S75PL127JCFBAWB0 [SPANSION]

Power supply woltage of 2.7 to 3.1 volt; 2.7至3.1伏的电源线电压
S75PL127JCFBAWB0
型号: S75PL127JCFBAWB0
厂家: SPANSION    SPANSION
描述:

Power supply woltage of 2.7 to 3.1 volt
2.7至3.1伏的电源线电压

文件: 总183页 (文件大小:4532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S75PL127J MCPs  
Stacked Multi-Chip Product (MCP)  
CODE Flash, pSRAM and DATA Flash 128M (8M x 16-Bit CMOS 3.0 Volt-  
Only, Simultaneous Operation, Page Mode CODE Flash Memory, with  
64M/32M (4M/2M x 16-Bit) pSRAM and 512M/256/128M (32M/16M/8M x 16-  
Bit) Data Flash Memory  
ADVANCE  
INFORMATION  
Data Sheet  
„
„
Package  
— 9 x 12 mm 84 ball FBGA  
MCP Features  
„
„
Power supply voltage of 2.7 to 3.1 volt  
High Performance  
Operating Temperature  
— 65ns for PL-J, 70ns for pSRAM, and 110ns for GL-N  
— Page access - 25ns  
— –25°C to +85°C (Wireless)  
„
Other temperature grade options  
— Please contact the factory through the local sales  
support team  
General Description  
The 75PL Series is a product line of stacked Multi-Chip Product (MCP) packages  
and consists of:  
„ One S29PL127J based CODE Flash device(s)  
„ pSRAM  
„ One or more S29GLxxxN based DATA Flash device(s)  
32M pSRAM  
Density  
128M  
Data Flash  
256M  
128M  
512M  
Code Flash  
S75PL127JBD  
S75PL127JBE  
S75PL127JBF  
64M pSRAM  
Data Flash  
256M  
Density  
128M  
128M  
512M  
Code Flash  
S75PL127JCD S75PL127JCE  
S75PL127JCF  
Publication Number S75PL127J_00 Revision A Amendment 1 Issue Date January 6, 2005  
A d v a n c e I n f o r m a t i o n  
Low VCC Write Inhibit ................................................................................39  
S75PL127J MCPs .................................................1  
General Description ...................................................1  
Product Selector Guide ............................................ 5  
MCP Block Diagram ................................................ 6  
Connection Diagram ................................................ 7  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information ...............................................9  
Valid Combinations .................................................10  
Write Pulse “Glitch” Protection ...............................................................39  
Logical Inhibit ...................................................................................................39  
Power-Up Write Inhibit ...............................................................................39  
Common Flash Memory Interface (CFI) ............ 40  
Table 9. CFI Query Identification String ................................ 40  
Table 10. System Interface String ........................................ 41  
Table 11. Device Geometry Definition ................................... 41  
Table 12. Primary Vendor-Specific Extended Query ................ 42  
Command Definitions .............................................44  
Reading Array Data ...........................................................................................44  
Reset Command .................................................................................................44  
Autoselect Command Sequence ....................................................................45  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence ................45  
Word Program Command Sequence ...........................................................45  
Unlock Bypass Command Sequence ........................................................46  
Figure 4. Program Operation............................................... 47  
Chip Erase Command Sequence ...................................................................47  
Sector Erase Command Sequence ................................................................48  
Figure 5. Erase Operation................................................... 49  
Erase Suspend/Erase Resume Commands ..................................................49  
Command Definitions Tables .........................................................................50  
Table 13. Memory Array Command Definitions ...................... 50  
Table 14. Sector Protection Command Definitions .................. 51  
Write Operation Status ........................................ 52  
Data: S29GL128N ................................................................................................10  
Data: S29GL256N ................................................................................................ 11  
Data: S29GL512N ............................................................................................... 12  
S29PL127J/S29PL064J/S29PL032J for MCP .....13  
General Description .................................................15  
Simultaneous Read/Write Operation with Zero Latency .......................15  
Page Mode Features ............................................................................................15  
Standard Flash Memory Features ....................................................................15  
Pin Description .........................................................17  
Device Bus Operations ............................................18  
Table 1. PL127J Device Bus Operations ................................ 18  
Requirements for Reading Array Data ......................................................... 18  
Random Read (Non-Page Read) ................................................................ 18  
Page Mode Read .............................................................................................. 19  
Table 2. Page Select .......................................................... 19  
DQ7: Data# Polling ............................................................................................52  
Figure 6. Data# Polling Algorithm........................................ 54  
RY/BY#: Ready/Busy# ........................................................................................55  
Simultaneous Read/Write Operation ........................................................... 19  
Table 3. Bank Select .......................................................... 19  
DQ6: Toggle Bit I ............................................................................................... 55  
Figure 7. Toggle Bit Algorithm............................................. 56  
Writing Commands/Command Sequences ................................................20  
Accelerated Program Operation ..............................................................20  
Autoselect Functions ....................................................................................20  
Standby Mode .......................................................................................................20  
Automatic Sleep Mode ...................................................................................... 21  
RESET#: Hardware Reset Pin ......................................................................... 21  
Output Disable Mode ........................................................................................ 21  
Table 4. PL127J Sector Architecture ..................................... 22  
DQ2: Toggle Bit II ..............................................................................................56  
Reading Toggle Bits DQ6/DQ2 .....................................................................56  
DQ5: Exceeded Timing Limits ........................................................................ 57  
DQ3: Sector Erase Timer ................................................................................ 57  
Table 15. Write Operation Status ......................................... 58  
Absolute Maximum Ratings ...................................59  
Figure 8. Maximum Overshoot Waveforms............................ 59  
Operating Ranges ................................................... 60  
Industrial (I) Devices ..........................................................................................60  
Wireless Devices ................................................................................................60  
Supply Voltages ...................................................................................................60  
DC Characteristics .................................................. 61  
Table 16. CMOS Compatible ................................................ 61  
AC Characteristic ....................................................62  
Test Conditions ..................................................................................................62  
Figure 9. Test Setups........................................................ 62  
Table 17. Test Specifications ............................................... 62  
Table 5. SecSiTM Sector Addresses ...................................... 27  
Autoselect Mode .................................................................................................27  
Table 6. Autoselect Codes (High Voltage Method) .................. 28  
Table 7. PL127J Boot Sector/Sector Block Addresses for  
Protection/Unprotection ..................................................... 29  
Selecting a Sector Protection Mode ............................................................. 30  
Table 8. Sector Protection Schemes ..................................... 30  
Sector Protection ................................................... 30  
Sector Protection Schemes .................................. 30  
Password Sector Protection ........................................................................... 30  
WP# Hardware Protection ............................................................................ 30  
Selecting a Sector Protection Mode ............................................................. 30  
Persistent Sector Protection ................................. 31  
Persistent Protection Bit (PPB) ........................................................................31  
Persistent Protection Bit Lock (PPB Lock) ..................................................31  
Persistent Sector Protection Mode Locking Bit ........................................33  
Password Protection Mode ................................... 33  
Password and Password Mode Locking Bit ................................................34  
64-bit Password ...................................................................................................34  
Write Protect (WP#) ........................................................................................34  
Persistent Protection Bit Lock ....................................................................35  
High Voltage Sector Protection ......................................................................35  
Figure 1. In-System Sector Protection/Sector  
SWITCHING WAVEFORMS .........................................................................63  
Table 18. KEY TO SWITCHING WAVEFORMS .......................... 63  
Figure 10. Input Waveforms and Measurement Levels............ 63  
VCC RampRate ...................................................................................................63  
Read Operations .................................................................................................64  
Table 19. Read-Only Operations .......................................... 64  
Figure 11. Read Operation Timings ...................................... 64  
Figure 12. Page Read Operation Timings............................... 65  
Reset .......................................................................................................................65  
Table 20. Hardware Reset (RESET#) .................................... 65  
Figure 13. Reset Timings .................................................... 66  
Erase/Program Operations ..............................................................................67  
Table 21. Erase and Program Operations .............................. 67  
Timing Diagrams .................................................................................................68  
Figure 14. Program Operation Timings ................................. 68  
Figure 15. Accelerated Program Timing Diagram.................... 68  
Figure 16. Chip/Sector Erase Operation Timings .................... 69  
Figure 17. Back-to-back Read/Write Cycle Timings................. 69  
Figure 18. Data# Polling Timings (During Embedded  
Algorithms)....................................................................... 70  
Figure 19. Toggle Bit Timings (During Embedded  
Algorithms)....................................................................... 70  
Figure 20. DQ2 vs. DQ6 ..................................................... 71  
Unprotection Algorithms...................................................... 36  
Temporary Sector Unprotect .........................................................................37  
Figure 2. Temporary Sector Unprotect Operation.................... 37  
SecSi™ (Secured Silicon) Sector Flash Memory Region ...........................37  
Factory-Locked Area (64 words) ..............................................................37  
Customer-Lockable Area (64 words) ......................................................38  
SecSi Sector Protection Bits ........................................................................38  
Figure 3. SecSi Sector Protect Verify..................................... 39  
Hardware Data Protection ..............................................................................39  
2
27631A5 September 28, 2004  
A d v a n c e I n f o r m a t i o n  
Table 11. Primary Vendor-Specific Extended Query............... 126  
Command Definitions .......................................... 126  
Protect/Unprotect .................................................. 71  
Table 22. Temporary Sector Unprotect ................................. 71  
Figure 21. Temporary Sector Unprotect Timing Diagram.......... 71  
Figure 22. Sector/Sector Block Protect and Unprotect  
Reading Array Data ..........................................................................................127  
Reset Command ................................................................................................127  
Autoselect Command Sequence ...................................................................127  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence ...........................................................................128  
Word Program Command Sequence ..........................................................128  
Unlock Bypass Command Sequence .......................................................129  
Write Buffer Programming .........................................................................129  
Accelerated Program ...................................................................................130  
Figure 1. Write Buffer Programming Operation .................... 131  
Timing Diagram ................................................................. 72  
Controlled Erase Operations ..........................................................................73  
Table 23. Alternate CE# Controlled Erase and Program  
Operations ....................................................................... 73  
Table 24. Alternate CE# Controlled Write (Erase/Program) Opera-  
tion Timings ..................................................................... 74  
Table 25. Erase And Programming Performance .................... 75  
BGA Pin Capacitance ............................................ 75  
S29GLxxxN MirrorBitTM Flash Family ........... 77  
General Description ................................................78  
Product Selector Guide ..........................................80  
Block Diagram ........................................................ 81  
Pin Description ....................................................... 82  
Logic Symbol .......................................................... 83  
Figure 2. Program Operation............................................. 132  
Program Suspend/Program Resume Command Sequence ...................132  
Figure 3. Program Suspend/Program Resume...................... 133  
Chip Erase Command Sequence ..................................................................133  
Sector Erase Command Sequence ...............................................................134  
Figure 4. Erase Operation................................................. 135  
Erase Suspend/Erase Resume Commands .................................................135  
Lock Register Command Set Definitions ...................................................136  
Password Protection Command Set Definitions .....................................136  
Non-Volatile Sector Protection Command Set Definitions .................138  
Global Volatile Sector Protection Freeze Command Set .....................138  
Volatile Sector Protection Command Set .................................................139  
Secured Silicon Sector Entry Command ....................................................140  
Secured Silicon Sector Exit Command .......................................................140  
Command Definitions .......................................................................................141  
S29GL512N ........................................................................................................83  
S29GL256N .......................................................................................................83  
S29GL128N .......................................................................................................83  
Device Bus Operations ...........................................84  
Table 1. Device Bus Operations ........................................... 84  
VersatileIOTM (V ) Control ............................................................................84  
IO  
Table 12. S29GL512N, S29GL256N, S29GL128N  
Command Definitions, x16 ................................................ 141  
Requirements for Reading Array Data ........................................................84  
Page Mode Read ............................................................................................. 85  
Writing Commands/Command Sequences ................................................ 85  
Write Buffer .................................................................................................... 85  
Accelerated Program Operation .............................................................. 85  
Autoselect Functions ....................................................................................86  
Standby Mode ......................................................................................................86  
Automatic Sleep Mode ..................................................................................... 86  
RESET#: Hardware Reset Pin ........................................................................86  
Output Disable Mode ....................................................................................... 87  
Table 2. Sector Address Table–S29GL512N ........................... 87  
Write Operation Status ..................................................................................144  
DQ7: Data# Polling ...........................................................................................144  
Figure 5. Data# Polling Algorithm...................................... 145  
RY/BY#: Ready/Busy# ......................................................................................145  
DQ6: Toggle Bit I ..............................................................................................146  
Figure 6. Toggle Bit Algorithm........................................... 147  
DQ2: Toggle Bit II .............................................................................................147  
Reading Toggle Bits DQ6/DQ2 ....................................................................148  
DQ5: Exceeded Timing Limits .......................................................................148  
DQ3: Sector Erase Timer ...............................................................................148  
DQ1: Write-to-Buffer Abort ..........................................................................149  
Table 13. Write Operation Status ....................................... 149  
Table 3. Sector Address Table–S29GL256N ..........................102  
Table 4. Sector Address Table–S29GL128N ..........................109  
Autoselect Mode ................................................................................................ 113  
Table 5. Autoselect Codes, (High Voltage Method) ...............114  
Absolute Maximum Ratings ................................ 150  
Sector Protection ...............................................................................................114  
Persistent Sector Protection ......................................................................114  
Password Sector Protection .......................................................................114  
WP# Hardware Protection ........................................................................114  
Selecting a Sector Protection Mode ........................................................114  
Advanced Sector Protection .......................................................................... 115  
Lock Register ....................................................................................................... 115  
Table 6. Lock Register .......................................................116  
Figure 7. Maximum Negative Overshoot Waveform .............. 150  
Figure 8. Maximum Positive Overshoot Waveform................ 150  
Operating Ranges ................................................. 150  
DC Characteristics ................................................. 151  
Test Conditions ......................................................152  
Figure 9. Test Setup ........................................................ 152  
Table 14. Test Specifications ............................................. 152  
Persistent Sector Protection ..........................................................................116  
Dynamic Protection Bit (DYB) ..................................................................116  
Persistent Protection Bit (PPB) ................................................................. 117  
Persistent Protection Bit Lock (PPB Lock Bit) ..................................... 117  
Table 7. Sector Protection Schemes ....................................118  
Key to Switching Waveforms .............................. 152  
Figure 10. Input Waveforms and Measurement Levels.......... 152  
AC Characteristics .................................................153  
Read-Only Operations–S29GL128N, S29GL256N, S29GL512N ..........153  
Figure 11. Read Operation Timings .................................... 154  
Figure 12. Page Read Timings ........................................... 154  
Hardware Reset (RESET#) .............................................................................155  
Figure 13. Reset Timings .................................................. 155  
Erase and Program Operations–S29GL128N, S29GL256N,  
Persistent Protection Mode Lock Bit ..........................................................118  
Password Sector Protection ...........................................................................119  
Password and Password Protection Mode Lock Bit ...............................119  
64-bit Password .................................................................................................120  
Persistent Protection Bit Lock (PPB Lock Bit) .........................................120  
Secured Silicon Sector Flash Memory Region ..........................................120  
Write Protect (WP#) ......................................................................................122  
Hardware Data Protection ............................................................................122  
Low VCC Write Inhibit ..............................................................................122  
Write Pulse “Glitch” Protection ..............................................................122  
Logical Inhibit .................................................................................................122  
Power-Up Write Inhibit ..............................................................................122  
Common Flash Memory Interface (CFI) ............ 122  
S29GL512N ..........................................................................................................156  
Figure 14. Program Operation Timings ............................... 157  
Figure 15. Accelerated Program Timing Diagram.................. 157  
Figure 16. Chip/Sector Erase Operation Timings .................. 158  
Figure 17. Data# Polling Timings (During Embedded  
Algorithms)..................................................................... 159  
Figure 18. Toggle Bit Timings (During Embedded Algorithms) 160  
Figure 19. DQ2 vs. DQ6 ................................................... 160  
Alternate CE# Controlled Erase and Program Operations-  
Table 8. CFI Query Identification String............................... 123  
Table 9. System Interface String........................................ 124  
Table 10. Device Geometry Definition ................................. 125  
S29GL128N, S29GL256N, S29GL512N .........................................................161  
September 28, 2004 27631A5  
3
A d v a n c e I n f o r m a t i o n  
Figure 20. Alternate CE# Controlled Write (Erase/  
Figure 29. Timing Waveform of Write Cycle(3)  
Program) Operation Timings.............................................. 162  
(CS2 Controlled) ............................................................. 173  
Figure 30. Timing Waveform of Write Cycle(4) (UB#, LB#  
Controlled) ..................................................................... 173  
Erase And Programming Performance .............. 163  
TSOP Pin and BGA Package Capacitance ......... 163  
pSRAM Type 2 ................................................164  
Features ................................................................ 164  
Product Information ............................................ 164  
Pin Description ..................................................... 164  
Power Up Sequence ............................................. 165  
Timing Diagrams ...................................................166  
Power Up ............................................................................................................166  
Figure 21. Power Up 1 (CS1# Controlled)............................ 166  
Figure 22. Power Up 2 (CS2 Controlled) .............................. 166  
Functional Description ........................................ 166  
Absolute Maximum Ratings ................................. 167  
DC Recommended Operating Conditions ......... 167  
Capacitance (Ta = 25°C, f = 1 MHz) .................... 167  
DC and Operating Characteristics ..................... 167  
pSRAM Type 6 ................................................174  
Features ................................................................. 174  
Pin Description ..................................................... 174  
Functional Description ......................................... 175  
Absolute Maximum Ratings ................................ 175  
DC Recommended Operating Conditions  
(Ta = -40°C to 85°C) ............................................. 175  
DC Characteristics (Ta = -40°C to 85°C,  
VDD = 2.6 to 3.3 V) (See Note 3 to 4) ................ 176  
Capacitance (Ta = 25°C, f = 1 MHz) .................... 176  
AC Characteristics and Operating  
Conditions ............................................................. 176  
(Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 5 to 11) ............176  
AC Test Conditions .............................................. 177  
Common .............................................................................................................. 167  
16M pSRAM .........................................................................................................168  
32M pSRAM ........................................................................................................168  
64M pSRAM ........................................................................................................169  
AC Operating Conditions ................................... 169  
Timing Diagrams ................................................... 178  
Read Timings .......................................................................................................178  
Figure 1. Read Cycle........................................................ 178  
Figure 2. Page Read Cycle (8 Words Access) ....................... 179  
Write Timings .................................................................................................... 180  
Figure 3. Write Cycle #1 (WE# Controlled) (See Note 8) ...... 180  
Figure 4. Write Cycle #2 (CE# Controlled) (See Note 8) ....... 181  
Test Conditions (Test Load and Test Input/Output Reference) .......169  
Figure 23. Output Load ..................................................... 169  
ACC Characteristics (Ta = -40°C to 85°C, V = 2.7 to 3.1 V) ........170  
Deep Power-down Timing ..............................................................................181  
CC  
Figure 5. Deep Power Down Timing.................................... 181  
Timing Diagrams ....................................................171  
Power-on Timing ................................................................................................181  
Read Timings ....................................................................................................... 171  
Figure 24. Timing Waveform of Read Cycle(1)...................... 171  
Figure 25. Timing Waveform of Read Cycle(2)...................... 171  
Figure 26. Timing Waveform of Read Cycle(2)...................... 171  
Write Timings .................................................................................................... 172  
Figure 27. Write Cycle #1 (WE# Controlled) ........................ 172  
Figure 28. Write Cycle #2 (CS1# Controlled)....................... 172  
Figure 6. Power-on Timing................................................ 181  
Provisions of Address Skew ...........................................................................182  
Read ...................................................................................................................182  
Figure 7. Read ................................................................ 182  
Write .................................................................................................................182  
Figure 8. Write................................................................ 182  
Revision Summary .........................................183  
4
27631A5 September 28, 2004  
P r e l i m i a r y  
Product Selector Guide  
PL127J  
Access  
pSRAM  
Access  
Data  
Storage  
pSRAM  
Device-Model#  
S75PL127JBD-KU  
S75PL127JBD-KB  
S75PL127JCD-KU  
S75PL127JCD-KB  
S75PL127JBE-KU  
S75PL127JBE-KB  
S75PL127JCE-KU  
S75PL127JCE-KB  
S75PL127JBF-KU  
S75PL127JBF-KB  
S75PL127JCF-KU  
S75PL127JCF-KB  
Times (ns) density Time (ns) Supplier Density  
Package  
Type 6  
32 Mb  
Type 2  
Type 6  
Type 2  
Type 6  
Type 2  
Type 6  
Type 2  
Type 6  
Type 2  
Type 6  
Type 2  
128 Mb  
(110ns)  
65  
65  
65  
70  
70  
70  
9x12 mm 84-ball FBGA  
64 Mb  
32 Mb  
64 Mb  
32 Mb  
64 Mb  
256 Mb  
(110ns)  
9x12 mm 84-ball FBGA  
9x12 mm 84-ball FBGA  
512 Mb  
(110ns)  
January 6, 2005 S75PL127J_00_A1_E  
S75PL127J MCPs  
5
A d v a n c e I n f o r m a t i o n  
MCP Block Diagram  
V
f
CC  
A
*-A22  
23  
max  
V
f
Flash-Only Address  
Shared Address  
CC  
16  
DQ15 to DQ0  
S29PL127J  
DQ15 to DQ0  
WP#ACC  
WP#  
CE#  
OE#  
F1-CE# (See Note)  
OE#  
WE#  
WE#  
RESET#  
S29GL-N  
RY/BY#  
RDY  
VSS  
F-RST#  
V
F2-CW# (See Note)  
SS  
R-V  
CC  
V
V
CC  
CCO  
16  
23  
DQ15 to DQ0  
pSRAM  
R-CE#  
CE#  
WE#  
OE#  
UB#  
LB#  
R-UB#  
R-LB#  
V
SSQ  
V
SS  
(Note 1) R-CE2  
Note:  
F1-CE# and F2-CE# are the chip-enable pins for the PL and GL Flash devices, respectively.  
Amax -A24 for GL512, A23 for GL256N, A22 for GL128 and PL127J. Flash-only addressess  
may be shared between PL and GL, but is not shared with pSRAM. For more details, refer  
to the table following the connection diagram.  
6
S75PL127J MCPs  
S75PL127J_00_A1_E January 6, 2005  
P r e l i m i a r y  
Connection Diagram  
Legend:  
All Shared  
Top View  
A2  
A1  
DNU  
DNU  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B2  
VSS  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
GL (Data) only  
pSRAM only  
C2  
C3  
A7  
C4  
C5  
C6  
C7  
A8  
C8  
C9  
RFU  
R-LB# F1-WP/ACC WE#  
A11  
F2-CE#  
D5  
D6  
D7  
D8  
D9  
D2  
A3  
D3  
A6  
D4  
R-UB# F-RST#  
R-CE2  
A19  
A12  
A15  
Reserved for Future Use  
PL (Code) Only  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
E7  
A9  
E8  
E9  
A18  
RY/BY#  
A20  
A13  
A21  
F2  
A1  
F3  
A4  
F4  
F5  
F6  
F7  
F8  
F9  
A17  
RFU  
A23  
A10  
A14  
A22  
PL and GL Shared  
G2  
A0  
G5  
G6  
G8  
G3  
G4  
G7  
G9  
VSS  
DQ1  
RFU  
RFU  
DQ6  
A24  
A16  
Shared (See Table Below)  
H2  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
R-CE1#  
DQ0  
DQ10  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K2  
K4  
K4  
K5  
K6  
K7  
K8  
K9  
RFU  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14 F2-WP#/ACC  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
RFU  
RFU  
VSS  
F-VCC  
RFU  
RFU  
RFU  
RFU  
DNU  
DNU  
Note:  
Connect 2-WP#/ ACC (K9) to Flash Vcc.  
PL, GL, and pSRAM  
Shared Addresses  
MCP  
GL-Only Addresses PL-GL Shared Addresses  
S75PL127JBD  
S75PL127JCD  
S75PL127JBE  
S75PL127JCE  
S75PL127JBF  
S75PL127JCF  
-
-
A22–A21  
A22  
A20–A0  
A21–A0  
A20–A0  
A21–A0  
A20–A0  
A21–A0  
A23  
A22–A21  
A22  
A23  
A24-A23  
A24-A23  
A22–A21  
A22  
January 6, 2005 S75PL127J_00_A1_E  
S75PL127J MCPs  
7
A d v a n c e I n f o r m a t i o n  
Pin Description  
Amax–A0  
DQ15–DQ0  
F1-CE#  
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Address Inputs  
16 Data Inputs/Outputs (Common)  
Chip Enable for PL  
F2-CE  
Chip Enable for GL  
R-CE#1  
R-CE#2  
OE#  
Chip Enable 1 (pSRAM)  
Chip Enable 2 (pSRAM)  
Output Enable (Common)  
WE#  
Write Enable (Common)  
RY/BY#  
R-UB#  
R-LB#  
F-RST#  
Ready/Busy Output (Flash)  
Upper Byte Control (pSRAM)  
Lower Byte Control (pSRAM)  
Hardware Reset Pin (Flash)  
Hardware Write Protect /Acceleration Pin (PL)  
Hardware Write Protect/Acceleration Pin (GL) Should be tied to Vcc  
Flash 3.0 volt-only single power supply  
pSRAM Power Supply  
F1-WP#/ACC  
F-VCC  
R-VCCs  
VSS  
=
=
=
=
Device Ground (Common)  
DNU  
Do Not Use  
8
S75PL127J MCPs  
S75PL127J_00_A1_E January 6, 2005  
P r e l i m i a r y  
Ordering Information  
S75PL  
127  
J
C
D
BA  
W
K
Z
0
PACKING TYPE  
0
2
3
=
=
=
Tray  
7” Tape and Reel  
13” Tape and Reel  
SUPPPLIER; SPEED COMBINATION  
B
U
=
=
pSRAM2, 70 ns  
pSRAM6, 70 ns  
PACKAGE HEIGHT; DATA TYPE; PSRAM SPEED  
1.4 mm, GL as data; 70 ns  
K
=
TEMPERATURE RANGE  
Wireless (-25 C to +85°C)  
W
=
°
PACKAGE TYPE  
BA  
BF  
=
=
Very Thin Fine-Pitch BGA Lead (Pb)-free compliant package  
Very Thin Fine-Pitch BGA Lead (Pb)-free package  
GL DATA Flash Density  
D
E
F
=
=
=
128 Mb  
256 Mb  
512 Mb  
pSRAM Density  
B
C
=
=
32 Mb  
64 Mb  
PROCESS TECHNOLOGY  
110 nm, Floating Gate  
J
=
PL CODE FLASH DENSITY  
127 128 Mb  
=
PRODUCT FAMILY  
S75PL= Multi-Chip Product (MCP)  
3.0 V Simultaneous Read/Write Page Mode  
CODE Flash + pSRAM + 3.0V DATA Flash  
January 6, 2005 S75PL127J_00_A1_E  
S75PL127J MCPs  
9
A d v a n c e I n f o r m a t i o n  
Valid Combinations  
Data: S29GL128N  
PL127J  
Package  
&
Package  
Modifier/  
Speed  
Base Ordering  
Packing Options pSRAM Supplier/ Package  
Part Number Temperature Model Number  
Type  
(ns)  
Access Time (ns) Marking  
S75PL127JBD  
S75PL127JBD  
S75PL127JCD  
S75PL127JCD  
S75PL127JBD  
S75PL127JBD  
S75PL127JCD  
S75PL127JCD  
KU  
KB  
KU  
KB  
KU  
KB  
KU  
KB  
Type 6 / 70  
Type 2 / 70  
BAW  
BFW  
Type 6/ 70  
Type 2 / 70  
(Note 2)  
Type 6 / 70  
0, 2, 3,  
(Note 1)  
65  
Type 2 / 70  
Type 6 / 70  
Type 2 / 70  
Notes:  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading S and packing type designator from ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device.  
Consult your local sales office to confirm availability of specific valid combinations and to  
check on newly released combinations.  
Data: S29GL256N  
PL127J  
Package  
&
Package  
Modifier/  
Speed  
Base Ordering  
Packing Options pSRAM Supplier/ Package  
Part Number Temperature Model Number  
Type  
(ns)  
Access Time (ns) Marking  
S75PL127JBE  
S75PL127JBE  
S75PL127JCE  
S75PL127JCE  
S75PL127JBE  
S75PL127JBE  
S75PL127JCE  
S75PL127JCE  
KU  
KB  
KU  
KB  
KU  
KB  
KU  
KB  
Type 6 / 70  
Type 2 / 70  
BAW  
BFW  
Type 6 / 70  
Type 2 / 70  
(Note 2)  
Type 6 / 70  
0, 2, 3,  
(Note 1)  
65  
Type 2 / 70  
Type 6 / 70  
Type 2 / 70  
Notes:  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading S and packing type designator from ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device.  
Consult your local sales office to confirm availability of specific valid combinations and to  
check on newly released combinations.  
10  
S75PL127J MCPs  
S75PL127J_00_A1_E January 6, 2005  
P r e l i m i a r y  
Data: S29GL512N  
PL127J  
Package  
&
Package  
Modifier/  
Speed  
Base Ordering  
Packing Options pSRAM Supplier/ Package  
Part Number Temperature Model Number  
Type  
(ns)  
Access Time (ns) Marking  
S75PL127JBF  
S75PL127JBF  
S75PL127JCF  
S75PL127JCF  
S75PL127JBF  
S75PL127JBF  
S75PL127JCF  
S75PL127JCF  
KU  
KB  
KU  
KB  
KU  
KB  
KU  
KB  
Type 6 / 70  
Type 2 / 70  
BAW  
BFW  
Type 6 / 70  
Type 2 / 70  
(Note 2)  
Type 6 / 70  
0, 2, 3,  
(Note 1)  
65  
Type 2 / 70  
Type 6 / 70  
Type 2 / 70  
Notes:  
1. Type 0 is standard. Specify other options as required.  
2. BGA package marking omits leading S and packing type designator from ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device.  
Consult your local sales office to confirm availability of specific valid combinations and to  
check on newly released combinations.  
January 6, 2005 S75PL127J_00_A1_E  
S75PL127J MCPs  
11  
S29PL127J/S29PL064J/S29PL032J for MCP  
128/64/32 Megabit (8/4/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory with Enhanced VersatileIOTM Control  
PRELIMINARY  
Distinctive Characteristics  
„
SecSiTM (Secured Silicon) Sector region  
— Up to 128 words accessible through a command  
sequence  
ARCHITECTURAL ADVANTAGES  
„
„
„
128/64/32 Mbit Page Mode devices  
— Page size of 8 words: Fast page read access from  
random locations within the page  
— Up to 64 factory-locked words  
— Up to 64 customer-lockable words  
Single power supply operation  
— Full Voltage range: 2.7 to 3.1 volt read, erase, and  
program operations for battery-powered applications  
„
„
„
„
Both top and bottom boot blocks in one device  
Manufactured on 110 nm process technology  
Data Retention: 20 years typical  
Simultaneous Read/Write Operation  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank  
— Zero latency switching from write to read operations  
Cycling Endurance: 1 million cycles per sector  
typical  
„
FlexBank Architecture (PL127J/PL064J/PL032J)  
— 4 separate banks, with up to two simultaneous  
operations per device  
PERFORMANCE CHARACTERISTICS  
„
High Performance  
— Page access times as fast as 20 ns  
— Random access times as fast as 55 ns  
— Bank A:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
„
Power consumption (typical values at 10 MHz)  
— 45 mA active read current  
— Bank B:  
— 17 mA program/erase current  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
— 0.2 µA typical standby mode current  
SOFTWARE FEATURES  
— Bank C:  
„
Software command-set compatible with JEDEC  
42.4 standard  
— Backward compatible with Am29F, Am29LV,  
Am29DL, and AM29PDL families and MBM29QM/RM,  
MBM29LV, MBM29DL, MBM29PDL families  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
— Bank D:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
„
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
„
Enhanced VersatileI/OTM (VIO) Control  
— Output voltage generated and input voltages  
tolerated on all control inputs and I/Os is determined  
by the voltage on the VIO pin  
„
„
Erase Suspend / Erase Resume  
— Suspends an erase operation to allow read or  
program operations in other sectors of same bank  
— VIO options at 1.8 V and 3 V I/O for PL127J devices  
— 3V VIO for PL064J and PL032J devices  
Unlock Bypass Program command  
— Reduces overall programming time when issuing  
multiple program command sequences  
Publication Number S29PL127J_064J_032J_MCP Revision A Amendment 3 Issue Date August 12, 2004  
P r e l i m i n a r y  
to prevent program or erase operations within that  
sector  
HARDWARE FEATURES  
„
„
„
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting program or  
erase cycle completion  
— Sectors can be locked and unlocked in-system at VCC  
level  
„
„
Password Sector Protection  
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading  
array data  
— A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups  
to prevent program or erase operations within that  
sector using a user-defined 64-bit password  
WP#/ ACC (Write Protect/Acceleration) input  
— At VIL, hardware level protection for the first and  
last two 4K word sectors.  
Package options  
— Standard discrete pinouts  
— At VIH, allows removal of sector protection  
— At VHH, provides accelerated programming in a  
factory setting  
11 x 8 mm, 80-ball Fine-pitch BGA (PL127J)  
(VBG080)  
8 x 6 mm, 48-ball Fine pitch BGA (PL064J/PL032J)  
(VBK048)  
„
Persistent Sector Protection  
— A command sector protection method to lock  
combinations of individual sectors and sector groups  
— MCP-compatible pinout  
8 x 11.6 mm, 64-ball Fine-pitch BGA (PL127J) 7 x 9  
mm, 56-ball Fine-pitch BGA (PL064J and PL032J)  
Compatible with MCP pinout, allowing easy  
integration of RAM into existing designs  
14  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
General Description  
The PL127J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page Mode  
and Simultaneous Read/Write Flash memory device organized as 8/8/4/2  
Mwords. The devices are offered in the following packages:  
„ 11mm x 8mm, 64-ball Fine-pitch BGA standalone (all)  
„ 9mm x 8mm, 80-ball Fine-pitch BGA standalone (PL127J)  
„ 8mm x 11.6mm, 64-ball Fine pitch BGA multi-chip compatible (PL127J)  
The word-wide data (x16) appears on DQ15-DQ0. This device can be pro-  
grammed in-system or in standard EPROM programmers. A 12.0 V VPP is not  
required for write or erase operations.  
The device offers fast page access times of 20 to 30 ns, with corresponding ran-  
dom access times of 55 to 70 ns, respectively, allowing high speed  
microprocessors to operate without wait states. To eliminate bus contention the  
device has separate chip enable (CE#), write enable (WE#) and output enable  
(OE#) controls.  
Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into 4 banks, which can be considered to be four  
separate memory arrays as far as certain operations are concerned. The device  
can improve overall system performance by allowing a host system to program  
or erase in one bank, then immediately and simultaneously read from another  
bank with zero latency (with two simultaneous operations operating at any one  
time). This releases the system from waiting for the completion of a program or  
erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The  
banks are organized as follows:  
Bank  
A
PL127J Sectors  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
B
C
48 Mbit (32 Kw x 96)  
D
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode  
operation provides fast read access speed of random locations within that page.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both  
read and write functions. Internally generated and regulated voltages are pro-  
vided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 single-  
power-supply Flash standard. Commands are written to the command regis-  
ter using standard microprocessor write timing. Register contents serve as inputs  
to an internal state-machine that controls the erase and programming circuitry.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
15  
P r e l i m i n a r y  
Write cycles also internally latch addresses and data needed for the programming  
and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The  
Unlock Bypass mode facilitates faster programming times by requiring only two  
write cycles to program data instead of four. Device erasure occurs by executing  
the erase command sequence.  
The host system can detect whether a program or erase operation is complete by  
reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program  
or erase cycle has been completed, the device is ready to read array data or ac-  
cept another command.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold for any period of time to read data from, or program data to, any sector that  
is not selected for erasure. True background erase can thus be achieved. If a read  
is needed from the SecSi Sector area (One Time Program area) after an erase  
suspend, then the user must use the proper command sequence to enter and exit  
this region.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consumption  
is greatly reduced in both these modes.  
The device electrically erases all bits within a sector simultaneously via Fowler-  
Nordheim tunneling. The data is programmed using hot electron injection.  
16  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Pin Description  
Amax–A0  
DQ15–DQ0  
CE#  
OE#  
WE#  
VSS  
NC  
RY/BY#  
=
=
=
=
=
=
=
=
Address bus  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
Device Ground  
Pin Not Connected Internally  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept  
read operations and commands. When RY/BY#=  
VOL, the device is either executing an embedded  
algorithm or the device is executing a hardware  
reset operation.  
WP#/ACC  
=
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two  
4K-word sectors are write protected regardless of  
other sector protection configurations. When WP#/  
ACC= VIH, these sector are unprotected unless the  
DYB or PPB is programmed. When WP#/ACC= 12V,  
program and erase operations are accelerated.  
VIO  
=
=
Input/Output Buffer Power Supply  
(1.65 V to 1.95 V (for PL127J) or 2.7 V to 3.6 V (for  
all PLxxxJ devices)  
VCC  
Chip Power Supply  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
CE#1  
=
=
Hardware Reset Pin  
Chip Enable Inputs  
Notes:  
1. Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
17  
P r e l i m i n a r y  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. PL127J Device Bus Operations  
Addresses  
(Amax–A0)  
DQ15–  
DQ0  
Operation  
CE#  
L
OE#  
L
WE#  
RESET#  
WP#/ACC  
X
Read  
Write  
H
L
H
H
AIN  
DOUT  
DIN  
L
H
X (Note 2)  
AIN  
VIO  
0.3 V  
±
VIO ±  
0.3 V  
Standby  
X
X
X (Note 2)  
X
High-Z  
Output Disable  
Reset  
L
X
X
H
X
X
H
X
X
H
X
X
X
X
X
High-Z  
High-Z  
DIN  
L
Temporary Sector Unprotect (High Voltage)  
VID  
AIN  
Legend: L= Logic Low = VIL, H = Logic High = VIH  
VID = 11.5-12.5 V, VHH = 8.5-9.5 V, X = Don’t Care,  
,
SA = Sector Address, AIN = Address In, DIN = Data  
In, DOUT = Data Out  
Notes:  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the  
High Voltage Sector Protection section.  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
Requirements for  
Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appro-  
priate CE# pins. OE# is the output control and gates array data to the output  
pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. Each bank remains enabled for read access until the command register  
contents are altered.  
Refer to Table 19 for timing specifications and to Figure 11 for the timing diagram.  
ICC1 in the DC Characteristics table represents the active current specification for  
reading array data.  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid  
output data. The chip enable access time (tCE) is the delay from the stable ad-  
dresses and stable CE# to valid data at the output inputs. The output enable ac-  
cess time is the delay from the falling edge of the OE# to valid data at the output  
inputs (assuming the addresses have been stable for at least tACC–tOE time).  
18  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. Address bits Amax–A3 select an 8 word page,  
and address bits A2–A0 select a specific word within that page. This is an asyn-  
chronous operation with the microprocessor supplying the specific word location.  
The random or initial page access is tACC or tCE and subsequent page read ac-  
cesses (as long as the locations specified by the microprocessor falls within that  
page) is equivalent to tPACC. Fast page mode accesses are obtained by keeping  
Amax–A3 constant and changing A2–A0 to select the specific word within that  
page.  
Table 2. Page Select  
Word  
A2  
0
A1  
0
0
1
1
0
0
1
1
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
1
0
0
0
1
1
0
1
1
1
0
1
1
Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read, and  
erase-suspend program), the device is capable of reading data from one bank of  
memory while a program or erase operation is in progress in another bank of  
memory (simultaneous operation). The bank can be selected by bank addresses  
(PL127J: A22–A20, L064J: A21–A19, PL032J: A20–A18) with zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Table 3. Bank Select  
PL127J: A22–A20  
PL064J: A21–A19  
PL032J: A20–A18  
Bank  
Bank A  
Bank B  
Bank C  
Bank D  
000  
001, 010, 011  
100, 101, 110  
111  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
19  
P r e l i m i n a r y  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once a bank enters the Unlock Bypass mode, only two write cycles are required  
to program a word, instead of four. The “Word Program Command Sequence”  
section has details on programming data to the device using both standard and  
Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 4 indicates the set of address space that each sector occupies. A “bank ad-  
dress” is the set of address bits required to uniquely select a bank. Similarly, a  
“sector address” refers to the address bits required to uniquely select a sector.  
The “Command Definitions” section has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
ICC2 in the DC Characteristics table represents the active current specification for  
the write mode. See the timing specification tables and timing diagrams in the  
Reset for write operations.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
function is primarily intended to allow faster manufacturing throughput at the  
factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the time required for program  
operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin re-  
turns the device to normal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left floating or unconnected; incon-  
sistent behavior of the device may result.  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ15–DQ0. Standard  
read cycle timings apply in this mode. Refer to the SecSiTM Sector Addresses and  
Autoselect Command Sequence for more information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at VIO ± 0.3 V. (Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device  
will be in the standby mode, but the standby current will be greater. The device  
20  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
requires standard access time (tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
ICC3 in “DC Characteristics” represents the CMOS standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Note that during automatic sleep mode, OE# must be at VIH before  
the device reduces current to the stated sleep mode specification. ICC5 in “DC  
Characteristics” represents the automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/  
BY# to determine whether the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing (RY/BY# pin is “1”), the reset  
operation is completed within a time of tREADY (not during Embedded Algorithms).  
The system can read data tRH after the RESET# pin returns to VIH.  
Refer to the AC Characteristic tables for RESET# parameters and to 13 for the  
timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
(except for RY/BY#) are placed in the highest Impedance state  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
21  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
22  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
Sector Address (A22-A12)  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
Sector Size (Kwords)  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
23  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA79  
Sector Address (A22-A12)  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
Sector Size (Kwords)  
Address Range (x16)  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
24  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
Sector Address (A22-A12)  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
Sector Size (Kwords)  
Address Range (x16)  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
25  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
Sector Address (A22-A12)  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
26  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 4. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Sector Address (A22-A12)  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Table 5. SecSiTM Sector Addresses  
Sector Size  
64 words  
64 words  
Address Range  
Factory-Locked Area  
000000h-00003Fh  
000040h-00007Fh  
Customer-Lockable Area  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
27  
P r e l i m i n a r y  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on ad-  
dress pin A9. Address pins must be set as shown in Table 6. In addition, when  
verifying sector protection, the sector address must appear on the appropriate  
highest order address bits (see Table 3). Table 6 shows the remaining address  
bits that are don’t care. When all necessary bits have been set as required, the  
programming equipment may then read the corresponding identifier code on  
DQ7–DQ0. However, the autoselect codes can also be accessed in-system  
through the command register, for instances when the device is erased or pro-  
grammed in a system without access to high voltage on the A9 pin. The command  
sequence is illustrated in Table 13. Note that if a Bank Address (BA) (on address  
bits PL127J: A22A20, PL064J: A21A19, PL032J: A20–A18) is asserted during  
the third write cycle of the autoselect command, the host system can read au-  
toselect data that bank and then immediately read array data from the other  
bank, without exiting the autoselect mode.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 13. This method does  
not require VID. Refer to the Autoselect Command Sequence for more  
information.  
Table 6. Autoselect Codes (High Voltage Method)  
Amax  
to  
A12  
A5  
to  
A4  
A1  
0
DQ15  
to DQ0  
Description  
CE#  
OE#  
WE#  
A9 A8  
A7  
A6  
A3 A2  
A1  
A0  
Manufacturer ID:  
Spansion  
L
L
L
L
H
BA  
BA  
X
X
VID  
X
X
L
L
X
L
L
L
L
L
L
L
L
H
L
0001h  
227Eh  
products  
Read  
Cycle 1  
2220h (PL127J)  
2202h (PL064J)  
220Ah (PL032J)  
Read  
Cycle 2  
H
H
H
L
H
VID  
L
L
2200h (PL127J)  
2201h (PL064J)  
2201h (PL032J)  
Read  
L
L
H
L
H
L
H
H
H
L
Cycle 3  
Sector Protection  
Verification  
0001h (protected),  
0000h (unprotected)  
L
L
H
H
SA  
BA  
X
X
VID  
X
X
L
L
L
L
00C4h (factory and  
customer locked), 0084h  
(factory locked), 0004h  
(not locked)  
SecSi Indicator  
Bit (DQ7, DQ6)  
L
VID  
X
X
L
L
H
H
Legend: L = Logic Low = VIL, H = Logic High = VIH, BA = Bank Address, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences  
28  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 7. PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector/  
Sector/  
Sector  
SA0  
A22-A12  
Sector Block Size  
Sector  
A22-A12  
Sector Block Size  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
4 Kwords  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
SA264  
4 Kwords  
SA265  
4 Kwords  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
29  
P r e l i m i n a r y  
Selecting a Sector Protection Mode  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See the  
SecSiTM Sector Addresses for details.  
Table 8. Sector Protection Schemes  
DYB  
0
PPB  
0
PPB Lock  
Sector State  
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
Unprotected—PPB not changeable, DYB is changeable  
0
0
0
1
1
0
Protected—PPB and DYB are changeable  
1
1
0
1
1
0
Protected—PPB not changeable, DYB is changeable  
1
1
Sector Protection  
The PL127J, PL064J, and PL032J features several levels of sector protection,  
which can disable both the program and erase operations in certain sectors or  
sector groups.  
Sector Protection Schemes  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors SA1-  
133, SA1-134, SA2-0 and SA2-1.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used. If the Persistent Sector Protection  
method is desired, programming the Persistent Sector Protection Mode Locking  
Bit permanently sets the device to the Persistent Sector Protection mode. If the  
Password Sector Protection method is desired, programming the Password Mode  
Locking Bit permanently sets the device to the Password Sector Protection mode.  
It is not possible to switch between the two protection modes once a locking bit  
has been set. One of the two modes must be selected when the device is first  
programmed. This prevents a program or virus from later setting the Password  
30  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Mode Locking Bit, which would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See Au-  
toselect Mode for details.  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection  
method in previous flash devices. This new method provides three different sec-  
tor protection states:  
„ Persistently Locked—The sector is protected and cannot be changed.  
„ Dynamically Locked—The sector is protected and can be changed by a simple  
command.  
„ Unlocked—The sector is unprotected and can be changed by a simple com-  
mand.  
To achieve these states, three types of “bits” are used:  
„ Persistent Protection Bit  
„ Persistent Protection Bit Lock  
„ Persistent Sector Protection Mode Locking Bit  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four  
sectors (see the sector address tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector Persistent Protection Bits  
(PPBs) for greater flexibility. Each PPB is individually modifiable through the PPB  
Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device  
must be instructed to preprogram all of the sector PPBs prior to PPB erasure. Oth-  
erwise, a previously erased sector PPBs can potentially be over-erased. The flash  
device does not have a built-in means of preventing sector PPBs over-erasure.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to  
“1, the PPBs cannot be changed. When cleared (“0”), the PPBs are changeable.  
There is only one PPB Lock bit per device. The PPB Lock is cleared after power-  
up or hardware reset. There is no command sequence to unlock the PPB Lock.  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYBs is “0. Each DYB is individually modifiable through  
the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and  
PPB Lock is defaulted to power up in the cleared state – meaning the PPBs are  
changeable.  
When the device is first powered on the DYBs power up cleared (sectors not pro-  
tected). The Protection State for each sector is determined by the logical OR of  
the PPB and the DYB related to that sector. For the sectors that have the PPBs  
cleared, the DYBs control whether or not the sector is protected or unprotected.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
31  
P r e l i m i n a r y  
By issuing the DYB Write command sequences, the DYBs will be set or cleared,  
thus placing each sector in the protected or unprotected state. These are the so-  
called Dynamic Locked or Unlocked states. They are called dynamic states be-  
cause it is very easy to switch back and forth between the protected and  
unprotected conditions. This allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared as often as needed.  
The PPBs allow for a more static, and difficult to change, level of protection. The  
PPBs retain their state across power cycles because they are non-volatile. Indi-  
vidual PPBs are set with a command but must all be cleared as a group through  
a complex sequence of program and erasing commands. The PPBs are also lim-  
ited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are pro-  
grammed to the desired settings, the PPB Lock may be set to “1. Setting the PPB  
Lock disables all program and erase commands to the non-volatile PPBs. In ef-  
fect, the PPB Lock Bit locks the PPBs into their current state. The only way to clear  
the PPB Lock is to go through a power cycle. System boot code can determine if  
any changes to the PPB are needed; for example, to allow new system code to  
be downloaded. If no changes are needed then the boot code can set the PPB  
Lock to disable any further changes to the PPBs during system operation.  
The WP#/ACC write protect pin adds a final level of hardware protection to sec-  
tors SA1-133, SA1-134, SA2-0 and SA2-1. When this pin is low it is not possible  
to change the contents of these sectors. These sectors generally hold system  
boot code. The WP#/ACC pin can prevent any changes to the boot code that could  
override the choices made while setting up sector protection during system  
initialization.  
For customers who are concerned about malicious viruses there is another level  
of security - the persistently locked state. To persistently protect a given sector  
or sector group, the PPBs associated with that sector need to be set to “1. Once  
all PPBs are programmed to the desired settings, the PPB Lock should be set to  
“1. Setting the PPB Lock automatically disables all program and erase commands  
to the Non-Volatile PPBs. In effect, the PPB Lock “freezes” the PPBs into their cur-  
rent state. The only way to clear the PPB Lock is to go through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Write command se-  
quence is all that is necessary. The DYB write command for the dynamic sectors  
switch the DYBs to signify protected and unprotected, respectively. If there is a  
need to change the status of the persistently locked sectors, a few more steps  
are required. First, the PPB Lock bit must be disabled by either putting the device  
through a power-cycle, or hardware reset. The PPBs can then be changed to re-  
flect the desired settings. Setting the PPB lock bit once again will lock the PPBs,  
and the device operates normally again.  
The best protection is achieved by executing the PPB lock bit set command early  
in the boot code, and protect the boot code by holding WP#/ACC = VIL.  
Table 8 contains all possible combinations of the DYB, PPB, and PPB lock relating  
to the status of the sector.  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and  
the protection can not be removed until the next power cycle clears the PPB lock.  
32  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
If the PPB is cleared, the sector can be dynamically locked or unlocked. The DYB  
then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
after which the device returns to read mode without having erased the protected  
sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified  
by writing a DYB/PPB/PPB lock verify command to the device. There is an alter-  
native means of reading the protection status. Take RESET# to VIL and hold WE#  
at VIH.(The high voltage A9 Autoselect Mode also works for reading the status of  
the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) = (0, 1, 0) will  
produce a logical ‘1” code at device output DQ0 for a protected sector or a “0” for  
an unprotected sector. In this mode, the other addresses are don’t cares. Address  
location with A1 = VIL are reserved for autoselect manufacturer and device  
codes.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking  
bit exists to guarantee that the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit prevents programming of the  
password protection mode locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of se-  
curity than the Persistent Sector Protection Mode. There are two main differences  
between the Persistent Sector Protection and the Password Sector Protection  
Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock  
bit set to the locked state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password  
to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with  
no means to read, program, or erase it. The password is used to clear the PPB  
Lock bit. The Password Unlock command must be written to the flash, along with  
a password. The flash device internally compares the given password with the  
pre-programmed password. If they match, the PPB Lock bit is cleared, and the  
PPBs can be altered. If they do not match, the flash device does nothing. There  
is a built-in 2 µs delay for each “password check.This delay is intended to thwart  
any efforts to run a program that tries all possible combinations in order to crack  
the password.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
33  
P r e l i m i n a r y  
Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first  
program the password. The password may be correlated to the unique Electronic  
Serial Number (ESN) of the particular flash device. Each ESN is different for every  
flash device; therefore each password should be different for every flash device.  
While programming in the password region, the customer may perform Password  
Verify operations.  
Once the desired password is programmed in, the customer must then set the  
Password Mode Locking Bit. This operation achieves two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is  
not possible to reverse this function.  
Disables all further commands to the password region. All program, and read op-  
erations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Protection  
method is desired when setting the Password Mode Locking Bit. More importantly,  
the user must be sure that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations are disabled, there is no  
means to verify what the password is afterwards. If the password is lost after set-  
ting the Password Mode Locking Bit, there will be no way to clear the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password  
on the DQ bus and further password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit is programmed, the Persis-  
tent Sector Protection Locking Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Verify commands (see “Password Verify  
Command”). The password function works in conjunction with the Password  
Mode Locking Bit, which when set, prevents the Password Verify command from  
reading the contents of the password on the pins of the device.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper  
two and lower two sectors without using VID. This function is provided by the WP#  
pin and overrides the previously discussed High Voltage Sector Protection  
method.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the two outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously protected or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two  
and lower two sectors to whether they were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected using the method described in  
the High Voltage Sector Protection.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent  
behavior of the device may result.  
34  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of  
the Password Mode Locking Bit after power-up reset. If the Password Mode Lock  
Bit is also set after a hardware reset (RESET# asserted) or a power-up reset, the  
ONLY means for clearing the PPB Lock Bit in Password Protection Mode is to issue  
the Password Unlock command. Successful execution of the Password Unlock  
command clears the PPB Lock Bit, allowing for sector PPBs modifications. Assert-  
ing RESET#, taking the device through a power-on reset, or issuing the PPB Lock  
Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode Lock Bit  
is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode,  
the PPB Lock Bit is cleared after power-up or hardware reset. The PPB Lock Bit is  
set by issuing the PPB Lock Bit Set command. Once set the only means for clear-  
ing the PPB Lock Bit is by issuing a hardware or power-up reset. The Password  
Unlock command is ignored in Persistent Protection Mode.  
High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming  
equipment. The procedure requires high voltage (VID) to be placed on the RE-  
SET# pin. Refer to Figure 1 for details on this procedure. Note that for sector  
unprotect, all unprotected sectors must first be protected prior to the first sector  
write cycle.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
35  
P r e l i m i n a r y  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 4 µs  
Wait 4 µs  
unprotect address  
No  
No  
First Write  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A7-A0 =  
Yes  
Set up first sector  
address  
00000010  
Sector Unprotect:  
Wait 100 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 1.2 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
Remove VID  
from RESET#  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
No  
Write reset  
command  
Yes  
Remove VID  
from RESET#  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Unprotect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/Sector Unprotection Algorithms  
36  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Sector Unprotect mode is activated by setting the  
RESET# pin to VID. During this mode, formerly protected sectors can be pro-  
grammed or erased by selecting the sector addresses. Once VID is removed from  
the RESET# pin, all the previously protected sectors are protected again. 2 shows  
the algorithm, and 21 shows the timing diagrams, for this feature. While PPB lock  
is set, the device cannot enter the Temporary Sector Unprotection Mode.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = V , upper two and lower two  
IL  
sectors will remain protected).  
2. All previously protected sectors are protected once again  
Figure 2. Temporary Sector Unprotect Operation  
SecSi™ (Secured Silicon) Sector Flash Memory Region  
The SecSi (Secured Silicon) Sector feature provides a Flash memory region that  
enables permanent part identification through an Electronic Serial Number (ESN)  
The 128-word SecSi sector is divided into 64 factory-lockable words that can be  
programmed and locked by the customer. The SecSi sector is located at ad-  
dresses 000000h-00007Fh in both Persistent Protection mode and Password  
Protection mode. It uses indicator bits (DQ6, DQ7) to indicate the factory-locked  
and customer-locked status of the part.  
The system accesses the SecSi Sector through a command sequence (see the  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence). After the system  
has written the Enter SecSi Sector command sequence, it may read the SecSi  
Sector by using the addresses normally occupied by the boot sectors. This mode  
of operation continues until the system issues the Exit SecSi Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to the normal address  
space. Note that the ACC function and unlock bypass modes are not available  
when the SecSi Sector is enabled.  
Factory-Locked Area (64 words)  
The factory-locked area of the SecSi Sector (000000h-00003Fh) is locked when  
the part is shipped, whether or not the area was programmed at the factory. The  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
37  
P r e l i m i n a r y  
SecSi Sector Factory-locked Indicator Bit (DQ7) is permanently set to a “1. Op-  
tional Spansion programming services can program the factory-locked area with  
a random ESN, a customer-defined code, or any combination of the two. Because  
only Spansion can program and protect the factory-locked area, this method en-  
sures the security of the ESN once the product is shipped to the field. Contact  
your local sales office for details on using Spansion’s programming services. Note  
that the ACC function and unlock bypass modes are not available when the SecSi  
sector is enabled.  
Customer-Lockable Area (64 words)  
The customer-lockable area of the SecSi Sector (000040h-00007Fh) is shipped  
unprotected, which allows the customer to program and optionally lock the area  
as appropriate for the application. The SecSi Sector Customer-locked Indicator  
Bit (DQ6) is shipped as “0” and can be permanently locked to “1” by issuing the  
SecSi Protection Bit Program Command. The SecSi Sector can be read any num-  
ber of times, but can be programmed and locked only once. Note that the  
accelerated programming (ACC) and unlock bypass functions are not available  
when programming the SecSi Sector.  
The Customer-lockable SecSi Sector area can be protected using one of the  
following procedures:  
„ Write the three-cycle Enter SecSi Sector Region command sequence, and  
then follow the in-system sector protect algorithm as shown in Figure 1, ex-  
cept that RESET# may be at either VIH or VID. This allows in-system protec-  
tion of the SecSi Sector Region without raising any device pin to a high  
voltage. Note that this method is only applicable to the SecSi Sector.  
„ To verify the protect/unprotect status of the SecSi Sector, follow the algo-  
rithm shown in Figure 3.  
Once the SecSi Sector is locked and verified, the system must write the Exit SecSi  
Sector Region command sequence to return to reading and writing the remainder  
of the array.  
The SecSi Sector lock must be used with caution since, once locked, there is no  
procedure available for unlocking the SecSi Sector area and none of the bits in  
the SecSi Sector memory space can be modified in any way.  
SecSi Sector Protection Bits  
The SecSi Sector Protection Bits prevent programming of the SecSi Sector mem-  
ory area. Once set, the SecSi Sector memory area contents are non-modifiable.  
38  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. SecSi Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental erasure or programming,  
which might otherwise be caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE#, or WE# do not initiate a  
write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# =  
VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
39  
P r e l i m i n a r y  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Tables 9–12. To  
terminate reading CFI data, the system must write the reset command. The CFI  
Query mode is not accessible when the device is executing an Embedded Program  
or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 9–12. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Contact your local sales office for copies of these documents.  
Table 9. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
40  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 10. System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
Typical timeout per individual block erase 2N ms  
µs (00h = not supported)  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 11. Device Geometry Definition  
Addresses  
Data  
Description  
0018h (PL127J)  
0017h (PL064J)  
0016h (PL032J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (PL127J)  
007Dh (PL064J)  
003Dh (PL032J)  
31h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
41  
P r e l i m i n a r y  
Table 12. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
46h  
47h  
48h  
49h  
0002h  
0001h  
0001h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
00E7h (PL127J)  
0077h (PL064J)  
003Fh (PL032J)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
4Eh  
0000h  
0002h (PLxxxJ)  
0085h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
0001h  
0004h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0027h (PL127J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
58h  
59h  
5Ah  
0060h (PL127J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
0060h (PL127J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
42  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 12. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
0027h (PL127J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
5Bh  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
43  
P r e l i m i n a r y  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 13 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state. A reset com-  
mand is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristic section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. The system can read  
array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing  
a programming operation in the Erase Suspend mode, the system may once  
again read array data with the same exception. See the Erase Suspend/Erase Re-  
sume Commands section for more information.  
The system must issue the reset command to return a bank to the read (or erase-  
suspend-read) mode if DQ5 goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The AC Characteristic table provides the read  
parameters, and Figure 12 shows the timing diagram.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the bank to which  
the system was writing to the read mode. If the program command sequence is  
written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins,  
however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
44  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in the  
other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read any number of autoselect codes without reinitiating the command sequence.  
Table 13 shows the address and data requirements. To determine sector protec-  
tion information, the system must write to the appropriate bank address (BA) and  
sector address (SA). Table 3 shows the address range and bank number associ-  
ated with each sector.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the bank was previously in Erase Suspend).  
Enter SecSi™ Sector/Exit SecSi Sector Command Sequence  
The SecSi Sector region provides a secured data area containing a random, eight  
word electronic serial number (ESN). The system can access the SecSi Sector re-  
gion by issuing the three-cycle Enter SecSi Sector command sequence. The  
device continues to access the SecSi Sector region until the system issues the  
four-cycle Exit SecSi Sector command sequence. The Exit SecSi Sector command  
sequence returns the device to normal operation. The SecSi Sector is not acces-  
sible when the device is executing an Embedded Program or embedded Erase  
algorithm. Table 13 shows the address and data requirements for both command  
sequences. See also “SecSi™ (Secured Silicon) Sector Flash Memory Region” for  
further information. Note that the ACC function and unlock bypass modes are not  
available when the SecSi Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 13 shows the address and  
data requirements for the program command sequence. Note that the SecSi Sec-  
tor, autoselect, and CFI functions are unavailable when a [program/erase]  
operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to the  
Write Operation Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
45  
P r e l i m i n a r y  
operation. The program command sequence should be reinitiated once that bank  
has returned to the read mode, to ensure data integrity. Note that the SecSi Sec-  
tor, autoselect and CFI functions are unavailable when the SecSi Sector is  
enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read will show that the data  
is still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster  
than using the standard program command sequence. The unlock bypass com-  
mand sequence is initiated by first writing two unlock cycles. This is followed by  
a third write cycle containing the unlock bypass command, 20h. That bank then  
enters the unlock bypass mode. A two-cycle unlock bypass program command  
sequence is all that is required to program in this mode. The first cycle in this se-  
quence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two unlock cycles required in  
the standard program command sequence, resulting in faster total programming  
time. Table 13 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table 14)  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at VHH any operation other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
4 illustrates the algorithm for the program operation. Refer to the Erase/Program  
Operations table in the AC Characteristics section for parameters, and Figure 14  
for timing diagrams.  
46  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 13 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 13 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to the Write  
Operation Status section for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that  
SecSi Sector, autoselect, and CFI functions are unavailable when a [program/  
erase] operation is in progress. However, note that a hardware reset immedi-  
ately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once that bank has returned to reading array data,  
to ensure data integrity.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
47  
P r e l i m i n a r y  
5 illustrates the algorithm for the erase operation. Refer to the Erase/Program  
Operations tables in the AC Characteristics section for parameters, and Figure 16  
section for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 13 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets that bank to the read mode. The system must rewrite the com-  
mand sequence and any additional addresses and commands. Note that SecSi  
Sector, autoselect, and CFI functions are unavailable when a [program/erase]  
operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
bank. The system can determine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to the Write Operation Sta-  
tus section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
5 illustrates the algorithm for the erase operation. Refer to the Erase/Program  
Operations tables in the AC Characteristics section for parameters, and Figure 16  
section for timing diagrams.  
48  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 13 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation or Embedded Program  
algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a maximum of 35 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation. Addresses are “don’t-cares” when writing the Erase suspend  
command.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
49  
P r e l i m i n a r y  
operation using the DQ7 or DQ6 status bits, just as in the standard Word Program  
operation. Refer to the Write Operation Status section for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. The device allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored in the memory array. When  
the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to the SecSiTM Sector Ad-  
dresses and the Autoselect Command Sequence sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command (address bits are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command. Further writes of the  
Resume command are ignored. Another Erase Suspend command can be written  
after the chip has resumed erasing.  
If the Persistent Sector Protection Mode Locking Bit is verified as programmed  
without margin, the Persistent Sector Protection Mode Locking Bit Program Com-  
mand should be reissued to improve program margin. If the SecSi Sector  
Protection Bit is verified as programmed without margin, the SecSi Sector Pro-  
tection Bit Program Command should be reissued to improve program margin.  
µµAfter programming a PPB, two additional cycles are needed to determine  
whether the PPB has been programmed with margin. If the PPB has been pro-  
grammed without margin, the program command should be reissued to improve  
the program margin. Also note that the total number of PPB program/erase cycles  
is limited to 100 cycles. Cycling the PPBs beyond 100 cycles is not guaranteed.  
After erasing the PPBs, two additional cycles are needed to determine whether  
the PPB has been erased with margin. If the PPBs has been erased without mar-  
gin, the erase command should be reissued to improve the program margin. The  
programming of either the PPB or DYB for a given sector or sector group can be  
verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming  
of a DYB for a given sector group.  
Command Definitions Tables  
Table 13. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
01  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(Note  
10)  
(BA)  
X0F  
(Note  
10)  
Device ID (Note 10)  
227E  
Autoselect  
(Note 7)  
SecSi Sector Factory  
Protect (Note 8)  
(BA)  
555  
(Note  
8)  
AA  
X03  
Sector Group Protect  
Verify (Note 9)  
(BA)  
555  
(SA) XX00/  
X02  
AAA  
XX01  
Program  
4
6
6
1
1
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
Chip Erase  
Sector Erase  
555  
555  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
AA  
Program/Erase Suspend (Note 11)  
Program/Erase Resume (Note 12)  
BA  
50  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 13. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
CFI Query (Note 13)  
1
2
3
2
2
1
2
55  
XX  
98  
A0  
AA  
A0  
80  
98  
90  
Accelerated Program (Note 15)  
Unlock Bypass Entry (Note 15)  
Unlock Bypass Program (Note 15)  
Unlock Bypass Erase (Note 15)  
Unlock Bypass CFI (Notes 13, 15)  
Unlock Bypass Reset (Note 15)  
PA  
2AA  
PA  
PD  
55  
PD  
10  
555  
XX  
555  
20  
XX  
XX  
XX  
XXX  
XXX  
00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass  
mode, or erase operation. Determined by PL127J: Amax:A20,  
PL064J: Amax:A19, PL032J: Amax:A18.  
PA = Program Address (Amax:A0). Addresses latch on falling  
edge of WE# or CE# pulse, whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data  
latches on rising edge of WE# or CE# pulse, whichever happens  
first.  
RA = Read Address (Amax:A0).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect  
mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for  
specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector group and 01h for  
a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL127J  
(X0Eh = 2220h, X0Fh = 2200h),PL064J (X0Eh = 2202h,  
X0Fh = 2201h), PL032J (X0Eh = 220Ah, X0Fh = 2201h).  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
4. During unlock and command cycles, when lower address bits  
are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than  
DQ7 are don’t cares.  
11. System may read and program in non-erasing sectors, or  
enter autoselect mode, when in Program/Erase Suspend  
mode. Program/Erase Suspend command is valid only  
during a sector erase operation, and requires bank address.  
5. No unlock or command cycles required when bank is reading  
array data.  
12. Program/Erase Resume command is valid only during Erase  
Suspend mode, and requires bank address.  
6. The Reset command is required to return to reading array  
(or to erase-suspend-read mode if previously in Erase  
Suspend) when bank is in autoselect mode, or if DQ5 goes  
high (while bank is providing status information).  
13. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
14. WP#/ACC must be at V during the entire operation of  
ID  
command.  
7. Fourth cycle of autoselect command sequence is a read  
cycle. System must provide bank address to obtain  
manufacturer ID or device ID information. See Autoselect  
Command Sequence section for more information.  
15. Unlock Bypass Entry command is required prior to any  
Unlock Bypass operation. Unlock Bypass Reset command is  
required to return to the reading array.  
8. The data is C4h for factory and customer locked, 84h for  
factory locked and 04h for not locked.  
Table 14. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command (Notes)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
4
XXX  
555  
555  
F0  
AA  
AA  
SecSi Sector Entry  
SecSi Sector Exit  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
XX  
00  
68  
SecSi Protection Bit  
Program (Notes 5, 6)  
6
5
4
4
7
6
555  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
555  
60  
60  
38  
C8  
28  
60  
OW  
OW  
OW  
48  
OW  
RD(0)  
SecSi Protection Bit  
Status  
OW  
48  
RD(0)  
Password Program  
(Notes 5, 7, 8)  
XX[0-3]  
PD[0-3]  
Password Verify (Notes  
6, 8, 9)  
PWA[0-3] PWD[0-3]  
Password Unlock (Notes  
7, 10, 11)  
PWA[0]  
(SA)WP  
PWD[0] PWA[1] PWD[1] PWA[2] PWD[2] PWA[3] PWD[3]  
68 (SA)WP 48 (SA)WP RD(0)  
PPB Program (Notes 5,  
6, 12)  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
51  
P r e l i m i n a r y  
Table 14. Sector Protection Command Definitions  
PPB Status  
4
6
3
4
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
90  
60  
78  
58  
(SA)WP  
RD(0)  
All PPB Erase (Notes 5,  
6, 13, 14)  
WP  
60  
(SA)  
40  
(SA)WP RD(0)  
PPB Lock Bit Set  
PPB Lock Bit Status  
(Note 15)  
SA  
RD(1)  
DYB Write (Note 7)  
DYB Erase (Note 7)  
DYB Status (Note 6)  
4
4
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
48  
48  
58  
SA  
SA  
SA  
X1  
X0  
RD(0)  
PPMLB Program (Notes  
5, 6, 12)  
6
5
6
5
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
60  
60  
60  
60  
PL  
PL  
SL  
SL  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
PPMLB Status (Note 5)  
RD(0)  
48  
SPMLB Program (Notes  
5, 6, 12)  
SPMLB Status (Note 5)  
RD(0)  
Legend:  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address  
bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is  
(00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is  
(00001010)  
Notes:  
1. See Table 1 for description of bus operations.  
9. Command sequence returns FFh if PPMLB is set.  
2. All values are in hexadecimal.  
10. The password is written over four consecutive cycles, at  
addresses 0-3.  
3. Shaded cells in table denote read cycles. All other cycles are  
write operations.  
11. A 2 µs timeout is required between any two portions of  
password.  
4. During unlock and command cycles, when lower address bits  
are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than  
DQ7 are don’t cares.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have  
been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6,  
erase command must be issued and verified again. Before  
issuing erase command, all PPBs should be programmed to  
prevent PPB overerasure.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6  
validate bit has been fully programmed when DQ0 = 1. If  
DQ0 = 0 in cycle 6, program command must be issued and  
verified again.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion  
of password.  
Write Operation Status  
The device provides several bits to determine the status of a program or erase opera-  
tion: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 15 and the following subsections describe  
the function of these bits. DQ7 and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in progress. The device also provides a  
hardware-based output signal, RY/BY#, to determine whether an Embedded Program  
or Erase operation is in progress or has been completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Pro-  
gram or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the com-  
mand sequence.  
52  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
During the Embedded Program algorithm, the device outputs on DQ7 the complement  
of the datum programmed to DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is complete, the device out-  
puts the datum programmed to DQ7. The system must provide the program address  
to read valid status information on DQ7. If a program address falls within a protected  
sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns  
to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ15–DQ0 on the following read cycles. Just prior to the  
completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ15–DQ0 while Output Enable (OE#) is asserted low. That is,  
the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status  
or valid data. Even if the device has completed the program or erase operation  
and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid  
data on DQ15–DQ0 will appear on successive read cycles.  
Table 15 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling  
algorithm. 18 in the AC Characteristic section shows the Data# Polling timing  
diagram.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
53  
P r e l i m i n a r y  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is  
any sector address within the sector being erased. During chip erase, a valid address is  
any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously  
with DQ5.  
Figure 6. Data# Polling Algorithm  
54  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or one of the banks is in the  
erase-suspend-read mode.  
Table 15 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 15 shows the outputs for Toggle Bit I on DQ6. Figure 7 shows the toggle bit  
algorithm. Figure 19 in “Read Operation Timings” shows the toggle bit timing di-  
agrams. Figure 20 shows the differences between DQ2 and DQ6 in graphical  
form. See also the DQ2: Toggle Bit II.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
55  
P r e l i m i n a r y  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5 = “1” because the toggle  
bit may stop toggling as DQ5 changes to “1.” See the DQ6: Toggle Bit I and DQ2:  
Toggle Bit II for more information.  
Figure 7. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 15 to compare outputs for DQ2 and DQ6.  
Figure 7 shows the toggle bit algorithm in flowchart form, and the DQ2: Toggle  
Bit II explains the algorithm. See also the DQ6: Toggle Bit I. Figure 19 shows the  
toggle bit timing diagram. Figure 20 shows the differences between DQ2 and DQ6  
in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the system would note and  
56  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 7).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1,indicating that the  
program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.See also  
the Sector Erase Command Sequence.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 15 shows the status of DQ3 relative to the other status bits.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
57  
P r e l i m i n a r y  
Table 15. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
58  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Storage Temperature Plastic Packages. . . . . . . . . . . . . . . . .–65°C to +150°C  
Ambient Temperature with Power Applied. . . . . . . . . . . . . . .–65°C to +125°C  
Voltage with Respect to Ground  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V  
RESET# (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +13.0 V  
WP#/ACC (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions,  
input or I/O pins may overshoot V to –2.0 V for periods of up to 20 ns. Maximum  
SS  
DC voltage on input or I/O pins is V +0.5 V. During voltage transitions, input or  
CC  
I/O pins may overshoot to V +2.0 V for periods up to 20 ns. See Figure 8.  
CC  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V.  
During voltage transitions, A9, OE#, WP#/ACC, and RESET# may overshoot V  
SS  
to –2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on  
pin A9, OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for periods  
up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the  
short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this data sheet is not implied. Exposure of the device to absolute max-  
imum rating conditions for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
Figure 8. Maximum Overshoot Waveforms  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
59  
P r e l i m i n a r y  
Operating Ranges  
Operating ranges define those limits between which the functionality of the de-  
vice is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Wireless Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Supply Voltages  
VCC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7–3.1 V  
VIO (see Note). .1.65–1.95 V (for PL127J) or 2.7–3.1 V (for all PLxxxJ devices)  
Notes:  
For all AC and DC specifications, V = V ; contact your local sales office for other  
IO  
CC  
V
options.  
IO  
60  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
DC Characteristics  
Table 16. CMOS Compatible  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
,
ILI  
Input Load Current  
±1.0  
µA  
VCC = VCC max  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
±1.0  
µA  
5 MHz  
15  
45  
15  
25  
55  
25  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
VCC Active Read Current (Notes 1, 2)  
mA  
10 MHz  
ICC2  
ICC3  
ICC4  
ICC5  
VCC Active Write Current (Notes 2, 3)  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
OE# = VIH, WE# = VIL  
mA  
µA  
µA  
µA  
CE#, RESET#, WP#/ACC  
= VIO ± 0.3 V  
0.2  
0.2  
0.2  
5
5
5
RESET# = VSS ± 0.3 V  
VIH = VIO ± 0.3 V;  
VIL = VSS ± 0.3 V  
Automatic Sleep Mode (Notes 2, 4)  
5 MHz  
10 MHz  
5 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
VCC Active Read-While-Program Current  
(Notes 1, 2)  
ICC6  
OE# = VIH  
,
,
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2)  
ICC7  
OE# = VIH  
OE# = VIH  
mA  
mA  
10 MHz  
VCC Active Program-While-Erase-  
Suspended Current (Notes 2, 5)  
ICC8  
ICC9  
17  
10  
25  
VCC Active Page Read Current (Note 2)  
OE# = VIH, 8 word Page Read  
VIO = 1.65–1.95 V (PL127J)  
VIO = 2.7–3.6 V  
15  
0.4  
mA  
V
–0.4  
–0.5  
VIL  
Input Low Voltage  
0.8  
V
VIO = 1.65–1.95 V (PL127J)  
VIO = 2.7–3.6 V  
VIO–0.4  
2.0  
VIO+0.4  
VCC+0.3  
9.5  
V
VIH  
Input High Voltage  
V
VHH  
VID  
Voltage for ACC Program Acceleration  
VCC = 3.0 V ± 10%  
8.5  
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VCC = 3.0 V ± 10%  
11.5  
12.5  
0.1  
V
V
V
V
IOL = 100 µA, VCC = VCC min, VIO = 1.65–  
1.95 V (PL127J)  
VOL  
Output Low Voltage  
IOL = 2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
0.4  
IOH = –100 µA, VCC = VCC min, VIO = 1.65–  
1.95 V (PL127J)  
VIO–0.1  
VOH  
Output High Voltage  
IOH = –2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
2.4  
2.3  
V
V
VLKO  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
Notes:  
1. The I current listed is typically less than 5 mA/MHz, with OE# at V  
.
IH  
CC  
2. Maximum I specifications are tested with V = V .  
CCmax  
CC  
CC  
3. I active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
+ 30 ns. Typical sleep  
ACC  
mode current is 1 mA.  
5. Not 100% tested.  
6. Valid CE1#/CE2# conditions: (CE1# = V CE2# = V ) or (CE1# = V CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL,  
IH,  
IH,  
IL  
IH,  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
61  
P r e l i m i n a r y  
AC Characteristic  
Test Conditions  
3.6 V  
2.7 kΩ  
Device  
Under  
Test  
Device  
Under  
Test  
C
L
C
6.2 kΩ  
L
VIO = 3.0 V  
VIO = 1.8 V (PL127J)  
Note: Diodes are IN3064 or equivalent  
Figure 9. Test Setups  
Table 17. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
30  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
pF  
ns  
VIO = 1.8 V  
(PL127J)  
Input Rise and Fall Times  
5
VIO = 3.0 V  
VIO = 1.8 V  
(PL127J)  
0.0 - 1.8  
Input Pulse Levels  
V
VIO = 3.0 V  
0.0–3.0  
VIO/2  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
VIO/2  
62  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
SWITCHING WAVEFORMS  
Table 18. KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VIO  
VIO/2  
VIO/2  
In  
Measurement Level  
Output  
0.0 V  
Figure 10. Input Waveforms and Measurement Levels  
VCC RampRate  
All DC characteristics are specified for a VCC ramp rate > 1V/100 µs and VCC  
>=VCCQ - 100 mV. If the VCC ramp rate is < 1V/100 µs, a hardware reset  
required.+  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
63  
P r e l i m i n a r y  
Read Operations  
Table 19. Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVQV  
tELQV  
Std. Description  
Test Setup  
55  
55  
55  
55  
20  
20  
60  
60  
60  
60  
25  
25  
65  
65  
65  
65  
70  
70  
70  
70  
Unit  
ns  
tRC  
Read Cycle Time (Note 1)  
Min  
tACC Address to Output Delay  
CE#, OE# = VIL  
OE# = VIL  
Max  
Max  
Max  
Max  
Max  
ns  
tCE  
tPACC Page Access Time  
tOE Output Enable to Output Delay  
tDF  
Chip Enable to Output Delay  
ns  
30  
30  
ns  
tGLQV  
tEHQZ  
ns  
Chip Enable to Output High Z (Note 3)  
16  
16  
ns  
Output Enable to Output High Z (Notes 1,  
3)  
tGHQZ  
tDF  
Max  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 9 and Table 17 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of V /2. The time from OE#  
CC  
high to the data bus driven to V /2 is taken as t  
.
CC  
DF  
4. For 70pF Output Load Capacitance, 2 ns will be added to the above t  
,t ,t  
,t values for all speed grades  
ACC CE PACC OE  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOH  
HIGH Z  
HIGH Z  
Valid Data  
RESET#  
RY/BY#  
0 V  
Figure 11. Read Operation Timings  
64  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Same Page  
Amax  
-
-
A3  
A0  
A2  
Ad  
Aa  
Ab  
Ac  
tPACC  
tPACC  
tPACC  
tACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Figure 12. Page Read Operation Timings  
Reset  
Table 20. Hardware Reset (RESET#)  
Parameter  
JEDEC Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
35  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
65  
P r e l i m i n a r y  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 13. Reset Timings  
66  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Erase/Program Operations  
Table 21. Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVWL  
Std  
tWC  
tAS  
Description  
55  
60  
65  
70  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
55  
60  
65  
70  
0
ns  
Address Setup Time to OE# low during toggle bit  
polling  
tASO  
tAH  
Min  
Min  
Min  
15  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
30  
25  
35  
30  
Address Hold Time From CE# or OE# high during  
toggle bit polling  
tAHT  
0
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
CE# Hold Time  
tWP  
Write Pulse Width  
35  
20  
40  
25  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
0
6
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 2)  
tWHWH1 Accelerated Programming Operation (Note 2)  
tWHWH2 Sector Erase Operation (Note 2)  
4
0.5  
50  
0
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
tBUSY  
90  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
67  
P r e l i m i n a r y  
Timing Diagrams  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address  
OUT  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
tVHH  
68  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”  
Figure 16. Chip/Sector Erase Operation Timings  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 17. Back-to-back Read/Write Cycle Timings  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
69  
P r e l i m i n a r y  
tRC  
VA  
Addresses  
CE#  
VA  
VA  
tACC  
tCE  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
Status Data  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and  
array data read cycle  
Figure 18. Data# Polling Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes:  
1. VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle  
Figure 19. Toggle Bit Timings (During Embedded Algorithms)  
70  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note:Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE#  
or CE# to toggle DQ2 and DQ6.  
Figure 20. DQ2 vs. DQ6  
Protect/Unprotect  
Table 22. Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 21. Temporary Sector Unprotect Timing Diagram  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
71  
P r e l i m i n a r y  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes:  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 22. Sector/Sector Block Protect and Unprotect Timing Diagram  
72  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Controlled Erase Operations  
Table 23. Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
Speed Options  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
55  
60  
65  
70  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
55  
60  
65  
70  
0
ns  
30  
25  
35  
30  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
µs  
sec  
WE# Hold Time  
tCP  
CE# Pulse Width  
35  
20  
40  
25  
tEHEL  
tCPH  
CE# Pulse Width High  
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH1  
tWHWH2  
Programming Operation (Note 2)  
Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
6
4
0.5  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
73  
P r e l i m i n a r y  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device  
OUT  
Table 24. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
74  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
P r e l i m i n a r y  
Table 25. Erase And Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
sec  
sec  
Comments  
0.5  
135  
71  
2
Sector Erase Time  
PL127J  
PL064J  
PL032J  
216  
Excludes 00h programming  
prior to erasure (Note 4)  
113.6  
62.4  
Chip Erase Time  
39  
Excludes system level  
overhead (Note 5)  
6
100  
µs  
Word Program Time  
4
60  
µs  
Accelerated Word Program Time  
PL127J  
50.4  
25.2  
12.6  
200  
50.4  
25.2  
sec  
sec  
sec  
Chip Program Time  
PL064J  
PL032J  
(Note 3)  
Notes:  
1. Typical program and erase times assume the following conditions: 25×C, 3.0 V V , 100,000 cycles. Additionally,  
CC  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90×C, V = 2.7 V, 100,000 cycles. All values are subject to change.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 13 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Output Capacitance  
VOUT = 0  
VIN = 0  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
8
pF  
VIN = 0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
August 12, 2004 S29PL127J_064J_032J_MCP_00_A3  
S29PL127J/S29PL064J/S29PL032J for MCP  
75  
P r e l i m i n a r y  
76  
S29PL127J/S29PL064J/S29PL032J for MCP  
S29PL127J_064J_032J_MCP_00_A3 August 12, 2004  
S29GLxxxN MirrorBitTM Flash Family  
S29GL512N, S29GL256N, S29GL128N  
512 Megabit, 256 Megabit, and 128 Megabit, 3.0 Volt-only  
Page Mode Flash Memory featuring 110 nm MirrorBit  
process technology  
ADVANCE  
INFORMATION  
Data Sheet  
Distinctive Characteristics  
Architectural Advantages  
Software & Hardware Features  
„
„
Single power supply operation  
— 3 volt read, erase, and program operations  
„
Software features  
— Program Suspend & Resume: read other sectors  
before programming operation is completed  
— Erase Suspend & Resume: read/program other  
sectors before an erase operation is completed  
— Data# polling & toggle bits provide status  
— Unlock Bypass Program command reduces overall  
multiple-word programming time  
— CFI (Common Flash Interface) compliant: allows host  
system to identify and accommodate multiple flash  
devices  
Enhanced VersatileI/Ocontrol  
— All input levels (address, control, and DQ input levels)  
and outputs are determined by voltage on VIO input.  
V
IO range is 1.65 to VCC  
„
„
Manufactured on 110 nm MirrorBit process  
technology  
Secured Silicon Sector region  
— 128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
— May be programmed and locked at the factory or by  
the customer  
„
Hardware features  
— Advanced Sector Protection  
— WP#/ACC input accelerates programming time  
(when high voltage is applied) for greater throughput  
during system production. Protects first or last sector  
regardless of sector protection settings  
— Hardware reset input (RESET#) resets device  
— Ready/Busy# output (RY/BY#) detects program or  
erase cycle completion  
„
Flexible sector architecture  
— S29GL512N: Five hundred twelve 64 Kword (128  
Kbyte) sectors  
— S29GL256N: Two hundred fifty-six 64 Kword (128  
Kbyte) sectors  
— S29GL128N: One hundred twenty-eight 64 Kword  
(128 Kbyte) sectors  
„
Compatibility with JEDEC standards  
— Provides pinout and software compatibility for single-  
power supply flash, and superior inadvertent write  
protection  
„
„
100,000 erase cycles per sector typical  
20-year data retention typical  
Performance Characteristics  
„
High performance  
— 90 ns access time (S29GL128N, S29GL256N,  
S29GL512N)  
— 8-word/16-byte page read buffer  
— 25 ns page read times  
— 16-word/32-byte write buffer reduces overall  
programming time for multiple-word updates  
Low power consumption (typical values at 3.0 V, 5  
MHz)  
„
— 25 mA typical active read current;  
— 50 mA typical erase/program current  
— 1 µA typical standby mode current  
Publication Number S29GLxxxN_MCP Revision A Amendment 1 Issue Date December 15, 2004  
This document contains information on a product under development at Spansion LLC. The information is intended to help you evaluate this product. Spansion LLC  
reserves the right to change or discontinue work on this proposed product without notice.  
A d v a n c e I n f o r m a t i o n  
General Description  
The S29GL512/256/128N family of devices are 3.0V single power flash memory  
manufactured using 110 nm MirrorBit technology. The S29GL512N is a 512 Mbit,  
organized as 33,554,432 words or 67,108,864 bytes. The S29GL256N is a 256  
Mbit, organized as 16,777,216 words or 33,554,432 bytes. The S29GL128N is a  
128 Mbit, organized as 8,388,608 words or 16,777,216 bytes. The device can be  
programmed either in the host system or in standard EPROM programmers.  
Access times as fast as 90 ns (S29GL128N, S29GL256N, S29GL512N) are avail-  
able. Note that each access time has a specific operating voltage range (VCC) and  
an I/O voltage range (VIO), as specified in the “Product Selector Guide” section.  
The devices are offered in a 56-pin TSOP or 64-ball Fortified BGA package. Each  
device has separate chip enable (CE#), write enable (WE#) and output enable  
(OE#) controls.  
Each device requires only a single 3.0 volt power supply for both read and  
write functions. In addition to a VCC input, a high-voltage accelerated program  
(WP#/ACC) input provides shorter programming times through increased cur-  
rent. This feature is intended to facilitate factory throughput during system  
production, but may also be used in the field if desired.  
The devices are entirely command set compatible with the JEDEC single-  
power-supply Flash standard. Commands are written to the device using  
standard microprocessor write timing. Write cycles also internally latch addresses  
and data needed for the programming and erase operations.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Device programming and erasure are initiated through command sequences.  
Once a program or erase operation has begun, the host system need only poll the  
DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy#  
(RY/BY#) output to determine whether the operation is complete. To facilitate  
programming, an Unlock Bypass mode reduces command sequence overhead  
by requiring only two write cycles to program data instead of four.  
The Enhanced VersatileI/O™ (VIO) control allows the host system to set the  
voltage levels that the device generates and tolerates on all input levels (address,  
chip control, and DQ input levels) to the same voltage level that is asserted on  
the VIO pin. This allows the device to operate in a 1.8 V or 3 V system environ-  
ment as required.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. Persistent Sector  
Protection provides in-system, command-enabled protection of any combina-  
tion of sectors using a single power supply at VCC. Password Sector Protection  
prevents unauthorized write and erase operations in any combination of sectors  
through a user-defined 64-bit password.  
The Erase Suspend/Erase Resume feature allows the host system to pause an  
erase operation in a given sector to read or program any other sector and then  
complete the erase operation. The Program Suspend/Program Resume fea-  
ture enables the host system to pause a program operation in a given sector to  
read any other sector and then complete the program operation.  
The hardware RESET# pin terminates any operation in progress and resets the  
device, after which it is then ready for a new operation. The RESET# pin may be  
78  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
tied to the system reset circuitry. A system reset would thus also reset the device,  
enabling the host system to read boot-up firmware from the Flash memory  
device.  
The device reduces power consumption in the standby mode when it detects  
specific voltage levels on CE# and RESET#, or when addresses have been stable  
for a specified period of time.  
The Secured Silicon Sector provides a 128-word/256-byte area for code or  
data that can be permanently protected. Once this sector is protected, no further  
changes within the sector can occur.  
The Write Protect (WP#/ACC) feature protects the first or last sector by as-  
serting a logic low on the WP# pin.  
MirrorBit flash technology combines years of Flash memory manufacturing expe-  
rience to produce the highest levels of quality, reliability and cost effectiveness.  
The device electrically erases all bits within a sector simultaneously via hot-hole  
assisted erase. The data is programmed using hot electron injection.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
79  
A d v a n c e I n f o r m a t i o n  
Product Selector Guide  
S29GL512N  
Part Number  
S29GL512N  
V
V
= 2.7–3.6 V  
10  
11  
IO  
VCC = 2.7–3.6 V  
Speed Option  
= 1.65–1.95 V  
11  
IO  
VCC = 3.0-3.6V  
Max. Access Time (ns)  
VIO = 3.0-3.6V  
90  
90  
90  
25  
25  
100  
100  
25  
110  
110  
25  
110  
110  
30  
Max. CE# Access Time (ns)  
Max. Page access time (ns)  
Max. OE# Access Time (ns)  
25  
25  
30  
S29GL256N  
Part Number  
S29GL256N  
V
V
= 2.7–3.6 V  
10  
11  
IO  
VCC = 2.7–3.6 V  
Speed Option  
= 1.65–1.95 V  
11  
IO  
VCC = Regulated (3.0-3.6V)  
VIO = Regulated (3.0-3.6V)  
90  
90  
90  
25  
25  
Max. Access Time (ns)  
100  
100  
25  
110  
110  
25  
110  
110  
30  
Max. CE# Access Time (ns)  
Max. Page access time (ns)  
Max. OE# Access Time (ns)  
25  
25  
30  
S29GL128N  
Part Number  
S29GL128N  
V
V
= 2.7–3.6 V  
10  
11  
IO  
VCC = 2.7–3.6 V  
VCC = Regulated (3.0-3.6V)  
Speed Option  
= 1.65–1.95 V  
11  
IO  
VIO = Regulated (3.0-3.6V)  
90  
90  
90  
25  
25  
Max. Access Time (ns)  
100  
100  
25  
110  
110  
25  
110  
110  
30  
Max. CE# Access Time (ns)  
Max. Page access time (ns)  
Max. OE# Access Time (ns)  
25  
25  
30  
80  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Block Diagram  
DQ15DQ0 (A-1)  
RY/BY#  
VCC  
Sector Switches  
VSS  
VIO  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
WE#  
State  
WP#/ACC  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
AMax**–A0  
Notes:  
1.  
AMax GL512N = A24, AMax GL256N = A23, AMax GL128N = A22  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
81  
A d v a n c e I n f o r m a t i o n  
Pin Description  
A24–A0  
=
=
=
=
=
25 Address inputs (512 Mb)  
24 Address inputs (256 Mb)  
23 Address inputs (128 Mb)  
15 Data inputs/outputs  
DQ15 (Data input/output, word mode), A-1 (LSB  
Address input  
A23–A0  
A22–A0  
DQ14–DQ0  
DQ15/A-1  
CE#  
OE#  
WE#  
WP#/ACC  
=
=
=
=
Chip Enable input  
Output Enable input  
Write Enable input  
Hardware Write Protect input;  
Acceleration input  
RESET#  
RY/BY#  
VCC  
=
=
=
Hardware Reset Pin input  
Ready/Busy output  
3.0 volt-only single power supply  
(see Product Selector Guide for speed options and  
voltage supply tolerances)  
Output Buffer power  
VIO  
VSS  
NC  
=
=
=
Device Ground  
Pin Not Connected Internally  
82  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Logic Symbol  
S29GL512N  
25  
A24–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
S29GL256N  
24  
A23–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
S29GL128N  
23  
A22–A0  
16 or 8  
DQ15–DQ0  
(A-1)  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
VIO  
RY/BY#  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
83  
A d v a n c e I n f o r m a t i o n  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. Device Bus Operations  
WP#/  
ACC  
Addresses  
(Note 1)  
Operation  
CE#  
OE#  
WE#  
RESET#  
DQ0–DQ15  
DOUT  
Read  
L
L
L
L
H
L
H
H
H
X
AIN  
AIN  
AIN  
Write (Program/Erase)  
Accelerated Program  
H
H
Note 2  
VHH  
(Note 3)  
(Note 3)  
L
VCC  
0.3 V  
±
Standby  
VCC  
±
0.3 V  
X
X
H
X
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
Legend: L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 11.5–12.5V, X = Don’t Care, SA = Sector  
IL  
IH  
ID  
HH  
Address, A = Address In, D = Data In, D = Data Out  
IN  
IN  
OUT  
Notes:  
1. Addresses are AMax:A0 in word mode. Sector addresses are A  
:A16 in both modes.  
Max  
2. If WP# = VIL, the first or last sector group remains protected. If WP# = VIH, the first or last sector will be  
protected or unprotected as determined by the method described in “Write Protect (WP#)”. All sectors are  
unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected depending  
on version ordered.)  
3. D or D  
as required by command sequence, data polling, or sector protect algorithm (see Figure 2, Figure 4, and  
OUT  
IN  
Figure 5).  
VersatileIOTM (VIO) Control  
The VersatileIOTM (VIO) control allows the host system to set the voltage levels  
that the device generates and tolerates on CE# and DQ I/Os to the same voltage  
level that is asserted on VIO. See Ordering Information for VIO options on this  
device.  
For example, a VI/O of 1.65 V to 3.6 V allows for I/O at the 1.8 or 3 volt levels,  
driving and receiving signals to and from other 1.8-V or 3-V devices on the same  
data bus.  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the CE# and OE#  
pins to VIL. CE# is the power control and selects the device. OE# is the output  
control and gates array data to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
84  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. The device remains enabled for read access until the command register  
contents are altered.  
See “Reading Array Data” on page 127 for more information. Refer to the AC  
Read-Only Operations table for timing specifications and to Figure 11 for the tim-  
ing diagram. Refer to the DC Characteristics table for the active current  
specification on reading array data.  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. The page size of the device is 8 words/16 bytes.  
The appropriate page is selected by the higher address bits A(max)–A3. Address  
bits A2–A0 determine the specific word within a page. This is an asynchronous  
operation; the microprocessor supplies the specific word location.  
The random or initial page access is equal to tACC or tCE and subsequent page  
read accesses (as long as the locations specified by the microprocessor falls  
within that page) is equivalent to tPACC. When CE# is de-asserted and reasserted  
for a subsequent access, the access time is tACC or tCE. Fast page mode accesses  
are obtained by keeping the “read-page addresses” constant and changing the  
“intra-read page” addresses.  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once the device enters the Unlock Bypass mode, only two write cycles are re-  
quired to program a word or byte, instead of four. The “Word Program Command  
Sequence” section has details on programming data to the device using both  
standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 2, Table 4, and Table 5 indicate the address space that each sector occupies.  
Refer to the DC Characteristics table for the active current specification for the  
write mode. The AC Characteristics section contains timing specification tables  
and timing diagrams for write operations.  
Write Buffer  
Write Buffer Programming allows the system write to a maximum of 16 words/32  
bytes in one programming operation. This results in faster effective programming  
time than the standard programming algorithms. See “Write Buffer” for more  
information.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
is one of two functions provided by the WP#/ACC pin. This function is primarily  
intended to allow faster manufacturing throughput at the factory.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
85  
A d v a n c e I n f o r m a t i o n  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sector  
groups, and uses the higher voltage on the pin to reduce the time required for  
program operations. The system would use a two-cycle program command se-  
quence as required by the Unlock Bypass mode. Removing VHH from the WP#/  
ACC pin returns the device to normal operation. Note that the WP#/ACC pin must  
not be at VHH for operations other than accelerated programming, or device dam-  
age may result. WP# has an internal pullup; when unconnected, WP# is at VIH  
.
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ7–DQ0. Standard read  
cycle timings apply in this mode. Refer to the “Autoselect Mode” section on page  
113 and “Autoselect Command Sequence” section on page 127 sections for more  
information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# and RESET# pins are  
both held at VIO ± 0.3 V. (Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within VIO ± 0.3 V, the device  
will be in the standby mode, but the standby current will be greater. The device  
requires standard access time (tCE) for read access when the device is in either  
of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
Refer to the “DC Characteristics” section on page 151 for the standby current  
specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Refer to the “DC Characteristics” section on page 151 for the  
automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
86  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC5). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
Refer to the AC Characteristics tables for RESET# parameters and to Figure 13  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
are placed in the high impedance state.  
Table 2. Sector Address Table–S29GL512N  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
0080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
87  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
88  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
89  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA94  
SA95  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
0800000–080FFFF  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
90  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0810000–081FFFF  
0820000–082FFFF  
0830000–083FFFF  
0840000–084FFFF  
0850000–085FFFF  
0860000–086FFFF  
0870000–087FFFF  
0880000–088FFFF  
0890000–089FFFF  
08A0000–08AFFFF  
08B0000–08BFFFF  
08C0000–08CFFFF  
08D0000–08DFFFF  
08E0000–08EFFFF  
08F0000–08FFFFF  
0900000–090FFFF  
0910000–091FFFF  
0920000–092FFFF  
0930000–093FFFF  
0940000–094FFFF  
0950000–095FFFF  
0960000–096FFFF  
0970000–097FFFF  
0980000–098FFFF  
0990000–099FFFF  
09A0000–09AFFFF  
09B0000–09BFFFF  
09C0000–09CFFFF  
09D0000–09DFFFF  
09E0000–09EFFFF  
09F0000–09FFFFF  
0A00000–0A0FFFF  
0A10000–0A1FFFF  
0A20000–0A2FFFF  
0A30000–0A3FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
91  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0A40000–0A4FFFF  
0A50000–0A5FFFF  
0A60000–0A6FFFF  
0A70000–0A7FFFF  
0A80000–0A8FFFF  
0A90000–0A9FFFF  
0AA0000–0AAFFFF  
0AB0000–0ABFFFF  
0AC0000–0ACFFFF  
0AD0000–0ADFFFF  
0AE0000–0AEFFFF  
0AF0000–0AFFFFF  
0B00000–0B0FFFF  
0B10000–0B1FFFF  
0B20000–0B2FFFF  
0B30000–0B3FFFF  
0B40000–0B4FFFF  
0B50000–0B5FFFF  
0B60000–0B6FFFF  
0B70000–0B7FFFF  
0B80000–0B8FFFF  
0B90000–0B9FFFF  
0BA0000–0BAFFFF  
0BB0000–0BBFFFF  
0BC0000–0BCFFFF  
0BD0000–0BDFFFF  
0BE0000–0BEFFFF  
0BF0000–0BFFFFF  
0C00000–0C0FFFF  
0C10000–0C1FFFF  
0C20000–0C2FFFF  
0C30000–0C3FFFF  
0C40000–0C4FFFF  
0C50000–0C5FFFF  
0C60000–0C6FFFF  
92  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0C70000–0C7FFFF  
0C80000–0C8FFFF  
0C90000–0C9FFFF  
0CA0000–0CAFFFF  
0CB0000–0CBFFFF  
0CC0000–0CCFFFF  
0CD0000–0CDFFFF  
0CE0000–0CEFFFF  
0CF0000–0CFFFFF  
0D00000–0D0FFFF  
0D10000–0D1FFFF  
0D20000–0D2FFFF  
0D30000–0D3FFFF  
0D40000–0D4FFFF  
0D50000–0D5FFFF  
0D60000–0D6FFFF  
0D70000–0D7FFFF  
0D80000–0D8FFFF  
0D90000–0D9FFFF  
0DA0000–0DAFFFF  
0DB0000–0DBFFFF  
0DC0000–0DCFFFF  
0DD0000–0DDFFFF  
0DE0000–0DEFFFF  
0DF0000–0DFFFFF  
0E00000–0E0FFFF  
0E10000–0E1FFFF  
0E20000–0E2FFFF  
0E30000–0E3FFFF  
0E40000–0E4FFFF  
0E50000–0E5FFFF  
0E60000–0E6FFFF  
0E70000–0E7FFFF  
0E80000–0E8FFFF  
0E90000–0E9FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
93  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0EA0000–0EAFFFF  
0EB0000–0EBFFFF  
0EC0000–0ECFFFF  
0ED0000–0EDFFFF  
0EE0000–0EEFFFF  
0EF0000–0EFFFFF  
0F00000–0F0FFFF  
0F10000–0F1FFFF  
0F20000–0F2FFFF  
0F30000–0F3FFFF  
0F40000–0F4FFFF  
0F50000–0F5FFFF  
0F60000–0F6FFFF  
0F70000–0F7FFFF  
0F80000–0F8FFFF  
0F90000–0F9FFFF  
0FA0000–0FAFFFF  
0FB0000–0FBFFFF  
0FC0000–0FCFFFF  
0FD0000–0FDFFFF  
0FE0000–0FEFFFF  
0FF0000–0FFFFFF  
1000000–100FFFF  
1010000–101FFFF  
1020000–102FFFF  
1030000–103FFFF  
1040000–104FFFF  
1050000–105FFFF  
1060000–106FFFF  
1070000–107FFFF  
1080000–108FFFF  
1090000–109FFFF  
10A0000–10AFFFF  
10B0000–10BFFFF  
10C0000–10CFFFF  
94  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA269  
SA270  
SA271  
SA272  
SA273  
SA274  
SA275  
SA276  
SA277  
SA278  
SA279  
SA280  
SA281  
SA282  
SA283  
SA284  
SA285  
SA286  
SA287  
SA288  
SA289  
SA290  
SA291  
SA292  
SA293  
SA294  
SA295  
SA296  
SA297  
SA298  
SA299  
SA300  
SA301  
SA302  
SA303  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
10D0000–10DFFFF  
10E0000–10EFFFF  
10F0000–10FFFFF  
1100000–110FFFF  
1110000–111FFFF  
1120000–112FFFF  
1130000–113FFFF  
1140000–114FFFF  
1150000–115FFFF  
1160000–116FFFF  
1170000–117FFFF  
1180000–118FFFF  
1190000–119FFFF  
11A0000–11AFFFF  
11B0000–11BFFFF  
11C0000–11CFFFF  
11D0000–11DFFFF  
11E0000–11EFFFF  
11F0000–11FFFFF  
1200000–120FFFF  
1210000–121FFFF  
1220000–122FFFF  
1230000–123FFFF  
1240000–124FFFF  
1250000–125FFFF  
1260000–126FFFF  
1270000–127FFFF  
1280000–128FFFF  
1290000–129FFFF  
12A0000–12AFFFF  
12B0000–12BFFFF  
12C0000–12CFFFF  
12D0000–12DFFFF  
12E0000–12EFFFF  
12F0000–12FFFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
95  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA304  
SA305  
SA306  
SA307  
SA308  
SA309  
SA310  
SA311  
SA312  
SA313  
SA314  
SA315  
SA316  
SA317  
SA318  
SA319  
SA320  
SA321  
SA322  
SA323  
SA324  
SA325  
SA326  
SA327  
SA328  
SA329  
SA330  
SA331  
SA332  
SA333  
SA334  
SA335  
SA336  
SA337  
SA338  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1300000–130FFFF  
1310000–131FFFF  
1320000–132FFFF  
1330000–133FFFF  
1340000–134FFFF  
1350000–135FFFF  
1360000–136FFFF  
1370000–137FFFF  
1380000–138FFFF  
1390000–139FFFF  
13A0000–13AFFFF  
13B0000–13BFFFF  
13C0000–13CFFFF  
13D0000–13DFFFF  
13E0000–13EFFFF  
13F0000–13FFFFF  
1400000–140FFFF  
1410000–141FFFF  
1420000–142FFFF  
1430000–143FFFF  
1440000–144FFFF  
1450000–145FFFF  
1460000–146FFFF  
1470000–147FFFF  
1480000–148FFFF  
1490000–149FFFF  
14A0000–14AFFFF  
14B0000–14BFFFF  
14C0000–14CFFFF  
14D0000–14DFFFF  
14E0000–14EFFFF  
14F0000–14FFFFF  
1500000–150FFFF  
1510000–151FFFF  
1520000–152FFFF  
96  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA339  
SA340  
SA341  
SA342  
SA343  
SA344  
SA345  
SA346  
SA347  
SA348  
SA349  
SA350  
SA351  
SA352  
SA353  
SA354  
SA355  
SA356  
SA357  
SA358  
SA359  
SA360  
SA361  
SA362  
SA363  
SA364  
SA365  
SA366  
SA367  
SA368  
SA369  
SA370  
SA371  
SA372  
SA373  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1530000–153FFFF  
1540000–154FFFF  
1550000–155FFFF  
1560000–156FFFF  
1570000–157FFFF  
1580000–158FFFF  
1590000–159FFFF  
15A0000–15AFFFF  
15B0000–15BFFFF  
15C0000–15CFFFF  
15D0000–15DFFFF  
15E0000–15EFFFF  
15F0000–15FFFFF  
1600000–160FFFF  
1610000–161FFFF  
1620000–162FFFF  
1630000–163FFFF  
1640000–164FFFF  
1650000–165FFFF  
1660000–166FFFF  
1670000–167FFFF  
1680000–168FFFF  
1690000–169FFFF  
16A0000–16AFFFF  
16B0000–16BFFFF  
16C0000–16CFFFF  
16D0000–16DFFFF  
16E0000–16EFFFF  
16F0000–16FFFFF  
1700000–170FFFF  
1710000–171FFFF  
1720000–172FFFF  
1730000–173FFFF  
1740000–174FFFF  
1750000–175FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
97  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA374  
SA375  
SA376  
SA377  
SA378  
SA379  
SA380  
SA381  
SA382  
SA383  
SA384  
SA385  
SA386  
SA387  
SA388  
SA389  
SA390  
SA391  
SA392  
SA393  
SA394  
SA395  
SA396  
SA397  
SA398  
SA399  
SA400  
SA401  
SA402  
SA403  
SA404  
SA405  
SA406  
SA407  
SA408  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1760000–176FFFF  
1770000–177FFFF  
1780000–178FFFF  
1790000–179FFFF  
17A0000–17AFFFF  
17B0000–17BFFFF  
17C0000–17CFFFF  
17D0000–17DFFFF  
17E0000–17EFFFF  
17F0000–17FFFFF  
1800000–180FFFF  
1810000–181FFFF  
1820000–182FFFF  
1830000–183FFFF  
1840000–184FFFF  
1850000–185FFFF  
1860000–186FFFF  
1870000–187FFFF  
1880000–188FFFF  
1890000–189FFFF  
18A0000–18AFFFF  
18B0000–18BFFFF  
18C0000–18CFFFF  
18D0000–18DFFFF  
18E0000–18EFFFF  
18F0000–18FFFFF  
1900000–190FFFF  
1910000–191FFFF  
1920000–192FFFF  
1930000–193FFFF  
1940000–194FFFF  
1950000–195FFFF  
1960000–196FFFF  
1970000–197FFFF  
1980000–198FFFF  
98  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA409  
SA410  
SA411  
SA412  
SA413  
SA414  
SA415  
SA416  
SA417  
SA418  
SA419  
SA420  
SA421  
SA422  
SA423  
SA424  
SA425  
SA426  
SA427  
SA428  
SA429  
SA430  
SA431  
SA432  
SA433  
SA434  
SA435  
SA436  
SA437  
SA438  
SA439  
SA440  
SA441  
SA442  
SA443  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1990000–199FFFF  
19A0000–19AFFFF  
19B0000–19BFFFF  
19C0000–19CFFFF  
19D0000–19DFFFF  
19E0000–19EFFFF  
19F0000–19FFFFF  
1A00000–1A0FFFF  
1A10000–1A1FFFF  
1A20000–1A2FFFF  
1A30000–1A3FFFF  
1A40000–1A4FFFF  
1A50000–1A5FFFF  
1A60000–1A6FFFF  
1A70000–1A7FFFF  
1A80000–1A8FFFF  
1A90000–1A9FFFF  
1AA0000–1AAFFFF  
1AB0000–1ABFFFF  
1AC0000–1ACFFFF  
1AD0000–1ADFFFF  
1AE0000–1AEFFFF  
1AF0000–1AFFFFF  
1B00000–1B0FFFF  
1B10000–1B1FFFF  
1B20000–1B2FFFF  
1B30000–1B3FFFF  
1B40000–1B4FFFF  
1B50000–1B5FFFF  
1B60000–1B6FFFF  
1B70000–1B7FFFF  
1B80000–1B8FFFF  
1B90000–1B9FFFF  
1BA0000–1BAFFFF  
1BB0000–1BBFFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
99  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA444  
SA445  
SA446  
SA447  
SA448  
SA449  
SA450  
SA451  
SA452  
SA453  
SA454  
SA455  
SA456  
SA457  
SA458  
SA459  
SA460  
SA461  
SA462  
SA463  
SA464  
SA465  
SA466  
SA467  
SA468  
SA469  
SA470  
SA471  
SA472  
SA473  
SA474  
SA475  
SA476  
SA477  
SA478  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1BC0000–1BCFFFF  
1BD0000–1BDFFFF  
1BE0000–1BEFFFF  
1BF0000–1BFFFFF  
1C00000–1C0FFFF  
1C10000–1C1FFFF  
1C20000–1C2FFFF  
1C30000–1C3FFFF  
1C40000–1C4FFFF  
1C50000–1C5FFFF  
1C60000–1C6FFFF  
1C70000–1C7FFFF  
1C80000–1C8FFFF  
1C90000–1C9FFFF  
1CA0000–1CAFFFF  
1CB0000–1CBFFFF  
1CC0000–1CCFFFF  
1CD0000–1CDFFFF  
1CE0000–1CEFFFF  
1CF0000–1CFFFFF  
1D00000–1D0FFFF  
1D10000–1D1FFFF  
1D20000–1D2FFFF  
1D30000–1D3FFFF  
1D40000–1D4FFFF  
1D50000–1D5FFFF  
1D60000–1D6FFFF  
1D70000–1D7FFFF  
1D80000–1D8FFFF  
1D90000–1D9FFFF  
1DA0000–1DAFFFF  
1DB0000–1DBFFFF  
1DC0000–1DCFFFF  
1DD0000–1DDFFFF  
1DE0000–1DEFFFF  
100  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 2. Sector Address Table–S29GL512N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A24–A16  
SA479  
SA480  
SA481  
SA482  
SA483  
SA484  
SA485  
SA486  
SA487  
SA488  
SA489  
SA490  
SA491  
SA492  
SA493  
SA494  
SA495  
SA496  
SA497  
SA498  
SA499  
SA500  
SA501  
SA502  
SA503  
SA504  
SA505  
SA506  
SA507  
SA508  
SA509  
SA510  
SA511  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
1DF0000–1DFFFFF  
1E00000–1E0FFFF  
1E10000–1E1FFFF  
1E20000–1E2FFFF  
1E30000–1E3FFFF  
1E40000–1E4FFFF  
1E50000–1E5FFFF  
1E60000–1E6FFFF  
1E70000–1E7FFFF  
1E80000–1E8FFFF  
1E90000–1E9FFFF  
1EA0000–1EAFFFF  
1EB0000–1EBFFFF  
1EC0000–1ECFFFF  
1ED0000–1EDFFFF  
1EE0000–1EEFFFF  
1EF0000–1EFFFFF  
1F00000–1F0FFFF  
1F10000–1F1FFFF  
1F20000–1F2FFFF  
1F30000–1F3FFFF  
1F40000–1F4FFFF  
1F50000–1F5FFFF  
1F60000–1F6FFFF  
1F70000–1F7FFFF  
1F80000–1F8FFFF  
1F90000–1F9FFFF  
1FA0000–1FAFFFF  
1FB0000–1FBFFFF  
1FC0000–1FCFFFF  
1FD0000–1FDFFFF  
1FE0000–1FEFFFF  
1FF0000–1FFFFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
101  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
0080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
102  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
103  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
104  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
0800000–080FFFF  
0810000–081FFFF  
0820000–082FFFF  
0830000–083FFFF  
0840000–084FFFF  
0850000–085FFFF  
0860000–086FFFF  
0870000–087FFFF  
0880000–088FFFF  
0890000–089FFFF  
08A0000–08AFFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
105  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
08B0000–08BFFFF  
08C0000–08CFFFF  
08D0000–08DFFFF  
08E0000–08EFFFF  
08F0000–08FFFFF  
0900000–090FFFF  
0910000–091FFFF  
0920000–092FFFF  
0930000–093FFFF  
0940000–094FFFF  
0950000–095FFFF  
0960000–096FFFF  
0970000–097FFFF  
0980000–098FFFF  
0990000–099FFFF  
09A0000–09AFFFF  
09B0000–09BFFFF  
09C0000–09CFFFF  
09D0000–09DFFFF  
09E0000–09EFFFF  
09F0000–09FFFFF  
0A00000–0A0FFFF  
0A10000–0A1FFFF  
0A20000–0A2FFFF  
0A30000–0A3FFFF  
0A40000–0A4FFFF  
0A50000–0A5FFFF  
0A60000–0A6FFFF  
0A70000–0A7FFFF  
0A80000–0A8FFFF  
0A90000–0A9FFFF  
0AA0000–0AAFFFF  
0AB0000–0ABFFFF  
0AC0000–0ACFFFF  
0AD0000–0ADFFFF  
106  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0AE0000–0AEFFFF  
0AF0000–0AFFFFF  
0B00000–0B0FFFF  
0B10000–0B1FFFF  
0B20000–0B2FFFF  
0B30000–0B3FFFF  
0B40000–0B4FFFF  
0B50000–0B5FFFF  
0B60000–0B6FFFF  
0B70000–0B7FFFF  
0B80000–0B8FFFF  
0B90000–0B9FFFF  
0BA0000–0BAFFFF  
0BB0000–0BBFFFF  
0BC0000–0BCFFFF  
0BD0000–0BDFFFF  
0BE0000–0BEFFFF  
0BF0000–0BFFFFF  
0C00000–0C0FFFF  
0C10000–0C1FFFF  
0C20000–0C2FFFF  
0C30000–0C3FFFF  
0C40000–0C4FFFF  
0C50000–0C5FFFF  
0C60000–0C6FFFF  
0C70000–0C7FFFF  
0C80000–0C8FFFF  
0C90000–0C9FFFF  
0CA0000–0CAFFFF  
0CB0000–0CBFFFF  
0CC0000–0CCFFFF  
0CD0000–0CDFFFF  
0CE0000–0CEFFFF  
0CF0000–0CFFFFF  
0D00000–0D0FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
107  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0D10000–0D1FFFF  
0D20000–0D2FFFF  
0D30000–0D3FFFF  
0D40000–0D4FFFF  
0D50000–0D5FFFF  
0D60000–0D6FFFF  
0D70000–0D7FFFF  
0D80000–0D8FFFF  
0D90000–0D9FFFF  
0DA0000–0DAFFFF  
0DB0000–0DBFFFF  
0DC0000–0DCFFFF  
0DD0000–0DDFFFF  
0DE0000–0DEFFFF  
0DF0000–0DFFFFF  
0E00000–0E0FFFF  
0E10000–0E1FFFF  
0E20000–0E2FFFF  
0E30000–0E3FFFF  
0E40000–0E4FFFF  
0E50000–0E5FFFF  
0E60000–0E6FFFF  
0E70000–0E7FFFF  
0E80000–0E8FFFF  
0E90000–0E9FFFF  
0EA0000–0EAFFFF  
0EB0000–0EBFFFF  
0EC0000–0ECFFFF  
0ED0000–0EDFFFF  
0EE0000–0EEFFFF  
0EF0000–0EFFFFF  
0F00000–0F0FFFF  
0F10000–0F1FFFF  
0F20000–0F2FFFF  
0F30000–0F3FFFF  
108  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 3. Sector Address Table–S29GL256N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A23–A16  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0F40000–0F4FFFF  
0F50000–0F5FFFF  
0F60000–0F6FFFF  
0F70000–0F7FFFF  
0F80000–0F8FFFF  
0F90000–0F9FFFF  
0FA0000–0FAFFFF  
0FB0000–0FBFFFF  
0FC0000–0FCFFFF  
0FD0000–0FDFFFF  
0FE0000–0FEFFFF  
0FF0000–0FFFFFF  
Table 4. Sector Address Table–S29GL128N  
Sector Size  
Address Range  
(in hexadecimal)  
(Kbytes/  
Sector  
A22–A16  
Kwords)  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0000000–000FFFF  
0010000–001FFFF  
0020000–002FFFF  
0030000–003FFFF  
0040000–004FFFF  
0050000–005FFFF  
0060000–006FFFF  
0070000–007FFFF  
0080000–008FFFF  
0090000–009FFFF  
00A0000–00AFFFF  
00B0000–00BFFFF  
00C0000–00CFFFF  
00D0000–00DFFFF  
00E0000–00EFFFF  
00F0000–00FFFFF  
0100000–010FFFF  
0110000–011FFFF  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
109  
A d v a n c e I n f o r m a t i o n  
Table 4. Sector Address Table–S29GL128N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A22–A16  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0120000–012FFFF  
0130000–013FFFF  
0140000–014FFFF  
0150000–015FFFF  
0160000–016FFFF  
0170000–017FFFF  
0180000–018FFFF  
0190000–019FFFF  
01A0000–01AFFFF  
01B0000–01BFFFF  
01C0000–01CFFFF  
01D0000–01DFFFF  
01E0000–01EFFFF  
01F0000–01FFFFF  
0200000–020FFFF  
0210000–021FFFF  
0220000–022FFFF  
0230000–023FFFF  
0240000–024FFFF  
0250000–025FFFF  
0260000–026FFFF  
0270000–027FFFF  
0280000–028FFFF  
0290000–029FFFF  
02A0000–02AFFFF  
02B0000–02BFFFF  
02C0000–02CFFFF  
02D0000–02DFFFF  
02E0000–02EFFFF  
02F0000–02FFFFF  
0300000–030FFFF  
0310000–031FFFF  
0320000–032FFFF  
0330000–033FFFF  
0340000–034FFFF  
110  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 4. Sector Address Table–S29GL128N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A22–A16  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0350000–035FFFF  
0360000–036FFFF  
0370000–037FFFF  
0380000–038FFFF  
0390000–039FFFF  
03A0000–03AFFFF  
03B0000–03BFFFF  
03C0000–03CFFFF  
03D0000–03DFFFF  
03E0000–03EFFFF  
03F0000–03FFFFF  
0400000–040FFFF  
0410000–041FFFF  
0420000–042FFFF  
0430000–043FFFF  
0440000–044FFFF  
0450000–045FFFF  
0460000–046FFFF  
0470000–047FFFF  
0480000–048FFFF  
0490000–049FFFF  
04A0000–04AFFFF  
04B0000–04BFFFF  
04C0000–04CFFFF  
04D0000–04DFFFF  
04E0000–04EFFFF  
04F0000–04FFFFF  
0500000–050FFFF  
0510000–051FFFF  
0520000–052FFFF  
0530000–053FFFF  
0540000–054FFFF  
0550000–055FFFF  
0560000–056FFFF  
0570000–057FFFF  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
111  
A d v a n c e I n f o r m a t i o n  
Table 4. Sector Address Table–S29GL128N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A22–A16  
SA88  
SA89  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
128/64  
0580000–058FFFF  
0590000–059FFFF  
05A0000–05AFFFF  
05B0000–05BFFFF  
05C0000–05CFFFF  
05D0000–05DFFFF  
05E0000–05EFFFF  
05F0000–05FFFFF  
0600000–060FFFF  
0610000–061FFFF  
0620000–062FFFF  
0630000–063FFFF  
0640000–064FFFF  
0650000–065FFFF  
0660000–066FFFF  
0670000–067FFFF  
0680000–068FFFF  
0690000–069FFFF  
06A0000–06AFFFF  
06B0000–06BFFFF  
06C0000–06CFFFF  
06D0000–06DFFFF  
06E0000–06EFFFF  
06F0000–06FFFFF  
0700000–070FFFF  
0710000–071FFFF  
0720000–072FFFF  
0730000–073FFFF  
0740000–074FFFF  
0750000–075FFFF  
0760000–076FFFF  
0770000–077FFFF  
0780000–078FFFF  
0790000–079FFFF  
07A0000–07AFFFF  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
112  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 4. Sector Address Table–S29GL128N (Continued)  
Sector Size  
(Kbytes/  
Kwords)  
Address Range  
(in hexadecimal)  
Sector  
A22–A16  
SA123  
SA124  
SA125  
SA126  
SA127  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
128/64  
128/64  
128/64  
128/64  
128/64  
07B0000–07BFFFF  
07C0000–07CFFFF  
07D0000–07DFFFF  
07E0000–07EFFFF  
07F0000–07FFFFF  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
group protection verification, through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equipment to automatically match a  
device to be programmed with its corresponding programming algorithm. How-  
ever, the autoselect codes can also be accessed in-system through the command  
register.  
When using programming equipment, the autoselect mode requires VID on ad-  
dress pin A9. Address pins A6, A3, A2, A1, and A0 must be as shown in Table 5.  
In addition, when verifying sector protection, the sector address must appear on  
the appropriate highest order address bits (see Table 2). Table 5 shows the re-  
maining address bits that are don’t care. When all necessary bits have been set  
as required, the programming equipment may then read the corresponding iden-  
tifier code on DQ7–DQ0.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 12. This method does  
not require VID. Refer to the Autoselect Command Sequence section for more  
information.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
113  
A d v a n c e I n f o r m a t i o n  
Table 5. Autoselect Codes, (High Voltage Method)  
A22 A14  
to to  
A15 A10  
A8  
to A6  
A7  
A5  
to  
A4  
A3  
to  
A2  
WE  
#
Description  
CE# OE#  
A9  
A1  
A0  
DQ8 to  
DQ15  
DQ7 to DQ0  
Manufacturer ID:  
L
L
L
L
H
H
X
X
VID  
X
X
L
X
X
L
L
L
00  
01h  
Spansion Product  
Cycle 1  
Cycle 2  
Cycle 3  
Cycle 1  
Cycle 2  
Cycle 3  
Cycle 1  
Cycle 2  
Cycle 3  
L
H
H
L
L
H
H
L
H
L
22  
22  
22  
22  
22  
22  
22  
22  
22  
7Eh  
23h  
01h  
7Eh  
22h  
01h  
7Eh  
21h  
01h  
X
X
VID  
VID  
VID  
L
H
H
L
L
L
L
L
H
H
X
X
X
X
X
X
L
L
X
X
H
H
L
H
H
L
H
H
L
H
H
H
H
H
Sector Group  
01h (protected),  
L
L
L
L
H
H
SA  
X
X
X
VID  
X
X
L
L
X
X
L
H
L
X
Protection Verification  
00h (unprotected)  
Secured Silicon Sector  
Indicator Bit (DQ7),  
WP# protects highest  
address sector  
98h (factory locked),  
18h (not factory locked)  
VID  
L
H
H
X
Secured Silicon Sector  
Indicator Bit (DQ7),  
WP# protects lowest  
address sector  
88h (factory locked),  
08h (not factory locked)  
L
L
H
X
X
VID  
X
L
X
L
H
H
X
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.  
Sector Protection  
The device features several levels of sector protection, which can disable both the  
program and erase operations in certain sectors or sector groups:  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled pro-  
tection method.  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in the outermost  
sectors.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used. If the customer decides to continue  
114  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
using the Persistent Sector Protection method, they must set the Persistent  
Sector Protection Mode Locking Bit. This will permanently set the part to op-  
erate only using Persistent Sector Protection. If the customer decides to use the  
password method, they must set the Password Mode Locking Bit. This will  
permanently set the part to operate only using password sector protection.  
It is important to remember that setting either the Persistent Sector Protec-  
tion Mode Locking Bit or the Password Mode Locking Bit permanently  
selects the protection mode. It is not possible to switch between the two methods  
once a locking bit has been set. It is important that one mode is explicitly  
selected when the device is first programmed, rather than relying on the  
default mode alone. This is so that it is not possible for a system program or  
virus to later set the Password Mode Locking Bit, which would cause an unex-  
pected shift from the default Persistent Sector Protection Mode into the Password  
Protection Mode.  
The device is shipped with all sectors unprotected. The factory offers the option  
of programming and protecting sectors at the factory prior to shipping the device  
through the ExpressFlash™ Service. Contact your sales representative for details.  
It is possible to determine whether a sector is protected or unprotected. See “Au-  
toselect Command Sequence” section on page 127 for details.  
Advanced Sector Protection  
Advanced Sector Protection features several levels of sector protection, which can  
disable both the program and erase operations in certain sectors.  
Persistent Sector Protection is a method that replaces the old 12V controlled  
protection method.  
Password Sector Protection is a highly sophisticated protection method that  
requires a password before changes to certain sectors are permitted.  
Lock Register  
The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ2, DQ1, DQ0  
bits of the Lock Register are programmable by the user. Users are not allowed to  
program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user  
tries to program DQ2 and DQ1 bits of the Lock Register to the 00 state, the device  
will abort the Lock Register back to the default 11 state. The programming time  
of the Lock Register is same as the typical word programming time without uti-  
lizing the Write Buffer of the device. During a Lock Register programming  
sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the  
Lock Register has completed to indicate programming status. All Lock Register  
bits are readable to allow users to verify Lock Register statuses.  
The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection  
Mode Lock Bit is DQ1, and Password Protection Mode Lock Bit is DQ2 are acces-  
sible by all users. Each of these bits are non-volatile. DQ15-DQ3 are reserved and  
must be 1's when the user tries to program the DQ2, DQ1, and DQ0 bits of the  
Lock Register. The user is not required to program DQ2, DQ1 and DQ0 bits of the  
Lock Register at the same time. This allows users to lock the Secured Silicon Sec-  
tor and then set the device either permanently into Password Protection Mode or  
Persistent Protection Mode and then lock the Secured Silicon Sector at separate  
instances and time frames.  
„ Secured Silicon Sector Protection allows the user to lock the Secured Silicon  
Sector area  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
115  
A d v a n c e I n f o r m a t i o n  
„ Persistent Protection Mode Lock Bit allows the user to set the device perma-  
nently to operate in the Persistent Protection Mode  
„ Password Protection Mode Lock Bit allows the user to set the device perma-  
nently to operate in the Password Protection Mode  
Table 6. Lock Register  
DQ15-3  
DQ2  
DQ1  
DQ0  
Secured Silicon  
Sector Protection  
Bit  
Password Protection Persistent Protection  
Mode Lock Bit Mode Lock Bit  
Don’t Care  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the old 12 V controlled protec-  
tion method while at the same time enhancing flexibility by providing three  
different sector protection states:  
„ Dynamically Locked-The sector is protected and can be changed by a sim-  
ple command  
„ Persistently Locked-A sector is protected and cannot be changed  
„ Unlocked-The sector is unprotected and can be changed by a simple com-  
mand  
In order to achieve these states, three types of “bits” are going to be used:  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYB bits are in the “unprotected state. Each DYB is in-  
dividually modifiable through the DYB Set Command and DYB Clear Command.  
When the parts are first shipped, all of the Persistent Protect Bits (PPB) are  
cleared into the unprotected state. The DYB bits and PPB Lock bit are defaulted  
to power up in the cleared state or unprotected state - meaning the all PPB bits  
are changeable.  
The Protection State for each sector is determined by the logical OR of the PPB  
and the DYB related to that sector. For the sectors that have the PPB bits cleared,  
the DYB bits control whether or not the sector is protected or unprotected. By is-  
suing the DYB Set and DYB Clear command sequences, the DYB bits will be  
protected or unprotected, thus placing each sector in the protected or unpro-  
tected state. These are the so-called Dynamic Locked or Unlocked states. They  
are called dynamic states because it is very easy to switch back and forth be-  
tween the protected and un-protected conditions. This allows software to easily  
protect sectors against inadvertent changes yet does not prevent the easy re-  
moval of protection when changes are needed.  
The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a  
more static, and difficult to change, level of protection. The PPB bits retain their  
state across power cycles because they are Non-Volatile. Individual PPB bits are  
set with a program command but must all be cleared as a group through an erase  
command.  
The PPB Lock Bit adds an additional level of protection. Once all PPB bits are pro-  
grammed to the desired settings, the PPB Lock Bit may be set to the “freeze  
state. Setting the PPB Lock Bit to the “freeze state” disables all program and  
erase commands to the Non-Volatile PPB bits. In effect, the PPB Lock Bit locks the  
PPB bits into their current state. The only way to clear the PPB Lock Bit to the  
116  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
“unfreeze state” is to go through a power cycle, or hardware reset. The Software  
Reset command will not clear the PPB Lock Bit to the “unfreeze state. System  
boot code can determine if any changes to the PPB bits are needed e.g. to allow  
new system code to be downloaded. If no changes are needed then the boot code  
can set the PPB Lock Bit to disable any further changes to the PPB bits during  
system operation.  
The WP# write protect pin adds a final level of hardware protection. When this  
pin is low it is not possible to change the contents of the WP# protected sectors.  
These sectors generally hold system boot code. So, the WP# pin can prevent any  
changes to the boot code that could override the choices made while setting up  
sector protection during system initialization.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Set command sequence  
is all that is necessary. The DYB Set and DYB Clear commands for the dynamic  
sectors switch the DYB bits to signify protected and unprotected, respectively. If  
there is a need to change the status of the persistently locked sectors, a few more  
steps are required. First, the PPB Lock Bit must be disabled to the “unfreeze  
state” by either putting the device through a power-cycle, or hardware reset. The  
PPB bits can then be changed to reflect the desired settings. Setting the PPB Lock  
Bit once again to the “freeze state” will lock the PPB bits, and the device operates  
normally again.  
Note: to achieve the best protection, it's recommended to execute the PPB Lock  
Bit Set command early in the boot code, and protect the boot code by holding  
WP# = VIL.  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB  
is programmed to the protected state through the “PPB Program” command, that  
sector will be protected from program or erase operations will be read-only. If a  
PPB requires erasure, all of the sector PPB bits must first be erased in parallel  
through the “All PPB Erase” command. The “All PPB Erase” command will prepro-  
grammed all PPB bits prior to PPB erasing. All PPB bits erase in parallel, unlike  
programming where individual PPB bits are programmable. The PPB bits have the  
same endurance as the flash memory.  
Programming the PPB bit requires the typical word programming time without uti-  
lizing the Write Buffer. During a PPB bit programming and A11 PPB bit erasing  
sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the  
PPB bit or erasing of all PPB bits has completed to indicate programming and  
erasing status. Erasing all of the PPB bits at once requires typical sector erase  
time. During the erasing of all PPB bits, the DQ3 Sector Erase Timer bit will output  
a 1 to indicate the erasure of all PPB bits are in progress. When the erasure of all  
PPB bits has completed, the DQ3 Sector Erase Timer bit will output a 0 to indicate  
that all PPB bits have been erased. Reading the PPB Status bit requires the initial  
access time of the device.  
Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. When set to the “freeze state, the PPB bits cannot be  
changed. When cleared to the “unfreeze state, the PPB bits are changeable.  
There is only one PPB Lock Bit per device. The PPB Lock Bit is cleared to the “un-  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
117  
A d v a n c e I n f o r m a t i o n  
freeze state” after power-up or hardware reset. There is no command sequence  
to unlock or “unfreeze” the PPB Lock Bit.  
Configuring the PPB Lock Bit to the freeze state requires approximately 100ns.  
Reading the PPB Lock Status bit requires the initial access time of the device.  
Table 7. Sector Protection Schemes  
Protection States  
Sector State  
DYB Bit  
PPB Bit  
PPB Lock Bit  
Unprotect  
Unprotect  
Unfreeze  
Unprotected – PPB and DYB are changeable  
Unprotected – PPB not changeable, DYB is  
changeable  
Unprotect  
Unprotect  
Freeze  
Unprotect  
Unprotect  
Protect  
Protect  
Protect  
Unfreeze  
Freeze  
Protected – PPB and DYB are changeable  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Unprotect  
Unprotect  
Protect  
Unfreeze  
Freeze  
Protect  
Protected – PPB not changeable, DYB is changeable  
Protected – PPB and DYB are changeable  
Protect  
Unfreeze  
Freeze  
Protect  
Protect  
Protected – PPB not changeable, DYB is changeable  
Table 7 contains all possible combinations of the DYB bit, PPB bit, and PPB Lock  
Bit relating to the status of the sector. In summary, if the PPB bit is set, and the  
PPB Lock Bit is set, the sector is protected and the protection cannot be removed  
until the next power cycle or hardware reset clears the PPB Lock Bit to “unfreeze  
state. If the PPB bit is cleared, the sector can be dynamically locked or unlocked.  
The DYB bit then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
after which the device returns to read mode without having erased the protected  
sector. The programming of the DYB bit, PPB bit, and PPB Lock Bit for a given sec-  
tor can be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock  
Status Read commands to the device.  
The Autoselect Sector Protection Verification outputs the OR function of the DYB  
bit and PPB bit per sector basis. When the OR function of the DYB bit and PPB bit  
is a 1, the sector is either protected by DYB or PPB or both. When the OR function  
of the DYB bit and PPB bit is a 0, the sector is unprotected through both the DYB  
and PPB.  
Persistent Protection Mode Lock Bit  
Like the Password Protection Mode Lock Bit, a Persistent Protection Mode Lock Bit  
exists to guarantee that the device remain in software sector protection. Once  
programmed, the Persistent Protection Mode Lock Bit prevents programming of  
the Password Protection Mode Lock Bit. This guarantees that a hacker could not  
place the device in Password Protection Mode. The Password Protection Mode  
Lock Bit resides in the “Lock Register.  
118  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Password Sector Protection  
The Password Sector Protection method allows an even higher level of security  
than the Persistent Sector Protection method. There are two main differences be-  
tween the Persistent Sector Protection and the Password Sector Protection  
methods:  
„ When the device is first powered on, or comes out of a reset cycle, the PPB  
Lock Bit is set to the locked state, or the freeze state, rather than cleared to  
the unlocked state, or the unfreeze state.  
„ The only means to clear and unfreeze the PPB Lock Bit is by writing a unique  
64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
The password is stored in a one-time programmable (OTP) region outside of the  
flash memory. Once the Password Protection Mode Lock Bit is set, the password  
is permanently set with no means to read, program, or erase it. The password is  
used to clear and unfreeze the PPB Lock Bit. The Password Unlock command must  
be written to the flash, along with a password. The flash device internally com-  
pares the given password with the pre-programmed password. If they match, the  
PPB Lock Bit is cleared to the “unfreezed state, and the PPB bits can be altered.  
If they do not match, the flash device does nothing. There is a built-in 2 µs delay  
for each “password check” after the valid 64-bit password has been entered for  
the PPB Lock Bit to be cleared to the “unfreezed state. This delay is intended to  
thwart any efforts to run a program that tries all possible combinations in order  
to crack the password.  
Password and Password Protection Mode Lock Bit  
In order to select the Password Sector Protection method, the customer must first  
program the password. The factory recommends that the password be somehow  
correlated to the unique Electronic Serial Number (ESN) of the particular flash de-  
vice. Each ESN is different for every flash device; therefore each password should  
be different for every flash device. While programming in the password region,  
the customer may perform Password Read operations. Once the desired pass-  
word is programmed in, the customer must then set the Password Protection  
Mode Lock Bit. This operation achieves two objectives:  
1. It permanently sets the device to operate using the Password Protection Mode.  
It is not possible to reverse this function.  
2. It also disables all further commands to the password region. All program, and  
read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Sector Protec-  
tion method is desired when programming the Password Protection Mode Lock  
Bit. More importantly, the user must be sure that the password is correct when  
the Password Protection Mode Lock Bit is programmed. Due to the fact that read  
operations are disabled, there is no means to read what the password is after-  
wards. If the password is lost after programming the Password Protection Mode  
Lock Bit, there will be no way to clear and unfreeze the PPB Lock Bit. The Pass-  
word Protection Mode Lock Bit, once programmed, prevents reading the 64-bit  
password on the DQ bus and further password programming. The Password Pro-  
tection Mode Lock Bit is not erasable. Once Password Protection Mode Lock Bit is  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
119  
A d v a n c e I n f o r m a t i o n  
programmed, the Persistent Protection Mode Lock Bit is disabled from program-  
ming, guaranteeing that no changes to the protection scheme are allowed.  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Password Read commands. The password  
function works in conjunction with the Password Protection Mode Lock Bit, which  
when programmed, prevents the Password Read command from reading the con-  
tents of the password on the pins of the device.  
Persistent Protection Bit Lock (PPB Lock Bit)  
A global volatile bit. The PPB Lock Bit is a volatile bit that reflects the state of the  
Password Protection Mode Lock Bit after power-up reset. If the Password Protec-  
tion Mode Lock Bit is also programmed after programming the Password, the  
Password Unlock command must be issued to clear and unfreeze the PPB Lock Bit  
after a hardware reset (RESET# asserted) or a power-up reset. Successful exe-  
cution of the Password Unlock command clears and unfreezes the PPB Lock Bit,  
allowing for sector PPB bits to be modified. Without issuing the Password Unlock  
command, while asserting RESET#, taking the device through a power-on reset,  
or issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a the “freeze  
state.  
If the Password Protection Mode Lock Bit is not programmed, the device defaults  
to Persistent Protection Mode. In the Persistent Protection Mode, the PPB Lock Bit  
is cleared to the “unfreeze state” after power-up or hardware reset. The PPB Lock  
Bit is set to the “freeze state” by issuing the PPB Lock Bit Set command. Once set  
to the “freeze state” the only means for clearing the PPB Lock Bit to the “unfreeze  
state” is by issuing a hardware or power-up reset. The Password Unlock com-  
mand is ignored in Persistent Protection Mode.  
Reading the PPB Lock Bit requires a 200ns access time.  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables  
permanent part identification through an Electronic Serial Number (ESN). The  
Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector  
Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked  
when shipped from the factory. This bit is permanently set at the factory and can-  
not be changed, which prevents cloning of a factory locked part. This ensures the  
security of the ESN once the product is shipped to the field.  
The factory offers the device with the Secured Silicon Sector either customer  
lockable (standard shipping option) or factory locked (contact an AMD sales rep-  
resentative for ordering information). The customer-lockable version is shipped  
with the Secured Silicon Sector unprotected, allowing customers to program the  
sector after receiving the device. The customer-lockable version also has the Se-  
cured Silicon Sector Indicator Bit permanently set to a “0.The factory-locked  
version is always protected when shipped from the factory, and has the Secured  
Silicon Sector Indicator Bit permanently set to a “1.Thus, the Secured Silicon  
Sector Indicator Bit prevents customer-lockable devices from being used to re-  
place devices that are factory locked. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
120  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
The Secured Silicon sector address space in this device is allocated as follows:  
Secured Silicon Sector Address  
Range  
ExpressFlash  
Factory Locked  
Customer Lockable  
ESN Factory Locked  
ESN  
ESN or determined by  
customer  
000000h–000007h  
000008h–00007Fh  
Determined by customer  
Unavailable  
Determined by customer  
The system accesses the Secured Silicon Sector through a command sequence  
(see “Write Protect (WP#)”). After the system has written the Enter Secured Sil-  
icon Sector command sequence, it may read the Secured Silicon Sector by using  
the addresses normally occupied by the first sector (SA0). This mode of operation  
continues until the system issues the Exit Secured Silicon Sector command se-  
quence, or until power is removed from the device. On power-up, or following a  
hardware reset, the device reverts to sending commands to sector SA0.  
Customer Lockable: Secured Silicon Sector NOT Programmed or  
Protected At the Factory  
Unless otherwise specified, the device is shipped such that the customer may  
program and protect the 256-byte Secured Silicon sector.  
The system may program the Secured Silicon Sector using the write-buffer, ac-  
celerated and/or unlock bypass methods, in addition to the standard  
programming command sequence. See “Command Definitions” .  
Programming and protecting the Secured Silicon Sector must be used with cau-  
tion since, once protected, there is no procedure available for unprotecting the  
Secured Silicon Sector area and none of the bits in the Secured Silicon Sector  
memory space can be modified in any way.  
The Secured Silicon Sector area can be protected using one of the following  
procedures:  
„ Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then follow the in-system sector protect algorithm, except that  
RESET# may be at either VIH or VID. This allows in-system protection of the  
Secured Silicon Sector without raising any device pin to a high voltage. Note  
that this method is only applicable to the Secured Silicon Sector.  
„ To verify the protect/unprotect status of the Secured Silicon Sector, follow the  
algorithm.  
Once the Secured Silicon Sector is programmed, locked and verified, the system  
must write the Exit Secured Silicon Sector Region command sequence to return  
to reading and writing within the remainder of the array.  
Factory Locked: Secured Silicon Sector Programmed and  
Protected At the Factory  
In devices with an ESN, the Secured Silicon Sector is protected when the device  
is shipped from the factory. The Secured Silicon Sector cannot be modified in any  
way. An ESN Factory Locked device has an 16-byte random ESN at addresses  
000000h–000007h. Please contact your sales representative for details on order-  
ing ESN Factory Locked devices.  
Customers may opt to have their code programmed by the factory through the  
ExpressFlash service (Express Flash Factory Locked). The devices are then  
shipped from the factory with the Secured Silicon Sector permanently locked.  
Contact your sales representative for details on using the ExpressFlash service.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
121  
A d v a n c e I n f o r m a t i o n  
Write Protect (WP#)  
The Write Protect function provides a hardware method of protecting the first or  
last sector group without using VID. Write Protect is one of two functions provided  
by the WP#/ACC input.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the first or last sector group independently of whether those  
sector groups were protected or unprotected using the method described in“Ad-  
vanced Sector Protection” section on page 115. Note that if WP#/ACC is at VIL  
when the device is in the standby mode, the maximum input load current is in-  
creased. See the table in “DC Characteristics” section on page 151.  
If the system asserts VIH on the WP#/ACC pin, the device reverts to  
whether the first or last sector was previously set to be protected or un-  
protected using the method described in “Sector Group Protection and  
Unprotection”. Note that WP# has an internal pullup; when uncon-  
nected, WP# is at VIH  
.
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes (refer to Table 12 for com-  
mand definitions). In addition, the following hardware data protection measures  
prevent accidental erasure or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up and power-down transitions,  
or from system noise.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write  
cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# =  
VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a  
logical one.  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept  
commands on the rising edge of WE#. The internal state machine is automatically  
reset to the read mode on power-up.  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
122  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Tables 8-11. To  
terminate reading CFI data, the system must write the reset command.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 8–11. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alter-  
natively, contact your sales representative for copies of these documents.  
Table 8. CFI Query Identification String  
Addresses  
(x16)  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
123  
A d v a n c e I n f o r m a t i o n  
Table 9. System Interface String  
Addresses  
(x16)  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0007h  
0007h  
000Ah  
0000h  
0001h  
0005h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
124  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Table 10. Device Geometry Definition  
Addresses  
(x16)  
Data  
Description  
001Ah  
0019h  
0018h  
Device Size = 2N byte  
27h  
1A = 512 Mb, 19 = 256 Mb, 18 = 128 Mb  
28h  
29h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0005h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
Number of Erase Block Regions within device (01h = uniform device,  
02h = boot device)  
2Ch  
0001h  
Erase Block Region 1 Information  
2Dh  
2Eh  
2Fh  
30h  
00xxh  
000xh  
0000h  
000xh  
(refer to the CFI specification or CFI publication 100)  
00FFh, 001h, 0000h, 0002h = 512 Mb  
00FFh, 0000h, 0000h, 0002h = 256 Mb  
007Fh, 0000h, 0000h, 0002h = 128 Mb  
31h  
32h  
33h  
34h  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 2 Information (refer to CFI publication 100)  
Erase Block Region 3 Information (refer to CFI publication 100)  
Erase Block Region 4 Information (refer to CFI publication 100)  
35h  
36h  
37h  
38h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
125  
A d v a n c e I n f o r m a t i o n  
Table 11. Primary Vendor-Specific Extended Query  
Addresses  
(x16)  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
0010h  
Process Technology (Bits 7-2) 0100b = 110 nm MirrorBit  
Erase Suspend  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
0002h  
0001h  
0000h  
0008h  
0000h  
0000h  
0002h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
0008h = Advanced Sector Protection  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors in Bank  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
00B5h  
00C5h  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
WP# Protection  
4Fh  
50h  
00xxh  
0001h  
04h = Uniform sectors bottom WP# protect, 05h = Uniform sectors  
top WP# protect  
Program Suspend  
00h = Not Supported, 01h = Supported  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 12 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the im-  
proper sequence may place the device in an unknown state. A reset command is  
then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE#, whichever happens  
later. All data is latched on the rising edge of WE# or CE#, whichever happens  
first. Refer to the AC Characteristics section for timing diagrams.  
126  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. The device is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the  
erase-suspend-read mode, after which the system can read data from any non-  
erase-suspended sector. After completing a programming operation in the Erase  
Suspend mode, the system may once again read array data with the same ex-  
ception. See the Erase Suspend/Erase Resume Commands section for more  
information.  
The system must issue the reset command to return the device to the read (or  
erase-suspend-read) mode if DQ5 goes high during an active program or erase  
operation, or if the device is in the autoselect mode. See the next section, Reset  
Command, for more information.  
See also Requirements for Reading Array Data in the Device Bus Operations sec-  
tion for more information. The Read-Only Operations–“AC Characteristics”  
section provides the read parameters, and Figure 11 shows the timing diagram.  
Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the device to the read  
mode. Once erasure begins, however, the device ignores reset commands until  
the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the device to the  
read mode. If the program command sequence is written while the device is in  
the Erase Suspend mode, writing the reset command returns the device to the  
erase-suspend-read mode. Once programming begins, however, the device ig-  
nores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If the device entered the autoselect mode  
while in the Erase Suspend mode, writing the reset command returns the device  
to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the device to the read mode (or erase-suspend-read mode if the device  
was in Erase Suspend).  
Note that if DQ1 goes high during a Write Buffer Programming operation, the sys-  
tem must write the Write-to-Buffer-Abort Reset command sequence to reset the  
device for the next operation.  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
Table 12 shows the address and data requirements. This method is an alternative  
to that shown in Table 5, which is intended for PROM programmers and requires  
VID on address pin A9. The autoselect command sequence may be written to an  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
127  
A d v a n c e I n f o r m a t i o n  
address that is either in the read or erase-suspend-read mode. The autoselect  
command may not be written while the device is actively programming or  
erasing.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the autoselect command. The  
device then enters the autoselect mode. The system may read at any address any  
number of times without initiating another autoselect command sequence:  
„ A read cycle at address XX00h returns the manufacturer code.  
„ Three read cycles at addresses 01h, 0Eh, and 0Fh return the device code.  
„ A read cycle to an address containing a sector address (SA), and the address  
02h on A7–A0 in word mode returns 01h if the sector is protected, or 00h if  
it is unprotected.  
The system must write the reset command to return to the read mode (or erase-  
suspend-read mode if the device was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon  
Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing an 8-  
word/16-byte random Electronic Serial Number (ESN). The system can access  
the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector  
command sequence. The Exit Secured Silicon Sector command sequence returns  
the device to normal operation. Table 12 shows the address and data require-  
ments for both command sequences. See also “Secured Silicon Sector Flash  
Memory Region” for further information. Note that the ACC function and unlock  
bypass modes are not available when the Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 12 shows the address and  
data requirements for the word program command sequence.  
When the Embedded Program algorithm is complete, the device then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7 or DQ6. Refer to the Write Op-  
eration Status section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that the Secured Silicon Sector, autoselect, and CFI  
functions are unavailable when a program operation is in progress. Note  
that a hardware reset immediately terminates the program operation. The pro-  
gram command sequence should be reinitiated once the device has returned to  
the read mode, to ensure data integrity.  
Programming is allowed in any sequence of address locations and across sector  
boundaries. Programming to the same word address multiple times without in-  
tervening erases (incremental bit programming) requires a modified  
programming method. For such application requirements, please contact your  
128  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
local Spansion representative. Word programming is supported for backward  
compatibility with existing Flash driver software and for occasional writing of in-  
dividual words. Use of Write Buffer Programming is strongly recommended for  
general programming use when more than a few words are to be programmed.  
The effective word programming time using Write Buffer Programming is much  
shorter than the single word programming time. Any word cannot be pro-  
grammed from “0” back to a “1.” Attempting to do so may cause the device  
to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation  
was successful. However, a succeeding read will show that the data is still “0.”  
Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program words to the device  
faster than using the standard program command sequence. The unlock bypass  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the unlock bypass command, 20h. The device  
then enters the unlock bypass mode. A two-cycle unlock bypass program com-  
mand sequence is all that is required to program in this mode. The first cycle in  
this sequence contains the unlock bypass program command, A0h; the second  
cycle contains the program address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial two unlock cycles required  
in the standard program command sequence, resulting in faster total program-  
ming time. Table 12 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table  
12).  
Write Buffer Programming  
Write Buffer Programming allows the system write to a maximum of 16 words/32  
bytes in one programming operation. This results in faster effective programming  
time than the standard programming algorithms. The Write Buffer Programming  
command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle containing the Write Buffer Load command written at the  
Sector Address in which programming will occur. The fourth cycle writes the sec-  
tor address and the number of word locations, minus one, to be programmed. For  
example, if the system will program 6 unique address locations, then 05h should  
be written to the device. This tells the device how many write buffer addresses  
will be loaded with data and therefore when to expect the Program Buffer to Flash  
command. The number of locations to program cannot exceed the size of the  
write buffer or the operation will abort.  
The fifth cycle writes the first address location and data to be programmed. The  
write-buffer-page is selected by address bits AMAX–A4. All subsequent address/  
data pairs must fall within the selected-write-buffer-page. The system then  
writes the remaining address/data pairs into the write buffer. Write buffer loca-  
tions may be loaded in any order.  
The write-buffer-page address must be the same for all address/data pairs loaded  
into the write buffer. (This means Write Buffer Programming cannot be performed  
across multiple write-buffer pages. This also means that Write Buffer Program-  
ming cannot be performed across multiple sectors. If the system attempts to load  
programming data outside of the selected write-buffer page, the operation will  
abort.)  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
129  
A d v a n c e I n f o r m a t i o n  
Note that if a Write Buffer address location is loaded multiple times, the address/  
data pair counter will be decremented for every data load operation. The host  
system must therefore account for loading a write-buffer location more than  
once. The counter decrements for each data load operation, not for each unique  
write-buffer-address location. Note also that if an address location is loaded more  
than once into the buffer, the final data loaded for that address will be  
programmed.  
Once the specified number of write buffer locations have been loaded, the system  
must then write the Program Buffer to Flash command at the sector address. Any  
other address and data combination aborts the Write Buffer Programming oper-  
ation. The device then begins programming. Data polling should be used while  
monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5,  
and DQ1 should be monitored to determine the device status during Write Buffer  
Programming.  
The write-buffer programming operation can be suspended using the standard  
program suspend/resume commands. Upon successful completion of the Write  
Buffer Programming operation, the device is ready to execute the next command.  
The Write Buffer Programming Sequence can be aborted in the following ways:  
„ Load a value that is greater than the page buffer size during the Number of  
Locations to Program step.  
„ Write to an address in a sector different than the one specified during the  
Write-Buffer-Load command.  
„ Write an Address/Data pair to a different write-buffer-page than the one se-  
lected by the Starting Address during the write buffer data loading stage of  
the operation.  
„ Write data other than the Confirm Command after the specified number of  
data load cycles.  
The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address  
location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset com-  
mand sequence must be written to reset the device for the next operation. Note  
that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required  
when using Write-Buffer-Programming features in Unlock Bypass mode.  
Write buffer programming is allowed in any sequence. Note that the Secured Sil-  
icon sector, autoselect, and CFI functions are unavailable when a program  
operation is in progress. This flash device is capable of handling multiple write  
buffer programming operations on the same write buffer address range without  
intervening erases. For applications requiring incremental bit programming, a  
modified programming method is required, please contact your local Spansion  
representative. Any bit in a write buffer address range cannot be pro-  
grammed from “0” back to a “1.” Attempting to do so may cause the device  
to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation  
was successful. However, a succeeding read will show that the data is still “0.”  
Only erase operations can convert a “0” to a “1.”  
Accelerated Program  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
130  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
be at VHH for operations other than accelerated programming, or device damage  
may result. WP# has an internal pullup; when unconnected, WP# is at VIH  
.
Figure 2 illustrates the algorithm for the program operation. Refer to the Erase  
and Program Operations–“AC Characteristics” section for parameters, and Figure  
14 for timing diagrams.  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1(WC)  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
(Note 1)  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Notes:  
1. When Sector Address is specified, any  
address in the selected sector is acceptable.  
However, when loading Write-Buffer  
address locations with data, all addresses  
must fall within the selected Write-Buffer  
Page.  
Read DQ15 - DQ0 at  
Last Loaded Address  
2. DQ7 may change simultaneously with DQ5.  
Therefore, DQ7 should be verified.  
Yes  
DQ7 = Data?  
No  
3. If this flowchart location was reached  
because DQ5= “1”, then the device FAILED.  
If this flowchart location was reached  
because DQ1= “1”, then the Write to Buffer  
operation was ABORTED. In either case, the  
proper reset command must be written  
before the device can begin another  
operation. If DQ1=1, write the Write-  
Buffer-Programming-Abort-Reset  
No  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
Read DQ15 - DQ0 with  
address = Last Loaded  
Address  
command. if DQ5=1, write the Reset  
command.  
4. See Table 12 for command sequences  
required for write buffer programming.  
Yes  
(Note 2)  
DQ7 = Data?  
No  
(Note 3)  
FAIL or ABORT  
PASS  
Figure 1. Write Buffer Programming Operation  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
131  
A d v a n c e I n f o r m a t i o n  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 12 for program command sequence.  
Figure 2. Program Operation  
Program Suspend/Program Resume Command Sequence  
The Program Suspend command allows the system to interrupt a programming  
operation or a Write to Buffer programming operation so that data can be read  
from any non-suspended sector. When the Program Suspend command is written  
during a programming process, the device halts the program operation within 15  
µs maximum (5µs typical) and updates the status bits. Addresses are not re-  
quired when writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array  
data from any non-suspended sector. The Program Suspend command may also  
be issued during a programming operation while an erase is suspended. In this  
case, data may be read from any addresses not in Erase Suspend or Program  
Suspend. If a read is needed from the Secured Silicon Sector area (One-time Pro-  
gram area), then user must use the proper command sequences to enter and exit  
this region. Note that the Secured Silicon Sector autoselect, and CFI functions are  
unavailable when program operation is in progress.  
The system may also write the autoselect command sequence when the device  
is in the Program Suspend mode. The system can read as many autoselect codes  
as required. When the device exits the autoselect mode, the device reverts to the  
Program Suspend mode, and is ready for another valid operation. See Autoselect  
Command Sequence for more information.  
132  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
After the Program Resume command is written, the device reverts to program-  
ming. The system can determine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard program operation. See Write Op-  
eration Status for more information.  
The system must write the Program Resume command (address bits are don’t  
care) to exit the Program Suspend mode and continue the programming opera-  
tion. Further writes of the Resume command are ignored. Another Program  
Suspend command can be written after the device has resume programming.  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
Write address/data  
XXXh/B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
Done  
No  
reading?  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/30h  
Device reverts to  
operation prior to  
Program Suspend  
Figure 3. Program Suspend/Program Resume  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 12 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, or DQ2. Refer to the Write Operation  
Status section for information on these status bits.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
133  
A d v a n c e I n f o r m a t i o n  
Any commands written during the chip erase operation are ignored, including  
erase suspend commands. However, note that a hardware reset immediately  
terminates the erase operation. If that occurs, the chip erase command sequence  
should be reinitiated once the device has returned to reading array data, to en-  
sure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. Note that the Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when an  
erase operation in is progress. Refer to the “Erase And Programming Perfor-  
mance” section on page 163 in the AC Characteristics section for parameters, and  
Figure 16 section for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 12 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded time-  
out may or may not be accepted. It is recommended that processor interrupts be  
disabled during this time to ensure all commands are accepted. The interrupts  
can be re-enabled after the last Sector Erase command is written. Any com-  
mand other than Sector Erase or Erase Suspend during the time-out  
period resets the device to the read mode. Note that the Secured Silicon  
Sector, autoselect, and CFI functions are unavailable when an erase op-  
eration in is progress. The system must rewrite the command sequence and  
any additional addresses and commands.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading  
array data and addresses are no longer latched. The system can determine the  
status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector.  
Refer to the Write Operation Status section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
Figure 4 illustrates the algorithm for the erase operation. Refer to the Erase and  
Program Operations table in the AC Characteristics section for parameters, and  
Figure 16 section for timing diagrams.  
134  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 12 for program command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
Figure 4. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. This command is valid only during the sector erase operation, includ-  
ing the 50 µs time-out period during the sector erase command sequence. The  
Erase Suspend command is ignored if written during the chip erase operation or  
Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a typical of 5 µs (maximum of 20 µs) to suspend the erase  
operation. However, when the Erase Suspend command is written during the sec-  
tor erase time-out, the device immediately terminates the time-out period and  
suspends the erase operation.  
After the erase operation has been suspended, the device enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the Write Operation Status section for information on these status bits.  
After an erase-suspended program operation is complete, the device returns to  
the erase-suspend-read mode. The system can determine the status of the pro-  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
135  
A d v a n c e I n f o r m a t i o n  
gram operation using the DQ7 or DQ6 status bits, just as in the standard word  
program operation. Refer to the Write Operation Status section for more  
information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. Refer to the “Autoselect Mode” section and “Autoselect  
Command Sequence” section on page 127 sections for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command. The address of the erase-suspended sector is required when writing  
this command. Further writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the chip has resumed erasing. It is  
important to allow an interval of at least 5 ms between Erase Resume and Erase  
Suspend.  
Lock Register Command Set Definitions  
The Lock Register Command Set permits the user to one-time program the Se-  
cured Silicon Sector Protection Bit, Persistent Protection Mode Lock Bit, and  
Password Protection Mode Lock Bit. The Lock Register bits are all readable after  
an initial access delay.  
The Lock Register Command Set Entry command sequence must be issued  
prior to any of the following commands listed, to enable proper command  
execution.  
Note that issuing the Lock Register Command Set Entry command disables  
reads and writes for the flash memory.  
„ Lock Register Program Command  
„ Lock Register Read Command  
The Lock Register Command Set Exit command must be issued after the ex-  
ecution of the commands to reset the device to read mode. Otherwise the device  
will hang. If this happens, the flash device must be reset. Please refer to RESET#  
for more information. It is important to note that the device will be in either Per-  
sistent Protection mode or Password Protection mode depending on the mode  
selected prior to the device hang.  
For either the Secured Silicon Sector to be locked, or the device to be perma-  
nently set to the Persistent Protection Mode or the Password Protection Mode, the  
associated Lock Register bits must be programmed. Note that the Persistent  
Protection Mode Lock Bit and Password Protection Mode Lock Bit can  
never be programmed together at the same time. If so, the Lock Register  
Program operation will abort.  
The Lock Register Command Set Exit command must be initiated to re-  
enable reads and writes to the main memory.  
Password Protection Command Set Definitions  
The Password Protection Command Set permits the user to program the 64-bit  
password, verify the programming of the 64-bit password, and then later unlock  
the device by issuing the valid 64-bit password.  
The Password Protection Command Set Entry command sequence must be  
issued prior to any of the commands listed following to enable proper command  
execution.  
Note that issuing the Password Protection Command Set Entry command  
disabled reads and writes the main memory.  
136  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
„ Password Program Command  
„ Password Read Command  
„ Password Unlock Command  
The Password Program command permits programming the password that is  
used as part of the hardware protection scheme. The actual password is 64-bits  
long. There is no special addressing order required for programming the pass-  
word. The password is programmed in 8-bit or 16-bit portions. Each  
portion requires a Password Program Command.  
Once the Password is written and verified, the Password Protection Mode Lock Bit  
in the “Lock Register” must be programmed in order to prevent verification. The  
Password Program command is only capable of programming “0”s. Programming  
a “1” after a cell is programmed as a “0” results in a time-out by the Embedded  
Program AlgorithmTM with the cell remaining as a “0. The password is all F’s when  
shipped from the factory. All 64-bit password combinations are valid as a  
password.  
The Password Read command is used to verify the Password. The Password is  
verifiable only when the Password Protection Mode Lock Bit in the “Lock Register”  
is not programmed. If the Password Protection Mode Lock Bit in the “Lock Regis-  
ter” is programmed and the user attempts to read the Password, the device will  
always drive all F’s onto the DQ databus.  
The lower two address bits (A1–A0) for word mode and (A1–A-1) for by byte  
mode are valid during the Password Read, Password Program, and Password Un-  
lock commands. Writing a “1” to any other address bits (AMAX-A2) will  
abort the Password Read and Password Program commands.  
The Password Unlock command is used to clear the PPB Lock Bit to the “unfreeze  
state” so that the PPB bits can be modified. The exact password must be entered  
in order for the unlocking function to occur. This 64-bit Password Unlock com-  
mand sequence will take at least 2 µs to process each time to prevent a  
hacker from running through the all 64-bit combinations in an attempt  
to correctly match the password. If another password unlock is issued  
before the 64-bit password check execution window is completed, the  
command will be ignored. If the wrong address or data is given during  
password unlock command cycle, the device may enter the write-to-  
buffer abort state. In order to exit the write-to-abort state, the write-to-  
buffer-abort-reset command must be given. Otherwise the device will  
hang.  
The Password Unlock function is accomplished by writing Password Unlock com-  
mand and data to the device to perform the clearing of the PPB Lock Bit to the  
“unfreeze state. The password is 64 bits long. A1 and A0 are used for matching.  
Writing the Password Unlock command does not need to be address order spe-  
cific. An example sequence is starting with the lower address A1-A0=00, followed  
by A1-A0=01, A1-A0=10, and A1-A0=11 if the device is configured to operate in  
word mode.  
Approximately 2 µs is required for unlocking the device after the valid  
64-bit password is given to the device. It is the responsibility of the mi-  
croprocessor to keep track of the entering the portions of the 64-bit  
password with the Password Unlock command, the order, and when to  
read the PPB Lock bit to confirm successful password unlock. In order to  
re-lock the device into the Password Protection Mode, the PPB Lock Bit Set com-  
mand can be re-issued.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
137  
A d v a n c e I n f o r m a t i o n  
The Password Protection Command Set Exit command must be issued after  
the execution of the commands listed previously to reset the device to read  
mode. Otherwise the device will hang.  
Note that issuing the Password Protection Command Set Exit command re-  
enables reads and writes for the main memory.  
Non-Volatile Sector Protection Command Set Definitions  
The Non-Volatile Sector Protection Command Set permits the user to program the  
Persistent Protection Bits (PPB bits), erase all of the Persistent Protection Bits  
(PPB bits), and read the logic state of the Persistent Protection Bits (PPB bits).  
The Non-Volatile Sector Protection Command Set Entry command se-  
quence must be issued prior to any of the commands listed following to enable  
proper command execution.  
Note that issuing the Non-Volatile Sector Protection Command Set Entry  
command disables reads and writes for the main memory.  
„ PPB Program Command  
The PPB Program command is used to program, or set, a given PPB bit. Each PPB  
bit is individually programmed (but is bulk erased with the other PPB bits). The  
specific sector address (A24-A16 for S29GL512N, A23-A16 for S29GL256N, A22-  
A16 for S29GL128N) is written at the same time as the program command. If the  
PPB Lock Bit is set to the “freeze state, the PPB Program command will not exe-  
cute and the command will time-out without programming the PPB bit.  
„ All PPB Erase Command  
The All PPB Erase command is used to erase all PPB bits in bulk. There is no  
means for individually erasing a specific PPB bit. Unlike the PPB program, no spe-  
cific sector address is required. However, when the All PPB Erase command is  
issued, all Sector PPB bits are erased in parallel. If the PPB Lock Bit is set to  
“freeze state, the ALL PPB Erase command will not execute and the command  
will time-out without erasing the PPB bits.  
The device will preprogram all PPB bits prior to erasing when issuing the All PPB  
Erase command. Also note that the total number of PPB program/erase cycles has  
the same endurance as the flash memory array.  
„ PPB Status Read Command  
The programming state of the PPB for a given sector can be verified by writing a  
PPB Status Read Command to the device. This requires an initial access time  
latency.  
The Non-Volatile Sector Protection Command Set Exit command must be  
issued after the execution of the commands listed previously to reset the device  
to read mode.  
Note that issuing the Non-Volatile Sector Protection Command Set Exit  
command re-enables reads and writes for the main memory.  
Global Volatile Sector Protection Freeze Command Set  
The Global Volatile Sector Protection Freeze Command Set permits the user to set  
the PPB Lock Bit and reading the logic state of the PPB Lock Bit.  
The Global Volatile Sector Protection Freeze Command Set Entry com-  
mand sequence must be issued prior to any of the commands listed following to  
enable proper command execution.  
138  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Reads and writes from the main memory are not allowed.  
„ PPB Lock Bit Set Command  
The PPB Lock Bit Set command is used to set the PPB Lock Bit to the “freeze state”  
if it is cleared either at reset or if the Password Unlock command was successfully  
executed. There is no PPB Lock Bit Clear command. Once the PPB Lock Bit is set  
to the “freeze state, it cannot be cleared unless the device is taken through a  
power-on clear (for Persistent Protection Mode) or the Password Unlock command  
is executed (for Password Protection Mode). If the Password Protection Mode Lock  
Bit is programmed, the PPB Lock Bit status is reflected as set to the “freeze state,  
even after a power-on reset cycle.  
„ PPB Lock Bit Status Read Command  
The programming state of the PPB Lock Bit can be verified by executing a PPB  
Lock Bit Status Read command to the device.  
The Global Volatile Sector Protection Freeze Command Set Exit command  
must be issued after the execution of the commands listed previously to reset the  
device to read mode.  
Volatile Sector Protection Command Set  
The Volatile Sector Protection Command Set permits the user to set the Dynamic  
Protection Bit (DYB) to the “protected state, clear the Dynamic Protection Bit  
(DYB) to the “unprotected state, and read the logic state of the Dynamic Protec-  
tion Bit (DYB).  
The Volatile Sector Protection Command Set Entry command sequence  
must be issued prior to any of the commands listed following to enable proper  
command execution.  
Note that issuing the Volatile Sector Protection Command Set Entry com-  
mand disables reads and writes from main memory.  
„ DYB Set Command  
„ DYB Clear Command  
The DYB Set and DYB Clear commands are used to protect or unprotect a DYB for  
a given sector. The high order address bits are issued at the same time as the  
code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are ignored during the  
data write cycle. The DYB bits are modifiable at any time, regardless of the state  
of the PPB bit or PPB Lock Bit. The DYB bits are cleared to the “unprotected state”  
at power-up or hardware reset.  
—DYB Status Read Command  
The programming state of the DYB bit for a given sector can be verified by writing  
a DYB Status Read command to the device. This requires an initial access delay.  
The Volatile Sector Protection Command Set Exit command must be issued  
after the execution of the commands listed previously to reset the device to read  
mode.  
Note that issuing the Volatile Sector Protection Command Set Exit com-  
mand re-enables reads and writes to the main memory.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
139  
A d v a n c e I n f o r m a t i o n  
Secured Silicon Sector Entry Command  
The Secured Silicon Sector Entry command allows the following commands to be  
executed  
„ Read from Secured Silicon Sector  
„ Program to Secured Silicon Sector  
Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon  
Sector Exit command has to be issued to exit Secured Silicon Sector Mode.  
Secured Silicon Sector Exit Command  
The Secured Silicon Sector Exit command may be issued to exit the Secured Sil-  
icon Sector Mode.  
140  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Command Definitions  
Table 12. S29GL512N, S29GL256N, S29GL128N Command Definitions, x16  
Bus Cycles (Notes 2–5)  
Command (Notes)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (6)  
1
1
4
RA  
RD  
F0  
Reset (7)  
XXX  
555  
Manufacturer ID  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
01  
Note  
17  
Note  
17  
Device ID  
4
4
4
555  
555  
555  
AA  
AA  
AA  
227E  
X0E  
X0F  
XX00  
XX01  
(SA)  
X02  
Sector Protect Verify  
Secure Device Verify (9)  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
Note  
10  
X03  
CFI Query (11)  
1
4
3
1
3
3
2
2
2
2
6
6
1
1
55  
98  
AA  
AA  
29  
AA  
AA  
A0  
80  
80  
90  
AA  
AA  
B0  
30  
Program  
555  
555  
SA  
2AA  
2AA  
55  
55  
555  
SA  
A0  
25  
PA  
SA  
PD  
Write to Buffer  
WC  
PA  
PD  
WBL  
PD  
Program Buffer to Flash (confirm)  
Write-to-Buffer-Abort Reset (16)  
Unlock Bypass  
555  
555  
XXX  
XXX  
XXX  
XXX  
555  
555  
XXX  
XXX  
2AA  
2AA  
PA  
55  
55  
PD  
30  
10  
00  
55  
55  
555  
555  
F0  
20  
Unlock Bypass Program (12)  
Unlock Bypass Sector Erase (12)  
Unlock Bypass Chip Erase (12)  
Unlock Bypass Reset (13)  
Chip Erase  
SA  
XXX  
XXX  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase Suspend/Program Suspend (14)  
Erase Resume/Program Resume (15)  
Sector Command Definitions  
Secured Silicon Sector Entry  
3
555  
AA  
2AA  
55  
555  
88  
90  
Secured Silicon Sector Exit (18)  
4
555  
AA  
2AA  
55  
555  
XX  
00  
Lock Register Command Set Definitions  
Lock Register Command Set Entry  
Lock Register Bits Program (22)  
Lock Register Bits Read (22)  
3
2
1
2
555  
XXX  
00  
AA  
A0  
2AA  
XXX  
55  
555  
40  
Data  
Data  
90  
Lock Register Command Set Exit (18, 23)  
XXX  
XXX  
00  
Password Protection Command Set Definitions  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
141  
A d v a n c e I n f o r m a t i o n  
Bus Cycles (Notes 2–5)  
Third Fourth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command (Notes)  
First  
Second  
Fifth  
Sixth  
Password Protection Command Set Entry  
3
2
555  
XXX  
AA  
A0  
2AA  
55  
555  
60  
PWA  
x
PWD  
x
Password Program (20)  
Password Read (19)  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
4
7
2
XXX  
01  
00  
02  
00  
03  
01  
PWD  
0
PWD  
1
PWD  
2
PWD  
3
00  
00  
25  
29  
90  
03  
02  
03  
Password Unlock (19)  
Password Protection Command Set Exit (18,  
23)  
XXX  
XXX  
00  
Non-Volatile Sector Protection Command Set Definitions  
Nonvolatile Sector Protection Command Set  
Entry  
3
555  
AA  
2AA  
55  
555  
C0  
PPB Program (24, 25)  
All PPB Erase  
2
2
XXX  
XXX  
A0  
80  
SA  
00  
00  
30  
RD  
(0)  
PPB Status Read (25)  
1
2
SA  
Non-Volatile Sector Protection Command Set  
Exit (18)  
XXX  
90  
XXX  
00  
Global Non-Volatile Sector Protection Freeze Command Set Definitions  
Global Non-Volatile Sector Protection Freeze  
Command Set Entry  
3
2
1
555  
XXX  
XXX  
AA  
A0  
2AA  
XXX  
55  
00  
555  
50  
PPB Lock Bit Set (25)  
RD  
(0)  
PPB Lock Status Read (25)  
Global Non-Volatile Sector Protection Freeze  
Command Set Exit (18)  
2
XXX  
90  
XXX  
00  
Volatile Sector Protection Command Set Definitions  
Volatile Sector Protection Command Set Entry  
DYB Set (24, 25)  
3
2
2
555  
XXX  
XXX  
AA  
A0  
A0  
2AA  
SA  
55  
00  
01  
555  
E0  
DYB Clear (25)  
SA  
RD  
(0)  
DYB Status Read (25)  
1
2
SA  
Volatile Sector Protection Command Set Exit  
(18)  
XXX  
90  
XXX  
00  
Legend:  
X = Don’t care  
RA = Address of the memory to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE# or CE# pulse, whichever  
happens later.  
PD = Data to be programmed at location PA. Data latches on the rising edge of the WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits Amax–A16 uniquely select any sector.  
WBL = Write Buffer Location. The address must be within the same write buffer page as PA.  
142  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
WC = Word Count is the number of write buffer locations to load minus 1.  
PWD = Password  
PWDx = Password word0, word1, word2, and word3.  
DATA = Lock Register Contents: PD(0) = Secured Silicon Sector Protection Bit, PD(1) = Persistent Protection Mode Lock Bit, PD(2)  
= Password Protection Mode Lock Bit.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the read cycle, and the 4th, 5th, and 6th cycle of the autoselect command sequence, all bus cycles are write  
cycles.  
4. Data bits DQ15-DQ8 are don't cares for unlock and command cycles.  
5. Address bits AMAX:A16 are don't cares for unlock and command cycles, unless SA or PA required. (AMAX is the Highest  
Address pin.).  
6. No unlock or command cycles required when reading array data.  
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high  
(while the device is providing status data).  
8. The fourth, fifth, and sixth cycle of the autoselect command sequence is a read cycle.  
9. The data is 00h for an unprotected sector and 01h for a protected sector. See “Autoselect Command Sequence” for more  
information. This is same as PPB Status Read except that the protect and unprotect statuses are inverted here.  
10. The data value for DQ7 is “1” for a serialized and protected OTP region and “0” for an unserialized and unprotected Secured  
Silicon Sector region. See “Secured Silicon Sector Flash Memory Region” for more information. For S29GLxxxNH: XX18h/18h  
= Not Factory Locked. XX98h/98h = Factory Locked. For S29GLxxxNL: XX08h/08h = Not Factory Locked. XX88h/88h =  
Factory Locked.  
11. Command is valid when device is ready to read array data or when device is in autoselect mode.  
12. The Unlock-Bypass command is required prior to the Unlock-Bypass-Program command.  
13. The Unlock-Bypass-Reset command is required to return to reading array data when the device is in the unlock bypass  
mode.  
14. The system may read and program/program suspend in non-erasing sectors, or enter the autoselect mode, when in the  
Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.  
15. The Erase Resume/Program Resume command is valid only during the Erase Suspend/Program Suspend modes.  
16. Issue this command sequence to return to READ mode after detecting device is in a Write-to-Buffer-Abort state. NOTE: the  
full command sequence is required if resetting out of ABORT while using Unlock Bypass Mode.  
17. S29GL512NH/L = 2223h/23h, 2201h/01h; S29GL256NH/L = 2222h/22h, 2201h/01h; S29GL128NH/L = 2221h/21h, 2201h/  
01h.  
18. The Exit command returns the device to reading the array.  
19. Note that the password portion can be entered or read in any order as long as the entire 64-bit password is entered or read.  
20. For PWDx, only one portion of the password can be programmed per each “A0” command.  
21. The All PPB Erase command embeds programming of all PPB bits before erasure.  
22. All Lock Register bits are one-time programmable. Note that the program state = “0” and the erase state = “1”. Also note  
that of both the Persistent Protection Mode Lock Bit and the Password Protection Mode Lock Bit cannot be programmed at the  
same time or the Lock Register Bits Program operation will abort and return the device to read mode. Lock Register bits that  
are reserved for future use will default to “1's”. The Lock Register is shipped out as “FFFF's” before Lock Register Bit program  
execution.  
23. If any of the Entry command was initiated, an Exit command must be issued to reset the device into read mode. Otherwise  
the device will hang.  
24. If ACC = VHH, sector protection will match when ACC = VIH  
25. Protected State = “00h”, Unprotected State = “01h”.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
143  
A d v a n c e I n f o r m a t i o n  
Write Operation Status  
The device provides several bits to determine the status of a program or erase  
operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 13 and the following subsec-  
tions describe the function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is complete or in progress.  
The device also provides a hardware-based output signal, RY/BY#, to determine  
whether an Embedded Program or Erase operation is in progress or has been  
completed.  
Note that all Write Operation Status DQ bits are valid only after 4 µs delay.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded  
Program or Erase algorithm is in progress or completed, or whether the device is  
in Erase Suspend. Data# Polling is valid after the rising edge of the final WE#  
pulse in the command sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the com-  
plement of the datum programmed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Embedded Program algorithm is  
complete, the device outputs the datum programmed to DQ7. The system must  
provide the program address to read valid status information on DQ7. If a pro-  
gram address falls within a protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the device enters the  
Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must  
provide an address within any of the sectors selected for erasure to read valid  
status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 100 µs, then the  
device returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7  
may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is as-  
serted low. That is, the device may change from providing status information to  
valid data on DQ7. Depending on when the system samples the DQ7 output, it  
may read the status or valid data. Even if the device has completed the program  
or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may  
be still invalid. Valid data on DQ0–DQ7 will appear on successive read cycles.  
Table 13 shows the outputs for Data# Polling on DQ7. Figure 5 shows the Data#  
Polling algorithm. Figure 17 in the AC Characteristics section shows the Data#  
Polling timing diagram.  
144  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1  
Yes  
Read DQ15–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
Figure 5. Data# Polling Algorithm  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or in the erase-suspend-read  
mode. Table 13 shows the outputs for RY/BY#.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
145  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 13 shows the outputs for Toggle Bit I on DQ6. Figure 6 shows the toggle bit  
algorithm. Figure 18 in the “AC Characteristics” section shows the toggle bit tim-  
ing diagrams. Figure 19 shows the differences between DQ2 and DQ6 in graphical  
form. See also the subsection on DQ2: Toggle Bit II.  
146  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
START  
Read DQ7–DQ0  
Read DQ7–DQ0  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Program/Erase  
Operation Complete  
Complete, Write  
Reset Command  
Note:  
The system should recheck the toggle bit even if  
DQ5 = “1” because the toggle bit may stop toggling  
as DQ5 changes to “1.” See the subsections on DQ6  
and DQ2 for more information.  
Figure 6. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# to control the  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
147  
A d v a n c e I n f o r m a t i o n  
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or  
is erase-suspended. DQ6, by comparison, indicates whether the device is actively  
erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected  
for erasure. Thus, both status bits are required for sector and mode information.  
Refer to Table 13 to compare outputs for DQ2 and DQ6.  
Figure 6 shows the toggle bit algorithm in flowchart form, and the section “DQ2:  
Toggle Bit II” explains the algorithm. See also the RY/BY#: Ready/Busy# subsec-  
tion. Figure 18 shows the toggle bit timing diagram. Figure 19 shows the  
differences between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 6 and Figure 19 for the following discussion. Whenever the system  
initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in  
a row to determine whether a toggle bit is toggling. Typically, the system would  
note and store the value of the toggle bit after the first read. After the second  
read, the system would compare the new value of the toggle bit with the first. If  
the toggle bit is not toggling, the device has completed the program or erase op-  
eration. The system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 6).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program, erase, or write-to-buffer time has ex-  
ceeded a specified internal pulse count limit. Under these conditions DQ5  
produces a “1,indicating that the program or erase cycle was not successfully  
completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
In all these cases, the system must write the reset command to return the device  
to the reading the array (or to erase-suspend-read if the device was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
148  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.If the  
time between additional sector erase commands from the system can be as-  
sumed to be less than 50 µs, the system need not monitor DQ3. See also the  
Sector Erase Command Sequence section.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 13 shows the status of DQ3 relative to the other status bits.  
DQ1: Write-to-Buffer Abort  
DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these  
conditions DQ1 produces a “1. The system must issue the Write-to-Buffer-Abort-  
Reset command sequence to return the device to reading array data. See Write  
Buffer section for more details.  
Table 13. Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1) DQ3  
DQ2  
(Note 2)  
RY/  
BY#  
Status  
DQ6  
DQ1  
0
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Suspend  
Read  
Sector  
Non-Program  
Suspended Sector  
Erase-Suspended  
Sector  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Suspend  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Suspended Sector  
Data  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum  
timing limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.  
4. DQ1 switches to ‘1’ when the device has aborted the write-to-buffer operation.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
149  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Storage Temperature, Plastic Packages. . . . . . . . . . . . . . . . 65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
A9, OE#, and ACC (Note 2) . . . . . . . . . . . . . . . . . . .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . . . . . . . . . . . . . . .–0.5 V to VCC + 0.5V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs  
or I/Os may overshoot V to –2.0 V for periods of up to 20 ns. See Figure 7.  
SS  
Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage transitions,  
CC  
input or I/O pins may overshoot to V + 2.0 V for periods up to 20 ns. See Figure  
CC  
8.  
2. Minimum DC input voltage on pins A9, OE#, and ACC is –0.5 V. During voltage  
transitions, A9, OE#, and ACC may overshoot V to –2.0 V for periods of up to  
SS  
20 ns. See Figure 7. Maximum DC input voltage on pin A9, OE#, and ACC is +12.5  
V which may overshoot to +14.0V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short  
circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 7. Maximum Negative  
Overshoot Waveform  
Figure 8. Maximum Positive  
Overshoot Waveform  
Operating Ranges  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Supply Voltages  
VCC  
. . . . . . . . . . . . . . . . . . . . . . . . . . +2.7 V to +3.6 V or +3.0V to 3.6V  
VIO (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.65V to 1.95V or VCC  
Notes:  
1. Operating ranges define those limits between which the functionality of the device is guaranteed.  
2. See “Product Selector Guide” section on page 80.  
150  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
DC Characteristics  
CMOS Compatible-S29GL128N, S29GL256N, S29GL512N  
Parameter  
Symbol  
Parameter Description  
(Notes)  
Test Conditions  
Min  
Typ  
Max  
Unit  
WP/ACC: ±2.0  
Others: ±1.0  
35  
V
IN = VSS to VCC,  
ILI  
Input Load Current (1)  
µA  
VCC = VCC max  
ILIT  
ILO  
A9 Input Load Current  
Output Leakage Current  
VCC = VCC max; A9 = 12.5 V  
µA  
µA  
VOUT = VSS to VCC  
V
,
±1.0  
50  
CC = VCC max  
CE# = VIL, OE# = VIH, VCC = VCCmax  
f = 5 MHz  
,
30  
60  
1
mA  
mA  
ICC1  
VCC Active Read Current (1)  
CE# = VIL, OE# = VIH, VCC = VCCmax  
f = 10 MHz  
,
90  
CE# = VIL, OE# = VIH, VCC = VCCmax  
f = 10 MHz  
10  
ICC2  
VCC Intra-Page Read Current (1)  
CE# = VIL, OE# = VIH, VCC = VCCmax  
f=33 MHz  
,
5
20  
80  
ICC3  
VCC Active Erase/Program Current (2, 3) CE# = VIL, OE# = VIH, VCC = VCCmax  
CE#, RESET# = VSS ± 0.3 V, OE# =  
50  
mA  
mA  
ICC4  
VCC Standby Current  
V
0.1V  
IH, VCC = VCCmax VIL = VSS + 0.3 V/-  
1
1
5
5
V
CC = VCCmax;  
ICC5  
VCC Reset Current  
VIL = VSS + 0.3 V/-0.1V,  
RESET# = VSS ± 0.3 V  
µA  
µA  
V
CC = VCCmax  
VIH = VCC ± 0.3 V,  
VIL = VSS + 0.3 V/-0.1V,  
WP#/ACC = VIH  
ICC6  
Automatic Sleep Mode (4)  
1
5
WP#/ACC  
pin  
10  
50  
20  
CE# = VIL, OE# = VIH, VCC = VCCmax,  
WP#/ACC = VIH  
IACC  
ACC Accelerated Program Current  
mA  
VCC pin  
–0.1  
80  
VIL  
VIH  
Input Low Voltage (5)  
Input High Voltage (5)  
0.3 x VIO  
VIO + 0.3  
V
V
0.7 x VIO  
Voltage for ACC Erase/Program  
Acceleration  
VHH  
V
CC = 2.7 –3.6 V  
11.5  
11.5  
12.5  
V
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VID  
VCC = 2.7 –3.6 V  
12.5  
VOL  
VOH  
VLKO  
Output Low Voltage (5)  
Output High Voltage (5)  
Low VCC Lock-Out Voltage (3)  
IOL = 100 µA  
IOH = -100 µA  
0.15 x VIO  
V
V
V
0.85 x VIO  
2.3  
2.5  
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH  
.
2. ICC active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.  
3. Not 100% tested.  
4. Automatic sleep mode enables the lower power mode when addresses remain stable tor tACC + 30 ns.  
5. VIO = 1.65–1.95 V or 2.7–3.6 V  
6.  
VCC = 3 V and VIO = 3V or 1.8V. When VIO is at 1.8V, I/O pins cannot operate at 3V.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
151  
A d v a n c e I n f o r m a t i o n  
Test Conditions  
Table 14. Test Specifications  
3.3 V  
Test Condition  
Output Load  
All Speeds  
1 TTL gate  
Unit  
2.7 k  
Output Load Capacitance, CL  
(including jig capacitance)  
Device  
Under  
Test  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.0–VIO  
Input timing measurement  
reference levels (See Note)  
0.5VIO  
V
V
Output timing measurement  
reference levels  
0.5 VIO  
Note: Diodes are IN3064 or equivalent.  
Figure 9. Test Setup  
Note: If VIO < VCC, the reference level is 0.5 VIO  
.
Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VIO  
0.5 VIO  
0.5 VIO V  
Input  
Measurement Level  
Output  
0.0 V  
Note: If VIO < VCC, the input measurement reference level is 0.5 VIO  
.
Figure 10. Input Waveforms and Measurement Levels  
152  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Read-Only Operations–S29GL128N, S29GL256N, S29GL512N  
Parameter  
Speed Options  
JEDEC Std. Description  
Test Setup  
VIO = VCC = 3 V  
90 100 110 110 Unit  
90 100 110  
tAVAV  
tAVQV  
tELQV  
tRC Read Cycle Time  
Min  
Max  
Max  
ns  
VIO = 1.8 V, VCC = 3 V  
110  
VIO = VCC = 3 V  
90 100 110  
Address to Output Delay  
(Note 2)  
tACC  
ns  
VIO = 1.8 V, VCC = 3 V  
VIO = VCC = 3 V  
110  
90 100 110  
Chip Enable to Output Delay  
(Note 3)  
tCE  
ns  
VIO = 1.8 V, VCC = 3 V  
110  
tPACC Page Access Time  
Max 25  
Max 25  
Max  
25  
25  
25  
35  
30  
35  
ns  
ns  
ns  
tGLQV  
tEHQZ  
tOE Output Enable to Output Delay  
tDF  
tDF  
Chip Enable to Output High Z (Note 1)  
20  
20  
Output Enable to Output High Z  
(Note 1)  
tGHQZ  
Max  
ns  
Output Hold Time From Addresses, CE#  
or OE#, Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
Data# Polling  
10  
35  
tCEH  
Chip Enable Hold Time Read  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = VIL  
3. OE# = VIL  
4. See Figure 9 and Table 14 for test specifications.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100 ns, and 110 ns speed options are tested with VIO = VCC = 3 V.  
AC specifications for 110 ns speed options are tested with VIO = 1.8 V and VCC = 3.0 V.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
153  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tCEH  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 11. Read Operation Timings  
Same Page  
Amax-A2  
A2-A0*  
Ad  
Aa  
Ab  
Ac  
tPACC  
tPACC  
tPACC  
tACC  
Data Bus  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Notes:  
1. Figure shows word mode.  
Figure 12. Page Read Timings  
154  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
Speed (Note 2)  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
ns  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Notes:  
1. Not 100% tested. If ramp rate is equal to or faster than 1V/100µs with a falling edge of the RESET# pin initiated, the  
RESET# pin needs to be held low only for 100µs for power-up.  
2. Next generation devices may have different reset speeds.  
RY/BY#  
CE#, OE#  
tRH  
RESET#  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
tRH  
Figure 13. Reset Timings  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
155  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase and Program Operations–S29GL128N, S29GL256N, S29GL512N  
Parameter  
JEDEC Std. Description  
tAVAV tWC Write Cycle Time (Note 1)  
tAVWL  
Speed Options  
90  
100  
110  
110  
Unit  
ns  
Min  
Min  
90  
100  
110  
110  
tAS  
tASO  
tAH  
Address Setup Time  
0
15  
45  
0
ns  
Address Setup Time to OE# low during toggle  
bit polling  
Min  
Min  
Min  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
45  
0
ns  
ns  
tCEPH CE# High during toggle bit polling  
20  
20  
tOEPH Output Enable High during toggle bit polling  
ns  
ns  
Read Recovery Time Before Write  
tGHWL  
tGHWL  
Min  
0
(OE# High to WE# Low)  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
tWP  
CE# Setup Time  
CE# Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
35  
30  
240  
tWPH Write Pulse Width High  
Write Buffer Program Operation (Notes 2, 3)  
Effective Write Buffer Program  
Per Word  
Typ  
15  
µs  
Operation (Notes 2, 4)  
Accelerated Effective Write Buffer  
Program Operation (Notes 2, 4)  
tWHWH1 tWHWH1  
Per Word  
Word  
Typ  
Typ  
Typ  
13.5  
60  
µs  
µs  
µs  
Program Operation (Note 2)  
Accelerated Programming  
Operation (Note 2)  
Word  
54  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Min  
0.5  
250  
50  
sec  
ns  
tVHH  
tVCS  
VHH Rise and Fall Time (Note 1)  
VCC Setup Time (Note 1)  
µs  
ns  
tBUSY Erase/Program Valid to RY/BY# Delay  
90  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100 ns, and 110 ns speed options are tested with V = V  
IO  
CC  
= 3 V. AC specifications for 110 ns speed options are tested with V = 1.8 V and V = 3.0 V.  
IO  
CC  
156  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
VIL or VIH  
ACC  
tVHH  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
Notes:  
1. Not 100% tested.  
2. CE#, OE# = V  
IL  
3. OE# = V  
IL  
4. See Figure 9 and Table 14 for test specifications.  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
157  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAS  
SA  
tWC  
2AAh  
VA  
VA  
Addresses  
CE#  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”.  
2. These waveforms are for the word mode.  
Figure 16. Chip/Sector Erase Operation Timings  
158  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tRC  
Addresses  
VA  
tACC  
tCE  
VA  
VA  
CE#  
tCH  
tOE  
OE#  
tOEH  
WE#  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note:  
1. VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read  
cycle.  
2. tOE for data polling is 45 ns when VIO = 1.65 to 2.7 V and is 35 ns when VIO = 2.7 to 3.6 V  
Figure 17. Data# Polling Timings (During Embedded Algorithms)  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
159  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
tAHT  
tAS  
Addresses  
tAHT  
tASO  
CE#  
tOEH  
WE#  
tCEPH  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ2 and DQ6  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command  
sequence, last status read cycle, and array data read cycle  
Figure 18. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Embedded  
Erasing  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Erase  
WE#  
Erase  
Erase Suspend  
Suspend  
Program  
Complete  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE#  
or CE# to toggle DQ2 and DQ6.  
Figure 19. DQ2 vs. DQ6  
160  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
Alternate CE# Controlled Erase and Program Operations-  
S29GL128N, S29GL256N, S29GL512N  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
tWC Write Cycle Time (Note 1)  
tAS  
90  
100  
110  
110  
Unit  
ns  
Min  
Min  
90  
100  
110  
110  
tAVWL  
Address Setup Time  
0
15  
45  
0
ns  
Address Setup Time to OE# low during  
toggle bit polling  
TASO  
tAH  
Min  
Min  
Min  
ns  
ns  
ns  
tELAX  
Address Hold Time  
Address Hold Time From CE# or OE# high  
during toggle bit polling  
tAHT  
tDVEH  
tEHDX  
tDS  
tDH  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
45  
0
ns  
ns  
ns  
ns  
tCEPH CE# High during toggle bit polling  
tOEPH OE# High during toggle bit polling  
20  
20  
Read Recovery Time Before Write  
tGHEL  
tGHEL  
Min  
0
ns  
(OE# High to WE# Low)  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
CE# Pulse Width  
CE# Pulse Width High  
35  
30  
tCPH  
Write Buffer Program Operation (Notes 2,  
3)  
Typ  
Typ  
240  
15  
µs  
µs  
Effective Write Buffer  
Program Operation (Notes  
2, 4)  
Per Word  
Per Word  
tWHWH1 tWHWH1 Effective Accelerated Write  
Buffer Program Operation  
(Notes 2, 4)  
Typ  
13.5  
µs  
Program Operation (Note 2)  
Word  
Word  
Typ  
Typ  
Typ  
60  
54  
µs  
µs  
Accelerated Programming  
Operation (Note 2)  
tWHWH2 tWHWH2 Sector Erase Operation (Note 2)  
0.5  
sec  
Notes:  
1. Not 100% tested.  
2. See the “AC Characteristics” section for more information.  
3. For 1–16 words/1–32 bytes programmed.  
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.  
5. Unless otherwise indicated, AC specifications for 90 ns, 100ns, and 110 ns speed options are tested with V = V  
IO  
CC  
= 3 V. AC specifications for 110 ns speed options are tested with V = 1.8 V and V = 3.0 V.  
IO  
CC  
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
161  
A d v a n c e I n f o r m a t i o n  
AC Characteristics  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
4. Waveforms are for the word mode.  
is the data written to the device.  
OUT  
Figure 20. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
162  
S29GLxxxN MirrorBitTM Flash Family  
S29GLxxxN_MCP_A1 December 15, 2004  
A d v a n c e I n f o r m a t i o n  
Erase And Programming Performance  
Typ  
Max  
Parameter  
(Note 1)  
(Note 2)  
Unit  
Comments  
Sector Erase Time  
0.5  
64  
3.5  
sec  
Excludes 00h  
programming prior to  
erasure (Note 5)  
S29GL128N  
S29GL256N  
S29GL512N  
256  
Chip Erase Time  
128  
256  
512  
sec  
1024  
Total Write Buffer  
Programming Time  
(Note 3)  
240  
200  
µs  
µs  
Total Accelerated Effective  
Write Buffer Programming  
Time (Note 3)  
Excludes system level  
overhead (Note 6)  
S29GL128N  
S29GL256N  
S29GL512N  
123  
246  
492  
Chip Program Time  
sec  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 10,000 cycles, checkerboard  
CC  
pattern.  
2. Under worst case conditions of 90°C, V = 3.0 V, 100,000 cycles.  
CC  
3. Effective write buffer specification is based upon a 16-word write buffer operation.  
4. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
words program faster than the maximum program times listed.  
5. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.  
6. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 12 for further information on command definitions.  
TSOP Pin and BGA Package Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
Typ  
6
Max  
7.5  
5.0  
12  
Unit  
pF  
TSOP  
BGA  
CIN  
Input Capacitance  
VIN = 0  
4.2  
8.5  
5.4  
7.5  
3.9  
pF  
TSOP  
BGA  
pF  
COUT  
Output Capacitance  
VOUT = 0  
VIN = 0  
6.5  
9
pF  
TSOP  
BGA  
pF  
CIN2  
Control Pin Capacitance  
4.7  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
December 15, 2004 S29GLxxxN_MCP_A1  
S29GLxxxN MirrorBitTM Flash Family  
163  
A d v a n c e I n f o r m a t i o n  
pSRAM Type 2  
16Mb (1Mb Word x 16-bit)  
32Mb (2Mb Word x 16-bit)  
64Mb (4Mb Word x 16-bit)  
Features  
„ Process Technology: CMOS  
„ Organization: x16 bit  
„ Power Supply Voltage: 2.7~3.1V  
„ Three State Outputs  
„ Compatible with Low Power SRAM  
Product Information  
Standby  
Operating  
Density  
16Mb  
16Mb  
32Mb  
32Mb  
64Mb  
64Mb  
VCC Range  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
2.7-3.1V  
(ISB1, Max.)  
(ICC2, Max.)  
Mode  
Dual CS  
80 µA  
80 µA  
100 µA  
100 µA  
TBD  
30 mA  
35 mA  
35 mA  
40 mA  
TBD  
Dual CS and Page Mode  
Dual CS  
Dual CS and Page Mode  
Dual CS  
TBD  
TBD  
Dual CS and Page Mode  
Pin Description  
Pin Name  
Description  
I/O  
CS1#, CS2  
OE#  
Chip Select  
I
I
I
I
Output Enable  
Write Enable  
WE#  
LB#, UB#  
Lower/Upper Byte Enable  
A0-A19 (16M)  
A0-A20 (32M)  
A0-A21 (64M)  
Address Inputs  
I
I/O0-I/O15  
VCC/VCCQ  
VSS/VSSQ  
NC  
Data Inputs/Outputs  
Power Supply  
Ground  
I/O  
Not Connection  
Do Not Use  
DNU  
164  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
A d v a n c e I n f o r m a t i o n  
Power Up Sequence  
1. Apply power.  
2. Maintain stable power (VCC min.=2.7V) for a minimum 200 µs with  
CS1#=high or CS2=low.  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
165  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Power Up  
Min.200 µs  
VCC(Min)  
VCC  
CS1#  
CS2  
PowerUp Mode  
Normal Operation  
Figure 21. Power Up 1 (CS1# Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS1# high. Then the device gets into the normal operation.  
Min. 200µs  
VCC(Min)  
VCC  
CS1#  
CS2  
PowerUp Mode  
Normal Operation  
Figure 22. Power Up 2 (CS2 Controlled)  
Notes:  
1. After VCC reaches VCC(Min.), wait 200 µs with CS2 low. Then the device gets into the normal operation.  
Functional Description  
Mode  
CS1#  
CS2  
X
OE#  
X
WE#  
LB#  
X
UB#  
X
I/O1-8  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
I/O9-16  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
Power  
Standby  
Standby  
Standby  
Active  
Deselected  
Deselected  
Deselected  
H
X
X
L
L
L
L
L
L
L
L
X
X
X
H
H
H
H
H
L
L
X
X
X
X
X
H
L
H
X
Output Disabled  
Outputs Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
H
H
H
L
H
X
L
Active  
H
L
H
L
Active  
H
L
H
L
High-Z  
DOUT  
Active  
H
L
L
DOUT  
Active  
Lower Byte Write  
Upper Byte Write  
Word Write  
H
X
L
H
L
DIN  
High-Z  
DIN  
Active  
H
X
L
H
L
High-Z  
DIN  
Active  
H
X
L
L
DIN  
Active  
Legend:X = Don’t care (must be low or high state).  
166 pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
A d v a n c e I n f o r m a t i o n  
Absolute Maximum Ratings  
Item  
Symbol  
VIN , VOUT  
VCC  
Ratings  
-0.2 to VCC+0.3V  
-0.2 to 3.6V  
1.0  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VCC supply relative to VSS  
Power Dissipation  
V
PD  
W
Operating Temperature  
TA  
-40 to 85  
°C  
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute  
maximum rating conditions longer than 1 second may affect reliability.  
DC Recommended Operating Conditions  
Symbol  
VCC  
Parameter  
Power Supply Voltage  
Ground  
Min  
Typ  
2.9  
0
Max  
Unit  
2.7  
3.1  
VSS  
0
2.2  
0
VCC + 0.3 (Note 2)  
0.6  
V
VIH  
Input High Voltage  
Input Low Voltage  
VIL  
-0.2 (Note 3)  
Notes:  
1. TA=-40 to 85°C, otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
8
Unit  
pF  
Input Capacitance  
COIO  
Input/Output Capacitance  
VOUT = 0V  
10  
pF  
Note: This parameter is sampled periodically and is not 100% tested.  
DC and Operating Characteristics  
Common  
Item  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input Leakage Current  
ILI  
VIN=VSS to VCC  
-1  
1
1
µA  
CS1#=VIH or CS2=VIL or OE#=VIH or WE#=VIL or  
LB#=UB#=VIH, VIO=VSS to VCC  
Output Leakage Current  
ILO  
-1  
µA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL=2.1mA  
0.4  
V
V
IOH=-1.0mA  
2.4  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
167  
A d v a n c e I n f o r m a t i o n  
16M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
7
mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
,
30 mA  
35 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN-VIH or VIL  
Page  
,
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
80 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
32M pSRAM  
Item  
Symbol  
Test Conditions  
Min Typ Max Unit  
Cycle time=1µs, 100% duty, IIO=0mA,  
ICC1  
CS1#  
0.2V, LB#  
0.2V and/or UB#  
0.2V,  
7
mA  
CS2 VCC-0.2V, VIN  
0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
,
35 mA  
40 mA  
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN-VIH or VIL  
Page  
,
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
100 mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
168  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
A d v a n c e I n f o r m a t i o n  
64M pSRAM  
Item  
Symbol  
Test Conditions  
Cycle time=1µs, 100% duty, IIO=0mA,  
Min Typ Max Unit  
ICC1  
CS1# 0.2V, LB# 0.2V and/or UB# 0.2V,  
TBD mA  
TBD mA  
TBD mA  
CS2 VCC-0.2V, VIN 0.2V or VIN VCC-0.2V  
Cycle time=Min, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN=VIH or VIL  
Average Operating  
Current  
Async  
,
ICC2  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty,  
CS1#=VIL, CS2=VIH LB#=VIL and/or UB#=VIL  
VIN-VIH or VIL  
Page  
,
Other inputs=0-VCC  
1. CS1#  
controlled) or  
2. 0V CS2  
VCC - 0.2, CS2  
VCC - 0.2V (CS1#  
Standby Current (CMOS)  
ISB1 (Note 1)  
TBD mA  
0.2V (CS2 controlled)  
Notes:  
1. Standby mode is supposed to be set up after at least one active operation after power up. ISB1 is measure after 60ms from  
the time when standby mode is set up.  
AC Operating Conditions  
Test Conditions (Test Load and Test Input/Output Reference)  
„ Input pulse level: 0.4 to 2.2V  
„ Input rising and falling time: 5ns  
„ Input and output reference voltage: 1.5V  
„ Output load (See Figure 23): CL=50pF  
Dout  
CL  
Figure 23. Output Load  
Note: Including scope and jig capacitance.  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
169  
A d v a n c e I n f o r m a t i o n  
ACC Characteristics (Ta = -40°C to 85°C, VCC = 2.7 to 3.1 V)  
Speed Bins  
70ns  
Symbol  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
Read Cycle Time  
70  
70  
70  
35  
70  
tAA  
Address Access Time  
tCO  
tOE  
Chip Select to Output  
Output Enable to Valid Output  
UB#, LB# Access Time  
Chip Select to Low-Z Output  
tBA  
tLZ  
10  
tBLZ  
tOLZ  
tHZ  
UB#, LB# Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB#, LB# Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold from Address Change  
Page Cycle Time  
10  
5
0
25  
25  
25  
tBHZ  
tOHZ  
tOH  
tPC  
0
0
5
25  
tPA  
Page Access Time  
20  
tWC  
tCW  
tAS  
Write Cycle Time  
70  
Chip Select to End of Write  
Address Set-up Time  
60  
0
tAW  
tBW  
tWP  
tWR  
tWHZ  
tDW  
tDH  
tOW  
Address Valid to End of Write  
UB#, LB# Valid to End of Write  
Write Pulse Width  
60  
60  
55 (Note 1)  
Write Recovery Time  
0
0
Write to Output High-Z  
25  
Data to Write Time Overlap  
Data Hold from Write Time  
End Write to Output Low-Z  
30  
0
5
Notes:  
1. tWP (min)=70ns for continuous write operation over 50 times.  
170  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
A d v a n c e I n f o r m a t i o n  
Timing Diagrams  
Read Timings  
tRC  
Address  
tAA  
tOH  
Data Valid  
Data Out  
Previous Data Valid  
Figure 24. Timing Waveform of Read Cycle(1)  
Notes:  
1. Address Controlled, CS1#=OE#=VIL, CS2=WE#=VIH, UB# and/or LB#=VIL  
.
tRC  
Address  
tOH  
tAA  
tCO  
CS1#  
CS2  
tHZ  
tBA  
UB#, LB#  
tBHZ  
tOE  
OE#  
tOLZ  
tBLZ  
tLZ  
tOHZ  
Data out  
High-Z  
Data Valid  
Figure 25. Timing Waveform of Read Cycle(2)  
Notes:  
1. WE#=VIH  
.
1)  
Valid  
Address  
Address  
Valid  
Valid  
Valid  
Valid  
A1~A0  
Address Address Address  
Address  
tAA  
tPC  
CS1#  
CS2  
tCO  
OE#  
tPA  
tOHZ  
tOE  
High Z  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
DQ15~DQ0  
Figure 26. Timing Waveform of Read Cycle(2)  
Notes:  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
171  
A d v a n c e I n f o r m a t i o n  
1. 16Mb: A2 ~ A19, 32Mb: A2 ~ A20, 64Mb: A2 ~ A21.  
tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not  
referenced to output voltage levels.  
At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device  
and from device to device interconnection.  
tOE(max) is met only when OE# becomes enabled after tAA(max).  
If invalid address signals shorter than min. T.RC are continuously repeated for over 4µs, the device needs  
a normal read timing (tRC) or needs to sustain standby state for min. tRC at least once in every 4µs.  
Write Timings  
tWC  
Address  
tCW  
tWR  
CS1#  
CS2  
tAW  
tBW  
UB#, LB#  
tWP  
WE#  
tAS  
tDW  
tDH  
High-Z  
High-Z  
Data in  
Data Valid  
tWHZ  
tOW  
DataUndefined  
Data out  
Figure 27. Write Cycle #1 (WE# Controlled)  
tWC  
Address  
tWR  
tAS  
tCW  
CS1#  
CS2  
tAW  
tBW  
tWP  
UB#, LB#  
WE#  
tDW  
tDH  
Data Valid  
Data in  
Data out  
High-Z  
Figure 28. Write Cycle #2 (CS1# Controlled)  
172  
pSRAM Type 2  
pSRAM_Type02_15A0 May 3, 2004  
A d v a n c e I n f o r m a t i o n  
tWC  
Address  
tWR  
tAS  
tCW  
tAW  
CS1#  
CS2  
tBW  
UB#, LB#  
WE#  
tWP(1)  
tDW  
tDH  
Data Valid  
Data in  
Data out  
High-Z  
Figure 29. Timing Waveform of Write Cycle(3)(CS2 Controlled)  
tWC  
Address  
CS1#  
tWR  
tCW  
tAW  
tBW  
CS2  
UB#, LB#  
tAS  
tWP  
WE#  
tDH  
tDW  
Data Valid  
Data in  
Data out  
High-Z  
Figure 30. Timing Waveform of Write Cycle(4) (UB#, LB# Controlled)  
Notes:  
1. A write occurs during the overlap (tWP) of low CS1# and low WE#. A write begins when CS1# goes low and WE# goes low  
with asserting UB# or LB# for single byte operation or simultaneously asserting UB# and LB# for double byte operation. A  
write ends at the earliest transition when CS1# goes high and WE# goes high. The tWP is measured from the beginning of  
write to the end of write.  
2. tCW is measured from the CS1# going low to the end of write.  
3.  
4.  
t
AS is measured from the address valid to the beginning of write.  
tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS1# or WE# going  
high.  
May 3, 2004 pSRAM_Type02_15A0  
pSRAM Type 2  
173  
P r e l i m i n a r y  
pSRAM Type 6  
2M Word by 16-bit Cmos Pseudo Static RAM (32M Density)  
4M Word by 16-bit Cmos Pseudo Static RAM (64M Density)  
Features  
„ Single power supply voltage of 2.6 to 3.3 V  
„ Direct TTL compatibility for all inputs and outputs  
„ Deep power-down mode: Memory cell data invalid  
„ Page operation mode:  
— Page read operation by 8 words  
„ Logic compatible with SRAM R/W ( ) pin  
„ Standby current  
— Standby = 70 µA (32M)  
— Standby = 100 µA (64M)  
— Deep power-down Standby = 5 µA  
„ Access Times  
32M  
64M  
Access Time  
70 ns  
70 ns  
25 ns  
30 ns  
CE1# Access Time  
OE# Access Time  
Page Access Time  
Pin Description  
Pin Name  
Description  
A0 to A21  
A0 to A2  
I/O1 to I/O16  
CE1#  
Address Inputs  
Page Address Inputs  
Data Inputs/Outputs  
Chip Enable Input  
Chip select Input  
Write Enable Input  
Output Enable Input  
Data Byte Control Inputs  
Power Supply  
CE2  
WE#  
OE#  
LB#,UB#  
VDD  
GND  
Ground  
NC  
Not Connection  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
174  
P r e l i m i n a r y  
Functional Description  
Mode  
Read(Word)  
CE1#  
CE2  
H
OE#  
L
WE#  
LB#  
L
UB# Address  
I/O1-8  
DOUT  
I/O9-16  
DOUT  
Power  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDO  
IDDSD  
L
L
L
L
L
L
L
H
H
H
H
H
L
L
H
L
X
X
X
X
X
X
X
X
X
Read(Lower Byte)  
Read(Upper Byte)  
Write(Word)  
H
L
L
DOUT  
High-Z  
DOUT  
H
L
H
L
High-Z  
DIN  
H
X
L
DIN  
Write(Lower Byte)  
Write(Upper Byte)  
Outputs Disabled  
Standby  
H
X
L
L
H
L
DIN  
Invalid  
DIN  
H
X
L
H
X
Invalid  
High-Z  
High-Z  
High-Z  
H
H
X
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
H
X
Deep Power-down Standby  
L
X
X
Legend:L = Low-level Input (VIL), H = High-level Input (VIH), X = VIL or VIH, High-Z = High Impedence.  
Absolute Maximum Ratings  
Symbol  
VDD  
VIN  
Rating  
Value  
-1.0 to 3.6  
-1.0 to 3.6  
-1.0 to 3.6  
-40 to 85  
-55 to 150  
0.6  
Unit  
V
Power Supply Voltage  
Input Voltage  
V
VOUT  
Topr  
Output Voltage  
V
Operating Temperature  
Storage Temperature  
Power Dissipation  
°C  
°C  
W
Tstrg  
PD  
IOUT  
Short Circuit Output Current  
50  
mA  
Note: ESD Immunity: Spansion Flash memory Multi-Chip Products (MCPs) may contain component devices that are  
developed by Spansion and component devices that are developed by a third party (third-party components). Spansion  
components are tested and guaranteed to the ESD immunity levels listed in the corresponding Spansion Flash memory  
Qualification Database. Third-party components are neither tested nor guaranteed by Spansion for ESD immunity. How-  
ever, ESD test results for third-party components may be available from the component manufacturer. Component man-  
ufacturer contact information is listed in the Spansion MCP Qualification Report, when available. The Spansion Flash  
memory Qualification Database and Spansion MCP Qualification Report are available from AMD and Fujitsu sales offices.  
DC Recommended Operating Conditions (Ta = -40°C to 85°C)  
Symbol  
VDD  
Parameter  
Min  
2.6  
Typ  
2.75  
Max  
Unit  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
3.3  
VDD + 0.3 (Note)  
0.4  
VIH  
2.0  
V
VIL  
-0.3 (Note)  
Note: V (Max) V  
= 1.0 V with 10 ns pulse width. V (Min) -1.0 V with 10 ns pulse width.  
IL  
IH  
DD  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
175  
P r e l i m i n a r y  
DC Characteristics (Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 3 to 4)  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
Unit  
Input Leakage  
Current  
IIL  
VIN = 0 V to VDD  
-1.0  
+1.0  
µA  
Output Leakage  
Current  
ILO  
Output disable, VOUT = 0 V to VDD  
-1.0  
+1.0  
µA  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
IOH = - 0.5 mA  
IOL = 1.0 mA  
2.0  
¾
V
V
V
0.4  
40  
50  
ET5UZ8A-43DS  
ET5VB5A-43DS  
CE1#= VIL, CE2 = VIH, IOUT = 0  
mA, tRC = min  
IDDO1 Operating Current  
mA  
mA  
Page Access  
IDDO2  
CE1#= VIL, CE2 = VIH, IOUT = 0 mA  
Page add. cycling, tRC = min  
25  
Operating Current  
ET5UZ8A-43DS  
ET5VB5A-43DS  
70  
mA  
µA  
Standby  
IDDS  
CE1# = VDD - 0.2 V,  
CE2 = VDD - 0.2 V  
Current(MOS)  
100  
Deep Power-down  
IDDSD  
CE2 = 0.2 V  
5
µA  
Standby Current  
Capacitance (Ta = 25°C, f = 1 MHz)  
Symbol  
CIN  
Parameter  
Test Condition  
Max  
10  
Unit  
Input Capacitance  
Output Capacitance  
VIN = GND  
pF  
pF  
COUT  
VOUT = GND  
10  
Note: This parameter is sampled periodically and is not 100% tested.  
AC Characteristics and Operating Conditions  
(Ta = -40°C to 85°C, VDD = 2.6 to 3.3 V) (See Note 5 to 11)  
Symbol  
tRC  
tACC  
tCO  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
70  
10  
0
10000  
70  
70  
25  
25  
Address Access Time  
Chip Enable (CE1#) Access Time  
Output Enable Access Time  
tOE  
tBA  
Data Byte Control Access Time  
tCOE  
tOEE  
tBE  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
0
tOD  
tODO  
tBD  
20  
20  
20  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
176  
P r e l i m i n a r y  
Symbol  
tOH  
Parameter  
Min  
10  
70  
30  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
µs  
Output Data Hold Time  
Page Mode Time  
tPM  
10000  
tPC  
Page Mode Cycle Time  
tAA  
Page Mode Address Access Time  
Page Mode Output Data Hold Time  
Write Cycle Time  
30  
tAOH  
tWC  
tWP  
tCW  
tBW  
tAW  
tAS  
10  
70  
50  
70  
60  
60  
0
10000  
Write Pulse Width  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Valid to End of Write  
Address Set-up Time  
tWR  
tCEH  
tWEH  
tODW  
tOEW  
tDS  
Write Recovery Time  
0
Chip Enable High Pulse Width  
Write Enable High Pulse Width  
WE# Low to Output High-Z  
WE# High to Output Active  
Data Set-up Time  
10  
6
20  
0
30  
0
tDH  
Data Hold Time  
tCS  
CE2 Set-up Time  
0
tCH  
CE2 Hold Time  
300  
10  
0
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
CE2 Hold from CE1#  
CE2 Hold from Power On  
30  
AC Test Conditions  
Parameter  
Output load  
Condition  
30 pF + 1 TTL Gate  
VDD - 0.2 V, 0.2 V  
VDD x 0.5  
Input pulse level  
Timing measurements  
Reference level  
tR, tF  
VDD x 0.5  
5 ns  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
177  
P r e l i m i n a r y  
Timing Diagrams  
Read Timings  
t
RC  
Address  
A0 toA20(32M)  
A0toA21(64M)  
t
t
OH  
ACC  
t
CO  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
t
OE  
t
OD  
t
ODO  
t
BA  
,
UB# LB#  
t
BE  
t
BD  
t
OEE  
D
OUT  
Hi-Z  
VALID DATA OUT  
Hi-Z  
t
COE  
I/O1 toOI/16  
INDETERMINATE  
Figure 1. Read Cycle  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
178  
P r e l i m i n a r y  
t
PM  
Address  
A0 toA2  
t
PC  
t
PC  
t
RC  
t
PC  
Address  
A3 toA20(32M)  
A3 toA21(64M)  
CE1#  
Fix-H  
CE2  
OE#  
WE#  
UB#, LB#  
t
OE  
t
OD  
t
BD  
t
BA  
t
t
t
AOH  
AOH  
AOH  
t
t
OH  
OEE  
t
BE  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O61  
t
COE  
t
CO  
t
AA  
t
AA  
t
t
ODO  
AA  
* Maximum w8ords  
t
ACC  
Figure 2. Page Read Cycle (8 Words Access)  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
179  
P r e l i m i n a r y  
Write Timings  
t
WC  
Address  
A0 toA20(32M)  
A0 toA21(64M)  
t
AW  
t
WEH  
t
AS  
t
WP  
t
WR  
WE#  
t
CW  
t
WR  
CE1#  
t
CH  
CE2  
t
BW  
t
WR  
UB#, LB#  
t
t
OEW  
ODW  
D
OUT  
(See Note 10)  
Hi-Z  
(See Note11)  
I/O1 to I/O61  
t
DS  
t
DH  
D
IN  
(See Note )9  
VALID DATA IN  
(See Note )9  
I/O1 to I/O61  
Figure 3. Write Cycle #1 (WE# Controlled) (See Note 8)  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
180  
P r e l i m i n a r y  
t
WC  
Address  
A0 toA20(32M)  
A0 toA21(64M)  
t
AW  
t
AS  
t
WP  
t
WR  
WE#  
t
CEH  
t
CW  
t
WR  
CE1#  
CE2  
t
CH  
t
BW  
t
WR  
UB#, LB#  
t
BE  
t
ODW  
D
OUT  
Hi-Z  
Hi-Z  
I/O1 to I/O61  
t
COE  
t
DS  
t
DH  
D
IN  
(See Note )9  
VALID DATA IN  
I/O1 to I/O61  
Figure 4. Write Cycle #2 (CE# Controlled) (See Note 8)  
Deep Power-down Timing  
CE1#  
t
DPD  
CE2  
t
CS  
t
CH  
Figure 5. Deep Power Down Timing  
Power-on Timing  
V
DD  
min  
V
DD  
CE1#  
CE2  
t
CHC  
t
CH  
t
CHP  
Figure 6. Power-on Timing  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
181  
P r e l i m i n a r y  
Provisions of Address Skew  
Read  
In case multiple invalid address cycles shorter than tRC min sustain over 10 µs in  
an active status, at least one valid address cycle over tRC min is required during  
10µs.  
over 10ms  
CE1#  
WE#  
Address  
t
RC  
min  
Figure 7. Read  
Write  
In case multiple invalid address cycles shorter than tWC min sustain over 10 µs in  
an active status, at least one valid address cycle over tWC min is required during  
10 µs.  
CE1#  
WE#  
t
WP  
min  
Address  
t min  
WC  
Figure 8. Write  
Notes:  
1. Stresses greater than listed under "Absolute Maximum Ratings" section may cause permanent damage to the device.  
2. All voltages are reference to GND.  
3. IDDO depends on the cycle time.  
4.  
IDDO depends on output loading. Specified values are defined with the output open condition.  
5. AC measurements are assumed tR, tF = 5 ns.  
6. Parameters tOD, tODO, tBD and tODW define the time at which the output goes the open condition and are not output voltage  
reference levels.  
7. Data cannot be retained at deep power-down stand-by mode.  
8. If OE# is high during the write cycle, the outputs will remain at high impedance.  
9. During the output state of I/O signals, input signals of reverse polarity must not be applied.  
10. If CE1# or LB#/UB# goes LOW coincident with or after WE# goes LOW, the outputs will remain at high impedance.  
11. If CE1# or LB#/UB# goes HIGH coincident with or before WE# goes HIGH, the outputs will remain at high impedance.  
Ocotober 16, 2004 pSRAM_Type06_14_A1  
pSRAM Type 6  
182  
P r e l i m i n a r y  
Revision Summary  
Revision A0 (November 9, 2004)  
Initial Release  
Revision A1 (January 6, 2005)  
Global  
Changed text designations from Flash to PL127J.  
Pin Connection  
Changed Pinout reference.  
Block Diagram  
Changed pin names on a couple pins.  
Changed device designations from Flash to PL127J.  
S29GLxxxN_MCP section  
Added updated version to this section.  
January 6, 2005 S75PL127J_00A0  
S75PL127J MCPs  
183  
P r e l i m i a r y  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by  
Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright © 2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Span-  
sion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective compa-  
nies.  
184  
S75PL127J MCPs  
S75PL127J_00A0 January 6, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY