector Block Size  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX,  
00000010XXX,  
00000011XXX,  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
4 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51–SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
SA83–SA86  
SA87–SA90  
SA91–SA94  
SA95–SA98  
SA99–SA102  
SA103–SA106  
SA107–SA110  
SA111–SA114  
SA115–SA118  
SA119–SA122  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
33  
D a t a S h e e t  
Table 11.4 S29WS128J/064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 2 of 3)  
Sector/  
Sector  
A22–A12  
Sector Block Size  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA123–SA126  
SA127–SA130  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151–SA154  
SA155–SA158  
SA159–SA162  
SA163–SA166  
SA167–SA170  
SA171–SA174  
SA175–SA178  
SA179–SA182  
SA183–SA186  
SA187–SA190  
SA191–SA194  
SA195–SA198  
SA199–SA202  
SA203–SA206  
SA207–SA210  
SA211–SA214  
SA215–SA218  
SA219–SA222  
SA223–SA226  
SA227–SA230  
SA231–SA234  
SA235–SA238  
SA239–SA242  
SA243–SA246  
SA247–SA250  
SA251–SA254  
SA255–SA258  
SA259  
011101XXXXX  
011110XXXXX  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
34  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 11.4 S29WS128J/064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 3 of 3)  
Sector/  
Sector  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
A22–A12  
Sector Block Size  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
Table 11.5 S29WS064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 1 of 2)  
Sector/  
Sector  
SA0  
A21–A12  
Sector Block Size  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
4 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11–SA14  
SA15–SA18  
SA19–SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51–SA54  
SA55–SA58  
SA59–SA62  
SA63–SA66  
SA67–SA70  
SA71–SA74  
SA75–SA78  
SA79–SA82  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
35  
D a t a S h e e t  
Table 11.5 S29WS064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Sheet 2 of 2)  
Sector/  
Sector  
SA83–SA86  
SA87–SA90  
SA91–SA94  
SA95–SA98  
SA99–SA102  
SA103–SA106  
SA107–SA110  
SA111–SA114  
SA115–SA118  
SA119–SA122  
SA123–SA126  
SA127–SA130  
SA131  
A21–A12  
Sector Block Size  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
SA132  
32 Kwords  
SA133  
32 Kwords  
SA134  
4 Kwords  
SA135  
4 Kwords  
SA136  
4 Kwords  
SA137  
4 Kwords  
SA138  
4 Kwords  
SA139  
4 Kwords  
SA140  
4 Kwords  
SA141  
4 Kwords  
36  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
12 Advanced Sector Protection/Unprotection  
The Advanced Sector Protection/Unprotection feature disables or enables programming or erase  
operations in any or all sectors and can be implemented through software and/or hardware meth-  
ods, which are independent of each other. This section describes the various methods of  
protecting data stored in the memory array. An overview of these methods in shown in Figure  
12.1.  
Hardware Methods  
Software Methods  
Lock Register  
(One Time Programmable)  
ACC = V  
IL  
All sectors locked)  
Persistent Method  
Password Method  
(
(DQ1)  
(DQ2)  
WP# = V  
IL  
(All boot  
sectors locked)  
64-bit Password  
(One Time Protect)  
1. Bit is volatile, and defaults to “1” on  
reset.  
PPB Lock Bit1,2,3  
2. Programming to “0” locks all PPBs to  
their current state.  
0 = PPBs Locked  
1 = PPBs Unlocked  
3. Once programmed to “0, requires  
hardware reset to unlock.  
Persistent  
Protection Bit  
(PPB)4,5  
Dynamic  
Protection Bit  
(PPB)6,7,8  
Memory Array  
Sector 0  
Sector 1  
Sector 2  
PPB 0  
PPB 1  
PPB 2  
DYB 0  
DYB 1  
DYB 2  
Sector N-2  
Sector N-1  
PPB N-2  
PPB N-1  
PPB N  
DYB N-2  
DYB N-1  
DYB N  
Sector N3  
3. N = Highest Address Sector.  
4. 0 = Sector Protected,  
1 = Sector Unprotected.  
6. 0 = Sector Protected,  
1 = Sector Unprotected.  
5. PPBs programmed individually,  
but cleared collectively  
7. Protect effective only if PPB Lock Bit  
is unlocked and corresponding PPB  
is “1” (unprotected).  
8. Volatile Bits: defaults to user choice  
upon power-up (see ordering  
options).  
Figure 12.1 Advanced Sector Protection/Unprotection  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
37  
D a t a S h e e t  
12.1 Lock Register  
As shipped from the factory, all devices default to the persistent mode when power is applied, and  
all sectors are unprotected, unless otherwise chosen through the DYB ordering option. The device  
programmer or host system must then choose which sector protection method to use. Program-  
ming (setting to “0”) any one of the following two one-time programmable, non-volatile bits locks  
the part permanently in that mode:  
!
!
Lock Register Persistent Protection Mode Lock Bit (DQ1)  
Lock Register Password Protection Mode Lock Bit (DQ2)  
Table 12.1 Lock Register  
Device  
DQ15-05  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
Customer  
SecSi Sector  
Protection Bit  
S29WS256N  
1
1
1
DYB Lock Boot Bit  
0 = sectors  
power up  
PPB One-Time  
Programmable Bit  
0 = All PPB erase  
command disabled  
1 = All PPB Erase  
command enabled  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
S29WS128N/  
S29WS064N  
SecSi Sector  
Protection Bit  
Undefined  
protected  
1 = sectors  
power up  
unprotected  
Notes  
1. If the password mode is chosen, the password must be programmed before setting the cor-  
responding lock register bit.  
2. After the Lock Register Bits Command Set Entry command sequence is written, reads and  
writes for Bank 0 are disabled, while reads from other banks are allowed until exiting this  
mode.  
3. If both lock bits are selected to be programmed (to zeros) at the same time, the operation  
aborts.  
4. Once the Password Mode Lock Bit is programmed, the Persistent Mode Lock Bit is permanently  
disabled, and no changes to the protection scheme are allowed. Similarly, if the Persistent  
Mode Lock Bit is programmed, the Password Mode is permanently disabled.  
After selecting a sector protection method, each sector can operate in any of the following three  
states:  
1. Constantly locked. The selected sectors are protected and can not be reprogrammed unless  
PPB lock bit is cleared via a password, hardware reset, or power cycle.  
2. Dynamically locked. The selected sectors are protected and can be altered via software com-  
mands.  
3. Unlocked. The sectors are unprotected and can be erased and/or programmed.  
These states are controlled by the bit types described in Sections 12.212.6.  
38  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
12.2 Persistent Protection Bits  
The Persistent Protection Bits are unique and nonvolatile for each sector and have the same en-  
durances as the Flash memory. Preprogramming and verification prior to erasure are handled by  
the device, and therefore do not require system monitoring.  
Notes  
1. Each PPB is individually programmed and all are erased in parallel.  
2. While programming PPB for a sector, array data can be read from any other bank, except Bank  
0 (used for Data# Polling) and the bank in which sector PPB is being programmed.  
3. Entry command disables reads and writes for the bank selected.  
4. Reads within that bank return the PPB status for that sector.  
5. Reads from other banks are allowed while writes are not allowed.  
6. All Reads must be performed using the Asynchronous mode.  
7. The specific sector address (A23-A14 WS256N, A22-A14 WS128N, A21-A14 WS064N) are  
written at the same time as the program command.  
8. If the PPB Lock Bit is set, the PPB Program or erase command does not execute and times-  
out without programming or erasing the PPB.  
9. There are no means for individually erasing a specific PPB and no specific sector address is  
required for this operation.  
10.Exit command must be issued after the execution which resets the device to read mode and  
re-enables reads and writes for Bank 0  
11.The programming state of the PPB for a given sector can be verified by writing a PPB Status  
Read Command to the device as described by the flow chart shown in Figure 12.2.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
39  
D a t a S h e e t  
Enter PPB  
Command Set.  
Addr = BA  
Program PPB Bit.  
Addr = SA  
Read Byte Twice  
Addr = SA0  
No  
DQ6 =  
Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Wait 500 µs  
Read Byte Twice  
Addr = SA0  
No  
Read Byte.  
Addr = SA  
DQ6 =  
Toggle?  
Yes  
DQ0 =  
No  
'1' (Erase)  
'0' (Pgm.)?  
FAIL  
Yes  
Issue Reset  
Command  
PASS  
Exit PPB  
Command Set  
Figure 12.2 PPB Program/Erase Algorithm  
40  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
12.3 Dynamic Protection Bits  
Dynamic Protection Bits are volatile and unique for each sector and can be individually modified.  
DYBs only control the protection scheme for unprotected sectors that have their PPBs cleared  
(erased to “1”). By issuing the DYB Set or Clear command sequences, the DYBs are set (pro-  
grammed to “0”) or cleared (erased to “1”), thus placing each sector in the protected or  
unprotected state respectively. This feature allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when changes are  
needed.  
Notes  
1. The DYBs can be set (programmed to “0”) or cleared (erased to “1”) as often as needed.  
When the parts are first shipped, the PPBs are cleared (erased to “1”) and upon power up or reset,  
the DYBs can be set or cleared depending upon the ordering option chosen.  
2. If the option to clear the DYBs after power up is chosen, (erased to “1”), then the sectorsmay  
be modified depending upon the PPB state of that sector (see Table 12.2).  
3. The sectors would be in the protected state If the option to set the DYBs after power up is  
chosen (programmed to “0”).  
4. It is possible to have sectors that are persistently locked with sectors that are left in the dy-  
namic state.  
5. The DYB Set or Clear commands for the dynamic sectors signify protected or unprotected  
state of the sectors respectively. However, if there is a need to change the status of the per-  
sistently locked sectors, a few more steps are required. First, the PPB Lock Bit must be  
cleared by either putting the device through a power-cycle, or hardware reset. The PPBs can  
then be changed to reflect the desired settings. Setting the PPB Lock Bit once again locks the  
PPBs, and the device operates normally again.  
6. To achieve the best protection, it is recommended to execute the PPB Lock Bit Set command  
early in the boot code and protect the boot code by holding WP# = VIL. Note that the PPB  
and DYB bits have the same function when ACC = VHH as they do when ACC =VIH  
.
12.4 Persistent Protection Bit Lock Bit  
The Persistent Protection Bit Lock Bit is a global volatile bit for all sectors. When set (programmed  
to “0”), it locks all PPBs and when cleared (programmed to “1”), allows the PPBs to be changed.  
There is only one PPB Lock Bit per device.  
Notes  
1. No software command sequence unlocks this bit unless the device is in the password protec-  
tion mode; only a hardware reset or a power-up clears this bit.  
2. The PPB Lock Bit must be set (programmed to “0”) only after all PPBs are configured to the  
desired settings.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
41  
D a t a S h e e t  
12.5 Password Protection Method  
The Password Protection Method allows an even higher level of security than the Persistent Sector  
Protection Mode by requiring a 64 bit password for unlocking the device PPB Lock Bit. In addition  
to this password requirement, after power up and reset, the PPB Lock Bit is set “0” to maintain  
the password mode of operation. Successful execution of the Password Unlock command by en-  
tering the entire password clears the PPB Lock Bit, allowing for sector PPBs modifications.  
Notes  
1. There is no special addressing order required for programming the password. Once the Pass-  
word is written and verified, the Password Mode Locking Bit must be set in order to prevent  
access.  
2. The Password Program Command is only capable of programming “0”s. Programming a “1”  
after a cell is programmed as a “0” results in a time-out with the cell as a “0.  
3. The password is all “1”s when shipped from the factory.  
4. All 64-bit password combinations are valid as a password.  
5. There is no means to verify what the password is after it is set.  
6. The Password Mode Lock Bit, once set, prevents reading the 64-bit password on the data bus  
and further password programming.  
7. The Password Mode Lock Bit is not erasable.  
8. The lower two address bits (A1–A0) are valid during the Password Read, Password Program,  
and Password Unlock.  
9. The exact password must be entered in order for the unlocking function to occur.  
10.The Password Unlock command cannot be issued any faster than 1 µs at a time to prevent a  
hacker from running through all the 64-bit combinations in an attempt to correctly match a  
password.  
11.Approximately 1 µs is required for unlocking the device after the valid 64-bit password is  
given to the device.  
12.Password verification is only allowed during the password programming operation.  
13.All further commands to the password region are disabled and all operations are ignored.  
14.If the password is lost after setting the Password Mode Lock Bit, there is no way to clear the  
PPB Lock Bit.  
15.Entry command sequence must be issued prior to any of any operation and it disables reads  
and writes for Bank 0. Reads and writes for other banks excluding Bank 0 are allowed.  
16.If the user attempts to program or erase a protected sector, the device ignores the command  
and returns to read mode.  
17.A program or erase command to a protected sector enables status polling and returns to read  
mode without having modified the contents of the protected sector.  
18.The programming of the DYB, PPB, and PPB Lock for a given sector can be verified by writing  
individual status read commands DYB Status, PPB Status, and PPB Lock Status to the device.  
42  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write  
Enter Lock Register Command:  
Address 555h, Data 40h  
XXXh = Address don’t care  
* Not on future devices  
Program Lock Register Data  
Address XXXh, Data A0h  
Address 77h*, Data PD  
Program Data (PD): See text for Lock Register  
definitions  
Caution: Lock register can only be progammed  
once.  
Wait 4 µs  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Write Lock Register  
Exit Command:  
FAIL. Write rest command  
to return to reading array.  
Address XXXh, Data 90h  
Address XXXh, Data 00h  
Device returns to reading array.  
Figure 12.3 Lock Register Program Algorithm  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
43  
D a t a S h e e t  
12.6 Advanced Sector Protection Software Examples  
Table 12.2 Sector Protection Schemes  
Unique Device PPB Lock Bit  
0 = locked  
Sector PPB  
0 = protected  
1 = unprotected  
Sector DYB  
0 = protected  
1 = unprotected  
Sector Protection Status  
1 = unlocked  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
x
x
1
0
x
x
0
1
Protected through PPB  
Protected through PPB  
Unprotected  
Protected through DYB  
Protected through PPB  
Protected through PPB  
Protected through DYB  
Unprotected  
Table 12.2 contains all possible combinations of the DYB, PPB, and PPB Lock Bit relating to the  
status of the sector. In summary, if the PPB Lock Bit is locked (set to “0”), no changes to the PPBs  
are allowed. The PPB Lock Bit can only be unlocked (reset to “1”) through a hardware reset or  
power cycle. See also Figure 12.1 for an overview of the Advanced Sector Protection feature.  
12.7 Hardware Data Protection Methods  
The device offers two main types of data protection at the sector level via hardware control:  
!
!
When WP# is at VIL, the four outermost sectors are locked (device specific).  
When ACC is at VIL, all sectors are locked.  
There are additional methods by which intended or accidental erasure of any sectors can be pre-  
vented via hardware means. The following subsections describes these methods:  
WP# Method  
The Write Protect feature provides a hardware method of protecting the four outermost sectors.  
This function is provided by the WP# pin and overrides the previously discussed Sector Protec-  
tion/Unprotection method.  
If the system asserts VIL on the WP# pin, the device disables program and erase functions in the  
“outermost” boot sectors. The outermost boot sectors are the sectors containing both the lower  
and upper set of sectors in a dual-boot-configured device.  
If the system asserts VIH on the WP# pin, the device reverts to whether the boot sectors were  
last set to be protected or unprotected. That is, sector protection or unprotection for these sectors  
depends on whether they were last protected or unprotected.  
Note that the WP# pin must not be left floating or unconnected as inconsistent behavior of the  
device may result.  
The WP# pin must be held stable during a command sequence execution  
ACC Method  
This method is similar to above, except it protects all sectors. Once ACC input is set to VIL, all  
program and erase functions are disabled and hence all sectors are protected.  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during  
VCC power-up and power-down.  
44  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
The command register and all internal program/erase circuits are disabled, and the device resets  
to reading array data. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control inputs to prevent unintentional writes when VCC is  
greater than VLKO  
.
Write Pulse “Glitch Protection”  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Power-Up Write Inhibit  
If WE# = CE# = RESET# = VIL and OE# = VIH during power up, the device does not accept com-  
mands on the rising edge of WE#. The internal state machine is automatically reset to the read  
mode on power-up.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
45  
D a t a S h e e t  
13 Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software inter-  
rogation handshake, which allows specific vendor-specified software algorithms to be used for  
entire families of devices. Software support can then be device-independent, JEDEC ID-indepen-  
dent, and forward- and backward-compatible for the specified flash device families. Flash vendors  
can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to  
address 55h any time the device is ready to read array data. The system can read CFI information  
at the addresses given in Tables 13.1-13.4. To terminate reading CFI data, the system must write  
the reset command.  
The system can also write the CFI query command when the device is in the autoselect mode.  
The device enters the CFI query mode, and the system can read CFI data at the addresses given  
in Tables 13.1-13.4. The system must write the reset command to return the device to the au-  
toselect mode.  
Table 13.1 CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
46  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.2 System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0017h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0019h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 13.3 Device Geometry Definition  
Addresses  
Data  
Description  
0018h (WS128J)  
0017h (WS064J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (WS128J)  
007Dh (WS064J)  
31h  
Erase Block Region 2 Information  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
47  
D a t a S h e e t  
Table 13.4 Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
000Ch  
Silicon Technology (Bits 5-2) 0011 = 0.13 µm  
Erase Suspend  
46h  
47h  
48h  
49h  
0002h  
0001h  
0001h  
0007h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
00E7h (WS128J)  
0077h (WS064J)  
Simultaneous Operation  
Number of Sectors in all banks except boot block  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
0001h  
0000h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page, 04 = 16 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
4Fh  
00B5h  
00C5h  
0001h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
01h = Dual Boot Device, 02h = Bottom Boot Device, 03h = Top Boot Device  
50h  
57h  
0000h  
0004h  
Program Suspend. 00h = not supported  
Bank Organization: X = Number of banks  
0027h (WS128J)  
0017h (WS064J)  
58h  
59h  
5Ah  
5Bh  
Bank A Region Information. X = Number of sectors in bank  
Bank B Region Information. X = Number of sectors in bank  
Bank C Region Information. X = Number of sectors in bank  
Bank D Region Information. X = Number of sectors in bank  
0060h (WS128J)  
0030h (WS064J)  
0060h (WS128J)  
0030h (WS064J)  
0027h (WS128J)  
0017h (WS064J)  
48  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 1 of 8)  
Bank  
Sector  
Sector Size  
4 Kwords  
(x16) Address Range  
000000h-000FFFh  
001000h-001FFFh  
002000h-002FFFh  
003000h-003FFFh  
004000h-004FFFh  
005000h-005FFFh  
006000h-006FFFh  
007000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
SA0  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
Bank D  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
49  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 2 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Bank C  
50  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 3 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
200000h-207FFFh  
208000h-20FFFFh  
210000h-217FFFh  
218000h-21FFFFh  
220000h-227FFFh  
228000h-22FFFFh  
230000h-237FFFh  
238000h-23FFFFh  
240000h-247FFFh  
248000h-24FFFFh  
250000h-257FFFh  
258000h-25FFFFh  
260000h-267FFFh  
268000h-26FFFFh  
270000h-277FFFh  
278000h-27FFFFh  
280000h-287FFFh  
288000h-28FFFFh  
290000h-297FFFh  
298000h-29FFFFh  
2A0000h-2A7FFFh  
2A8000h-2AFFFFh  
2B0000h-2B7FFFh  
2B8000h-2BFFFFh  
2C0000h-2C7FFFh  
2C8000h-2CFFFFh  
2D0000h-2D7FFFh  
2D8000h-2DFFFFh  
2E0000h-2E7FFFh  
2E8000h-2EFFFFh  
2F0000h-2F7FFFh  
2F8000h-2FFFFFh  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
Bank C  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
51  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 4 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
300000h-307FFFh  
308000h-30FFFFh  
310000h-317FFFh  
318000h-31FFFFh  
320000h-327FFFh  
328000h-32FFFFh  
330000h-337FFFh  
338000h-33FFFFh  
340000h-347FFFh  
348000h-34FFFFh  
350000h-357FFFh  
358000h-35FFFFh  
360000h-367FFFh  
368000h-36FFFFh  
370000h-377FFFh  
378000h-37FFFFh  
380000h-387FFFh  
388000h-38FFFFh  
390000h-397FFFh  
398000h-39FFFFh  
3A0000h-3A7FFFh  
3A8000h-3AFFFFh  
3B0000h-3B7FFFh  
3B8000h-3BFFFFh  
3C0000h-3C7FFFh  
3C8000h-3CFFFFh  
3D0000h-3D7FFFh  
3D8000h-3DFFFFh  
3E0000h-3E7FFFh  
3E8000h-3EFFFFh  
3F0000h-3F7FFFh  
3F8000h-3FFFFFh  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
Bank C  
52  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 5 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
400000h-407FFFh  
408000h-40FFFFh  
410000h-417FFFh  
418000h-41FFFFh  
420000h-427FFFh  
428000h-42FFFFh  
430000h-437FFFh  
438000h-43FFFFh  
440000h-447FFFh  
448000h-44FFFFh  
450000h-457FFFh  
458000h-45FFFFh  
460000h-467FFFh  
468000h-46FFFFh  
470000h-477FFFh  
478000h-47FFFFh  
480000h-487FFFh  
488000h-48FFFFh  
490000h-497FFFh  
498000h-49FFFFh  
4A0000h-4A7FFFh  
4A8000h-4AFFFFh  
4B0000h-4B7FFFh  
4B8000h-4BFFFFh  
4C0000h-4C7FFFh  
4C8000h-4CFFFFh  
4D0000h-4D7FFFh  
4D8000h-4DFFFFh  
4E0000h-4E7FFFh  
4E8000h-4EFFFFh  
4F0000h-4F7FFFh  
4F8000h-4FFFFFh  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
Bank B  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
53  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 6 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
500000h-507FFFh  
508000h-50FFFFh  
510000h-517FFFh  
518000h-51FFFFh  
520000h-527FFFh  
528000h-52FFFFh  
530000h-537FFFh  
538000h-53FFFFh  
540000h-547FFFh  
548000h-54FFFFh  
550000h-557FFFh  
558000h-55FFFFh  
560000h-567FFFh  
568000h-56FFFFh  
570000h-577FFFh  
578000h-57FFFFh  
580000h-587FFFh  
588000h-58FFFFh  
590000h-597FFFh  
598000h-59FFFFh  
5A0000h-5A7FFFh  
5A8000h-5AFFFFh  
5B0000h-5B7FFFh  
5B8000h-5BFFFFh  
5C0000h-5C7FFFh  
5C8000h-5CFFFFh  
5D0000h-5D7FFFh  
5D8000h-5DFFFFh  
5E0000h-5E7FFFh  
5E8000h-5EFFFFh  
5F0000h-5F7FFFh  
5F8000h-5FFFFFh  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
Bank B  
54  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 7 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
600000h-607FFFh  
608000h-60FFFFh  
610000h-617FFFh  
618000h-61FFFFh  
620000h-627FFFh  
628000h-62FFFFh  
630000h-637FFFh  
638000h-63FFFFh  
640000h-647FFFh  
648000h-64FFFFh  
650000h-657FFFh  
658000h-65FFFFh  
660000h-667FFFh  
668000h-66FFFFh  
670000h-677FFFh  
678000h-67FFFFh  
680000h-687FFFh  
688000h-68FFFFh  
690000h-697FFFh  
698000h-69FFFFh  
6A0000h-6A7FFFh  
6A8000h-6AFFFFh  
6B0000h-6B7FFFh  
6B8000h-6BFFFFh  
6C0000h-6C7FFFh  
6C8000h-6CFFFFh  
6D0000h-6D7FFFh  
6D8000h-6DFFFFh  
6E0000h-6E7FFFh  
6E8000h-6EFFFFh  
6F0000h-6F7FFFh  
6F8000h-6FFFFFh  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Bank B  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
55  
D a t a S h e e t  
Table 13.5 WS128J Sector Address Table (Sheet 8 of 8)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
(x16) Address Range  
700000h-707FFFh  
708000h-70FFFFh  
710000h-717FFFh  
718000h-71FFFFh  
720000h-727FFFh  
728000h-72FFFFh  
730000h-737FFFh  
738000h-73FFFFh  
740000h-747FFFh  
748000h-74FFFFh  
750000h-757FFFh  
758000h-75FFFFh  
760000h-767FFFh  
768000h-76FFFFh  
770000h-777FFFh  
778000h-77FFFFh  
780000h-787FFFh  
788000h-78FFFFh  
790000h-797FFFh  
798000h-79FFFFh  
7A0000h-7A7FFFh  
7A8000h-7AFFFFh  
7B0000h-7B7FFFh  
7B8000h-7BFFFFh  
7C0000h-7C7FFFh  
7C8000h-7CFFFFh  
7D0000h-7D7FFFh  
7D8000h-7DFFFFh  
7E0000h-7E7FFFh  
7E8000h-7EFFFFh  
7F0000h-7F7FFFh  
7F8000h-7F8FFFh  
7F9000h-7F9FFFh  
7FA000h-7FAFFFh  
7FB000h-7FBFFFh  
7FC000h-7FCFFFh  
7FD000h-7FDFFFh  
7FE000h-7FEFFFh  
7FF000h-7FFFFFh  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Bank A  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
56  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 1 of 6)  
Bank  
Sector  
Sector Size  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
000000h-000FFFh  
001000h-001FFFh  
002000h-002FFFh  
003000h-003FFFh  
004000h-004FFFh  
005000h-005FFFh  
006000h-006FFFh  
007000h-007FFFh  
008000h-00FFFFh  
010000h-017FFFh  
018000h-01FFFFh  
020000h-027FFFh  
028000h-02FFFFh  
030000h-037FFFh  
038000h-03FFFFh  
040000h-047FFFh  
048000h-04FFFFh  
050000h-057FFFh  
058000h-05FFFFh  
060000h-067FFFh  
068000h-06FFFFh  
070000h-077FFFh  
078000h-07FFFFh  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
Bank D  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
57  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 2 of 6)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
080000h-087FFFh  
088000h-08FFFFh  
090000h-097FFFh  
098000h-09FFFFh  
0A0000h-0A7FFFh  
0A8000h-0AFFFFh  
0B0000h-0B7FFFh  
0B8000h-0BFFFFh  
0C0000h-0C7FFFh  
0C8000h-0CFFFFh  
0D0000h-0D7FFFh  
0D8000h-0DFFFFh  
0E0000h-0E7FFFh  
0E8000h-0EFFFFh  
0F0000h-0F7FFFh  
0F8000h-0FFFFFh  
100000h-107FFFh  
108000h-10FFFFh  
110000h-117FFFh  
118000h-11FFFFh  
120000h-127FFFh  
128000h-12FFFFh  
130000h-137FFFh  
138000h-13FFFFh  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
Bank C  
58  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 3 of 6)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
140000h-147FFFh  
148000h-14FFFFh  
150000h-157FFFh  
158000h-15FFFFh  
160000h-167FFFh  
168000h-16FFFFh  
170000h-177FFFh  
178000h-17FFFFh  
180000h-187FFFh  
188000h-18FFFFh  
190000h-197FFFh  
198000h-19FFFFh  
1A0000h-1A7FFFh  
1A8000h-1AFFFFh  
1B0000h-1B7FFFh  
1B8000h-1BFFFFh  
1C0000h-1C7FFFh  
1C8000h-1CFFFFh  
1D0000h-1D7FFFh  
1D8000h-1DFFFFh  
1E0000h-1E7FFFh  
1E8000h-1EFFFFh  
1F0000h-1F7FFFh  
1F8000h-1FFFFFh  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Bank C  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
59  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 4 of 6)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
200000h-207FFFh  
208000h-20FFFFh  
210000h-217FFFh  
218000h-21FFFFh  
220000h-227FFFh  
228000h-22FFFFh  
230000h-237FFFh  
238000h-23FFFFh  
240000h-247FFFh  
248000h-24FFFFh  
250000h-257FFFh  
258000h-25FFFFh  
260000h-267FFFh  
268000h-26FFFFh  
270000h-277FFFh  
278000h-27FFFFh  
280000h-287FFFh  
288000h-28FFFFh  
290000h-297FFFh  
298000h-29FFFFh  
2A0000h-2A7FFFh  
2A8000h-2AFFFFh  
2B0000h-2B7FFFh  
2B8000h-2BFFFFh  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
Bank B  
60  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 5 of 6)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
2C0000h-2C7FFFh  
2C8000h-2CFFFFh  
2D0000h-2D7FFFh  
2D8000h-2DFFFFh  
2E0000h-2E7FFFh  
2E8000h-2EFFFFh  
2F0000h-2F7FFFh  
2F8000h-2FFFFFh  
300000h-307FFFh  
308000h-30FFFFh  
310000h-317FFFh  
318000h-31FFFFh  
320000h-327FFFh  
328000h-32FFFFh  
330000h-337FFFh  
338000h-33FFFFh  
340000h-347FFFh  
348000h-34FFFFh  
350000h-357FFFh  
358000h-35FFFFh  
360000h-367FFFh  
368000h-36FFFFh  
370000h-377FFFh  
378000h-37FFFFh  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
Bank B  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
61  
D a t a S h e e t  
Table 13.6 WS064J Sector Address Table (Sheet 6 of 6)  
Bank  
Sector  
Sector Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
(x16) Address Range  
380000h-387FFFh  
388000h-38FFFFh  
390000h-397FFFh  
398000h-39FFFFh  
3A0000h-3A7FFFh  
3A8000h-3AFFFFh  
3B0000h-3B7FFFh  
3B8000h-3BFFFFh  
3C0000h-3C7FFFh  
3C8000h-3CFFFFh  
3D0000h-3D7FFFh  
3D8000h-3DFFFFh  
3E0000h-3E7FFFh  
3E8000h-3EFFFFh  
3F0000h-3F7FFFh  
3F8000h-3F8FFFh  
3F9000h-3F9FFFh  
3FA000h-3FAFFFh  
3FB000h-3FBFFFh  
3FC000h-3FCFFFh  
3FD000h-3FDFFFh  
3FE000h-3FEFFFh  
3FF000h-3FFFFFh  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
Bank A  
62  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14 Command Definitions  
Writing specific address and data commands or sequences into the command register initiates  
device operations. Table 14.5, “Command Definitions,on page 77 defines the valid register com-  
mand sequences. Writing incorrect address and data values or writing them in the improper  
sequence may place the device in an unknown state. The system must write the reset command  
to return the device to reading array data. Refer to the AC Characteristics section for timing  
diagrams.  
14.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are  
required to retrieve data in asynchronous mode. Each bank is ready to read array data after com-  
pleting an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank enters the erase-  
suspend-read mode, after which the system can read data from any non-erase-suspended sector  
within the same bank. After completing a programming operation in the Erase Suspend mode,  
the system may once again read array data from any non-erase-suspended sector within the  
same bank. See the “Erase Suspend/Erase Resume Commands” section on page 72 for more  
information.  
The system must issue the reset command to return a bank to the read (or erase-suspend-read)  
mode if DQ5 goes high during an active program or erase operation, or if the bank is in the au-  
toselect mode. See the “Reset Command” section on page 67 for more information.  
See also “Requirements for Asynchronous ReadOperation (Non-Burst)” section on page 28 and  
“Requirements for Synchronous (Burst) Read Operation” section on page 29 for more informa-  
tion. The Asynchronous Read and Synchronous/Burst Read tables provide the read parameters,  
and Figure 22.3, “CLK Synchronous Burst Mode Read (rising active CLK),on page 93,  
Figure 22.5, “Synchronous Burst Mode Read,on page 94, and Figure 22.8, “Asynchronous Mode  
Read with Latched Addresses,on page 96 show the timings.  
14.2 Set Configuration Register Command Sequence  
The device uses a configuration register to set the various burst parameters: number of wait  
states, burst read mode, active clock edge, RDY configuration, and synchronous mode active. The  
configuration register must be set before the device will enter burst mode.  
The configuration register is loaded with a three-cycle command sequence. The first two cycles  
are standard unlock sequences. On the third cycle, the data should be C0h, address bits A11–A0  
should be 555h, and address bits A19–A12 set the code to be latched. The device will power up  
or after a hardware reset with the default setting, which is in asynchronous mode. The register  
must be set before the device can enter synchronous mode. The configuration register can not  
be changed during device operations (program, erase, or sector lock).  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
63  
D a t a S h e e t  
Power-up/  
Hardware Reset  
Asynchronous Read  
Mode Only  
Set Burst Mode  
Configuration Register  
Command for  
Set Burst Mode  
Configuration Register  
Command for  
Synchronous Mode  
(A19 = 0)  
Asynchronous Mode  
(A19 = 1)  
Synchronous Read  
Mode Only  
Figure 14.1 Synchronous/Asynchronous State Diagram  
14.2.1 Read Mode Setting  
On power-up or hardware reset, the device is set to be in asynchronous read mode. This setting  
allows the system to enable or disable burst mode during system operations. Address A19 deter-  
mines this setting: “1’ for asynchronous mode, “0” for synchronous mode.  
14.2.2 Programmable Wait State Configuration  
The programmable wait state feature informs the device of the number of clock cycles that must  
elapse after AVD# is driven active before data will be available. This value is determined by the  
input frequency of the device. Address bits A14–A12 determine the setting (see Table 14.1, “Pro-  
grammable Wait State Settings,on page 65).  
The wait state command sequence instructs the device to set a particular number of clock cycles  
for the initial access in burst mode. The number of wait states that should be programmed into  
the device is directly related to the clock frequency.  
64  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Table 14.1 Programmable Wait State Settings  
A14  
0
A13  
0
A12  
0
Total Initial Access Cycles  
2
0
0
1
3
0
1
0
4
5
0
1
1
1
0
0
6
1
0
1
7 (default)  
Reserved  
Reserved  
1
1
0
1
1
1
Notes:  
1. Upon power-up or hardware reset, the default setting is seven wait states.  
2. RDY will default to being active with data when the Wait State Setting is set to a  
total initial access cycle of 2.  
It is recommended that the wait state command sequence be written, even if the default wait  
state value is desired, to ensure the device is set as expected. A hardware reset will set the wait  
state to the default setting.  
14.2.3 Standard wait-state Handshaking Option  
The host system must set the appropriate number of wait states in the flash device depending  
upon the clock frequency. The host system should set address bits A14–A12 to 010 for a clock  
frequency of 66/80 MHz for the system/device to execute at maximum speed.  
Table 14.2 describes the recommended number of clock cycles (wait states) for various  
conditions.  
Table 14.2 Wait States for Standard wait-state Handshaking  
Typical No. of Clock Cycles after AVD# Low  
Burst Mode  
8-Word or 16-Word or Continuous  
32-Word  
66 MHz  
80 MHz  
6 or 7  
7
4
5
Notes:  
1. In the 8-, 16- and 32-word burst read modes, the address pointer does not cross  
64-word boundaries (addresses which are multiples of 3Fh).  
2. For WS128J model numbers 10 and 11, an additional clock cycle is required for  
boundary crossings while in Continuous read mode.  
The host system must set the appropriate number of wait states in the flash device depending  
upon the clock frequency. Note that the host system must set again the number of wait state  
when the host system change the clock frequency. For example, the host system must set from  
6 or 7 wait state to less than 5 wait states when the host system change the clock frequency from  
80MHz to less than 80MHz. The autoselect function allows the host system to determine whether  
the flash device is enabled for handshaking. See the “Autoselect Command Sequence” section on  
page 68 for more information.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
65  
D a t a S h e e t  
14.2.4 Read Mode Configuration  
The device supports four different read modes: continuous mode, and 8, 16, and 32 word linear  
wrap around modes. A continuous sequence begins at the starting address and advances the ad-  
dress pointer until the burst operation is complete. If the highest address in the device is reached  
during the continuous burst read mode, the address pointer wraps around to the lowest address.  
For example, an eight-word linear read with wrap around begins on the starting address written  
to the device and then advances to the next 8 word boundary. The address pointer then returns  
to the 1st word after the previous eight word boundary, wrapping through the starting location.  
The sixteen- and thirty-two linear wrap around modes operate in a fashion similar to the eight-  
word mode.  
Table 14.3 shows the address bits and settings for the four read modes.  
Table 14.3 Read Mode Settings  
Address Bits  
Burst Modes  
A16  
0
A15  
0
Continuous  
8-word linear wrap around  
16-word linear wrap around  
32-word linear wrap around  
0
1
1
0
1
1
Note: Upon power-up or hardware reset the default setting is continuous.  
14.2.5 Burst Active Clock Edge Configuration  
By default, the device will deliver data on the rising edge of the clock after the initial synchronous  
access time. Subsequent outputs will also be on the following rising edges, barring any delays.  
The device can be set so that the falling clock edge is active for all synchronous accesses. Address  
bit A17 determines this setting; “1” for rising active, “0” for falling active.  
14.2.6 RDY Configuration  
By default, the device is set so that the RDY pin will output VOH whenever there is valid data on  
the outputs. The device can be set so that RDY goes active one data cycle before active data.  
Address bit A18 determines this setting; “1” for RDY active with data, “0” for RDY active one clock  
cycle before valid data. Only the combination of wait state 2 and RDY active one clock cycle before  
data is not supported. In asynchronous mode, RDY is an open-drain output.  
66  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14.3 Configuration Register  
Table 14.4 shows the address bits that determine the configuration register settings for various  
device functions.  
Table 14.4 Configuration Register  
Address Bit  
Function  
Settings (Binary)  
Set Device  
Read Mode  
0 = Synchronous Read (Burst Mode) Enabled  
1 = Asynchronous Mode (default)  
A19  
0 = RDY active one clock cycle before data  
1 = RDY active with data (default)  
A18  
RDY  
0 = Burst starts and data is output on the falling edge of CLK  
1 = Burst starts and data is output on the rising edge of CLK (default)  
A17  
A16  
Clock  
Synchronous Mode  
00 = Continuous (default)  
Read Mode  
01 = 8-word linear with wrap around  
10 = 16-word linear with wrap around  
11 = 32-word linear with wrap around  
A15  
A14  
A13  
000 = Data is valid on the 2nd active CLK edge after AVD# transition to VIH  
001 = Data is valid on the 3rd active CLK edge after AVD# transition to VIH  
010 = Data is valid on the 4th active CLK edge after AVD# transition to VIH  
011 = Data is valid on the 5th active CLK edge after AVD# transition to VIH  
100 = Data is valid on the 6th active CLK edge after AVD# transition to VIH  
101 = Data is valid on the 7th active CLK edge after AVD# transition to VIH (default)  
Programmable  
Wait State  
A12  
110 = Reserved  
111 = Reserved  
Note: Device is in the default state upon power-up or hardware reset.  
14.4 Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read mode. Address  
bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase command sequence  
before erasing begins. This resets the bank to which the system was writing to the read mode.  
Once erasure begins, however, the device ignores reset commands until the operation is  
complete.  
The reset command may be written between the sequence cycles in a program command se-  
quence before programming begins (prior to the third cycle). This resets the bank to which the  
system was writing to the read mode. If the program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset command returns that bank to the erase-sus-  
pend-read mode. Once programming begins, however, the device ignores reset commands until  
the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command se-  
quence. Once in the autoselect mode, the reset command must be written to return to the read  
mode. If a bank entered the autoselect mode while in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the  
banks to the read mode (or erase-suspend-read mode if that bank was in Erase Suspend).  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
67  
D a t a S h e e t  
14.5 Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device  
codes, and determine whether or not a sector is protected. Table 14.5, “Command Definitions,”  
on page 77 shows the address and data requirements. The autoselect command sequence may  
be written to an address within a bank that is either in the read or erase-suspend-read mode. The  
autoselect command may not be written while the device is actively programming or erasing in  
the other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle that contains the bank address and the autoselect command. The bank then  
enters the autoselect mode. No subsequent data will be made available if the autoselect data is  
read in synchronous mode. The system may read at any address within the same bank any num-  
ber of times without initiating another autoselect command sequence. Read commands to other  
banks will return data from the array. The following table describes the address requirements for  
the various autoselect functions, and the resulting data. BA represents the bank address, and SA  
represents the sector address. The device ID is read in three cycles.  
Description  
Manufacturer ID  
Device ID, Word 1  
Address  
Read Data  
0001h  
(BA) + 00h  
(BA) + 01h  
227Eh  
2218h (WS128J)  
221Eh (WS064J)  
Device ID, Word 2  
Device ID, Word 3  
(BA) + 0Eh  
2200h (WS128J)  
2201h (WS064J)  
(BA) + 0Fh  
(SA) + 02h  
Sector Protection  
Verification  
0001 (locked),  
0000 (unlocked)  
DQ15 - DQ8 = 0  
DQ7 - Factory Lock Bit  
1 = Locked, 0 = Not Locked  
DQ6 -Customer Lock Bit  
1 = Locked, 0 = Not Locked  
DQ5 - Handshake Bit  
1 = Reserved,  
Indicator Bits  
(BA) + 03h  
0 = Standard Handshake  
DQ4 & DQ3 - Boot Code  
00 = Dual Boot Sector,  
01 = Top Boot Sector,  
10 = Bottom Boot Sector  
DQ2 - DQ0 = 001  
The system must write the reset command to return to the read mode (or erase-suspend-read  
mode if the bank was previously in Erase Suspend).  
68  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14.6 Enter Secured Silicon Sector/Exit Secured Silicon Sector  
Command Sequence  
The Secured Silicon Sector region provides a secured data area containing a random, eight word  
electronic serial number (ESN). The system can access the Secured Silicon Sector region by is-  
suing the three-cycle Enter Secured Silicon Sector command sequence. The device continues to  
access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured Sili-  
con Sector command sequence. The Exit Secured Silicon Sector command sequence returns the  
device to normal operation. The Secured Silicon Sector is not accessible when the device is exe-  
cuting an Embedded Program or embedded Erase algorithm. Table 14.5, “Command Definitions,”  
on page 77 shows the address and data requirements for both command sequences.  
The following commands are not allowed when the Secured Silicon is accessible.  
!
!
!
!
!
!
CFI  
Unlock Bypass Entry  
Unlock Bypass Program  
Unlock Bypass Reset  
Erase Suspend/Resume  
Chip Erase  
14.7 Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writ-  
ing two unlock write cycles, followed by the program set-up command. The program address and  
data are written next, which in turn initiate the Embedded Program algorithm. The system is not  
required to provide further controls or timings. The device automatically provides internally gen-  
erated program pulses and verifies the programmed cell margin. Table 14.5, “Command  
Definitions,on page 77 shows the address and data requirements for the program command  
sequence.  
When the Embedded Program algorithm is complete, that bank then returns to the read mode  
and addresses are no longer latched. The system can determine the status of the program oper-  
ation by monitoring DQ7 or DQ6/DQ2. Refer to the “Write Operation Status” section on page 80  
for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note  
that a hardware reset immediately terminates the program operation. The program command se-  
quence should be reinitiated once that bank has returned to the read mode, to ensure data  
integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be pro-  
grammed from “0” back to a “1.” Attempting to do so may cause that bank to set DQ5 = 1, or  
cause the DQ7 and DQ6 status bit to indicate the operation was successful. However, a succeeding  
read will show that the data is still “0.Only erase operations can convert a “0” to a “1.”  
14.7.1 Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to primarily program to a array faster than using  
the standard program command sequence. The unlock bypass command sequence is initiated by  
first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass  
command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass pro-  
gram command sequence is all that is required to program in this mode. The first cycle in this  
sequence contains the unlock bypass program command, A0h; the second cycle contains the pro-  
gram address and data. Additional data is programmed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the standard program command sequence, resulting  
in faster total programming time. The host system may also initiate the chip erase and sector  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
69  
D a t a S h e e t  
erase sequences in the unlock bypass mode. The erase command sequences are four cycles in  
length instead of six cycles. Table 14.5, “Command Definitions,on page 77 shows the require-  
ments for the unlock bypass command sequences.  
During the unlock bypass mode, only the Read, Unlock Bypass Program, Unlock Bypass Sector  
Erase, Unlock Bypass Chip Erase, and Unlock Bypass Reset commands are valid. To exit the unlock  
bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. The  
first cycle must contain the bank address and the data 90h. The second cycle need only contain  
the data 00h. The array then returns to the read mode.  
The device offers accelerated program operations through the ACC input. When the system as-  
serts VHH on this input, the device automatically enters the Unlock Bypass mode. The system may  
then write the two-cycle Unlock Bypass program command sequence. The device uses the higher  
voltage on the ACC input to accelerate the operation.  
Figure 14.2, “Program Operation,on page 70 illustrates the algorithm for the program opera-  
tion. Refer to the Erase/Program Operations table in the AC Characteristics section for  
parameters, and Figure 22.11, “Asynchronous Program Operation Timings: AVD# Latched Ad-  
dresses,on page 100 and Figure 22.13, “Synchronous Program Operation Timings: WE#  
Latched Addresses,on page 102 for timing diagrams.  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 14.5 for program command sequence.  
Figure 14.2 Program Operation  
70  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14.8 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing  
two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then  
followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The  
device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to provide any controls or timings during these oper-  
ations. Table 14.5, “Command Definitions,on page 77 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and ad-  
dresses are no longer latched. The system can determine the status of the erase operation by  
using DQ7 or DQ6/DQ2. Refer to the “Write Operation Status” section on page 80 for information  
on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hard-  
ware reset immediately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once that bank has returned to reading array data, to ensure data  
integrity.  
The host system may also initiate the chip erase command sequence while the device is in the  
unlock bypass mode. The command sequence is two cycles cycles in length instead of six cycles.  
See Table 14.5, “Command Definitions,on page 77 for details on the unlock bypass command  
sequences.  
Figure 14.3, “Erase Operation,on page 73 illustrates the algorithm for the erase operation. Refer  
to the Erase/Program Operations table in the AC Characteristics section for parameters and timing  
diagrams.  
14.9 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writ-  
ing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written,  
and are then followed by the address of the sector to be erased, and the sector erase command.  
Table 14.5, “Command Definitions,on page 77 shows the address and data requirements for the  
sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algo-  
rithm automatically programs and verifies the entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to provide any controls or timings during these  
operations.  
After the command sequence is written, a sector erase time-out of no less than 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase commands may be writ-  
ten. Loading the sector erase buffer may be done in any sequence, and the number of sectors  
may be from one sector to all sectors. The time between these additional cycles must be less than  
50 µs, otherwise erasure may begin. Any sector erase address and command following the ex-  
ceeded time-out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled  
after the last Sector Erase command is written. If any command other than 30h, B0h, F0h is input  
during the time-out period, the normal operation will not be guaranteed.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See “DQ3:  
Sector Erase Timer” section on page 85.) The time-out begins from the rising edge of the final  
WE# pulse in the command sequence.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
71  
D a t a S h e e t  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and ad-  
dresses are no longer latched. Note that while the Embedded Erase operation is in progress, the  
system can read data from the non-erasing bank. The system can determine the status of the  
erase operation by reading DQ7 or DQ6/DQ2 in the erasing bank. Refer to the “Write Operation  
Status” section on page 80 for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other  
commands are ignored. However, note that a hardware reset immediately terminates the erase  
operation. If that occurs, the sector erase command sequence should be reinitiated once that  
bank has returned to reading array data, to ensure data integrity.  
The host system may also initiate the sector erase command sequence while the device is in the  
unlock bypass mode. The command sequence is four cycles cycles in length instead of six cycles.  
Figure 14.3, “Erase Operation,on page 73 illustrates the algorithm for the erase operation. Refer  
to the Erase/Program Operations table in the AC Characteristics on page 91 for parameters and  
timing diagrams.  
14.10 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and  
then read data from, or program data to, any sector not selected for erasure. The bank address  
is required when writing this command. This command is valid only during the sector erase op-  
eration, including the minimum 50 µs time-out period during the sector erase command  
sequence. The Erase Suspend command is ignored if written during the chip erase operation or  
Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device re-  
quires a maximum of 35 µs to suspend the erase operation. However, when the Erase Suspend  
command is written during the sector erase time-out, the device immediately terminates the  
time-out period and suspends the erase operation.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode.  
The system can read data from or program data to any sector not selected for erasure. (The de-  
vice “erase suspends” all sectors selected for erasure.) Reading at any address within erase-  
suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6  
and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to the  
Figure 15, “Write Operation Status,on page 80 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-  
read mode. The system can determine the status of the program operation using the DQ7 or DQ6  
status bits, just as in the standard program operation. Refer to the “Write Operation Status” sec-  
tion on page 80 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence.  
Refer to the “Autoselect Mode” section on page 31 and “Autoselect Command Sequence” section  
on page 68 for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The  
bank address of the erase-suspended bank is required when writing this command. Further writes  
of the Resume command are ignored. Another Erase Suspend command can be written after the  
chip has resumed erasing.  
72  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
START  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 14.5 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer  
Figure 14.3 Erase Operation  
14.11 Password Program Command  
The Password Program Command permits programming the password that is used as part of the  
hardware protection scheme. The actual password is 64-bits long. 4 Password Program com-  
mands are required to program the password. The user must enter the unlock cycle, password  
program command (38h) and the program address/data for each portion of the password when  
programming. There are no provisions for entering the 2-cycle unlock cycle, the password pro-  
gram command, and all the password data. There is no special addressing order required for  
programming the password. Also, when the password is undergoing programming, Simultaneous  
Operation is disabled. Read operations to any memory location will return the programming status  
except DQ7. Once programming is complete, the user must issue a Read/Reset command to the  
device to normal operation. Once the Password is written and verified, the Password Mode Locking  
Bit must be set in order to prevent verification. The Password Program Command is only capable  
of programming “0”s. Programming a “1” after a cell is programmed as a “0” results in a time-  
out by the Embedded Program Algorithm™ with the cell remaining as a “0. The password is all  
F’s when shipped from the factory. All 64-bit password combinations are valid as a password.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
73  
D a t a S h e e t  
14.12 Password Verify Command  
The Password Verify Command is used to verify the Password. The Password is verifiable only  
when the Password Mode Locking Bit is not programmed. If the Password Mode Locking Bit is pro-  
grammed and the user attempts to verify the Password, the device will always drive all F’s onto  
the DQ data bus.  
Also, the device will not operate in Simultaneous Operation when the Password Verify command  
is executed. Only the password is returned regardless of the bank address. The lower two address  
bits (A1–A0) are valid during the Password Verify. Writing the Secured Silicon Exit command re-  
turns the device back to normal operation.  
14.13 Password Protection Mode Locking Bit Program Command  
The Password Protection Mode Locking Bit Program Command programs the Password Protection  
Mode Locking Bit, which prevents further verifies or updates to the password. Once programmed,  
the Password Protection Mode Locking Bit cannot be erased and the Persistent Protection Mode  
Locking Bit program circuitry is disabled, thereby forcing the device to remain in the Password  
Protection Mode. After issuing “PL/68h” at the fourth bus cycle, the device requires a time out  
period of approximately 150 µs for programming the Password Protection Mode Locking Bit. Then  
by writing “PL/48h” at the fifth bus cycle, the device outputs verify data at DQ0. If DQ0 = 1, then  
the Password Protection Mode Locking Bit is programmed. If not, the system must repeat this  
program sequence from the fourth cycle of “PL/68h. Exiting the Password Protection Mode Lock-  
ing Bit Program command is accomplished by writing the Secured Silicon Sector Exit command  
or Read/Reset command.  
14.14 Persistent Sector Protection Mode Locking Bit Program  
Command  
The Persistent Sector Protection Mode Locking Bit Program Command programs the Persistent  
Sector Protection Mode Locking Bit, which prevents the Password Mode Locking Bit from ever  
being programmed. By disabling the program circuitry of the Password Mode Locking Bit, the de-  
vice is forced to remain in the Persistent Sector Protection mode of operation, once this bit is set.  
After issuing “SL/68h” at the fourth bus cycle, the device requires a time out period of approxi-  
mately 150 µs for programming the Persistent Protect ion Mode Locking Bit. Then by writ ing  
“SMPL/48h” at the fifth bus cycle, the device outputs verify data at DQ0. If DQ0 = 1, then the  
Persistent Protection Mode Locking Bit is programmed. If not, the system must repeat this pro-  
gram sequence from the fourth cycle of “PL/68h. Exiting the Persistent Protection Mode Locking  
Bit Program command is accomplished by writing the Secured Silicon Sector Exit command or  
Read/Reset command.  
14.15 Secured Silicon Sector Protection Bit Program Command  
To protect the Secured Silicon Sector, write the Secured Silicon Sector Protect command sequence  
while in the Secured Silicon Sector mode. After issuing “OW/48h” at the fourth bus cycle, the de-  
vice requires a time out period of approximately 150 µs to protect the Secured Silicon Sector.  
Then, by writing “OPBP/48” at the fifth bus cycle, the device outputs verify data at DQ0. If DQ0  
= 1, then the Secured Silicon Sector is protected. If not, then the system must repeat this pro-  
gram sequence from the fourth cycle of “OPBP/48h. Exiting the Secured Silicon Sector Protection  
Mode Locking Bit Program command is accomplished by writing the Secured Silicon Sector Exit  
command or Read/Reset command.  
74  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14.16 PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the PPB Lock bit if it is cleared either at reset or if  
the Password Unlock command was successfully executed. There is no PPB Lock Bit Clear com-  
mand. Once the PPB Lock Bit is set, it cannot be cleared unless the device is taken through a  
power-on clear or the Password Unlock command is executed. Upon setting the PPB Lock Bit, the  
PPBs are latched. If the Password Mode Locking Bit is set, the PPB Lock Bit status is reflected as  
set, even after a power-on reset cycle. Exiting the PPB Lock Bit Set command is accomplished by  
writing the Secured Silicon Exit command, only while in the Persistent Sector Protection Mode.  
14.17 DPB Write/Erase/Status Command  
The DPB Write command is used to set or clear a DPB for a given sector. The high order address  
bits (Amax–A11) are issued at the same time as the code 01h or 00h on DQ7-DQ0. All other DQ  
data bus pins are ignored during the data write cycle. The DPBs are modifiable at any time, re-  
gardless of the state of the PPB or PPB Lock Bit. If the PPB is set, the sector is protected regardless  
of the value of the DPB. If the PPB is cleared, setting the DPB to a 1 protects the sector from  
programs or erases. Since this is a volatile bit, removing power or resetting the device will clear  
the DPBs. The programming of the DPB for a given sector can be verified by writing a DPB Status  
command to the device. Exiting the DPB Write/Erase command is accomplished by writing the  
Read/Reset command. Exiting the DPB Status command is accomplished by writting the Secured  
Silicon Sector Exit command  
14.18 Password Unlock Command  
The Password Unlock command is used to clear the PPB Lock Bit so that the PPBs can be unlocked  
for modification, thereby allowing the PPBs to become accessible for modification. The exact pass-  
word must be entered in order for the unlocking function to occur. This command cannot be issued  
any faster than 2 µs at a time to prevent a hacker from running through the all 64-bit combina-  
tions in an attempt to correctly match a password. If the command is issued before the 2 µs  
execution window for each portion of the unlock, the command will be ignored.  
The Password Unlock function is accomplished by writing Password Unlock command and data to  
the device to perform the clearing of the PPB Lock Bit. The password is 64 bits long, so the user  
must write the Password Unlock command 4 times. A1 and A0 are used for matching. Writing the  
Password Unlock command is not address order specific. The lower address A1–A0= 00, the next  
Password Unlock command is to A1–A0= 01, then to A1–A0= 10, and finally to A1–A0= 11.  
Once the Password Unlock command is entered for all four words, the RDY pin goes LOW indicat-  
ing that the device is busy. Also, reading the Bank D results in the DQ6 pin toggling, indicating  
that the Password Unlock function is in progress. Reading the other bank returns actual array  
data. Approximately 1µs is required for each portion of the unlock. Once the first portion of the  
password unlock completes (RDY is not driven and DQ6 does not toggle when read), the Password  
Unlock command is issued again, only this time with the next part of the password. Four Password  
Unlock commands are required to successfully clear the PPB Lock Bit. As with the first Password  
Unlock command, the RDY signal goes LOW and reading the device results in the DQ6 pin toggling  
on successive read operations until complete. It is the responsibility of the microprocessor to keep  
track of the number of Password Unlock commands, the order, and when to read the PPB Lock bit  
to confirm successful password unlock. In order to relock the device into the Password Mode, the  
PPB Lock Bit Set command can be re-issued. Exiting the Password Unlock command is accom-  
plished by writing the Secured Silicon Sector Exit command.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
75  
D a t a S h e e t  
14.19 PPB Program Command  
The PPB Program command is used to program, or set, a given PPB. Each PPB is individually pro-  
grammed (but is bulk erased with the other PPBs). The specific sector address (Amax–A12) are  
written at the same time as the program command 60h with A6 = 0. If the PPB Lock Bit is set  
and the corresponding PPB is set for the sector, the PPB Program command will not execute and  
the command will time-out without programming the PPB.  
After programming a PPB, two additional cycles are needed to determine whether the PPB has  
been programmed with margin. After 4th cycle, the device requires approximately 150 µs time  
out period for programming the PPB. And then after 5th cycle, the device outputs verify data at  
DQ0.  
The PPB Program command does not follow the Embedded Program algorithm. Writing the Se-  
cured Silicon Sector Exit command or Read/Reset command return the device back to normal  
operation.  
14.20 All PPB Erase Command  
The All PPB Erase command is used to erase all PPBs in bulk. There is no means for individually  
erasing a specific PPB. Unlike the PPB program, no specific sector address is required. However,  
when the PPB erase command is written (60h) and A6 = 1, all Sector PPBs are erased in parallel.  
If the PPB Lock Bit is set the ALL PPB Erase command will not execute and the command will time-  
out without erasing the PPBs.  
After erasing the PPBs, two additional cycles are needed to determine whether the PPB has been  
erased with margin. After 4th cycle, the device requires approximately 1.5 ms time out period for  
erasing the PPB. And then after 5th cycle, the device outputs verify data at DQ0.  
It is the responsibility of the user to preprogram all PPBs prior to issuing the All PPB Erase com-  
mand. If the user attempts to erase a cleared PPB, over-erasure may occur making it difficult to  
program the PPB at a later time. Also note that the total number of PPB program/erase cycles is  
limited to 100 cycles. Cycling the PPBs beyond 100 cycles is not guaranteed. Writing the Secured  
Silicon Sector Exit command or Read/Reset command return the device back to normal operation.  
14.21 PPB Status Command  
The programming of the PPB for a given sector can be verified by writing a PPB status verify com-  
mand to the device. Writing the Secured Silicon Sector Exit command or Read/Reset command  
return the device back to normal operation.  
14.22 PPB Lock Bit Status Command  
The programming of the PPB Lock Bit for a given sector can be verified by writing a PPB Lock Bit  
status verify command to the device. Writing the Secured Silicon Sector Exit command or Read/  
Reset command return the device back to normal operation.  
76  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14.23 Command Definitions  
Table 14.5 Command Definitions  
Bus Cycles (Notes 1–6)  
Command Sequence  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Seventh  
(Note 1)  
Addr Data Addr Data Addr Data Addr  
Data  
Addr Data Addr Data Addr Data  
Asynchronous Read (Note 7)  
Reset (Note 8)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
0001  
227E  
(BA)  
555  
(BA)  
X01  
(BA)X (Note (BA) (Not  
Device ID (Note 10)  
0E  
10)  
X0F e 10)  
(SA)  
555  
(SA) 0000/  
X02  
Sector Lock Verify  
(Note 11)  
0001  
(BA)  
555  
(BA)  
X03  
(Note  
12)  
Indicator Bits  
Program  
4
6
6
1
1
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
Data  
AA  
Chip Erase  
555  
555  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
AA  
Erase Suspend (Note 15)  
Erase Resume (Note 16)  
BA  
(CR)  
555  
Set Configuration Register (Note 17)  
3
555  
AA  
98  
2AA  
55  
C0  
20  
CFI Query (Note 18)  
1
55  
Unlock Bypass Entry  
3
555  
AA 2AA 55  
555  
Unlock Bypass  
Program (Notes 13,  
14)  
2
XX  
A0  
PA  
SA  
PD  
30  
Unlock Bypass  
Unlock  
Sector Erase (Notes  
2
2
2
XX  
XX  
XX  
80  
80  
90  
Bypass  
13, 14)  
Mode  
Unlock Bypass Erase  
(Notes 13, 14)  
XXX 10  
XXX 00  
Unlock Bypass Reset  
(Notes 13, 14)  
Sector Protection Command Definitions  
Secured Silicon  
Sector Entry  
3
4
555  
555  
AA 2AA 55  
AA 2AA 55  
555  
555  
88  
90  
Secured Silicon  
Sector Exit  
Secured  
XX  
00  
68  
Silicon  
Sector  
Secured Silicon  
Protection Bit  
Program (Notes 19,  
21)  
RD  
(0)  
6
4
555  
555  
AA 2AA 55  
AA 2AA 55  
555  
555  
60  
38  
OW  
OW  
48  
OW  
XX0  
XX1  
XX2  
XX3  
XX0  
XX1  
XX2  
XX3  
PD0  
PD1  
PD2  
PD3  
PD0  
PD1  
PD2  
PD3  
Password Program  
(Notes 23)  
Password  
Protection  
Password Verify  
4
7
555  
555  
AA 2AA 55  
AA 2AA 55  
555  
555  
C8  
28  
Password Unlock  
(Note 23)  
XX0  
PD0 XX1 PD1 XX2 PD2 XX3 PD3  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
77  
D a t a S h e e t  
Bus Cycles (Notes 1–6)  
Fourth  
Command Sequence  
(Note 1)  
First  
Second  
Third  
Fifth  
Sixth  
Seventh  
Addr Data Addr Data Addr Data Addr  
Data  
Addr Data Addr Data Addr Data  
SBA  
+ WP  
RD  
(0)  
PPB Program (Notes  
21)  
SBA  
6
6
555  
555  
AA 2AA 55  
AA 2AA 55  
555  
555  
60  
68  
48  
40  
XX  
XX  
+ WP  
RD  
(0)  
PPB  
All PPB Erase (Notes  
Commands 22, 24)  
60 WPE  
60  
SBA  
WPE  
SBA  
555  
SBA  
90  
RD  
(0)  
PPB Status (Note 25)  
4
3
4
555  
555  
555  
AA 2AA 55  
AA 2AA 55  
AA 2AA 55  
+WP  
PPB Lock Bit Set  
555  
78  
PPB Lock  
Bit  
(BA)  
555  
RD  
(1)  
PPB Lock Bit Status  
58  
BA  
DPB Write  
DPB Erase  
4
4
555  
555  
AA 2AA 55  
AA 2AA 55  
555  
555  
48  
48  
SA  
SA  
X1  
X0  
DPB  
(BA)  
555  
RD  
(0)  
DPB Status  
4
6
6
555  
555  
555  
AA 2AA 55  
AA 2AA 55  
AA 2AA 55  
58  
60  
60  
SA  
PL  
SL  
RD  
(0)  
Password Protection Mode  
Locking Bit Program (Notes 21)  
555  
555  
68  
68  
PL  
SL  
48  
48  
PL  
SL  
RD  
(0)  
Persistent Protection Mode  
Locking Bit Program (Notes 21)  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the rising edge of the AVD# pulse or active edge of CLK which ever  
comes first.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits Amax–A12 uniquely select any sector.  
BA = Address of the bank (WS128J: A22, A21, A20, WS064J: A21, A20, A19) that is being switched to autoselect mode, is in bypass mode, or is  
being erased.  
SLA = Address of the sector to be locked. Set sector address (SA) and either A6 = 1 for unlocked or A6 = 0 for locked.  
SBA = sector address block to be protected.  
CR = Configuration Register address bits A19–A12.  
OW = Address (A7–A0) is (00011010).  
PD3–PD0 = Password Data. PD3–PD0 present four 16 bit combinations that represent the 64-bit Password  
PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
PL = Address (A7-A0) is (00001010)  
RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 1, if unprotected, DQ0 = 0.  
RD(1) = DQ1 protection indicator bit. If protected, DQ1 = 1, if unprotected, DQ1 = 0.  
SL = Address (A7-A0) is (00010010)  
WD= Write Data. See “Configuration Register” definition for specific write data  
WP = Address (A7-A0) is (00000010)  
WPE = address(A7-A0) is (01000010)  
Notes:  
1. See Table 11.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the following, all bus cycles are write cycle: read cycle, fourth through sixth cycles of the Autoselect commands, fourth cycle of  
the configuration register verify and password verify commands, and any cycle reading at RD(0) and RD(1).  
4. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD, PD, WD, PWD, and PD3-PD0.  
5. Unless otherwise noted, address bits Amax–A12 are don’t cares.  
6. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system  
must write the reset command to return the device to reading array data.  
7. No unlock or command cycles required when bank is reading array data.  
8. The Reset command is required to return to reading array data (or to the erase-suspend-read mode if previously in Erase Suspend) when a  
bank is in the autoselect mode, or if DQ5 goes high (while the bank is providing status information) or performing sector lock/unlock.  
9. The fourth cycle of the autoselect command sequence is a read cycle. The system must provide the bank address. See the Autoselect  
Command Sequence section for more information.  
10. (BA)X0Fh = 2200h (WS128J), (BA)X0Eh = 2218h (WS128J), (BA)X0Fh = 221Eh (WS064J), (BA)X0Eh = 2201h (WS064J)  
11. The data is 0000h for an unlocked sector and 0001h for a locked sector  
12. DQ15 - DQ8 = 0, DQ7 - Factory Lock Bit (1 = Locked, 0 = Not Locked), DQ6 -Customer Lock Bit (1 = Locked, 0 = Not Locked), DQ5 =  
Handshake Bit (1 = Reserved, 0 = Standard Handshake)8, DQ4 & DQ3 - Boot Code (00= Dual Boot Sector, 01= Top Boot Sector, 10=  
Bottom Boot Sector, 11=No Boot Sector), DQ2 - DQ0 = 001  
13. The Unlock Bypass command sequence is required prior to this command sequence.  
78  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
14. The Unlock Bypass Reset command is required to return to reading array data.  
15. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase  
Suspend command is valid only during a sector erase operation, and requires the bank address.  
16. The Erase Resume command is valid only during the Erase Suspend mode, and requires the bank address.  
17. See “Set Configuration Register Command Sequence” for details.  
18.Command is valid when device is ready to read array data or when device is in autoselect mode.  
19. Regardless of CLK and AVD# interaction or Control Register bit 15 setting, command mode verifies are always asynchronous read  
operations.  
20. ACC must be at VHH during the entire operation of this command  
21. The fourth cycle programs the addressed locking bit. The fifth and sixth cycles are used to validate whether the bit has been fully  
programmed. If DQ0 (in the sixth cycle) reads 0, the program command must be issued and verified again.  
22. The fourth cycle erases all PPBs. The fifth and sixth cycles are used to validate whether the bits have been fully erased. If DQ0 (in the sixth  
cycle) reads 1, the erase command must be issued and verified again.  
23. The entire four bus-cycle sequence must be entered for each portion of the password.  
24. Before issuing the erase command, all PPBs should be programmed in order to prevent over-erasure of PPBs.  
25. In the fourth cycle, 01h indicates PPB set; 00h indicates PPB not set.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
79  
D a t a S h e e t  
15 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2,  
DQ3, DQ5, DQ6, and DQ7. Table 15.2, “Write Operation Status,on page 86 and the following  
subsections describe the function of these bits. DQ7 and DQ6 each offers a method for determin-  
ing whether a program or erase operation is complete or in progress.  
15.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase  
algorithm is in progress or completed, or whether a bank is in Erase Suspend. Data# Polling is  
valid after the rising edge of the final WE# pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend.  
When the Embedded Program algorithm is complete, the device outputs the datum programmed  
to DQ7. The system must provide the program address to read valid status information on DQ7.  
If a program address falls within a protected sector, Data# Polling on DQ7 is active for approxi-  
mately 1 µs, then that bank returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embed-  
ded Erase algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling  
produces a “1” on DQ7. The system must provide an address within any of the sectors selected  
for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately 100 µs, then the bank returns to the read mode.  
If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7  
at an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ6–DQ0 while Output Enable (OE#) is asserted low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when the system  
samples the DQ7 output, it may read the status or valid data. Even if the device has completed  
the program or erase operation and DQ7 has valid data, the data outputs on DQ6-DQ0 may be  
still invalid. Valid data on DQ7-D00 will appear on successive read cycles.  
Table 15.2, “Write Operation Status,on page 86 shows the outputs for Data# Polling on DQ7.  
Figure 15.1, “Data# Polling Algorithm,on page 81 shows the Data# Polling algorithm.  
Figure 22.17, “Data# Polling Timings (During Embedded Algorithm),on page 105 in the AC  
Characteristics section shows the Data# Polling timing diagram.  
80  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid  
address is any sector address within the sector being erased. During chip erase,  
a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change  
simultaneously with DQ5.  
Figure 15.1 Data# Polling Algorithm  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
81  
D a t a S h e e t  
15.2 RDY: Ready  
The RDY is a dedicated output that, when the device is configured in the Synchronous mode, in-  
dicates (when at logic low) the system should wait 1 clock cycle before expecting the next word  
of data. The RDY pin is only controlled by CE#. Using the RDY Configuration Command Sequence,  
RDY can be set so that a logic low indicates the system should wait 2 clock cycles before expecting  
valid data.  
The following conditions cause the RDY output to be low: during the initial access (in burst mode),  
and after the boundary that occurs every 64 words beginning with the 64th address, 3Fh.  
When the device is configured in Asynchronous Mode, the RDY is an open-drain output pin which  
indicates whether an Embedded Algorithm is in progress or completed. The RDY status is valid  
after the rising edge of the final WE# pulse in the command sequence.  
If the output is low (Busy), the device is actively erasing or programming. (This includes program-  
ming in the Erase Suspend mode.) If the output is in high impedance (Ready), the device is in  
the read mode, the standby mode, or in the erase-suspend-read mode. Table 15.2, “Write Oper-  
ation Status,on page 86 shows the outputs for RDY.  
15.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or  
complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read  
at any address in the same bank, and is valid after the rising edge of the final WE# pulse in the  
command sequence (prior to the program or erase operation), and during the sector erase time-  
out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for approximately 100 µs, then returns to reading array data. If not all selected sectors  
are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the  
selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or  
is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm  
is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops tog-  
gling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 ms after the  
program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embed-  
ded Program algorithm is complete.  
See the following for additional information: Figure 15.2, “Toggle Bit Algorithm,on page 83,  
DQ6: Toggle Bit I on page 82, Figure 22.18, “Toggle Bit Timings (During Embedded Algorithm),”  
on page 106 (toggle bit timing diagram), and Table 15.1, “DQ6 and DQ2 Indications,on  
page 84.  
Toggle Bit I on DQ6 requires either OE# or CE# to be deasserteed and reasserted to show the  
change in state.  
82  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
START  
Read Byte  
(DQ0-DQ7)  
Address = VA  
Read Byte  
(DQ0-DQ7)  
Address = VA  
No  
DQ6 = Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ 0-DQ7)  
Adrdess = VA  
No  
DQ6 = Toggle?  
Yes  
FAIL  
PASS  
Note: The system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5  
changes to “1.” See the subsections on DQ6 and DQ2 for more information.  
Figure 15.2 Toggle Bit Algorithm  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
83  
D a t a S h e e t  
15.4 DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively  
erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-  
suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command  
sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected  
for erasure. But DQ2 cannot distinguish whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase  
Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are  
required for sector and mode information. Refer to Table 15.1, “DQ6 and DQ2 Indications,on  
page 84 to compare outputs for DQ2 and DQ6.  
See the following for additional information: Figure 15.2, “Toggle Bit Algorithm,on page 83, See  
DQ6: Toggle Bit I on page 82, Figure 22.18, “Toggle Bit Timings (During Embedded Algorithm),”  
on page 106, and Table 15.1, “DQ6 and DQ2 Indications,on page 84.  
Table 15.1 DQ6 and DQ2 Indications  
If device is  
and the system reads  
then DQ6  
and DQ2  
programming,  
at any address,  
toggles,  
does not toggle.  
at an address within a sector  
selected for erasure,  
toggles,  
toggles,  
also toggles.  
does not toggle.  
toggles.  
actively erasing,  
erase suspended,  
at an address within sectors not  
selected for erasure,  
at an address within a sector  
selected for erasure,  
does not toggle,  
returns array data,  
toggles,  
at an address within sectors not  
returns array data. The system can read  
from any sector not selected for erasure.  
selected for erasure,  
programming in  
erase suspend  
at any address,  
is not applicable.  
15.5 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 15.2, “Toggle Bit Algorithm,on page 83 for the following discussion. Whenever  
the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typically, the system would note and store the value  
of the toggle bit after the first read. After the second read, the system would compare the new  
value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the  
program or erase operation. The system can read array data on DQ7–DQ0 on the following read  
cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still tog-  
gling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If  
it is, the system should then determine again whether the toggle bit is toggling, since the toggle  
bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the  
device has successfully completed the program or erase operation. If it is still toggling, the device  
did not completed the operation successfully, and the system must write the reset command to  
return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and  
DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through suc-  
cessive read cycles, determining the status as described in the previous paragraph. Alternatively,  
84  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
it may choose to perform other system tasks. In this case, the system must start at the beginning  
of the algorithm when it returns to determine the status of the operation (Figure 15.2, “Toggle  
Bit Algorithm,on page 83).  
15.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count  
limit. Under these conditions DQ5 produces a “1,indicating that the program or erase cycle was  
not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was  
previously programmed to “0.Only an erase operation can change a “0” back to a “1.Under this  
condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 pro-  
duces a “1.”  
Under both these conditions, the system must write the reset command to return to the read  
mode (or to the erase-suspend-read mode if a bank was previously in the erase-suspend-program  
mode).  
15.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether  
or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If  
additional sectors are selected for erasure, the entire time-out also applies after each additional  
sector erase command. When the time-out period is complete, DQ3 switches from a “0” to a “1.”  
If the time between additional sector erase commands from the system can be assumed to be  
less than 50 µs, the system need not monitor DQ3. See also Sector Erase Command Sequence  
on page 71.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and  
then read DQ3. If DQ3 is “1,the Embedded Erase algorithm has begun; all further commands  
(except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,the device  
will accept additional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each subsequent sector  
erase command. If DQ3 is high on the second status check, the last command might not have  
been accepted.  
Table 15.2 shows the status of DQ3 relative to the other status bits.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
85  
D a t a S h e e t  
Table 15.2 Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1)  
DQ2  
(Note 2)  
Status  
DQ6  
DQ3  
RDY (Note 5)  
No toggle  
(Note 6)  
Embedded Program Algorithm  
DQ7#  
Toggle  
Toggle  
0
0
0
N/A  
1
0
Standard  
Mode  
Embedded Erase Algorithm  
Erase  
0
1
Toggle  
Toggle  
0
No toggle  
(Note 6)  
N/A  
High Impedance  
Suspended Sector  
Erase-Suspend-  
Read (Note 4)  
Erase  
Suspend  
Mode  
Non-Erase Suspended  
Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
High Impedance  
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
4. The system may read either asynchronously or synchronously (burst) while in erase suspend.  
5. The RDY pin acts a dedicated output to indicate the status of an embedded erase or program operation is in progress. This  
is available in the Asynchronous mode only.  
6. When the device is set to Asynchronous mode, these status flags should be read by CE# toggle.  
86  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
16 Absolute Maximum Ratings  
Storage Temperature, Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
All Inputs and I/Os except as noted below (Note 1). . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +2.5 V  
A9, RESET#, ACC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs  
or I/Os may undershoot V to –2.0 V for periods of up to 20 ns. See Figure 16.1.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions  
CC  
outputs may overshoot to V + 2.0 V for periods up to 20 ns. See Figure 16.2.  
CC  
2. No more than one output may be shorted to ground at a time. Duration of the  
short circuit should not be greater than one second.  
3. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this data sheet is not implied. Exposure of the device  
to absolute maximum rating conditions for extended periods may affect device  
reliability.  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Figure 16.1 Maximum Negative Overshoot Waveform  
20 ns  
VCC  
+2.0 V  
VCC  
+0.5 V  
1.0 V  
20 ns  
20 ns  
Figure 16.2 Maximum Positive Overshoot Waveform  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
87  
D a t a S h e e t  
17 Operating Ranges  
Commercial (C) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Wireless (W) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Supply Voltages  
VCC Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.65 V to 1.95 V (66MHz)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.70 V to 1.95 V (80MHz)  
Note: Operating ranges define those limits between which the functionality of the de-  
vice is guaranteed.  
88  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
18 DC Characteristics  
18.1 CMOS Compatible  
Parameter Description  
Test Conditions Notes: 1  
Min  
Typ  
Max  
±1  
±1  
30  
Unit  
µA  
ILI  
Input Load Current  
VIN = VSS to VCC, VCC = VCCmax  
VOUT = VSS to VCC, VCC = VCCmax  
ILO  
Output Leakage Current  
µA  
CE# = VIL, OE# = VIH  
WE# = VIH, burst  
length = 8  
,
,
,
66 MHz  
80 MHz  
66 MHz  
80 MHz  
66 MHz  
80 MHz  
15  
18  
15  
18  
15  
18  
mA  
36  
30  
36  
30  
36  
mA  
mA  
mA  
mA  
mA  
CE# = VIL, OE# = VIH  
WE# = VIH, burst  
length = 16  
ICCB  
VCC Active burst Read Current  
VCC Non-active Output  
CE# = VIL, OE# = VIH  
WE# = VIH, burst  
length = Continuous  
IIO1  
OE# = VIH  
0.2  
20  
12  
3.5  
15  
0.2  
0.2  
22  
25  
0.2  
7
10  
30  
µA  
mA  
mA  
mA  
mA  
µA  
10 MHz  
5 MHz  
1 MHz  
VCC Active Asynchronous Read  
Current (Note 2)  
CE# = VIL, OE# = VIH  
,
ICC1  
16  
WE# = VIH  
5
ICC2  
ICC3  
ICC4  
VCC Active Write Current (Note 3) CE# = VIL, OE# = VIH, ACC = VIH  
40  
VCC Standby Current (Note 4)  
VCC Reset Current  
CE# = RESET# = VCC ± 0.2 V  
RESET# = VIL, CLK = VIL  
50  
50  
µA  
66 MHz  
54  
mA  
mA  
µA  
VCC Active Current  
(Read While Write)  
ICC5  
ICC6  
IACC  
CE# = VIL, OE# = VIH  
CE# = VIL, OE# = VIH  
80 MHz  
60  
VCC Sleep Current  
50  
VACC  
VCC  
15  
mA  
mA  
V
Accelerated Program Current  
(Note 5)  
CE# = VIL, OE# = VIH,  
VACC = 12.0 ± 0.5 V  
5
10  
VIL  
VIH  
VOL  
VOH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
0.4  
VCC + 0.4  
0.1  
VCC – 0.4  
IOL = 100 µA, VCC = VCC min = VIO  
IOH = –100 µA, VCC = VCC min  
V
V
VCC – 0.1  
11.5  
Voltage for Autoselect and  
Temporary Sector Unprotect  
VID  
VCC = 1.8 V  
12.5  
V
VHH  
Voltage for Accelerated Program  
Low VCC Lock-out Voltage  
11.5  
1.0  
12.5  
1.4  
V
V
VLKO  
Notes:  
1. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
2. The I current listed is typically less than 2 mA/MHz, with OE# at V .  
CC  
IH  
3. I active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Device enters automatic sleep mode when addresses are stable for t  
+ 60 ns. Typical sleep mode current is equal  
ACC  
to I  
.
CC3  
5. Total current during accelerated programming is the sum of V  
6. 80 MHz applies only to the WS064J.  
and V currents.  
CC  
ACC  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
89  
D a t a S h e e t  
19 Test Conditions  
Device  
Under  
Test  
C
L
Figure 19.1 Test Setup  
Table 19.1 Test Specifications  
Test Condition  
All Speed Options  
Unit  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
2.5 - 3  
ns  
V
Input Pulse Levels  
0.0–VCC  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
CC/2  
V
VCC/2  
V
20 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
21 Switching Waveforms  
VCC  
All Inputs and Outputs  
VCC/2  
VCC/2  
Input  
Measurement Level  
Output  
0.0 V  
Figure 21.1 Input Waveforms and Measurement Levels  
90  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
22 AC Characteristics  
VCC Power-up  
Parameter  
Description  
VCC Setup Time  
Test Setup  
Min  
Speed  
50  
Unit  
µs  
tVCS  
tRSTH  
RESET# Low Hold Time  
Min  
50  
µs  
Notes:  
1. VCC ramp rate is > 1V / 100µs  
2. CC ramp rate <1V / 100µs, a Hardware Reset will be required.  
V
tVCS  
VCC  
RESET#  
Figure 22.1 VCC Power-up Diagram  
22.1 CLK Characterization  
80 MHz  
(WaitState=6,7)  
80 MHz  
(WaitState less than 5)  
Parameter  
Description  
66 MHz  
Unit  
Condition  
Max  
Min  
66.0  
80.0  
66.0  
66.0  
18.2  
MHz  
continuous burst ,  
CLK duty 50% +/-  
10%  
15.2  
32.0  
MHz  
KHz  
fCLK  
CLK Frequency  
8/16/32-word  
burst,  
CLK duty 50% +/-  
10%  
Min  
-
32.0  
Min  
Min  
Min  
39.6  
7
-
5
33.0  
5
ns  
ns  
ns  
continuous burst  
tCLKH  
CLK high time  
8/16/32-word  
burst  
tCLKL  
tCR  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
7.0  
5.0  
5.0  
Max  
3
2.5  
2.5  
ns  
tCF  
Note: 80 MHz applies only to the WS064J.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
91  
D a t a S h e e t  
t
CLK  
t
t
CL  
CH  
CLK  
t
t
CF  
CR  
Note: For WS128J (model numbers 10 and 11), and additional clock cycle is required during boundary crossing while  
in continuous read mode.  
Figure 22.2 CLK Characterization  
22.2 Synchronous/Burst Read  
Parameter  
80 MHz  
(WS064J only)  
Description  
66 MHz  
Unit  
JEDEC  
Standard  
Latency (Standard wait-state Handshake mode) for 8-Word and and  
Continuous 16-Word Burst  
tIACC  
Max  
56  
71  
ns  
tIACC  
tBACC  
tACS  
tACH  
tBDH  
tCR  
Latency (Standard wait-state Handshake mode) for 32-Word Burst  
Burst Access Time Valid Clock to Output Delay  
Address Setup Time to CLK (Note 1)  
Address Hold Time from CLK (Note 1)  
Data Hold Time from Next Clock Cycle  
Chip Enable to RDY Valid  
Max  
Max  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Min  
71  
84  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.2  
9.1  
4
5.5  
2
11.2  
11.2  
9.1  
9.1  
8
tOE  
Output Enable to Output Valid  
Chip Enable to High Z  
tCEZ  
tOEZ  
tCES  
tRDYS  
tRACC  
tAAS  
tAAH  
tCAS  
tAVC  
tAVD  
tACC  
tCKA  
tCKZ  
tOES  
Output Enable to High Z  
8
CE# Setup Time to CLK  
4
RDY Setup Time to CLK  
4
Ready Access Time from CLK  
Address Setup Time to AVD# (Note 1)  
Address Hold Time to AVD# (Note 1)  
CE# Setup Time to AVD#  
11.2  
9.1  
4
5.5  
0
AVD# Low to CLK  
4
AVD# Pulse  
10  
55  
9.1  
8
Access Time  
55  
CLK to access resume  
11.2  
CLK to High Z  
Output Enable Setup Time  
4
Notes:  
1. Addresses are latched on the first of either the active edge of CLK or the rising edge of AVD#.  
92  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
tCEZ  
tCES  
7 cycles for initial access shown.  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
tBDH  
Addresses  
Data  
Aa  
tBACC  
tACH  
Hi-Z  
tIACC  
tACC  
Da  
Da + 1  
Da + n  
tOEZ  
OE#  
RDY  
tCR  
tRACC  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from  
two cycles to seven cycles.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycle when wait state is set to less than 5 or  
three additional clock cycle when wait state is set to 6 & 7 are inserted, and is indicated by RDY.  
3. The device is in synchronous mode.  
Figure 22.3 CLK Synchronous Burst Mode Read (rising active CLK)  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
93  
D a t a S h e e t  
tCEZ  
4 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
tAVC  
AVD#  
tAVD  
tACS  
tBDH  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da + 1  
Da + n  
tACC  
tOEZ  
OE#  
RDY  
tRACC  
tOE  
tCR  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to four cycles. The total number of wait states can be programmed from two  
cycles to seven cycles. Clock is set for active falling edge.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycle when wait state is set to less than 5 or  
three additional clock cycle when wait state is set to 6 & 7 are inserted, clock cycle are inserted, and is indicated by RDY.  
3. The device is in synchronous mode.  
Figure 22.4 CLK Synchronous Burst Mode Read (Falling Active Clock)  
tCEZ  
7 cycles for initial access shown.  
tCAS  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tAAS  
Addresses  
Data  
Aa  
tBACC  
tAAH  
Hi-Z  
tIACC  
Da  
Da + 1  
Da + n  
tOEZ  
tACC  
tBDH  
OE#  
RDY  
tRACC  
tCR  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from  
two cycles to seven cycles. Clock is set for active rising edge.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycle are inserted, and is indicated by RDY.  
3. The device is in synchronous mode.  
Figure 22.5 Synchronous Burst Mode Read  
94  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
7 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
AC  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tOE  
tRACC  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from  
two cycles to seven cycles. Clock is set for active rising edge.  
2. If any burst address occurs at a 64-word boundary, two additional clock cycle are inserted, and is indicated by RDY.  
3. The device is in synchronous mode with wrap around.  
4. D0-D7 in data waveform indicates the order the data within a given 8-word address range, from lowest to highest.  
Starting address in figure is the 4th address in range (AC)  
Figure 22.6 8-word Linear Burst with Wrap Around  
tCEZ  
6 wait cycles for initial access shown.  
tCES  
CE#  
1
2
3
4
5
6
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da+1  
Da+2  
Da+3  
Da + n  
tBDH  
tOEZ  
tRACC  
OE#  
RDY  
tCR  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure assumes 6 wait states for initial access and synchronous read.  
2. The Set Configuration Register command sequence has been written with A18=0; device will output RDY one cycle before  
valid data.  
Figure 22.7 Linear Burst with RDY Set One Cycle Before Data  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
95  
D a t a S h e e t  
22.3 Asynchronous Mode Read  
Parameter  
80 MHz  
(WS064J only)  
Description  
66 MHz  
Unit  
JEDEC  
Standard  
tCE  
Max  
Max  
Min  
Min  
55  
55  
55  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Access Time from CE# Low  
Asynchronous Access Time  
AVD# Low Time  
tACC  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
10  
Address Setup Time to Rising Edge of AVD  
4
Address Hold Time from Rising Edge of AVD  
Output Enable to Output Valid  
Min  
Max  
Min  
Min  
Max  
Min  
5.5  
11.2  
9.1  
Read  
0
8
8
0
tOEH  
Output Enable Hold Time  
Toggle and Data# Polling  
tOEZ  
tCAS  
Output Enable to High Z  
CE# Setup Time to AVD#  
CE#  
OE#  
tOE  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
tAAVDH  
tCAS  
tAVDP  
tAAVDS  
Note: RA = Read Address, RD = Read Data.  
Figure 22.8 Asynchronous Mode Read with Latched Addresses  
96  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
CE#  
OE#  
tOE  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
Note: RA = Read Address, RD = Read Data.  
Figure 22.9 Asynchronous Mode Read  
22.4 Hardware Reset (RESET#)  
Parameter  
Description  
All Speed Options  
Unit  
JEDEC  
Std  
RESET# Pin Low (During Embedded Algorithms)  
tReady  
Max  
Max  
35  
µs  
ns  
to Read Mode (See Note)  
RESET# Pin Low (NOT During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
500  
tRP  
tRH  
RESET# Pulse Width  
Min  
Min  
Min  
500  
200  
20  
ns  
ns  
µs  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
tRPD  
Note: Not 100% tested.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
97  
D a t a S h e e t  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
CE#, OE#  
RESET#  
tReady  
tRP  
Figure 22.10 Reset Timings  
98  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
22.5 Erase/Program Operations  
Parameter  
80 MHz  
(WS064J only)  
Description  
66 MHz  
Unit  
ns  
JEDEC  
tAVAV  
Standard  
tWC  
Write Cycle Time (Note 1)  
Min  
Min  
45  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
4
0
Address Setup Time (Notes 2,  
3)  
tAVWL  
tAS  
ns  
5.5  
20  
10  
20  
0
tWLAX  
tAH  
Address Hold Time (Notes 2, 3)  
Min  
ns  
tAVDP  
tDS  
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
tDVWH  
tWHDX  
tGHWL  
Data Setup Time  
tDH  
Data Hold Time  
tGHWL  
tCAS  
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
0
0
tWHEH  
tWLWH  
tWHWL  
tCH  
0
tWP  
Write Pulse Width  
20  
20  
0
tWPH  
tSR/W  
tWHWH1  
tWHWH1  
Write Pulse Width High  
Latency Between Read and Write Operations  
Programming Operation (Note 4)  
Accelerated Programming Operation (Note 4)  
Sector Erase Operation (Notes 4, 5)  
Chip Erase Operation (Notes 4, 5)  
VACC Rise and Fall Time  
tWHWH1  
tWHWH1  
<7  
<4  
<0.2  
<104  
500  
1
tWHWH2  
tWHWH2  
Typ  
sec  
tVID  
tVIDS  
tVCS  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
VACC Setup Time (During Accelerated Programming)  
VCC Setup Time  
50  
0
tELWL  
tCS  
CE# Setup Time to WE#  
tAVSW  
tAVHW  
tAVHC  
tCSW  
AVD# Setup Time to WE#  
4
AVD# Hold Time to WE#  
4
AVD# Hold Time to CLK  
4
Clock Setup Time to WE#  
5
Notes:  
1. Not 100% tested.  
2. Asynchronous mode allows both Asynchronous and Synchronous program operation. Synchronous mode allows both  
Asynchronous and Synchronous program operation.  
3. In asynchronous program operation timing, addresses are latched on the falling edge of WE# or rising edge of AVD#. In  
synchronous program operation timing, addresses are latched on the first of either the rising edge of AVD# or the active  
edge of CLK.  
4. See the Erase and Programming Performance section for more information.  
5. Does not include the preprogramming time.  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
99  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVDP  
AVD#  
tAH  
tAS  
PA  
VA  
VA  
Addresses  
Data  
555h  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A22–A12 are don’t care during command sequence unlock cycles.  
4. CLK can be either VIL or VIH  
.
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the Configuration Register.  
Figure 22.11 Asynchronous Program Operation Timings: AVD# Latched Addresses  
100  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
Read Status Data  
CLK  
tACS  
tCSW  
AVD#  
tAVDP  
555h  
Addresses  
Data  
PA  
VA  
VA  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
tCAS  
tAVSW  
CE#  
tCH  
OE#  
WE#  
tAH  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A22–A12 are don’t care during command sequence unlock cycles.  
4. CLK can be either VIL or VIH  
.
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the Configuration Register.  
Figure 22.12 Asynchronous Program Operation Timings: WE# Latched Addresses  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
101  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
tAVCH  
Read Status Data  
CLK  
tACS  
tCSW  
AVD#  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
tCAS  
tAVSW  
CE#  
tCH  
OE#  
WE#  
tAH  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A22–A12 are don’t care during command sequence unlock cycles.  
4. Addresses are latched on the first of either the rising edge of AVD# or the active edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration Register. The  
Configuration Register must be set to the Synchronous Read Mode.  
Figure 22.13 Synchronous Program Operation Timings: WE# Latched Addresses  
102  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
tAVCH  
Read Status Data  
CLK  
tAS  
tAH  
AVD#  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Complete  
A0h  
PD  
tDS  
tDH  
Progress  
tCAS  
CE#  
tCH  
OE#  
WE#  
tCSW  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A22–A12 are don’t care during command sequence unlock cycles.  
4. Addresses are latched on the first of either the rising edge of AVD# or the active edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration Register. The  
Configuration Register must be set to the Synchronous Read Mode.  
Figure 22.14 Synchronous Program Operation Timings: CLK Latched Addresses  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
103  
D a t a S h e e t  
Erase Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVDP  
AVD#  
tAH  
tAS  
SA  
555h for  
chip erase  
VA  
VA  
Addresses  
Data  
2AAh  
10h for  
chip erase  
In  
Complete  
55h  
30h  
Progress  
tDS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH2  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. SA is the sector address for Sector Erase.  
2. Address bits A22–A12 are don’t cares during unlock cycles in the command sequence.  
Figure 22.15 Chip/Sector Erase Command Sequence  
104  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
CE#  
AVD#  
WE#  
Addresses  
Data  
PA  
Don't Care  
A0h  
Don't Care  
PD  
Don't Care  
OE#  
ACC  
tVIDS  
1 μs  
V
V
ID  
tVID  
or V  
IL  
IH  
Note: Use setup and hold times from conventional program operation.  
Figure 22.16 Accelerated Unlock Bypass Programming Timing  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
Addresses  
VA  
VA  
Status Data  
Status Data  
Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, and Data# Polling will output true data.  
3. While in Asynchronous mode, RDY will be low while the device is in embedded erase or programming mode.  
Figure 22.17 Data# Polling Timings (During Embedded Algorithm)  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
105  
D a t a S h e e t  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
Addresses  
Data  
VA  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, the toggle bits will stop toggling.  
3. While in Asynchronous mode, RDY will be low while the device is in embedded erase or programming mode.  
Figure 22.18 Toggle Bit Timings (During Embedded Algorithm)  
CE#  
CLK  
AVD#  
Addresses  
OE#  
VA  
VA  
tIACC  
tIACC  
Data  
Status Data  
Status Data  
RDY  
Notes:  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, the toggle bits will stop toggling.  
3. RDY is active with data (A18 = 0 in the Configuration Register). When A18 = 1 in the Configuration Register, RDY is active  
one clock cycle before data.  
Figure 22.19 Synchronous Data Polling Timings/Toggle Bit Timings  
106  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Erase  
Erase Suspend  
Suspend  
Program  
Complete  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 22.20 DQ2 vs. DQ6  
22.6 Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RDY High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
RDY  
tRRB  
tRSP  
Figure 22.21 Temporary Sector Unprotect Timing Diagram  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
107  
D a t a S h e e t  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
Sector Protect: 150 µs  
Sector Unprotect: 1.5 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 22.22 Sector/Sector Block Protect and Unprotect Timing Diagram  
Address boundary occurs every 64 words, beginning at address  
00003Fh: 00007Fh, 0000BFh, etc.) Address 000000h is also a boundary crossing.  
C60  
C61  
3D  
C62  
3E  
C63  
3F  
C63  
3F  
C63  
3F  
C63  
3F  
C64  
40  
C65  
41  
C66  
42  
CLK  
3C  
Address (hex)  
(stays high)  
AVD#  
RDY(1)  
RDY(2)  
tRACC  
tRACC  
latency  
tRACC  
tRACC  
latency  
Data  
D60  
D61  
D62  
D63  
D63  
D64  
D65  
D66  
OE#,  
CE#f  
(stays low)  
Notes:  
1. RDY active with data (A18 = 0 in the Configuration Register).  
2. RDY active one clock cycle before data (A18 = 1 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60. Figure shows the device not  
crossing a bank in the process of performing an erase or program.  
4. If the starting address latched in is either 3Eh or 3Fh (or some 64 multiple of either), there is no additional 2 cycle latency  
at the boundary crossing.  
Figure 22.23 Latency with Boundary Crossing  
108  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Address boundary occurs every 64 words, beginning at address  
00003Fh: (00007Fh, 0000BFh, etc.) Address 000000h is also a boundary crossing.  
C60  
C61  
3D  
C62  
3E  
C63  
3F  
C63  
3F  
C63  
3F  
C63  
3F  
C64  
40  
C65  
41  
C66  
42  
CLK  
3C  
Address (hex)  
(stays high)  
AVD#  
RDY(1)  
RDY(2)  
tRACC  
tRACC  
latency  
tRACC  
tRACC  
latency  
Data  
Invalid  
Read Status  
D63  
D60  
D61  
D62  
D63  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY active with data (A18 = 0 in the Configuration Register).  
2. RDY active one clock cycle before data (A18 = 1 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60. Figure shows the device crossing  
a bank in the process of performing an erase or program.  
Figure 22.24 Latency with Boundary Crossing into Program/Erase Bank  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
109  
D a t a S h e e t  
Data  
D0  
D1  
Rising edge of next clock cycle  
following last wait state triggers  
next burst data  
AVD#  
OE#  
total number of clock cycles  
following AVD# falling edge  
1
2
0
3
1
4
5
6
4
7
5
CLK  
2
3
number of clock cycles  
programmed  
Wait State Decoding Addresses:  
A14, A13, A12 = “111” Reserved  
A14, A13, A12 = “110” Reserved  
A14, A13, A12 = “101” 5 programmed, 7 total  
A14, A13, A12 = “100” 4 programmed, 6 total  
A14, A13, A12 = “011” 3 programmed, 5 total  
A14, A13, A12 = “010” 2 programmed, 4 total  
A14, A13, A12 = “001” 1 programmed, 3 total  
A14, A13, A12 = “000” 0 programmed, 2 total  
Note: Figure assumes address D0 is not at an address boundary, active clock edge is rising, and wait state is set to “101”.  
Figure 22.25 Example of Wait States Insertion  
110  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE#  
OE#  
tOE  
tGHWL  
tOEH  
WE#  
Data  
tWPH  
tOEZ  
tWP  
tDS  
tACC  
tOEH  
tDH  
PD/30h  
RD  
RD  
AAh  
tSR/W  
RA  
Addresses  
PA/SA  
tAS  
RA  
555h  
AVD#  
tAH  
Note: Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” while  
checking the status of the program or erase operation in the “busy” bank. The system should read status twice to ensure  
valid information.  
Figure 22.26 Back-to-Back Read/Write Cycle Timings  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
111  
D a t a S h e e t  
23 Erase and Programming Performance  
Parameter  
Typ (Note 1)  
<0.4  
Max (Note 2)  
Unit  
Comments  
32 Kword  
4 Kword  
128J  
<2  
<2  
Sector Erase Time  
s
<0.2  
Excludes 00h programming  
prior to erasure (Note 4)  
<103  
Chip Erase Time  
s
064J  
<53  
Excludes system level  
overhead (Note 5)  
Word Programming Time  
<6  
<100  
<67  
µs  
µs  
Accelerated Word Programming Time  
<4  
128J  
<50.4  
<25.2  
<33  
Chip Programming Time  
(Note 3)  
Excludes system level  
overhead (Note 5)  
s
s
064J  
128J  
Accelerated Chip  
Programming Time  
064J  
<17  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V VCC, 100K cycles. Additionally,  
programming typicals assumes a checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 1.65 V, 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command.  
See Table 14.5, “Command Definitions,” on page 77 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
112  
S29WS128J/064J  
S29WS-J_M0_A4 June 24, 2005  
D a t a S h e e t  
24 Flash Revision Summary  
24.1 Revision A0 (July 22, 2004)  
Initial release.  
24.2 Revision A1 (October 6, 2004)  
Cosmetic changes.  
24.3 Revision A2 (December 10, 2004)  
Remove all in terms of 104 MHz speed bin.  
Change statement of command during time-out period of sector erase.  
Change exit command statement about password program command  
Change exit command statement about password protection mode locking bit program command  
Change exit command statement about persistentsector protection mode locking bit program  
command  
Change exit command statement about Secured Silicon sector protection bit program command  
Change exit command statement about PPB program command  
Change exit command statement about All PPB erase command  
Change exit command statement about PPB/PPB lock bit status command  
Change PPB command table.  
Remove note 19 in command table.  
Change waveform about boundary crossing.  
Remove DC spec output disable status in synchronous read mode.  
Change the word from SMPL to PL , from OPBP to OW.  
Change the statement PPB Lock Bit Set Command.  
Delete VIO pin  
Added description at “RDY Configuration” in page56  
Modified tAH in Asynchronous mode to 20ns in page89  
24.4 Revision A3 (February 19, 2005)  
Change "Secsi" to "Secured Silicon"  
Add migration statement.  
Modify "Sync Latency", "Asyn Access time" @80MHz  
Update "Product Selector Guide" on tACC, tCE, tIACC@80MHz  
Modify Table 15( "Wait States for Standard Wait-state Handshaking")  
Change "Supply Voltage" to "1.70V to 1.95V for 80MHz parts  
Modify "CLK Characterization" table  
24.5 Revision A4 (June 24, 2005)  
Added information for "Revision 1" for boundary crossing while in Continuous read mode  
Removed all references to WS128J 80 MHz and WS064J Industrial grades  
June 24, 2005 S29WS-J_M0_A4  
S29WS128J/064J  
113  
CellularRAM Type 2  
64 Megabit  
Burst CellularRAM  
ADVANCE  
INFORMATION  
Features  
— Sixteen-word page size  
!
Single device supports asynchronous, page,  
and burst operations  
— Interpage Read access: 70ns  
— Intrapage Read access: 20ns  
!
VCC, VCCQVoltages  
!
!
Low-Power Consumption  
— Asynchronous Read < 25 mA  
— Intrapage Read < 15 mA  
— 1.70 V–1.95 V VCC  
— 1.70 V–3.30 V VCCQ  
Random Access Time: 70 ns  
!
!
— Initial access, burst Read < 35 mA  
— Continuous burst Read < 15m A  
— Standby: 120 µA  
Burst Mode Write Access  
— Continuous burst  
!
!
Burst Mode Read Access  
— 4, 8, or 16 words, or continuous burst  
— Deep power-down < 10 µA  
Low-Power Features  
Temperature Compensated Refresh (TCR)  
— Partial Array Refresh (PAR)  
Page Mode Read Access  
— Deep Power-Down (DPD) Mode  
General Description  
CellularRAM™ products are High-speed, CMOS dynamic random access memories developed for low-  
power, portable applications. These devices include an industry standard burst mode Flash interface that  
dramatically increases Read/Write bandwidth compared with other low-power SRAM or Pseudo SRAM  
offerings.  
To operate seamlessly on a burst Flash bus, CellularRAM products incorporate a transparent self-refresh  
mechanism. The hidden refresh requires no additional support from the system memory controller and  
has no significant impact on device Read/Write performance.  
Two user-accessible control registers define device operation. The bus configuration register (BCR) de-  
fines how the CellularRAM device interacts with the system memory bus and is nearly identical to its  
counterpart on burst mode Flash devices. The refresh configuration register (RCR) is used to control how  
refresh is performed on the DRAM array. These registers are automatically loaded with default settings  
during power-up and can be updated anytime during normal operation.  
Special attention has been focused on standby current consumption during self refresh. CellularRAM prod-  
ucts include three mechanisms to minimize standby current. Partial array refresh (PAR) enables the  
system to limit refresh to only that part of the DRAM array that contains essential data. Temperature com-  
pensated refresh (TCR) adjusts the refresh rate to match the device temperature—the refresh rate  
decreases at lower temperatures to minimize current consumption during standby. Deep power-down  
(DPD) enables the system to halt the refresh operation altogether when no vital information is stored in  
the device. The system-configurable refresh mechanisms are accessed through the RCR.  
Publication Number CellRam_03 Revision A Amendment 0 Issue Date March 9, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do  
not design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
25 Functional Block Diagram  
64M: A[21:0]  
Address Decode  
Logic  
Input/  
Output  
MUX  
and  
Buffers  
DQ[7:0]  
DRAM  
MEMORY  
ARRAY  
DQ[15:8]  
Refresh Configuration  
Register (RCR)  
Bus Configuration  
Register (BCR)  
CE#  
WE#  
OE#  
CLK  
Control  
Logic  
ADV#  
CRE  
WAIT  
LB#  
UB#  
Note: Functional block diagrams illustrate simplified device operation. See truth table, ball descriptions, and timing di-  
agrams for detailed information.  
Figure 25.1 Functional Block Diagram  
116  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 25.1 Signal Descriptions  
Symbol  
Type  
Description  
Address Inputs: Inputs for addresses during Read and Write operations. Addresses are  
internally latched during Read and Write cycles. The address lines are also used to define  
the value to be loaded into the BCR or the RCR.  
64M: A[21:0]  
Input  
Clock: Synchronizes the memory to the system operating frequency during synchronous  
operations. When configured for synchronous operation, the address is latched on the first  
rising CLK edge when ADV# is active. CLK is static (High or Low) during asynchronous  
access Read and Write operations and during Page Read Access operations.  
CLK  
Input  
Input  
Address Valid: Indicates that a valid address is present on the address inputs. Addresses  
can be latched on the rising edge of ADV# during asynchronous Read and Write operations.  
ADV# can be held Low during asynchronous Read and Write operations.  
ADV#  
CRE  
CE#  
Input  
Input  
Configuration Register Enable: When CRE is High, Write operations load the RCR or BCR.  
Chip Enable: Activates the device when Low. When CE# is High, the device is disabled and  
goes into standby or deep power-down mode.  
Output Enable: Enables the output buffers when Low. When OE# is High, the output buffers  
are disabled.  
OE#  
WE#  
Input  
Input  
Write Enable: Determines if a given cycle is a Write cycle. If WE# is Low, the cycle is a Write  
to either a configuration register or to the memory array.  
LB#  
UB#  
Input  
Input  
Lower Byte Enable. DQ[7:0]  
Upper Byte Enable. DQ[15:8]  
Input/  
Output  
DQ[15:0]  
Data Inputs/Outputs.  
Wait: Provides data-valid feedback during burst Read and Write operations. The signal is  
gated by CE#. Wait is used to arbitrate collisions between refresh and Read/Write  
operations. Wait is asserted when a burst crosses a row boundary. Wait is also used to mask  
the delay associated with opening a new internal page. Wait is asserted and should be  
ignored during asynchronous and page mode operations. Wait is High-Z when CE# is High.  
Wait  
Output  
VCC  
VCCQ  
VSS  
Supply  
Supply  
Supply  
Supply  
Device Power Supply: (1.7V–1.95V) Power supply for device core operation.  
I/O Power Supply: (1.7V–3.30V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VSSQ  
VSSQ must be connected to ground.  
Note: The CLK and ADV# inputs can be tied to V if the device is always operating in asynchronous or page mode.  
SS  
Wait will be asserted but should be ignored during asynchronous and page mode operations.  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
117  
A d v a n c e I n f o r m a t i o n  
Table 25.2 Bus Operations—Asynchronous Mode  
CLK  
(Note 1) ADV#  
LB#/  
UB#  
Wait  
(Note 2)  
DQ[15:0]  
(Note 3)  
Mode  
Read  
Power  
Active  
Active  
Standby  
Idle  
CE#  
L
OE#  
L
WE#  
CRE  
Notes  
4
X
X
X
X
L
L
H
L
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
Write  
L
X
4
Standby  
No Operation  
X
X
H
X
X
X
X
X
5, 6  
4, 6  
L
X
Configuration  
Register  
Active  
X
X
L
L
H
X
L
H
X
X
X
Low-Z  
High-Z  
High-Z  
High-Z  
Deep  
Power-down  
DPD  
X
H
X
7
Notes:  
1. CLK may be High or Low, but must be static during synchronous Read, synchronous Write, burst suspend, and DPD modes;  
and to achieve standby power during standby and active modes.  
2. The Wait polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (Low), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0] are  
affected. When only UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external  
influence.  
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) to achieve standby current.  
7. DPD is maintained until RCR is reconfigured.  
118  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 25.3 Bus Operations—Burst Mode  
CLK  
(Note 1) ADV#  
LB#/  
UB#  
Wait  
(Note 2)  
DQ[15:0]  
(Note 3)  
Mode  
Power  
Active  
Active  
Standby  
Idle  
CE#  
L
OE#  
L
WE#  
CRE  
Notes  
4
Async Read  
Async Write  
Standby  
X
X
X
X
L
L
H
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
L
X
L
4
X
X
H
X
X
X
X
5, 6  
4, 6  
No Operation  
L
X
X
Initial Burst Read  
Initial Burst Write  
Active  
Active  
L
L
L
L
X
H
H
L
L
L
L
Low-Z  
Low-Z  
Data-Out  
Data-In  
4, 8  
4, 8  
X
Data-In or  
Data-Out  
Burst Continue  
Burst Suspend  
Active  
Active  
Active  
H
X
L
L
L
L
X
H
H
X
X
L
L
L
X
X
X
Low-Z  
Low-Z  
Low-Z  
4, 8  
4, 8  
8
X
X
High-Z  
High-Z  
Configuration  
Register  
H
Deep  
Power-Down  
DPD  
X
H
X
X
X
X
High-Z  
High-Z  
7
Notes:  
1. CLK may be High or Low, but must be static during asynchronous Read, synchronous Write, burst suspend, and DPD modes;  
and to achieve standby power during standby and active modes.  
2. The Wait polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (Low), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0] are  
affected. When only UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external  
influence.  
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) to achieve standby current.  
7. DPD is maintained until RCR is reconfigured.  
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
119  
A d v a n c e I n f o r m a t i o n  
26 Functional Description  
The CellularRAM bus interface supports both asynchronous and burst mode transfers. Page mode  
accesses are also included as a bandwidth-enhancing extension to the asynchronous Read  
protocol.  
26.1 Power-Up Initialization  
CellularRAM products include an on-chip voltage sensor used to launch the power-up initialization  
process. Initialization will configure the BCR and the RCR with their default settings (see  
Table 29.1 and Table 29.4). VCC and VCCQ must be applied simultaneously. When they reach a  
stable level at or above 1.7V, the device will require 150 µs to complete its self-initialization pro-  
cess. During the initialization period, CE# should remain High. When initialization is complete, the  
device is Ready for normal operation.  
>
PU  
V
= 1.7 V  
t
150 μs  
CC  
Device ready for  
normal operation  
V
CC  
Device Initialization  
V
Q
CC  
Figure 26.1 Power-Up Initialization Timing  
27 Bus Operating Modes  
CellularRAM products incorporate a burst mode interface found on Flash products targeting low-  
power, wireless applications. This bus interface supports asynchronous, page mode, and burst  
mode Read and Write transfers. The specific interface supported is defined by the value loaded  
into the BCR. Page mode is controlled by the refresh configuration register (RCR[7]).  
27.1 Asynchronous Mode  
CellularRAM products power up in the asynchronous operating mode. This mode uses the industry  
standard SRAM control bus (CE#, OE#, WE#, LB#/ UB#). Read operations (Figure 27.1) are ini-  
tiated by bringing CE#, OE#, and LB#/UB# Low while keeping WE# High. Valid data will be driven  
out of the I/Os after the specified access time has elapsed. Write operations (Figure 27.2) occur  
when CE#, WE#, and LB#/ UB# are driven Low. During asynchronous Write operations, the OE#  
level is a don't care, and WE# will override OE#. The data to be written is latched on the rising  
edge of CE#, WE#, or LB#/UB# (whichever occurs first). Asynchronous operations (page mode  
disabled) can either use the ADV input to latch the address, or ADV can be driven Low during the  
entire Read/Write operation.  
During asynchronous operation, the CLK input must be held static (High or Low, no transitions).  
Wait will be driven while the device is enabled and its state should be ignored. WE# low time must  
be limited to tCEM  
.
120  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
RC  
= READ Cycle Time  
Don't Care  
Note: ADV must remain Low for page mode operation.  
Figure 27.1 Read Operation (ADV# Low)  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
= WRITE Cycle Time  
WC  
Don't Care  
Figure 27.2 Write Operation (ADV# Low)  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
121  
A d v a n c e I n f o r m a t i o n  
27.2 Page Mode Read Operation  
Page mode is a performance-enhancing extension to the legacy asynchronous Read operation. In  
page mode-capable products, an initial asynchronous Read access is performed, then adjacent  
addresses can be Read quickly by simply changing the low-order address. Addresses A[3:0] are  
used to determine the members of the 16-address CellularRAM page. Addresses A[4] and higher  
must remain fixed during the entire page mode access. Figure 27.3 shows the timing for a page  
mode access. Page mode takes advantage of the fact that adjacent addresses can be Read in a  
shorter period of time than random addresses. Write operations do not include comparable page  
mode functionality.  
During asynchronous page mode operation, the CLK input must be static (HIGH or LOW - no tran-  
sitions). CE# must be driven High upon completion of a page mode access. WAIT is driven while  
the device is enabled and its state should be ignored. Page mode is enabled by setting RCR[7] to  
High. ADV must be driven Low during all page mode Read accesses. The CE# LOW time is limited  
by refresh considerations. CE# must not stay LOW longer than tCEM  
.
CE#  
OE#  
WE#  
ADDRESS  
ADD[0]  
ADD[1] ADD[2] ADD[3]  
t
AA  
t
t
t
APA  
APA  
APA  
D[0]  
D[1]  
D[2]  
D[3]  
DATA  
LB#/UB#  
Don't Care  
Figure 27.3 Page Mode Read Operation (ADV# Low)  
27.3 Burst Mode Operation  
Burst mode operations enable High-speed synchronous Read and Write operations. Burst opera-  
tions consist of a multi-clock sequence that must be performed in an ordered fashion. After CE#  
goes Low, the address to access is latched on the rising edge of the next clock that ADV# is Low.  
During this first clock rising edge, WE# indicates whether the operation is going to be a Read  
(WE# = High, Figure 27.4) or Write (WE# = Low, Figure 27.5).  
The size of a burst can be specified in the BCR either as a fixed length or continuous. Fixed-length  
bursts consist of four, eight, or sixteen words. Continuous bursts have the ability to start at a  
specified address and burst through the entire memory.  
The latency count stored in the BCR defines the number of clock cycles that elapse before the  
initial data value is transferred between the processor and CellularRAM device.  
The WAIT output is asserted as soon as CE# goes LOW, and is de-asserted to indicate when data  
is to be transferred into (or out of) the memory. WAIT is again asserted if the burst crosses the  
boundary between 128-word rows. Once the CellularRAM device has restored the previous row's  
122  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
data and accessed the next row, Wait will be deasserted and the burst can continue (see  
Figure 33.9).  
To access other devices on the same bus without the timing penalty of the initial latency for a new  
burst, burst mode can be suspended. Bursts are suspended by stopping CLK. CLK can be stopped  
High or Low. If another device will use the data bus while the burst is suspended, OE# should be  
taken High to disable the CellularRAM outputs; otherwise, OE# can remain Low. Note that the  
Wait output will continue to be active, and as a result no other devices should directly share the  
Wait connection to the controller. To continue the burst sequence, OE# is taken Low, then CLK is  
restarted after valid data is available on the bus.  
The CE# low time is limited by refresh considerations. CE# must not stay low longer than tCEM  
unless row boundaries are crossed at least every tCEM. If a burst suspension causes CE# to remain  
Low for longer than tCEM, CE# should be taken High and the burst restarted with a new CE# Low/  
ADV# low cycle.  
CLK  
Address  
Valid  
A[22:0]  
ADV#  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't care  
Undefined  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); Wait active Low; Wait asserted dur-  
ing delay.  
Figure 27.4 Burst Mode Read (4-word burst)  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
123  
A d v a n c e I n f o r m a t i o n  
CLK  
A[22:0]  
ADV#  
Address  
Valid  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
Don't care  
WRITE Burst Identified  
(WE# = LOW)  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); Wait active Low; Wait asserted dur-  
ing delay.  
Figure 27.5 Burst Mode Write (4-word burst)  
27.4 Mixed-Mode Operation  
The device can support a combination of synchronous Read and asynchronous Write operations  
when the BCR is configured for synchronous operation. The asynchronous Write operation re-  
quires that the clock (CLK) remain static (High or Low) during the entire sequence. The ADV#  
signal can be used to latch the target address, or it can remain Low during the entire Write oper-  
ation. CE# can remain Low when transitioning between mixed-mode operations with fixed latency  
enabled. Note that the tCKA period is the same as a Read or Write cycle. This time is required to  
ensure adequate refresh. Mixed-mode operation facilitates a seamless interface to legacy burst  
mode Flash memory controllers. See Figure 33.17, Asynchronous Write Followed by Burst Read  
(timing diagram).  
27.5 Wait Operation  
The Wait output on a CellularRAM device is typically connected to a shared, system-level Wait sig-  
nal (Figure 27.6). The shared Wait signal is used by the processor to coordinate transactions with  
multiple memories on the synchronous bus.  
External  
Pull-Up/  
Pull-Down  
Resistor  
CellularRAM  
WAIT  
READY  
WAIT  
WAIT  
Other  
Other  
Device  
Device  
Processor  
Figure 27.6 Wired or Wait Configuration  
124  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Once a Read or Write operation has been initiated, Wait goes active to indicate that the Cellular-  
RAM device requires additional time before data can be transferred. For Read operations, Wait will  
remain active until valid data is output from the device. For Write operations, Wait will indicate to  
the memory controller when data will be accepted into the CellularRAM device. When Wait tran-  
sitions to an inactive state, the data burst will progress on successive clock edges.  
CE# must remain asserted during Wait cycles (Wait asserted and Wait configuration BCR[8] = 1).  
Bringing CE# High during Wait cycles may cause data corruption. (Note that for BCR[8] = 0, the  
actual Wait cycles end one cycle after Wait de-asserts, and for row boundary crossings, start one  
cycle after the Wait signal asserts.)  
The WAIT output also performs an arbitration role when a Read or Write operation is launched  
while an on-chip refresh is in progress. If a collision occurs, the Wait pin is asserted for additional  
clock cycles until the refresh has completed (Figure 27.7 and Figure 27.8). When the refresh op-  
eration has completed, the Read or Write operation will continue normally.  
Wait is also asserted when a continuous Read or Write burst crosses the boundary between 128-  
word rows. The Wait assertion allows time for the new row to be accessed, and permits any pend-  
ing refresh operations to be performed.  
27.6 LB#/UB# Operation  
The LB# enable and UB# enable signals support byte-wide data transfers. During Read opera-  
tions, the enabled byte(s) are driven onto the DQs. The DQs associated with a disabled byte are  
put into a High-Z state during a Read operation. During Write operations, any disabled bytes will  
not be transferred to the RAM array and the internal value will remain unchanged. During an asyn-  
chronous Write cycle, the data to be written is latched on the rising edge of CE#, WE#, LB#, or  
UB#, whichever occurs first.  
When both the LB# and UB# are disabled (High) during an operation, the device will disable the  
data bus from receiving or transmitting data. Although the device will seem to be deselected, it  
remains in an active mode as long as CE# remains Low.  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 27.7 Refresh Collision During Read Operation  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
125  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 27.8 Refresh Collision During Write Operation  
28 Low-Power Operation  
28.1 Standby Mode Operation  
During standby, the device current consumption is reduced to the level necessary to perform the  
DRAM refresh operation. Standby operation occurs when CE# is High.  
The device will enter a reduced power state upon completion of a Read or Write operation, or  
when the address and control inputs remain static for an extended period of time. This mode will  
continue until a change occurs to the address or control inputs.  
28.2 Temperature Compensated Refresh  
Temperature compensated refresh (TCR) is used to adjust the refresh rate depending on the de-  
vice operating temperature. DRAM technology requires increasingly frequent refresh operation to  
maintain data integrity as temperatures increase. More frequent refresh is required due to in-  
creased leakage of the DRAM capacitive storage elements as temperatures rise. A decreased  
refresh rate at lower temperatures will facilitate a savings in standby current.  
TCR allows for adequate refresh at four different temperature thresholds (+15°C, +45°C, +70°C,  
and +85°C). The setting selected must be for a temperature higher than the case temperature  
of the CellularRAM device. For example, if the case temperature is 50°C, the system can minimize  
self refresh current consumption by selecting the 70°C setting. The +15°C and +45°C settings  
would result in inadequate refreshing and cause data corruption.  
126  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
28.3 Partial Array Refresh  
Partial array refresh (PAR) restricts refresh operation to a portion of the total memory array. This  
feature enables the device to reduce standby current by refreshing only that part of the memory  
array required by the host system. The refresh options are full array, one-half array, one-quarter  
array, three-quarter array, or none of the array. The mapping of these partitions can start at either  
the beginning or the end of the address map (Table 29.5). Read and Write operations to address  
ranges receiving refresh will not be affected. Data stored in addresses not receiving refresh will  
become corrupted. When re-enabling additional portions of the array, the new portions are avail-  
able immediately upon writing to the RCR.  
28.4 Deep Power-Down Operation  
Deep power-down (DPD) operation disables all refresh-related activity. This mode is used if the  
system does not require the storage provided by the CellularRAM device. Any stored data will be-  
come corrupted when DPD is enabled. When refresh activity has been re-enabled by rewriting the  
RCR, the CellularRAM device will require 150µs to perform an initialization procedure before nor-  
mal operations can resume. During this 150µs period, the current consumption will be higher than  
the specified standby levels, but considerably lower than the active current specification.  
DPD cannot be enabled or disabled by writing to the RCR using the software access sequence;  
the RCR should be accessed using CRE instead.  
29 Configuration Registers  
Two user-accessible configuration registers define the device operation. The bus configuration  
register (BCR) defines how the CellularRAM interacts with the system memory bus and is nearly  
identical to its counterpart on burst mode Flash devices. The refresh configuration register (RCR)  
is used to control how refresh is performed on the DRAM array. These registers are automatically  
loaded with default settings during power-up, and can be updated any time the devices are op-  
erating in a standby state.  
29.1 Access Using CRE  
The configuration registers are loaded using either a synchronous or an asynchronous operation  
when the configuration register enable (CRE) input is High (see Figure 29.2). When CRE is Low,  
a Read or Write operation will access the memory array. The register values are written via ad-  
dress pins A[21:0]. In an asynchronous Write, the values are latched into the configuration  
register on the rising edge of ADV#, CE#, or WE#, whichever occurs first; LB# and UB# are Don’t  
Care. The BCR is accessed when A[19] is High; the RCR is accessed when A[19] is Low.  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
127  
A d v a n c e I n f o r m a t i o n  
CLK  
A[21:0]  
(except A19)  
OPCODE  
ADDRESS  
ADDRESS  
t
t
AVH  
t
AVS  
Select Control Register  
A191  
CRE  
t
AVS  
AVH  
t
VPH  
ADV#  
CE#  
t
VP  
t
CBPH  
Initiate Control Register Access  
t
CW  
OE#  
t
WP  
Write Address Bus Value  
to Control Register  
WE#  
LB#/UB#  
DQ[15:0]  
DATA VALID  
DON’T CARE  
Note: A[19] = LOW to load RCR; A[19] = HIGH to load BCR.  
Figure 29.1 Configuration Register WRITE in Asynchronous Mode Followed by READ  
ARRAY Operation  
CLK  
Latch Control Register Value  
A[21:0]  
(except A19)  
ADDRESS  
ADDRESS  
OPCODE  
t
HD  
t
Latch Control Register Address  
SP  
A192  
CRE  
t
SP  
t
t
HD  
t
SP  
ADV#  
HD  
3
t
CBPH  
t
CSP  
CE#  
OE#  
t
SP  
t
WE#  
HD  
LB#/UB#  
t
CW  
WAIT  
High-Z  
High-Z  
Data  
Valid  
DQ[15:0]  
DON’T CARE  
Note: A[19] = Low to load RCR; A[19] = High to load BCR.  
Figure 29.2 Configuration Register WRITE in Synchronous Mode Followed  
by READ ARRAY Operation  
128  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
29.2 Software Access  
Software access of the configuration registers uses a sequence of asynchronous READ and asyn-  
chronous WRITE operations. The contents of the configuration registers can be read or modified  
using the software sequence.  
The configuration registers are loaded using a four step sequence consisting of two asynchronous  
READ operations followed by two asynchronous WRITE operations (see Figure 29.3). The read se-  
quence is virtually identical except that an asynchronous READ is performed during the fourth  
operation (see Figure 29.4). Note that a third READ cycle cancels the access sequence.  
The address used during all READ and WRITE operations is the highest address of the CellularRAM  
device being accessed (3FFFFFh for 64Mb); the content at this address is changed by using this  
sequence (note that this is a deviation from the CellularRAM specification).  
The data value presented during the third operation (WRITE) in the sequence defines whether the  
BCR or the RCR is to be accessed. If the data is 0000h, the sequence will access the RCR; if the  
data is 0001h, the sequence will access the BCR. During the fourth operation, the data bus is used  
to transfer data in to or out of the configuration registers.  
The use of the software sequence does not affect the ability to perform the standard (CRE-con-  
trolled) method of loading the configuration registers. However, the software nature of this access  
mechanism eliminates the need for the control register enable (CRE) pin. If the software mecha-  
nism is used, the CRE pin can simply be tied to VSS. The port line often used for CRE control  
purposes is no longer required.  
Software access of the RCR should not be used to enter or exit DPD.  
READ  
READ  
WRIT1E  
WRITE  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
CE#  
OE#  
WE#  
LB#/UB#  
CRVALUE  
IN  
DATA  
XXXXh  
XXXXh  
RCR0:000h  
BCR0:001h  
DON'TCARE  
Notes:  
1. The WRITE on the third cycle must be CE# controlled.  
Figure 29.3 Load Configuration Register  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
129  
A d v a n c e I n f o r m a t i o n  
READ  
READ  
WRITE 1  
READ  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
CE#  
NOTE 2  
OE#  
WE#  
LB#/UB#  
CRValue  
Out  
DATA  
XXXXh  
XXXXh  
RCR0:000h  
BCR0:001h  
DON'TCARE  
Notes:  
1. The WRITE on the third cycle must be CE# controlled.  
2. CE# must be HIGH for 150ns before performing the cycle that reads a configura-  
tion register.  
Figure 29.4 Read Configuration Register  
29.3 Bus Configuration Register  
The BCR defines how the CellularRAM device interacts with the system memory bus. Page mode  
operation is enabled by a bit contained in the RCR. Table 29.1 below describes the control bits in  
the BCR. At power-up, the BCR is set to 9D4Fh.  
The BCR is accessed using CRE and A[19] High, or through the configuration register software  
sequence with DQ = 0001h on the third cycle.  
130  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 29.1 Bus Configuration Register Definition  
A[21:20]A19 A[18:16] A15  
A14 A13A12A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
3
A2A1A0  
21–20  
19  
18–16  
15  
14  
13 12 11  
10  
9
8
7
6
5
4
2
1
0
Register  
Select  
Operating  
Mode  
Latency  
Counter  
WAIT  
Polarity  
WAIT  
Configuration (WC)  
Clock  
Output  
Burst  
Burst  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Configuration (CC) Impedance  
Wrap (BW)*Length (BL)*  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
All must be set to "0"  
BCR[13]BCR[12] BCR[11]  
Latency Counter  
Code 0–Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Code 1–Reserved  
Code  
Code  
2
3
(Default)  
Code 4–Reserved  
Code 5–Reserved  
Code 6–Reserved  
Code 7–Reserved  
BCR[3]  
0
Burst Wrap (Note 1)  
Burst wraps within the burst length  
Burst no wrap (default)  
1
BCR[10]  
0
WAIT Polarity  
Active LOW  
1
Active HIGH (default)  
Output Impedance  
BCR[5]  
Full Drive (default)  
1/4 Drive  
0
1
BCR[8]  
WAIT Configuration  
Asserted during delay  
BCR[6]  
0
1
Clock Configuration  
Not supported  
Rising edge (default)  
Asserted one data cycle before delay (default)  
0
1
BCR[15]  
Operation Mode  
0
1
Synchronous burst access mode  
Asynchronous access mode (default)  
Burst Length (Note 1)  
BCR[2] BCR[1]BCR[0]  
0
0
0
1
0
1
1
1
1
0
1
1
4
8
words  
words  
BCR[19]  
Register Select  
16 words  
Continuous burst (default)  
0
1
Select RCR  
Select BCR  
Note: All burs WRITEs are continuous.  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
131  
A d v a n c e I n f o r m a t i o n  
Table 29.2 Sequence and Burst Length  
4-word  
Burst  
Starting  
Burst Wrap  
Address Length 8-word Burst Length  
16-word Burst Length  
Continuous Burst  
BCR[3] Wrap (Decimal) Linear  
Linear  
Linear  
Linear  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11-…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13-…  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3  
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4  
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
2
3
4
5
0
Yes  
6
7
14  
15  
0
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13  
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17  
3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18  
4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19  
5-6-7-8-9-10-11-12-13-…-15-16-17-18-19-20  
6-7-8-9-10-11-12-13-14-…-16-17-18-19-20-21  
7-8-9-10-11-12-13-14-…-17-18-19-20-21-22  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21…  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12…  
7-8-9-10-11-12-13…  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
1
2
2-3-4-5-6-7-8-9  
3
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
4
5
1
No  
6
7
14  
15  
14-15-16-17-18-19-…-23-24-25-26-27-28-29  
15-16-17-18-19-20-…-24-25-26-27-28-29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
29.3.1 Burst Length (BCR[2:0]): Default = Continuous Burst  
Burst lengths define the number of words the device outputs during burst Read operations. The  
device supports a burst length of 4, 8, or 16 words. The device can also be set in continuous burst  
mode where data is output sequentially without regard to address boundaries; the internal ad-  
dress wraps to 000000h if the device is read past the last address. Write bursts are always  
performed using continuous burst mode.  
29.3.2 Burst Wrap (BCR[3]): Default = No Wrap  
The burst-wrap option determines if a 4-, 8-, or 16-word Read burst wraps within the burst length  
or steps through sequential addresses. If the wrap option is not enabled, the device accesses data  
from sequential addresses without regard to burst boundaries; the internal address wraps to  
000000h if the device is read past the last address.  
132  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
29.3.3 Output Impedance (BCR[5]): Default = Outputs Use Full Drive  
Strength  
The output driver strength can be altered to full, one-half, or one-quarter strength to adjust for  
different data bus loading scenarios. The reduced-strength options are intended for stacked chip  
(Flash + CellularRAM) environments when there is a dedicated memory bus. The reduced-drive-  
strength option minimizes the noise generated on the data bus during Read operations. Normal  
output drive strength should be selected when using a discrete CellularRAM device in a more  
heavily loaded data bus environment. Outputs are configured at full drive strength during testing.  
29.3.4 Wait Configuration (BCR[8]): Default = Wait Transitions One  
Clock Before Data Valid/Invalid  
The Wait configuration bit is used to determine when Wait transitions between the asserted and  
the de-asserted state with respect to valid data presented on the data bus. The memory controller  
will use the Wait signal to coordinate data transfer during synchronous Read and Write operations.  
When BCR[8] = 0, data will be valid or invalid on the clock edge immediately after Wait transitions  
to the de-asserted or asserted state, respectively (Figure 29.5 and Figure 29.7). When A8 = 1,  
the Wait signal transitions one clock period prior to the data bus going valid or invalid  
(Figure 29.6).  
29.3.5 Wait Polarity (BCR[10]): Default = Wait Active High  
The Wait polarity bit indicates whether an asserted Wait output should be High or Low. This bit  
will determine whether the Wait signal requires a pull-up or pull-down resistor to maintain the de-  
asserted state.  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data[1]  
Data immediately valid (or invalid)  
Note: Data valid/invalid immediately after Wait transitions (BCR[8] = 0). See Figure 29.7.  
Figure 29.5 Wait Configuration (BCR[8] = 0)  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data valid (or invalid) after one clock delay  
Note: Valid/invalid data delayed for one clock after Wait transitions (BCR[8] = 1). See Figure 29.7.  
Figure 29.6 Wait Configuration (BCR[8] = 1)  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
133  
A d v a n c e I n f o r m a t i o n  
CLK  
BCR[8] = 0  
DATA VALID IN CURRENT CYCLE  
WAIT  
BCR[8] = 1  
DATA VALID IN NEXT CYCLE  
WAIT  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
Legend:  
Don't care  
Note: Non-default BCR setting: Wait active Low.  
Figure 29.7 Wait Configuration During Burst Operation  
29.3.6 Latency Counter (BCR[13:11]): Default = Three-Clock Latency  
The latency counter bits determine how many clocks occur between the beginning of a Read or  
Write operation and the first data value transferred. Latency codes from two (three clocks) to six  
(seven clocks) are allowed (see Table 29.3 and Figure 29.8 below).  
Table 29.3 Variable Latency Configuration Codes  
Max Input Clk Frequency (MHz)  
Latency Configuration Code  
2 (3 clocks)  
70 ns/80 MHz  
53 (18.75 ns)  
80 (12.5 ns)  
70 ns/66 MHz  
44 (22.7 ns)  
66 (15.2 ns)  
3 (4 clocks)—default  
Note: Clock rates below 50MHz are allowed as long as t  
specifications are met.  
CSP  
V
IH  
CLK  
V
IL  
V
IH  
A[21:0]  
Valid Address  
V
IL  
V
IH  
ADV#  
A/DQ[15:0]  
A/DQ[15:0]  
V
IL  
Code 2  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 3  
(Default)  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Legend:  
Don't care  
Undefined  
Figure 29.8 Latency Counter (Variable Initial Latency, No Refresh Collision)  
134  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
29.3.7 Operating Mode (BCR[15]): Default = Asynchronous Operation  
The operating mode bit selects either synchronous burst operation or the default asynchronous  
mode of operation.  
29.4 Refresh Configuration Register  
The refresh configuration register (RCR) defines how the CellularRAM device performs its trans-  
parent self refresh. Altering the refresh parameters can dramatically reduce current consumption  
during standby mode. Page mode control is also embedded into the RCR. Table 29.4 below de-  
scribes the control bits used in the RCR. At power-up, the RCR is set to 0070h. The RCR is  
accessed using CRE and A[19] Low, or through the configuration register software access se-  
quence with DQ = 0000h on the third cycle.  
Table 29.4 Refresh Configuration Register Mapping  
A[21:20]  
A19  
A[18:8]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
21–20  
Reserved  
19  
18–8  
Reserved  
7
6
5
4
3
2
1
0
Read Configuration  
Register  
Register  
Select  
Page  
TCR  
DPD  
Reserved  
PAR  
Must be set to "0"  
All must be set to "0"  
All must be set to "0"  
RCR[19] Register Select  
RCR[2] RCR[1] RCR[0] Refresh Coverage  
0
1
Select RCR  
Select BCR  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full array (default)  
Bottom 1/2 array  
Bottom 1/4 array  
Bottom 1/8 array  
None of array  
RCR[7]  
Page Mode Enable/Disable  
Page Mode Disabled (default)  
Page Mode Enable  
0
1
Top 1/2 array  
Top 1/4 array  
Maximum Case Temp  
RCR[6]  
RCR[5]  
Top 3/4 array  
1
1
0
1
0
+85ºC (default)  
+70ºC  
0
0
1
RCR[4]  
Deep Power-Down  
DPD Enable  
+45ºC  
0
1
+15ºC  
DPD Disable (default)  
29.4.1 Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh  
The PAR bits restrict refresh operation to a portion of the total memory array. This feature allows  
the device to reduce standby current by refreshing only that part of the memory array required  
by the host system. The refresh options are full array, one-half array, one-quarter array, three-  
quarters array, or none of the array. The mapping of these partitions can start at either the be-  
ginning or the end of the address map (see Table 29.5).  
Table 29.5 64Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
Full die  
Address Space  
Size  
Density  
64Mb  
32Mb  
16Mb  
8Mb  
0
0
0
0
0
0
1
1
0
1
0
1
000000h–3FFFFFh  
000000h–2FFFFFh  
000000h–1FFFFFh  
000000h–0FFFFFh  
4 Meg x 16  
2 Meg x 16  
1 Meg x 16  
512 K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
135  
A d v a n c e I n f o r m a t i o n  
Table 29.5 64Mb Address Patterns for PAR (RCR[4] = 1) (Continued)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
None of die  
Address Space  
0
Size  
Density  
0Mb  
1
1
1
1
0
0
1
1
0
1
0
1
0 Meg x 16  
2 Meg x 16  
1 Meg x 16  
512 K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
100000h–3FFFFFh  
200000h–3FFFFFh  
300000h–3FFFFFh  
32Mb  
16Mb  
8Mb  
29.4.2 Deep Power-Down (RCR[4]): Default = DPD Disabled  
The deep power-down bit enables and disables all refresh-related activity. This mode is used if  
the system does not require the storage provided by the CellularRAM device. Any stored data will  
become corrupted when DPD is enabled. When refresh activity has been re-enabled, the Cellular-  
RAM device will require 150µs to perform an initialization procedure before normal operations can  
resume.  
Deep power-down is enabled when RCR[4] = 0, and remains enabled until RCR[4] is set to 1.  
29.4.3 Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC  
Operation  
The TCR bits allow for adequate refresh at four different temperature thresholds (+15ºC, +45ºC,  
+70ºC, and +85ºC). The setting selected must be for a temperature higher than the case tem-  
perature of the CellurlarRAM device. If the case temperature is +50ºC, the system can minimize  
self refresh current consumption by selecting the +70ºC setting. The +15ºC and +45ºC settings  
would result in inadequate refreshing and cause data corruption.  
29.4.4 Page Mode Operation (RCR[7]): Default = Disabled  
The page mode operation bit determines whether page mode is enabled for asynchronous Read  
operations. In the power-up default state, page mode is disabled.  
136  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
30 Absolute Maximum Ratings  
Voltage to Any Ball Except VCC, VCCQ Relative to VSS -0.50V to (4.0V or VCCQ  
0.3V, whichever is less)  
+
Voltage on VCC Supply Relative to VSS . . . . . . . . . . . . . . . . -0.2V to +2.45V  
Voltage on VCCQ Supply Relative to VSS . . . . . . . . . . . . . . . . . -0.2V to +4.0V  
Storage Temperature (plastic) . . . . . . . . . . . . . . . . . . . . . . -55ºC to +150ºC  
Operating Temperature (case)  
Wireless (See Note)-30ºC to +85ºC  
Industrial-40°C to +85°C  
Soldering Temperature and Time  
10s (lead only)+260°C  
Note: -30°C exceeds the CellularRAM Workgroup 1.0 specification of -25°C.  
Stresses greater than those listed may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure to absolute max-  
imum rating conditions for extended periods may affect reliability.  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
137  
A d v a n c e I n f o r m a t i o n  
31 DC Characteristics  
Table 31.1 Electrical Characteristics and Operating Conditions  
Description  
Conditions  
Symbol  
Min  
1.70  
Max  
1.95  
Units  
V
Notes  
Supply Voltage  
VCC  
I/O Supply Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
VCC  
VIH  
VIL  
Q
W: 1.8V  
1.70  
3.30  
V
1.4  
VCCQ + 0.2  
0.4  
V
2
3
4
4
-0.20  
0.80 VCC  
V
IOH = -0.2mA  
IOL = +0.2mA  
VOH  
VOL  
ILI  
Q
V
0.20 VCC  
Q
V
VIN = 0 to VCC  
Q
1
µA  
OE# = VIH or  
Chip Disabled  
Output Leakage Current  
ILO  
1
µA  
Operating Current  
-70  
Asynchronous Random Read  
Asynchronous Page Read  
V
IN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
25  
15  
ICC1  
mA  
5
5
-70  
80 MHz  
66 MHz  
80 MHz  
66 MHz  
80 MHz  
66 MHz  
35  
30  
18  
15  
35  
30  
Initial Access, Burst Read  
Continuous Burst Read  
Continuous Burst Write  
VIN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
ICC  
1
mA  
VIN = VCCQ or 0V  
Chip Enabled, IOUT = 0  
ICC2  
mA  
µA  
5
6
VIN = VCCQ or 0V  
Standby Current  
ISB  
64 M  
120  
CE# = VCC  
Q
Notes:  
1. Wireless Temperature (-25ºC < TC < +85ºC); Industrial Temperature (-40ºC < TC < +85ºC).  
2. Input signals may overshoot to VCCQ + 1.0V for periods less than 2ns during transitions.  
3. Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions.  
4. BCR[5:4] = 00b.  
5. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current  
required to drive output capacitance expected in the actual system.  
6. ISB (MAX) values measured with PAR set to FULL ARRAY and TCR set to +85°C. To achieve Low standby current, all inputs  
must be driven to either VCCQ or VSS  
.
138  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 31.2 Maximum Standby Currents for Applying PAR and TCR Settings  
TCR  
PAR  
+15°C (RCR[6:5] = 10b)  
+45°C (RCR[6:5] = 01b)  
+85°C (RCR[6:5] = 11b)  
Full Array  
1/2 Array  
1/4 Array  
1/8 Array  
70  
65  
60  
57  
50  
120  
115  
110  
105  
70  
85  
80  
75  
70  
55  
0 Array  
Notes:  
1. For RCR[6:5] = 00b (default), refer to Figure 31.1 for typical values.  
2. In order to achieve low standby current, all inputs must be driven to either VCCQ or VSS. ISB might be slightly higher for up  
to 500ms after power-up, or after changes to the PAR array partition.  
3. Values of TCR for 85 are 100% tested. Values of TCR for 15 and 45 are sampled only.  
70  
60  
50  
PAR = Full Array  
PAR = 1/2 of Array  
PAR = 1/4 of Array  
PAR = 1/8 of Array  
PAR = None of Array  
40  
30  
20  
10  
0
-30  
-20  
-10  
0
10  
20  
Temperature (°C)  
Note: Typical ISB currents for each PAR setting with the appropriate TCR selected, or temperature sensor enabled.  
30  
40  
50  
60  
70  
80  
90  
Figure 31.1 Typical Refresh Current vs. Temperature (ITCR  
)
Table 31.3 Deep Power-Down Specifications  
Description  
Conditions  
Symbol  
Typ  
Units  
Deep Power-down  
VIN = VCCQ or 0V; +25°C  
IZZ  
10  
µA  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
139  
A d v a n c e I n f o r m a t i o n  
32 AC Characteristics  
V
CC  
Q
V
Q/2  
VCC/2  
Note 2  
CC  
Input  
(Note 1)  
Output  
Test Points  
(Note 3)  
V
SS  
Notes:  
1. AC test inputs are driven at VCCQ for a logic 1 and VSS for a logic 0. Input rise and fall times (10% to 90%) < 1.6ns.  
2. Input timing begins at VCC/2. Due to the possibility of a difference between VCC and VCCQ, the input test point may not be  
shown to scale.  
3. Output timing ends at VCCQ/2.  
Figure 32.1 AC Input/Output Reference Waveform  
Table 32.1 Capacitance  
Description  
Conditions  
Symbol  
CIN  
Min  
2.0  
3.5  
Max  
6
Units  
pF  
Notes  
Input Capacitance  
1
1
TC = +25ºC; f = 1 MHz; VIN = 0V  
Input/Output Capacitance (DQ)  
CIO  
6
pF  
Notes:  
1. These parameters are verified in device characterization and are not 100% tested.  
V
Q
CC  
R1  
Test Point  
DUT  
30pF  
R2  
Note: All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
Figure 32.2 Output Load Circuit  
Table 32.2 Output Load Circuit  
VCCQ  
R1/R2  
1.8 V  
2.5 V  
3.0 V  
2.7 K  
3.7 K  
4.5 K  
140  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 32.3 Asynchronous Read Cycle Timing Requirements  
70ns  
Units  
Notes  
Parameter  
Address Access Time  
Symbol  
tAA  
Min  
Max  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADV# Access Time  
tAADV  
tAPA  
tAVH  
tAVS  
tBA  
70  
Page Access Time  
20  
Address Hold from ADV# High  
Address Setup to ADV# High  
LB#/UB# Access Time  
5
10  
70  
8
LB#/UB# Disable to DQ High-Z Output  
LB#/UB# Enable to Low-Z Output  
Maximum CE# Pulse Width  
CE# Low to Wait Valid  
tBHZ  
tBLZ  
tCEM  
tCEW  
tCO  
4
3
10  
1
8
7.5  
70  
Chip Select Access Time  
CE# Low to ADV# High  
tCVS  
tHZ  
10  
10  
5
Chip Disable to DQ and Wait High-Z Output  
Chip Enable to Low-Z Output  
Output Enable to Valid Output  
Output Hold from Address Change  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Page Cycle Time  
8
20  
8
4
3
tLZ  
tOE  
tOH  
tOHZ  
tOLZ  
tPC  
4
3
5
20  
70  
10  
10  
Read Cycle Time  
tRC  
ADV# Pulse Width Low  
tVP  
ADV# Pulse Width High  
tVPH  
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. High-Z to Low-Z timings are tested with the circuit shown in Figure 32.2. The Low-Z timings measure a 100mV transition  
away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
3. Low-Z to High-Z timings are tested with the circuit shown in Figure 32.2. The High-Z timings measure a 100mV transition  
from either VOH or VOL toward VCCQ/2.  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
141  
A d v a n c e I n f o r m a t i o n  
Table 32.4 Burst Read Cycle Timing Requirements  
70ns/80 MHz  
70ns/66 MHz  
Parameter  
Burst to Read Access Time (Variable Latency)  
CLK to Output Delay  
Symbol  
tABA  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
46.5  
9
Min  
Max  
56  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Notes  
11  
Burst OE# Low to Output Delay  
CE# High between Subsequent Mixed-Mode Operations  
CE# Low to Wait Valid  
20  
20  
5
1
5
1
7.5  
20  
20  
7.5  
20  
20  
CLK Period  
12.5  
4.5  
2
15  
5
CE# Setup Time to Active CLK Edge  
Hold Time from Active CLK Edge  
Chip Disable to DQ and Wait High-Z Output  
CLK Rise or Fall Time  
2
tHZ  
8
1.8  
9
8
2.0  
11  
8
2
tKHKL  
tKHTL  
tKHZ  
tKLZ  
CLK to Wait Valid  
CLK to DQ High-Z Output  
3
2
2
4
8
3
2
2
5
CLK to Low-Z Output  
5
5
Output Hold from CLK  
tKOH  
tKP  
CLK High or Low Time  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Setup Time to Active CLK Edge  
tOHZ  
tOLZ  
tSP  
8
8
8
8
2
3
5
3
5
3
Maximum CE# Pulse Width  
tCBPH  
2
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 32.2. The High-Z timings measure a 100mV transition  
from either VOH or VOL toward VCCQ/2.  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 32.2. The Low-Z timings measure a 100mV transition  
away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
142  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
Table 32.5 Asynchronous Write Cycle Timing Requirements  
70 ns  
Parameter  
Address and ADV# Low Setup Time  
Address Hold from ADV# Going High  
Address Setup to ADV# Going High  
Address Valid to End of Write  
LB#/UB# Select to End of Write  
CE# Low to Wait Valid  
Symbol  
tAS  
Min  
0
Max  
7.5  
8
Units  
ns  
Notes  
tAVH  
tAVS  
tAW  
5
ns  
10  
70  
70  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBW  
tCEW  
tCKA  
tCVS  
tCW  
tDH  
Async Address-to-Burst Transition Time  
CE# Low to ADV# High  
70  
10  
70  
0
Chip Enable to End of Write  
Data Hold from Write Time  
Data Write Setup Time  
tDW  
tHZ  
23  
Chip Disable to Wait High-Z Output  
Chip Enable to Low-Z Output  
End Write to Low-Z Output  
ADV# Pulse Width  
tLZ  
10  
5
3
3
tOW  
tVP  
tVPH  
tVS  
10  
10  
70  
70  
ADV# Pulse Width High  
ADV# Setup to End of Write  
Write Cycle Time  
tWC  
tWHZ  
tWP  
Write to DQ High-Z Output  
Write Pulse Width  
8
2
46  
10  
0
Write Pulse Width High  
tWPH  
tWR  
tCPH  
Write Recovery Time  
CE# High between subsequent asynchronous operations  
5
Notes:  
1. Low-Z to High-Z timings are tested with the circuit shown in Figure 32.2. The High-Z timings measure a 100mV transition  
from either VOH or VOL toward VCCQ/2.  
2. High-Z to Low-Z timings are tested with the circuit shown in Figure 32.2. The Low-Z timings measure a 100mV transition  
away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
143  
A d v a n c e I n f o r m a t i o n  
Table 32.6 Burst Write Cycle Timing Requirements  
70ns/80 MHz  
70ns/66 MHz  
Parameter  
CE# High between Subsequent Mixed-Mode Operations  
CE# Low to Wait Valid  
Symbol  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Notes  
1
7.5  
20  
20  
1
7.5  
20  
20  
Clock Period  
12.5  
4.5  
2
15  
5
CE# Setup to CLK Active Edge  
Hold Time from Active CLK Edge  
Chip Disable to Wait High-Z Output  
CLK Rise or Fall Time  
2
tHZ  
8
1.8  
9
8
tKHKL  
tKHTL  
tKP  
2.0  
11  
Clock to Wait Valid  
CLK High or Low Time  
4
3
5
3
Setup Time to Activate CLK Edge  
tSP  
Minimum CE# Pulse Width  
tCEM  
8
8
Notes:  
1. When configured for synchronous mode (BCR[15] = 0), a refresh opportunity must be provided every tCEM. A refresh  
opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for greater than  
15ns.  
2. Clock rates below 50 MHz (tCLK > 20ns) are allowed as long as tCSP specifications are met.  
144  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
33 Timing Diagrams  
V
CC  
(MIN)  
V
, V Q = 1.7V  
CC CC  
t
PU  
Device ready for  
normal operation  
Figure 33.1 Initialization Period  
Table 33.1 Initialization Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Units  
Notes  
Initialization Period (required before normal operations)  
tPU  
150  
150  
µs  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
145  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
VALID ADDRESS  
A[22:0]  
t
AA  
V
V
IH  
IL  
ADV#  
CE#  
t
t
CBPH  
HZ  
V
V
IH  
IL  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 33.2 Asynchronous Read  
146  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AA  
t
t
AVH  
AVS  
t
VPH  
V
V
IH  
IL  
ADV#  
t
AADV  
t
VP  
t
t
CVS  
t
CBPH  
HZ  
V
V
IH  
IL  
CE#  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 33.3 Asynchronous Read Using ADV#  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
147  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
A[22:0]  
A[3:0]  
VALID ADDRESS  
V
V
IH  
IL  
VALID  
VALID  
VALID  
ADDRESS  
VALID ADDRESS  
ADDRESS  
ADDRESS  
t
t
PC  
AA  
V
V
IH  
IL  
ADV#  
t
t
CEM  
CBPH  
t
t
t
CBPH  
CO  
HZ  
V
V
IH  
IL  
CE#  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
t
APA  
BLZ  
t
t
OH  
LZ  
V
V
OH  
OL  
High-Z  
t
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 33.4 Page Mode Read  
148  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
KHKL  
t
t
SP  
HD  
V
V
IH  
IL  
A[22:0]  
ADV#  
VALID ADDRESS  
t
t
SP  
HD  
V
V
IH  
IL  
t
HD  
t
t
HZ  
t
ABA  
CSP  
V
V
IH  
IL  
CE#  
OE#  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
OLZ  
t
t
SP  
SP  
HD  
V
V
IH  
IL  
WE#  
t
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
CEW  
t
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay. Clock  
rates below 50MHz (t  
> 20ns) are allowed as long as t  
specifications are met.  
CLK  
CSP  
Figure 33.5 Single-Access Burst Read Operation—Variable Latency  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
149  
A d v a n c e I n f o r m a t i o n  
t
CLK  
t
t
t
KP  
KHKL  
KP  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
t
HD  
CSP  
ABA  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay. Clock  
rates below 50MHz (t  
> 20ns) are allowed as long as t  
specifications are met.  
CLK  
CSP  
Figure 33.6 Four-word Burst Read Operation—Variable Latency  
150  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
t
t
t
KHTL  
KHTL  
KHTL  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
High-Z  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 33.7 Four-word Burst Read Operation (with LB#/UB#)  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
151  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
t
CSP  
HZ  
V
V
IH  
IL  
CE#  
OE#  
t
OHZ  
OHZ  
(Note 2)  
V
V
IH  
IL  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
BOE  
t
OLZ  
High-Z  
V
V
High-Z  
IH  
IL  
WAIT  
t
KOH  
t
BOE  
t
ACLK  
t
OLZ  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. OE# can stay Low during burst suspend. If OE# is Low, DQ[15:0] will continue to output valid data.  
Figure 33.8 Refresh Collision During Write Operation  
152  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
t
CLK  
V
V
IH  
IL  
A[22:0]  
ADV#  
V
V
IH  
IL  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
OE#  
WE#  
V
V
IH  
IL  
V
V
IH  
IL  
t
t
KHTL  
KHTL  
V
V
OH  
OL  
(Note 2)  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. Wait will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 33.9 Continuous Burst Read Showing an Output Delay with BCR[8] =  
0 for End-of-Row Condition  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
153  
A d v a n c e I n f o r m a t i o n  
t
AA  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 33.10 CE#-Controlled Asynchronous Write  
154  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 33.11 LB#/UB#-Controlled Asynchronous Write  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
155  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
AS  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 33.12 WE#-Controlled Asynchronous Write  
156  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
t
AVH  
AVS  
t
VS  
t
t
VP  
VPH  
t
AS  
V
V
IH  
IL  
ADV#  
t
AS  
t
AW  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WPH  
WP  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 33.13 Asynchronous Write Using ADV#  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
157  
A d v a n c e I n f o r m a t i o n  
t
KHKL  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
t
t
SP  
HD  
V
V
IH  
IL  
t
SP  
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CSP  
t
HD  
CBPH  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
t
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
HZ  
t
t
CEW  
KHTL  
High-Z  
V
V
(Note 2)  
IH  
IL  
High-Z  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
DQ[15:0]  
D[1]  
D[2]  
D[3]  
D[0]  
Legend:  
READ Burst Identified  
(WE# = LOW)  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay; burst length four;  
burst wrap enabled.  
Figure 33.14 Burst Write Operation  
158  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
t
CLK  
V
V
IH  
IL  
A[22:0]  
ADV#  
V
V
IH  
IL  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
OE#  
t
t
KHTL  
KHTL  
(Note 2)  
V
V
OH  
OL  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
Valid Input  
D[n+3]  
Valid Input  
D[n+2]  
Valid Input Valid Input  
DQ[15:0]  
D[n]  
D[n+1]  
Legend:  
Don't Care  
END OF ROW  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. Wait will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 33.15 Continuous Burst Write Showing an Output Delay with BCR[8]  
= 0 for End-of-Row Condition  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
159  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
t
HD  
SP  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
SP  
t
t
HD  
SP  
HD  
V
V
IH  
IL  
ADV#  
t
t
HD  
SP  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
CSP  
t
OHZ  
V
V
IH  
IL  
OE#  
t
SP  
t
t
HD  
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
BOE  
V
V
High-Z  
High-Z  
OH  
OL  
WAIT  
t
t
KOH  
t
t
HD  
ACLK  
SP  
V
V
V
High-Z  
IH  
IL  
High-Z  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
V
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. To allow self-refresh operations to occur between transactions, CE# must remain High for at least 5ns (tCBPH) to schedule  
the appropriate internal refresh operation. CE# can stay Low between burst Read and burst Write operations.  
Figure 33.16 Burst Write Followed by Burst Read  
160  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
WR  
AVS  
AVH  
AW  
t
t
HD  
t
SP  
VPH  
V
V
IH  
IL  
ADV#  
t
t
t
VP  
VS  
t
t
t
BW  
SP  
HD  
CVS  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
t
t
HD  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
WHZ  
t
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
t
DH  
DW  
KOH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it  
must remain High for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation.  
Figure 33.17 Asynchronous Write Followed by Burst Read  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
161  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
WR  
AW  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
t
SP  
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CSP  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
t
t
HD  
WP  
WPH  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
t
WHZ  
t
t
KOH  
DW  
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
DH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it  
must remain High for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation.  
Figure 33.18 Asynchronous Write (ADV# Low) Followed By Burst Read  
162  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
WC  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AW  
SP  
t
WR  
t
HD  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
IH  
IL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it  
must remain High for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation.  
Figure 33.19 Burst Read Followed by Asynchronous Write (WE#-Controlled)  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
163  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
HD  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AVS  
AVH  
t
t
t
VPH  
VS  
SP  
t
t
HD  
VP  
V
V
IH  
IL  
ADV#  
t
AW  
t
t
AS  
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
OH  
OL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it  
must remain High for at least 5ns (tCBPH) to schedule the appropriate internal refresh operation.  
Figure 33.20 Burst Read Followed by Asynchronous Write Using ADV#  
164  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
Valid  
Address  
Valid  
Valid  
Address  
A[22:0]  
ADV#  
Address  
t
t
t
AW  
WR  
AA  
V
V
IH  
IL  
t
BHZ  
t
t
BW  
BLZ  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
CEM  
t
CBPH  
t
HZ  
CW  
V
V
IH  
IL  
(Note)  
t
LZ  
t
t
OHZ  
OE  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
V
V
IH  
IL  
WE#  
t
t
HZ  
HZ  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OLZ  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay Low when transitioning between asynchronous operations. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation.  
CBPH  
Figure 33.21 Asynchronous Write Followed by Asynchronous Read—ADV#  
Low  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
165  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
t
AA  
AVS  
AVH  
AW  
WR  
t
t
t
VPH VP  
VS  
V
V
IH  
IL  
ADV#  
t
t
t
BHZ  
t
BW  
BLZ  
CVS  
V
V
IH  
IL  
LB#/UB#  
t
t
t
CBPH  
CEM  
t
HZ  
CW  
V
V
IH  
IL  
CE#  
OE#  
(Note)  
t
t
LZ  
AS  
t
OHZ  
V
V
IH  
IL  
t
WC  
t
t
WP  
t
AS  
WPH  
t
OLZ  
V
V
IH  
IL  
WE#  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OE  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay Low when transitioning between asynchronous operations. If CE# goes High, it must remain High  
for at least 5ns (t  
) to schedule the appropriate internal refresh operation.  
CBPH  
Figure 33.22 Asynchronous Write Followed by Asynchronous Read  
166  
CellularRAM Type 2  
CellRam_03_A0 March 9, 2005  
A d v a n c e I n f o r m a t i o n  
34 64M CellRAM Revision Summary  
Revision A0 (March 9, 2005)  
Initial release  
March 9, 2005 CellRam_03_A0  
CellularRAM Type 2  
167  
Aysnc/Page CellularRAM Type 2  
1.8V 32/16 Megabit (2Mx16, 1 Mx16) Asynchronous/Page  
CellularRAM  
ADVANCE  
INFORMATION  
!
!
Low power consumption  
Asynchronous READ < 20 mA  
Intrapage READ < 15 mA  
Standby: 110 µA (32 Mb), 80 µA (16 Mb)  
Deep power-down < 10 µA (TYP @ 25° C)  
Low-power features  
Temperature compensated refresh (TCR)  
On-chip temperature sensor  
Features  
!
!
!
Asynchronous and page mode interface  
Random access time: 70 ns  
, V voltages  
V
CC  
CCQ  
1.70V–1.95V V  
1.70V–3.30V V  
CC  
CCQ  
!
Page mode read access  
Partial array refresh (PAR)  
Deep power-down (DPD) mode  
Sixteen-word page size  
Interpage read access: 70 ns  
Intrapage read access: 20 ns  
General Description  
CellularRAM™ products are high-speed, CMOS PSRAM memories developed for low-power, por-  
table applications. The 32-Mb part is a DRAM core device organized as 2 Meg x 16 bits, and the  
16-Mb part is a DRAM core device organized as 1 Meg x 16 bits. These devices include the indus-  
try-standard, asynchronous memory interface found on other low-power SRAM or Pseudo SRAM  
offerings.  
A user-accessible Configuration Register (CR) defines how the CellularRAM device performs on-  
chip refresh and whether page mode read accesses are permitted. This register is automatically  
loaded with a default setting during power-up and can be updated at any time during normal  
operation.  
To operate seamlessly on an asynchronous memory bus, CellularRAM products incorporate a  
transparent self refresh mechanism. The hidden refresh requires no additional support from the  
system memory controller and has no significant impact on device read/write performance.  
Special attention has been focused on current consumption during self refresh. CellularRAM prod-  
ucts include three system-accessible mechanisms to minimize refresh current. Temperature-  
Compensated Refresh (TCR) uses an on-chip sensor to adjust the refresh rate to match the device  
temperature. The refresh rate decreases at lower temperatures to minimize current consumption  
during standby. TCR can also be set by the system for maximum device temperatures of +85° C,  
+45° C, and +15° C. Setting sleep enable (ZZ#) to LOW enables one of two low-power modes:  
Partial Array Refresh (PAR); or Deep Power-Down (DPD). PAR limits refresh to only that part of  
the DRAM array that contains essential data. DPD halts refresh operation altogether and is used  
when no vital information is stored in the device. These three refresh mechanisms are accessed  
through the CR.  
Publication Number CellRAM_05 Revision A Amendment 0 Issue Date August 25, 2005  
This document contains information on one or more products under development at Spansion LLC. The information is intended to help you evaluate this product. Do  
not design in this product without contacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
35 Functional Block Diagram  
A[20:0]  
(for 32Mb)  
A[19:0]  
Address Decode  
Logic  
Input/  
Output  
MUX  
and  
Buffers  
2,048K x 16  
(1,024K x 16)  
DRAM  
Memory  
Array  
DQ[7:0]  
(for 16Mb)  
DQ[15:8]  
Configuration  
Register (CR)  
CE#  
WE#  
OE#  
UB#  
LB#  
ZZ#  
Control  
Logic  
Notes:Funtional block diagrams illustrate simplified device operation. See truth table, signal  
descriptions, and timing diagrams for detailed information.  
Figure 35.1 Functional Block Diagram 2 Meg x 16 and 1 Meg x 16  
Table 35.1 Signal Descriptions  
Symbol  
Type  
Description  
Address Inputs: Inputs for the address accessed during READ or WRITE operations. The address  
lines are also used to define the value to be loaded into the CR. On the 16-Mb device, A20 is  
not internally connected.  
A[20:0]  
Input  
Sleep Enable: When ZZ# is LOW, the CR can be loaded or the device can enter one of two low-  
power modes (DPD or PAR).  
ZZ#  
CE#  
OE#  
Input  
Input  
Input  
Chip Enable: Activates the device when LOW. When CE# is HIGH, the device is disabled and  
goes into standby power mode.  
Output Enable: Enables the output buffers when LOW. When OE# is HIGH, the output buffers  
are disabled.  
WE#  
LB#  
Input  
Input  
Write Enable: Enables WRITE operations when LOW.  
Lower Byte Enable. DQ[7:0]  
Input/  
Output  
DQ[15:0]  
Data Inputs/Outputs.  
NC  
VCC  
Not internally connected.  
Supply  
Supply  
Supply  
Supply  
Device Power Supply: (1.70V–1.95V) Power supply for device core operation.  
I/O Power Supply: (1.70V–3.30V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VCCQ  
VSS  
V
SSQ  
VSSQ must be connected to ground.  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
169  
A d v a n c e I n f o r m a t i o n  
Table 35.2 Bus Operations  
LB#/  
Mode  
Standby  
Power  
CE#  
WE#  
OE#  
ZZ#  
DQ[15:0]1  
Notes  
UB#  
Standby  
Active  
H
L
X
H
X
L
X
L
H
H
High-Z  
(note 2),(note 5)  
(note 1),(note 4)  
Read  
Data-Out  
(note1),(note3),(note  
4)  
Write  
Active  
Idle  
L
L
L
X
X
X
X
X
L
X
X
H
H
L
Data-In  
X
No Operation  
PAR  
(note 4),(note 5)  
(note 6)  
Partial Array  
Refresh  
H
High-Z  
Deep Power-  
Down  
DPD  
H
L
X
L
X
X
X
X
L
L
High-Z  
High-Z  
(note 6)  
Load  
Configuration  
Register  
Active  
Notes:  
1. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When LB# only is in select mode, only DQ[7:0]  
are affected. When UB# only is in the select mode, DQ[15:8] are affected.  
2. When the device is in standby mode, control inputs (WE#, OE#), address inputs, and data inputs/outputs are internally  
isolated from any external influence.  
3. When WE# is invoked, the OE# input is internally disabled and has no effect on the I/Os.  
4. The device consumes active power in this mode whenever addresses are changed.  
5. VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve minimum standby current.  
6. DPD is enabled when configuration register bit CR[4] is “0”; otherwise, PAR is enabled.  
170  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
36 Functional Description  
In general, the 32-Mb and 16-Mb CellularRAM Type 2 devices are high-density alternatives to  
SRAM and Pseudo-SRAM products, popular in low-power, portable applications. The 32-Mb device  
contains 33,554,432 bit DRAM core organized as 2,097,152 addresses by 16 bits. The 16-Mb de-  
vice contains 16,777,216 bit DRAM core organized as 1,048,576 addresses by 16 bits. These  
devices include the industry standard, asynchronous memory interface found on other low-power  
SRAM or Pseudo-SRAM offerings. Page mode accesses are also included as a bandwidth-enhanc-  
ing extension to the asynchronous read protocol.  
36.1 Power-Up Initialization  
CellularRAM products include an on-chip voltage sensor that is used to launch the power-up ini-  
tialization process. Initialization loads the CR with its default setting. VCC and VCCQ must be  
applied simultaneously. When they reach a stable level above 1.70V, the device requires 150 µs  
to complete its self-initialization process (see Figure 36.1). During the initialization period, CE#  
should remain HIGH. When initialization is complete, the device is ready for normal operation.  
Vcc = 1.7V  
t
>
PU 150μs  
Device ready for  
normal operation  
Vcc  
VccQ  
Device Initialization  
Figure 36.1 Power-Up Initialization Timing  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
171  
A d v a n c e I n f o r m a t i o n  
37 Bus Operating Modes  
These CellularRAM products incorporate the industry-standard, asynchronous interface found on  
other low-power SRAM or Pseudo SRAM offerings. This bus interface supports asynchronous READ  
and WRITE operations as well as the bandwidth-enhancing page mode READ operation. The spe-  
cific interface that is supported is defined by the value loaded into the CR.  
37.1 Asynchronous Mode  
CellularRAM products power up in the asynchronous operating mode. This mode uses the indus-  
try-standard SRAM control interface (CE#, OE#, WE#, LB#/UB#). READ operations (Figure 37.1)  
are initiated by bringing CE#, OE#, and LB#/UB# LOW while keeping WE# HIGH. Valid data is  
driven out of the I/Os after the specified access time has elapsed. WRITE operations (Figure 37.2)  
occur when CE#, WE#, and LB#/UB# are driven LOW. During WRITE operations, the level of OE#  
is a “Don't Care”; WE# overrides OE#. The data to be written is latched on the rising edge of CE#,  
WE#, or LB#/UB# (whichever occurs first). WE# LOW time must be limited to tCEM  
.
CE#  
OE#  
WE#  
ADDRESS  
ADDRESS VALID  
DATA VALID  
DATA  
LB#/UB#  
t
RC = READ Cycle Time  
DON’T CARE  
Figure 37.1 Asynchronous Mode READ Operation  
CE#  
OE#  
t
<
CEM  
WE#  
ADDRESS  
ADDRESS VALID  
DATA VALID  
DATA  
LB#/UB#  
t
WC = WRITE Cycle Time  
DON’T CARE  
Figure 37.2 Asynchronous Mode WRITE Operation  
172  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
37.2 Page Mode Read Operation  
Page mode is a performance-enhancing extension to the legacy asynchronous READ operation.  
In page-mode-capable products, an initial asynchronous read access is performed, then adjacent  
addresses can be quickly read by simply changing the low-order address. Addresses A[3:0] are  
used to determine the members of the 16-address CellularRAM page. Any change in addresses  
A[4] or higher initiates a new tAA access. Figure 37.3 shows the timing diagram for a page mode  
access. Page mode takes advantage of the fact that adjacent addresses can be read in a shorter  
period of time than random addresses. WRITE operations do not include comparable page mode  
functionality. The CE# LOW time is limited by refresh considerations. CE# must not stay LOW  
longer than tCEM  
.
t
<
CEM  
CE#  
OE#  
WE#  
ADDRESS ADDRESS ADDRESS  
[1] [2] [3]  
ADDRESS[0]  
ADDRESS  
t
t
t
t
AA  
APA APA APA  
D[0]  
D[1]  
D[2]  
D[3]  
DATA  
LB#/UB#  
DON’T CARE  
Figure 37.3 Page Mode READ Operation  
37.3 LB#/UB# Operation  
The Lower Byte (LB#) enable and Upper Byte (UB#) enable signals allow for byte-wide data  
transfers. During READ operations, enabled bytes are driven onto the DQs. The DQs associated  
with a disabled byte are put into a High-Z state during a READ operation. During WRITE opera-  
tions, any disabled bytes are not transferred to the memory array; the internal value remains  
unchanged. During a WRITE cycle, the data to be written is latched on the rising edge of CE#,  
WE#, LB#, or UB#, whichever occurs first. When both the LB# and UB# are disabled (HIGH) dur-  
ing an operation, the device disables the data bus from receiving or transmitting data. Although  
the device seems to be deselected, the device remains in an active mode as long as CE# remains  
LOW.  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
173  
A d v a n c e I n f o r m a t i o n  
38 Low-Power Operation  
38.1 Standby Mode Operation  
During standby, the device current consumption is reduced to the level necessary to perform the  
DRAM refresh operation on the full array. Standby operation occurs when CE# and ZZ# are HIGH.  
The device enters a reduced power state during READ and WRITE operations where the address  
and control inputs remain static for an extended period of time. This mode continues until a  
change occurs to the address or control inputs.  
38.2 Temperature Compensated Refresh  
Temperature-Compensated Refresh (TCR) allows for adequate refresh at different temperatures.  
This CellularRAM device includes an on-chip temperature sensor. When the sensor is enabled, it  
continually adjusts the refresh rate according to the operating temperature. The on-chip sensor  
is enabled by default.  
Three fixed refresh rates are also available, corresponding to temperature thresholds of +15° C,  
+45° C, and +85° C. The setting selected must be for a temperature higher than the case tem-  
perature of the CellularRAM device. If the case temperature is +35° C, the system can minimize  
self-refresh current consumption by selecting the +45° C setting. The +15° C setting may result  
in inadequate refreshing and cause data corruption.  
38.3 Partial Array Refresh  
Partial Array Refresh (PAR) restricts refresh operation to a portion of the total memory array. This  
feature enables the system to reduce refresh current by only refreshing that part of the memory  
array that is absolutely necessary. The refresh options are full array, one-half array, one-quarter  
array, one-eighth array, or none of the array. Data stored in addresses not receiving refresh be-  
come corrupted. The mapping of these partitions can start at either the beginning or the end of  
the address map (Table 39.1 and Table 39.2 on page 179). READ and WRITE operations are ig-  
nored during PAR operation.  
The device only enters PAR mode if the SLEEP bit in the CR has been set HIGH (CR[4] = 1). PAR  
can be initiated by bring the ZZ# ball to the LOW state for longer than 10 µs. Returning ZZ# to  
HIGH causes an exit from PAR and the entire array is immediately available for READ and WRITE  
operations.  
Alternatively, PAR can be initiated using the CR software access sequence (see Software Access  
to the Configuration Register on page 176). PAR is enabled immediately upon setting CR[4] to  
“1” using this method. However, using software access to write to the CR alters the function of  
ZZ# so that ZZ# LOW no longer initiates PAR, although ZZ# continues to enable WRITEs to the  
CR. This functional change persists until the next time the device is powered up (see Figure 38.1).  
174  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
Power -Up  
To enable P AR,  
bring ZZ# LOW  
for 10μs.  
Software  
LOAD  
NO  
executed?  
YES  
Change to ZZ#  
functionality  
.
PAR permanently  
enabled,  
independent of  
ZZ# level.  
Figure 38.1 Software Access PAR Functionality  
38.4 Deep Power-Down Operation  
Deep Power-Down (DPD) operation disables all refresh-related activity. This mode is used when  
the system does not require the storage provided by the CellularRAM device. Any stored data be-  
comes corrupted when DPD is entered. When refresh activity is re-enabled, the CellularRAM  
device requires 150 µs to perform an initialization procedure before normal operations can re-  
sume. READ and WRITE operations are ignored during DPD operation.  
The device can only enter DPD if the SLEEP bit in the CR has been set LOW (CR[4] = 0). DPD is  
initiated by bringing ZZ# to the LOW state for longer than 10 µs. Returning ZZ# to HIGH causes  
the device to exit DPD and begin a 150-µs initialization process. During this 150µs period, the  
current consumption is higher than the specified standby levels, but considerably lower than the  
active current specification.  
Driving ZZ# LOW puts the device in the PAR mode if the SLEEP bit in the CR is set HIGH  
(CR[4] = 1).  
The device should not be put into DPD using CR software access.  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
175  
A d v a n c e I n f o r m a t i o n  
39 Configuration Register Operation  
The Configuration Register (CR) defines how the CellularRAM device performs its transparent self-  
refresh. Altering the refresh parameters can dramatically reduce current consumption during  
standby mode. Page mode control is also embedded into the CR. This register can be updated any  
time while the device is operating in a standby state. Figure 39.4 on page 178 describes the con-  
trol bits used in the CR. At power up, the CR is set to 0010h.  
39.1 Access Using ZZ#  
The CR can be loaded using a WRITE operation immediately after ZZ# makes a HIGH-to-LOW  
transition (Figure 39.1). The values placed on addresses A[20:0] are latched into the CR on the  
rising edge of CE# or WE#, whichever occurs first. LB#/UB# are “Don’t Care.Access using ZZ#  
is WRITE only.  
ADDRESS  
CE#  
ADDRESS VALID  
WE#  
ZZ#  
t < 500ns  
Figure 39.1 Load Configuration Register Operation  
39.2 Software Access to the Configuration Register  
The contents of the CR can either be read or modified using a software sequence. The nature of  
this access mechanism may eliminate the need for the ZZ# ball.  
If the software mechanism is used, ZZ# can simply be tied to VCCQ. The port line typically used  
for ZZ# control purposes is no longer required. However, ZZ# should not be tied to VCCQ if the  
system uses DPD; DPD cannot be enabled or disabled using the software access sequence.  
The CR is loaded using a four-step sequence consisting of two READ operations followed by two  
WRITE operations (see Figure 39.2). The read sequence is virtually identical except that an asyn-  
chronous READ is performed during the fourth operation (see Figure 39.3). Note that a third  
READ cycle of the highest address cancels the access sequence until a different address is read.  
The address used during all READ and WRITE operations is the highest address of the CellularRAM  
device being accessed (1FFFFFh for 32 Mb and FFFFFh for 16 Mb); the content of this address is  
changed by using this sequence (note that this is a deviation from the CellularRAM specification).  
The data bus is used to transfer data into or out of bits 15–0 of the CR.  
Writing to the CR using the software sequence modifies the function of the ZZ# ball. Once the  
software sequence loads the CR, the level of the ZZ# ball no longer enables PAR operation. PAR  
operation is updated whenever the software sequence loads a new value into the CR. This ZZ#  
functionality continues until the next time the device is powered-up. The operation of the ZZ#  
ball is not affected if the software sequence is only used to read the contents of the CR. The use  
of the software sequence does not affect the ability to perform the standard (ZZ#-controlled)  
method of loading the CR.  
176  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
1
READ  
READ  
WRITE  
WRITE  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
CE#  
OE#  
WE#  
LB#/UB#  
CR VALUE  
IN  
DATA  
XXXXh  
XXXXh  
0000h  
DON'T CARE  
Note:  
1.The WRITE on the third cycle must be CE#-controlled.  
Figure 39.2 Software Access Load Configuration Register  
1
READ  
READ  
WRITE  
READ  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
(MAX)  
ADDRESS  
CE#  
NOTE2  
OE#  
WE#  
LB#/UB#  
CR VALUE  
DATA  
XXXXh  
XXXXh  
0000h  
OUT  
DON'T CARE  
Notes:  
1.The WRITE on the third cycle must be CE#-controlled.  
2.CE# must be HIGH for 150 ns before performing the cycle that reads the configuration register.  
Figure 39.3 Software Access Read Configuration Register  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
177  
A d v a n c e I n f o r m a t i o n  
A[20:8]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
208  
7
6
5
4
3
2
1
0
Configuration  
Register  
RESERVED  
PAGE  
TCR  
SLEEP  
RESERVED  
PAR  
All must be set to "0"  
Must be set to "0"  
CR[1] CR[0]  
CR[2]  
PAR Refresh Coverage  
Full array (default)  
Bottom 1/2 array  
Bottom 1/4 array  
Bottom 1/8 array  
None of array  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CR[7]  
Page Mode Enable/Disable  
0
1
Page Mode Disabled (default)  
Page Mode Enabled  
CR[6] CR[5]  
Maximum Case Temp.  
+85C  
Top 1/2 array  
1
1
0
Top 1/4 array  
0
0
1
Internal sensor (default)  
Top 1/8 array  
1
+45C  
+15C  
0
Sleep Mode  
DPD Enabled  
PAR Enabled (default)  
CR[4]  
0
1
Figure 39.4 Configuration Register Bit Mapping  
39.3 Partial Array Refresh (CR[2:0]) Default = Full Array Refresh  
The PAR bits restrict refresh operation to a portion of the total memory array. This feature allows  
the system to reduce current by only refreshing that part of the memory array required by the  
host system. The refresh options are full array, one-half array, one-quarter array, one-eighth ar-  
ray, or none of the array. The mapping of these partitions can start at either the beginning or the  
end of the address map (see Table 39.1 and Table 39.2 on page 179).  
39.4 Sleep Mode (CR[4]) Default = PAR Enabled, DPD Disabled  
The sleep mode bit determines which low-power mode is to be entered when ZZ# is driven LOW.  
If CR[4] = 1, PAR operation is enabled. If CR[4] = 0, DPD operation is enabled. PAR can also be  
enabled directly by writing to the CR using the software access sequence. Note that this then dis-  
ables ZZ# initiation of PAR. DPD cannot be enabled or disabled using the software access  
sequence; this should only be done using ZZ# to access the CR.  
DPD operation disables all refresh-related activity. This mode is used when the system does not  
require the storage provided by the CellularRAM device. Any stored data becomes corrupted when  
DPD is enabled. When refresh activity is re-enabled, the CellularRAM device requires 150 µs to  
perform an initialization procedure before normal operation can resume. DPD should not be en-  
abled using CR software access.  
178  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
39.5 Temperature Compensated Refresh (CR[6:5]) Default = On-Chip  
Temperature Sensor  
This CellularRAM device includes an on-chip temperature sensor that automatically adjusts the  
refresh rate according to the operating temperature. The on-chip TCR is enabled by clearing both  
of the TCR bits in the refresh configuration register (CR[6:5] = 00b). Any other TCR setting en-  
ables a fixed refresh rate. When the on-chip temperature sensor is enabled, the device continually  
adjusts the refresh rate according to the operating temperature.  
The TCR bits also allow for adequate fixed-rate refresh at three different temperature thresholds  
(+15° C, +45° C, and +85° C). The setting selected must be for a temperature higher than the  
case temperature of the CellularRAM device. If the case temperature is +35° C, the system can  
minimize self-refresh current consumption by selecting the +45° C setting. The +15° C setting  
may result in inadequate refreshing and cause data corruption.  
39.6 Page Mode READ Operation (CR[7]) Default = Disabled  
The page mode operation bit determines whether page mode READ operations are enabled. In  
the power-up default state, page mode is disabled.  
Table 39.1 32-Mb Address Patterns for PAR (CR[4] = 1)  
CR[2]  
CR[1]  
CR[0]  
Active Section  
Full die  
Address Space  
000000h–1FFFFFh  
000000h–0FFFFFh  
000000h–07FFFFh  
000000h–03FFFFh  
0
Size  
Density  
32Mb  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Meg x 16  
1 Meg x 16  
512K x 16  
256K x 16  
0 Meg x 16  
1 Meg x 16  
512K x 16  
256K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
4Mb  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
100000h–1FFFFFh  
180000h–1FFFFFh  
1C0000h–1FFFFFh  
16Mb  
8Mb  
4Mb  
Table 39.2 16-Mb Address Patterns for PAR (CR[4] = 1)  
CR[2]  
CR[1]  
CR[0]  
Active Section  
Full die  
Address Space  
00000h–FFFFFh  
00000h–7FFFFh  
00000h–3FFFFh  
00000h–1FFFFh  
0
Size  
Density  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 Meg x 16  
512K x 16  
256K x 16  
128K x 16  
0 Meg x 16  
512K x 16  
256K x 16  
128K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
4Mb  
2Mb  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
80000h–FFFFFh  
C0000h–FFFFFh  
E0000h–FFFFFh  
8Mb  
4Mb  
2Mb  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
179  
A d v a n c e I n f o r m a t i o n  
40 Electrical Characteristics  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only, and functional operation of the device at these  
or any other conditions above those indicated in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
reliability.  
Table 40.1 Absolute Maximum Ratings  
Parameter  
Voltage to Any Ball Except VCC, VCCQ relative to VSS  
Voltage on VCC Supply Relative to VSS  
Voltage on VCCQ Supply Relative to VSS  
Storage Temperature  
Rating  
-0.50V to (4.0V or VCCQ + 0.3V, whichever is less)  
-0.20V to 2.45V  
-0.20V to 4.0V  
-55°C to 150°C  
Wireless Operating Temperature  
-30°C to 85°C  
Note:  
-30° C exceeds the CellularRAM Workgroup 1.0 specification of -25° C.  
Table 40.2 Electrical Characteristics and Operating Conditions  
Description  
Supply Voltage  
Conditions  
Symbol  
Min  
1.70  
1.70  
Max  
1.95  
3.30  
Units  
Notes  
VCC  
V
V
I/O Supply Voltage  
VCCQ  
(note  
2),(note  
3)  
Input High Voltage  
VIH  
1.4  
VCCQ + 0.2  
+0.4  
V
Input Low Voltage  
VIL  
VOH  
VOL  
ILI  
-0.2  
V
V
(note 4)  
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
I
OH = -0.2mA  
0.80 VCCQ  
I
OL = 0.2mA  
0.20 VCCQ  
1
V
VIN = 0 to VCCQ  
µA  
OE# = VIH or Chip  
Disabled  
Output Leakage Current  
ILO  
1
µA  
Operating Current  
Asynchronous Random  
READ/WRITE  
ICC  
1
20  
15  
mA  
mA  
(note 5)  
(note 5)  
V
IN = VCCQ or 0V Chip  
Enabled, IOUT = 0  
Asynchronous Page  
READ  
I
CC1P  
32Mb  
16Mb  
110  
80  
V
IN = VCCQ or 0V  
CE# = VCCQ  
Standby Current  
ISB  
µA  
(note 6)  
Notes:  
1. -30° C exceeds the CellularRAM Workgroup 1.0 specification of -25° C.  
2. Input signals may overshoot to VCCQ + 1.0 V for periods less than 2ns during transitions.  
3. VIH (MIN) value is not aligned with Cellular RAM Workgroup 1.0 specification of VCCQ - 0.4 V.  
4. Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions  
5. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current  
required to drive output capacitance expected in the actual system.  
6. ISB (MAX) values measured with PAR set to FULL ARRAY and TCR set to +85° C. In order to achieve low standby current,  
all inputs must be driven to VCCQ or VSS. ISB may be slightly higher for up to 500 ms after power-up or when entering  
standby mode.  
180  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
40.1 Maximum and Typical Standby Currents  
The following tables and figures refer to the maximum and typical standby currents for the de-  
vices. The typical values shown in Figure 40.1 and Figure 40.2 are measured with the default on-  
chip temperature sensor control enabled. The maximum values shown in Table 40.7, Table 40.8,  
and Table 40.9 are measured with the relevant TCR bits set in the configuration register.  
Table 40.3 Maximum Standby Currents for Applying PAR and TCR Settings – 32Mb  
TCR  
+15° C (CR[6:5] = 10b)  
+45° C (CR[6:5] = 01b)  
+85° C (CR[6:5] = 11b)  
PAR  
Full Array  
1/2 Array  
1/4 Array  
1/8 Array  
0 Array  
70  
60  
57  
55  
50  
80  
65  
60  
57  
55  
110  
105  
95  
95  
70  
Notes:  
1. For CR[6:5] = 00b (default), refer to Figure 40.1 for typical values.  
2. In order to achieve low standby current, all inputs must be driven to VCCQ or VSS. ISB may be slightly higher for up to  
500ms after power-up or when entering standby mode.  
3. TCR values for 85° C are 100 percent tested. TCR values for 15° C and 45° C are sampled only.  
Table 40.4 Maximum Standby Currents for Applying PAR and TCR Settings – 16Mb  
TCR  
+15°C (CR[6:5] = 10b)  
+45°C (CR[6:5] = 01b)  
+85°C (CR[6:5] = 11b)  
PAR  
Full Array  
1/2 Array  
1/4 Array  
1/8 Array  
0 Array  
40  
38  
38  
38  
35  
50  
55  
55  
55  
40  
80  
70  
70  
70  
65  
Notes:  
1. For CR[6:5] = 00b (default), refer to Figure 40.2, "Typical Refresh Current vs. Temperature (ITCR) – 16Mb" on page 182  
for typical values.  
2. In order to achieve low standby current, all inputs must be driven to VCCQ or VSS. ISB may be slightly higher for up to  
500 ms after power-up or when entering standby mode.  
3. TCR values for 85° C are 100 percent tested. TCR values for 15° C and 45° C are sampled only.  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
181  
A d v a n c e I n f o r m a t i o n  
75  
65  
55  
45  
35  
25  
15  
PAR = Full and 1/2 Array  
PAR = 1/4 Array  
PAR = 1/8 Array  
None  
-3 0  
- 20  
-1 0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature (°C)  
Note: Typical ISB currents for each PAR setting with the appropriate TCR selected, or temperature  
sensor enabled.  
Figure 40.1 Typical Refresh Current vs. Temperature (ITCR) – 32Mb  
60  
55  
50  
PAR = Full Array  
PAR = 1/2, 1/4, 1/8 Array  
None  
45  
40  
35  
30  
25  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature (°C)  
Note: Typical ISB currents for each PAR setting with the appropriate TCR selected, or temperaturesen-  
sor enabled.  
Figure 40.2 Typical Refresh Current vs. Temperature (ITCR) – 16Mb  
182  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
Table 40.5 Deep Power-Down Specifications and Conditions  
Description  
Conditions  
Symbol  
Typ  
Units  
V
IN = VCCQ or 0V; +25°C; ZZ# = 0V;  
CR[4] = 0  
Deep Power-Down  
IZZ  
10  
µA  
Table 40.6 Capacitance Specifications and Conditions  
Description  
Conditions  
Symbol  
CIN  
Min  
2.0  
3.0  
Max  
6.5  
Units  
pF  
Notes  
Input Capacitance  
(note 1)  
(note 1)  
TC = +25ºC; f = 1 MHz; VIN = 0V  
Input/Output Capacitance (DQ)  
CIO  
6.5  
pF  
Notes:  
1. These parameters are verified in device characterization and are not 100-percent tested.  
V
CCQ  
Input 1  
Output  
V
CC/22  
V
CCQ/23  
Test Points  
V
SSQ  
Notes:  
1. AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall times (10% to 90%) < 1.6ns.  
2. Input timing begins at VCC/2. Due to the possibility of a difference between VCC and VCCQ, the input test point may not  
be shown to scale.  
3. Output timing ends at VCCQ/2.  
Figure 40.3 AC Input/Output Reference Waveform  
VccQ  
R1  
Test Point  
DUT  
30pF  
R2  
Figure 40.4 Output Load Circuit  
Table 40.7 Output Load Circuit  
VCCQ  
1.8V  
2.5V  
3.0V  
R1/R2  
2.7KΩ  
3.7KΩ  
4.5KΩ  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
183  
A d v a n c e I n f o r m a t i o n  
Table 40.8 READ Cycle Timing Requirements  
Parameter  
Symbol  
Min  
Max  
70  
20  
70  
8
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Address Access Time  
tAA  
Page Access Time  
tAPA  
tBA  
LB#/UB# Access Time  
LB#/UB# Disable to High-Z Output  
LB#/UB# Enable to Low-Z Output  
Maximum CE# Pulse Width  
Chip Select Access Time  
Chip Disable to High-Z Output  
Chip Enable to Low-Z Output  
Output Enable to Valid Output  
Output Hold from Address Change  
Output Disable to High-Z Output  
Output Enable to Low-Z Output  
Page Cycle Time  
tBHZ  
tBLZ  
tCEM  
tCO  
(note 2)  
(note 1)  
(note 3)  
10  
8
70  
8
tHZ  
(note 2)  
(note 1)  
tLZ  
10  
5
tOE  
20  
8
tOH  
tOHZ  
tOLZ  
tPC  
(note 2)  
(note 1)  
5
20  
70  
Read Cycle Time  
tRC  
Notes:  
1. High-Z to Low-Z timings are tested with the circuit shown in Figure 40.4 on page 183. The Low-Z timings measure a 100-  
mV transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 40.4 on page 183. The High-Z timings measure a  
100-mV transition from either VOH or VOL toward VCCQ/2.  
3. Page mode enabled only.  
Table 40.9 WRITE Cycle Timing Requirements  
Parameter  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
Notes  
Address Setup Time  
Address Valid to End of Write  
Byte Select to End of Write  
CE# HIGH Time During Write  
Chip Enable to End of Write  
Data Hold from Write Time  
Data Write Setup Time  
Chip Enable to Low-Z Output  
End Write to Low-Z Output  
Write Cycle Time  
tAW  
70  
70  
5
ns  
tBW  
ns  
tCPH  
tCW  
ns  
70  
0
ns  
tDH  
ns  
tDW  
tLZ  
tOW  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
23  
10  
5
ns  
ns  
(note 1)  
(note 1)  
ns  
70  
ns  
Write to High-Z Output  
Write Pulse Width  
8
ns  
(note 2)  
(note 3)  
46  
10  
0
ns  
Write Pulse Width HIGH  
Write Recovery Time  
ns  
ns  
Notes:  
1. High-Z to Low-Z timings are tested with the circuit shown in Figure 40.4 on page 183. The Low-Z timings measure a 100-  
mV transition away from the High-Z (VCCQ/2) level toward either VOH or VOL  
.
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 40.4 on page 183. The High-Z timings measure a  
100-mV transition from either VOH or VOL toward VCCQ/2.  
3. WE# LOW time must be limited to tCEM (8ìs).  
184  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
Table 40.10 Load Configuration Register Timing Requirements  
Description  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
Address Setup Time  
Address Valid to End of Write  
Chip Deselect to ZZ# LOW  
Chip Enable to End of Write  
Write Cycle Time  
tAW  
70  
5
ns  
tCDZZ  
tCW  
ns  
70  
70  
40  
0
ns  
tWC  
ns  
Write Pulse Width  
tWP  
ns  
Write Recovery Time  
ZZ# LOW to WE# LOW  
tWR  
ns  
tZZWE  
10  
500  
ns  
Table 40.11 Deep Power-Down Timing Requirements  
Description  
Symbol  
tCDZZ  
tR  
Min  
5
Max  
Units  
ns  
Chip Deselect to ZZ# LOW  
Deep Power-Down Recovery  
Minimum ZZ# Pulse Width  
150  
10  
µs  
tZZMIN  
µs  
Vcc (MIN)  
Vcc, VccQ = 1.7V  
t
PU  
Device ready for  
normal operation  
Figure 40.5 Power-Up Initialization Period  
Table 40.12 Power-Up Initialization Timing Requirements  
Description  
Symbol  
Min  
Max  
Units  
Power-Up Initialization Period  
tPU  
150  
µs  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
185  
A d v a n c e I n f o r m a t i o n  
tWC  
ADDRESS  
OPCODE  
t
WR  
tAW  
t
CW  
CE#  
LB#/UB#  
t
AS  
tWP  
WE#  
OE#  
t
CDZZ  
tZZWE  
ZZ#  
DON’T CARE  
Figure 40.6 Load Configuration Register  
Table 40.13 Load Configuration Register Timing Requirements  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
tAW  
70  
5
ns  
tCDZZ  
tCW  
ns  
70  
70  
40  
0
ns  
tWC  
ns  
tWP  
ns  
tWR  
ns  
tZZWE  
10  
500  
ns  
tCDZZ  
tZZ (MIN)  
ZZ#  
CE#  
t
R
Device ready for  
normal operation  
DON’T CARE  
Figure 40.7 Deep Power-Down – Entry/Exit  
Table 40.14 Deep Power-Down Timing Parameters  
Symbol  
tCDZZ  
Min  
5
Max  
Units  
ns  
µs  
µs  
tR  
150  
10  
tZZ (MIN)  
186  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
t
RC  
ADDRESS VALID  
ADDRESS  
CE#  
t
t
AA  
HZ  
t
CO  
t
t
BA  
BHZ  
LB#/UB#  
t
LZ  
t
BLZ  
t
OHZ  
t
OE  
OE#  
t
OLZ  
High-Z  
High-Z  
DATA VALID  
DATA-OUT  
DON’T CARE  
UNDEFINED  
Figure 40.8 Single READ Operation (WE# = VIH  
)
Table 40.15 Single READ Timing Parameters  
Symbol  
tAA  
Min  
Max  
70  
70  
8
Units  
ns  
tBA  
ns  
tBHZ  
tBLZ  
tCO  
ns  
10  
10  
ns  
70  
8
ns  
tHZ  
ns  
tLZ  
ns  
tOE  
20  
8
ns  
tOHZ  
tOLZ  
tRZ  
ns  
5
ns  
70  
ns  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
187  
A d v a n c e I n f o r m a t i o n  
t
RC  
ADDRESS  
A[20:4]  
ADDRESS VALID  
ADDRESS  
A[3:0]  
t
t
PC  
AA  
t
t
HZ  
CEM  
CE#  
t
CO  
t
BHZ  
t
BA  
LB#/UB#  
t
BLZ  
t
LZ  
t
OHZ  
t
OE  
OE#  
t
APA  
OH  
t
OLZ  
t
DATA  
DATA  
DATA  
DATA  
High-Z  
High-Z  
DATA-OUT  
VALID  
VALID  
VALID  
VALID  
DON’T CARE  
UNDEFINED  
Figure 40.9 Page Mode READ Operation (WE# = VIH  
)
Table 40.16 Page Mode READ Timing Parameters (WE# = VIH)  
Symbol  
tAA  
Min  
Max  
70  
20  
70  
8
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAPA  
tBA  
tBHZ  
tBLZ  
tCEM  
tCO  
10  
8
70  
8
tHZ  
tLZ  
10  
5
tOE  
20  
8
tOH  
tOHZ  
tOLZ  
tPC  
5
20  
70  
tRC  
188  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
ADDRESS VALID  
ADDRESS  
t
t
WR  
AW  
t
CW  
CE#  
t
BW  
LB#/UB#  
t
t
t
WPH  
AS  
WP  
WE#  
OE#  
t
t
DH  
DW  
DATA VALID  
t
DATA-IN  
t
WHZ  
OW  
High-Z  
DATA-OUT  
DON’T CARE  
Figure 40.10 WRITE Cycle (WE# Control)  
Table 40.17 WRITE Cycle Timing Parameters (WE# Control)  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
70  
0
ns  
tBW  
ns  
tCW  
ns  
tDH  
ns  
tDW  
23  
5
ns  
tOW  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
ns  
70  
ns  
8
ns  
46  
10  
0
ns  
ns  
ns  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
189  
A d v a n c e I n f o r m a t i o n  
t
WC  
ADDRESS VALID  
ADDRESS  
t
t
AW  
WR  
t
t
CW  
CPH  
CE#  
t
AS  
t
BW  
LB#/UB#  
t
WP  
WE#  
OE#  
t
t
DH  
DW  
DATA VALID  
High-Z  
DATA-IN  
t
LZ  
t
WHZ  
DATA-OUT  
DON’T CARE  
Figure 40.11 WRITE Cycle (CE# Control)  
Table 40.18 WRITE Cycle Timing Parameters (CE# Control)  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
5
ns  
tBW  
ns  
tCPH  
tCW  
ns  
70  
0
ns  
tDH  
ns  
tDW  
tLZ  
23  
10  
70  
ns  
ns  
tWC  
ns  
tWHZ  
tWP  
8
ns  
46  
0
ns  
tWR  
ns  
190  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
ADDRESS VALID  
ADDRESS  
t
t
AW  
WR  
t
CW  
CE#  
t
t
AS  
BW  
LB#/UB#  
WE#  
OE#  
t
t
DW  
DH  
DATA-IN  
DATA VALID  
t
LZ  
t
WHZ  
High-Z  
DATA-OUT  
DON’T CARE  
Figure 40.12 WRITE Cycle (LB#/UB# Control)  
Table 40.19 WRITE Cycle Timing Parameters (LB#/UB# Control)  
Symbol  
tAS  
Min  
0
Max  
Units  
ns  
tAW  
70  
70  
70  
0
ns  
tBW  
ns  
tCW  
ns  
tDH  
ns  
tDW  
tLZ  
23  
10  
70  
ns  
ns  
tWC  
8
8
ns  
tWHZ  
tWR  
ns  
0
ns  
August 25, 2005 CellRAM_05_A0  
Aysnc/Page CellularRAM Type 2  
191  
A d v a n c e I n f o r m a t i o n  
41 32/16M CellRAM Revision Summary  
Revision A (August 25, 2005)  
Initial release.  
192  
Aysnc/Page CellularRAM Type 2  
CellRAM_05_A0 August 25, 2005  
A d v a n c e I n f o r m a t i o n  
42 MCP Revision Summary  
42.1 Revision A0 (October 14, 2004)  
Initial release.  
42.2 Revision A1 (June 15, 2005)  
Added two 80-ball pinouts  
Added new TLC080 package drawing  
Swapped 128/64/32 module with CellularRAM 16/32/64.  
42.3 Revision A2 (October 28, 2005)  
Global: added Package on Package (PoP) information  
Updated the Ordering Information table  
Added a valid combinations table for the 64/16 device  
Added two 128-ball pinouts  
Added new ALG128 package drawing  
42.4 Revision A3 (November 28, 2005)  
Replaced CellRAM modules with the 64M CellularRAM Type 2 and 32/16M Aysnc/Page CellularRAM  
Type 2  
Updated the Flash Module with latest version data sheet  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-  
mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels  
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on ex-  
port under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
194  
S71WS-J Based MCPs  
S71WS-J_03_A3 November 28, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY