S75WS256NDFBAWMB [SPANSION]

Stacked Multi-Chip Product (MCP); 堆叠式多芯片产品( MCP )
S75WS256NDFBAWMB
型号: S75WS256NDFBAWMB
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Product (MCP)
堆叠式多芯片产品( MCP )

存储 内存集成电路 静态存储器
文件: 总216页 (文件大小:3550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S75WS256Nxx Based MCPs  
Stacked Multi-Chip Product (MCP)  
256 Megabit (16M x 16-bit) CMOS 1.8 Volt-only  
Simultaneous Read/Write, Burst-mode Flash Memory with  
128 Mb (8M x 16-Bit) CellularRAM and  
512 Mb (32M x 16-bit) Data Storage  
PRELIMINARY  
Data Sheet  
Notice to Readers: This document states the current technical specifications  
regarding the Spansion product(s) described herein. Each product described  
herein may be designated as Advance Information, Preliminary, or Full  
Production. See Notice On Data Sheet Designations for definitions.  
Publication Number S75WS-N-00 Revision A Amendment 0 Issue Date February 17, 2005  
A d v a n c e I n f o r m a t i o n  
This page intentionally left blank.  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
S75WS256Nxx Based MCPs  
Stacked Multi-Chip Product (MCP)  
256 Megabit (16M x 16-bit) CMOS 1.8 Volt-only  
Simultaneous Read/Write, Burst-mode Flash Memory with  
128 Mb (8M x 16-Bit) CellularRAM and  
512 Mb (32M x 16-bit) Data Storage  
Data Sheet  
PRELIMINARY  
General Description  
The S75WS-N Series is a product line of stacked Multi-Chip Product (MCP) packages and consists  
of the following items:  
„ One or more S29WSxxxN code Flash  
„ CellularRAM  
„ One or more S29RS-N data storage Flash  
The products covered by this document are listed in the table below:  
Code Flash  
Density  
RAM  
Density  
Data Storage  
Flash Density  
Device  
256 Mb  
128 Mb  
512 Mb  
S75WS256NDF  
„
„
„
Distinctive Characteristics  
MCP Features  
„ Power supply voltage of 1.7 V to 1.95 V  
„ High Performance  
— 54 MHz, 66 MHz  
„ Packages  
— 9 x 12 mm 84 ball FBGA  
„ Operating Temperature  
— Wireless, –25°C to +85°C  
Publication Number S75WS-N-00 Revision A Amendment 0 Issue Date February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, includ-  
ing development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to  
highlight their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a  
document with this designation is likely to change, and in some cases, development on the prod-  
uct may discontinue. Spansion LLC therefore places the following conditions upon Advance  
Information content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the product  
life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon  
Preliminary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with the DC Characteristics table and the AC Erase and Program table (in the  
table notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or VIO range. Changes  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
2
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Contents  
S75WS256Nxx Based MCPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input/Output Descriptions and Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Connection Diagrams/Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1 Special Handling Instructions for FBGA Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.2 Connection Diagram – Cellular Ram-Based Pinout, 9 x 12 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.3 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2
3
4
5
5.3.1  
Physical Dimensions – xxx084 – Fine Pitch Ball Grid Array 9 x 12 mm . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.4 Look-Ahead Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
S29PL256N MirrorBit™ Flash Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6
7
Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Product Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
7.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.1 Device Operation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.2 Asynchronous Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.3 Synchronous (Burst) Read Mode and Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
8.3.1  
Continuous Burst Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.3.2 8-, 16-, 32-Word Linear Burst Read with Wrap Around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.3.3 8-, 16-, 32-Word Linear Burst without Wrap Around. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.3.4 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.4 Autoselect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.5 Program/Erase Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.5.1  
Single Word Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.5.2 Write Buffer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.5.3 Sector Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.5.4 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8.5.5 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8.5.6 Program Suspend/Program Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
8.5.7 Accelerated Program/Chip Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.5.8 Unlock Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8.5.9 Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.6 Simultaneous Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.7 Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.8 Handshaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.9 Hardware Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.10 Software Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Advanced Sector Protection/Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
9.1 Lock Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9.2 Persistent Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9.3 Dynamic Protection Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
9.4 Persistent Protection Bit Lock Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.5 Password Protection Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.6 Advanced Sector Protection Software Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.7 Hardware Data Protection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9
9.7.1  
WP# Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.7.2 ACC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.7.3 Low VCC Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.7.4 Write Pulse Glitch Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
9.7.5 Power-Up Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
3
A d v a n c e I n f o r m a t i o n  
10 Power Conservation Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
10.1 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
10.2 Automatic Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
10.3 Hardware RESET# Input Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
10.4 Output Disable (OE#). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
11 Secured Silicon Sector Flash Memory Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.1 Factory Secured SiliconSector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11.2 Customer Secured Silicon Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
11.3 Secured Silicon Sector Entry and Secured Silicon Sector Exit Command Sequences. . . . . . . . . . . . . . . . . . . . . 63  
12 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
12.3 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12.4 Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12.5 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
12.6 VCC Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
12.7 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
12.8 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
12.8.1 CLK Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
12.8.2 Synchronous/Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
12.8.3 Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
12.8.4 AC Characteristics—Asynchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
12.8.5 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
12.8.6 Erase/Program Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
12.8.7 Erase and Programming Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
12.8.8 BGA Ball Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
13 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
13.1 Common Flash Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
14 Commonly Used Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
S29PL256N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
15 Product Selector Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
16 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
17 Logic Symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
18 Device Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
18.1 Requirements for Asynchronous Read Operation (Non-Burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
18.2 Requirements for Synchronous (Burst) Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
18.2.1 Continuous Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
18.2.2 8-, 16-, and 32-Word Linear Burst with Wrap Around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
18.2.3 8-, 16-, and 32-Word Linear Burst without Wrap Around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
18.3 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
18.4 RDY: Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
18.5 Handshaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
18.6 Writing Commands/Command Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
18.7 Accelerated Program/Chip Erase Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
18.8 Write Buffer Programming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
18.9 Autoselect Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
18.10 Dynamic Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
18.10.1 Dynamic Protection Bit (DYB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
18.11 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
18.12 Automatic Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
18.13 RESET#: Hardware Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
18.14 Output Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
18.15 Hardware Data Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
18.15.1 Low VCC Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
18.15.2 Write Pulse Glitch Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
4
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
18.15.3 Logical Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
18.15.4 Power-Up Write Inhibit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
19 Sector Address / Memory Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
19.1 Reading Array Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
19.2 Set Configuration Register Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
19.3 Read Configuration Register Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
19.3.1 Read Mode Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
19.3.2 Programmable Wait State Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
19.3.3 Programmable Wait State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
19.3.4 Boundary Crossing Latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
19.3.5 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
19.3.6 Burst Length Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
19.3.7 Burst Wrap Around. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
19.3.8 RDY Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
19.3.9 RDY Polarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
19.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
19.5 Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
19.6 Autoselect Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
19.7 Program Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
19.8 Write Buffer Programming Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
19.8.1 Unlock Bypass Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
19.9 Chip Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
19.10 Sector Erase Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
19.10.1 Accelerated Sector Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
20 Erase Suspend/Erase Resume Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
20.1 Program Suspend/Program Resume Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
20.2 Volatile Sector Protection Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
21 Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
22 Write Operation Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
22.1 DQ7: Data# Polling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
22.2 DQ6: Toggle Bit I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
22.3 Reading Toggle Bits DQ6/DQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
22.4 DQ5: Exceeded Timing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
22.5 DQ3: Sector Erase Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
22.6 DQ1: Write to Buffer Abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
23 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
24 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
25 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
25.1 CMOS Compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
26 Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
27 Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
28 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
29 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
29.1 VCC Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
29.2 CLK Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
29.3 Synchronous/Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
29.4 Asynchronous Mode Read @ VIO = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
29.5 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
29.6 Hardware Reset (RESET#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
29.7 Erase/Program Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
30 Erase and Programming Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
5
A d v a n c e I n f o r m a t i o n  
CellularRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
31 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
32 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
32.1 Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
33 Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
33.1 Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
33.2 Page Mode Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
33.3 Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
33.4 Mixed-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
33.5 Wait Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
33.6 LB#/UB# Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
34 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
34.1 Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
34.2 Temperature Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
34.3 Partial Array Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
34.4 Deep Power-Down Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
35 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
35.1 Access Using CRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
35.2 Bus Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
35.2.1 Burst Length (BCR[2:0]): Default = Continuous Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
35.2.2 Burst Wrap (BCR[3]): Default = No Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
35.2.3 Output Impedance (BCR[5:4]): Default = Outputs Use Full Drive Strength . . . . . . . . . . . . . . . . . . . . .166  
35.2.4 Wait Configuration (BCR[8]): Default = Wait Transitions One Clock Before Data Valid/Invalid. . . .167  
35.2.5 Wait Polarity (BCR[10]): Default = Wait Active High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
35.2.6 Latency Counter (BCR[13:11]): Default = Three-Clock Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
35.2.7 Operating Mode (BCR[15]): Default = Asynchronous Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
35.3 Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
35.3.1 Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
35.3.2 Deep Power-Down (RCR[4]): Default = DPD Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
35.3.3 Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC Operation . . . . . . . . . . . . . . . . . . .170  
35.3.4 Page Mode Operation (RCR[7]): Default = Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
36 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
37 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
38 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
38.1 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
39 How Extended Timings Impact CellularRAM™ Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 217  
39.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
39.2 Asynchronous Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
39.2.1 Extended Write Timing— Asynchronous Write Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
39.3 Page Mode Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
39.4 Burst-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
39.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
40 Revisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
6
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Tables  
Table 2.1  
Table 3.1  
Table 7.1  
Table 7.2  
Table 7.3  
Table 8.1  
Table 8.2  
Table 8.3  
Table 8.4  
Table 8.5  
Table 8.6  
Table 8.7  
Table 8.8  
Table 8.9  
MCP Configurations and Valid Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
S29WS256N Sector & Memory Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
S29WS128N Sector & Memory Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
S29WS064N Sector & Memory Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Device Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Address Latency (S29WS256N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Address Latency (S29WS128N/S29WS064N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Address/Boundary Crossing Latency (S29WS256N @ 80/66 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Address/Boundary Crossing Latency (S29WS256N @ 54MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Address/Boundary Crossing Latency (S29WS128N/S29WS064N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Autoselect Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 8.10 Autoselect Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 8.11 Autoselect Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 8.12 Single Word Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 8.13 Write Buffer Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 8.14 Sector Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 8.15 Chip Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 8.16 Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 8.17 Erase Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 8.18 Program Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 8.19 Program Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 8.20 Unlock Bypass Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 8.21 Unlock Bypass Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 8.22 Unlock Bypass Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 8.23 Write Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 8.24 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 9.1  
Table 9.2  
Table 11.1  
Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 11.2 Secured Silicon Sector Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 11.3 Secured Silicon Sector Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 11.4 Secured Silicon Sector Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 12.1 Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 13.1 Memory Array Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 13.2 Sector Protection Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 13.3 CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 13.4 System Interface String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 13.5 Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 13.6 Primary Vendor-Specific Extended Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 18.1 Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 18.2 Address Latency Scheme for < 56Mhz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 18.3 Address Latency Scheme for < 70Mhz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 18.4 Address Latency Scheme for < 84Mhz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 18.5 Burst Address Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 19.6 Sector Address / Memory Address Map for the RS512N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Table 19.7 Programmable Wait State Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 19.8 Burst Length Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Table 19.9 Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Table 19.10 Autoselect Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Table 19.11 Write Buffer Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
7
A d v a n c e I n f o r m a t i o n  
Table 22.1 Maximum Negative Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 24.1 Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Table 27.1 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Table 27.2 Bus Operations—Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Table 27.3 Bus Operations—Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Table 31.1 Bus Configuration Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Table 31.2 Sequence and Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Table 31.3 Output Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 31.4 Variable Latency Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Table 31.5 Refresh Configuration Register Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 31.6 128Mb Address Patterns for PAR (RCR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Table 31.7 64Mb Address Patterns for PAR (RCR[4] = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 31.8 32Mb Address Patterns for PAR (RCR[4] = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 33.1 Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Table 33.2 Temperature Compensated Refresh Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 33.3 Partial Array Refresh Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 33.4 Deep Power-Down Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 34.1 Output Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 34.2 Asynchronous Read Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 34.3 Burst Read Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 34.4 Asynchronous Write Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 34.5 Burst Write Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 34.1 Initialization Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 34.2 Asynchronous Read Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Table 34.3 Asynchronous Read Timing Parameters Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 34.4 Asynchronous Read Timing Parameters—Page Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 34.5 Burst Read Timing Parameters—Single Access, Variable Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 34.6 Burst Read Timing Parameters—4-word Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 34.7 Burst Read Timing Parameters—4-word Burst with LB#/UB# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 34.8 Burst Read Timing Parameters—Burst Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 34.10 Burst Read Timing Parameters—BCR[8] = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 34.11 Asynchronous Write Timing Parameters—CE#-Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 34.12 Asynchronous Write Timing Parameters—LB#/UB#-Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 34.13 Asynchronous Write Timing Parameters—WE#-Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 34.14 Asynchronous Write Timing Parameters Using ADV#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 34.15 Burst Write Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 34.16 Burst Write Timing Parameters—BCR[8] = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 34.17 Write Timing Parameters—Burst Write Followed by Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 34.18 Read Timing Parameters—Burst Write Followed by Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 34.19 Write Timing Parameters—Asynchronous Write Followed by Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Table 34.20 Read Timing Parameters—Asynchronous Write Followed by Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Table 34.21 Asynchronous Write Timing Parameters—ADV# Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 34.22 Burst Read Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 34.24 Burst Read Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 34.25 Asynchronous Write Timing Parameters—WE# Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 34.27 Burst Read Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 34.28 Asynchronous Write Timing Parameters Using ADV#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 34.30 Write Timing Parameters—ADV# Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 34.31 Read Timing Parameters—ADV# Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 34.33 Write Timing Parameters—Asynchronous Write Followed by Asynchronous Read . . . . . . . . . . . . . . . . . . . . 211  
Table 34.34 Read Timing Parameters—Asynchronous Write Followed by Asynchronous Read. . . . . . . . . . . . . . . . . . . . . 211  
Table 35.1 Extended Cycle Impact on Read and Write Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
8
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Figures  
Figure 5.1  
Figure 5.2  
Figure 8.1  
Figure 8.2  
Figure 8.3  
Figure 8.4  
Figure 8.5  
Figure 8.6  
Figure 9.1  
Figure 9.2  
Figure 9.3  
Figure 12.1  
Figure 12.2  
Figure 12.3  
Figure 12.4  
Figure 12.5  
Figure 12.6  
Figure 12.7  
Figure 12.8  
Figure 12.9  
Connection Diagram – Cellular Ram-Based 84-ball Fine-Pitch Ball Grid Array.............................................15  
Look Ahead Pinout – 1.8 V only x 16NOR + x16pSRAM + x16MirrorBit Data..............................................16  
Synchronous/Asynchronous State Diagram...........................................................................................24  
Synchronous Read ............................................................................................................................27  
Single Word Program.........................................................................................................................33  
Write Buffer Programming Operation ...................................................................................................37  
Sector Erase Operation ......................................................................................................................39  
Write Operation Status Flowchart ........................................................................................................46  
Advanced Sector Protection/Unprotection .............................................................................................52  
PPB Program/Erase Algorithm.............................................................................................................55  
Lock Register Program Algorithm.........................................................................................................58  
Maximum Negative Overshoot Waveform .............................................................................................65  
Maximum Positive Overshoot Waveform...............................................................................................65  
Test Setup .......................................................................................................................................66  
Input Waveforms and Measurement Levels...........................................................................................66  
VCC Power-up Diagram ......................................................................................................................67  
CLK Characterization .........................................................................................................................69  
CLK Synchronous Burst Mode Read......................................................................................................70  
8-word Linear Burst with Wrap Around.................................................................................................71  
8-word Linear Burst without Wrap Around ............................................................................................71  
Figure 12.10 Linear Burst with RDY Set One Cycle Before Data..................................................................................72  
Figure 12.11 Asynchronous Mode Read...................................................................................................................73  
Figure 12.12 Reset Timings...................................................................................................................................73  
Figure 12.13 Chip/Sector Erase Operation Timings...................................................................................................75  
Figure 12.14 Asynchronous Program Operation Timings............................................................................................76  
Figure 12.15 Synchronous Program Operation Timings .............................................................................................77  
Figure 12.16 Accelerated Unlock Bypass Programming Timing ...................................................................................77  
Figure 12.17 Data# Polling Timings (During Embedded Algorithm).............................................................................78  
Figure 12.18 Toggle Bit Timings (During Embedded Algorithm)..................................................................................78  
Figure 12.19 Synchronous Data Polling Timings/Toggle Bit Timings ............................................................................79  
Figure 12.20 DQ2 vs. DQ6....................................................................................................................................79  
Figure 12.21 Latency with Boundary Crossing when Frequency > 66 MHz....................................................................80  
Figure 12.22 Latency with Boundary Crossing into Program/Erase Bank......................................................................81  
Figure 12.23 Example of Wait State Insertion..........................................................................................................82  
Figure 12.24 Back-to-Back Read/Write Cycle Timings ...............................................................................................83  
Figure 19.1  
Figure 19.2  
Figure 19.3  
Figure 20.4  
Figure 22.5  
Figure 22.6  
Figure 22.7  
Figure 24.1  
Figure 24.2  
Figure 25.1  
Figure 25.2  
Figure 25.3  
Figure 25.4  
Figure 25.5  
Figure 25.6  
Figure 25.7  
Figure 25.8  
Figure 25.9  
Synchronous/Asynchronous State Diagram.........................................................................................110  
Program Word Operation..................................................................................................................115  
Write Buffer Programming Operation .................................................................................................116  
Erase Operation..............................................................................................................................119  
Data# Polling Algorithm...................................................................................................................122  
Toggle Bit Algorithm........................................................................................................................123  
Maximum Positive Overshoot Waveform.............................................................................................125  
Test Setup .....................................................................................................................................127  
Input Waveforms and Measurement Levels.........................................................................................127  
VCC Power-up Diagram ....................................................................................................................128  
CLK Characterization .......................................................................................................................128  
CLK Synchronous Burst Mode Read....................................................................................................130  
8-word Linear Burst with Wrap Around...............................................................................................131  
8-word Linear Burst without Wrap Around ..........................................................................................131  
Burst with RDY Set One Cycle Before Data..........................................................................................132  
Asynchronous Mode Read with Latched Addresses ...............................................................................133  
Asynchronous Mode Read.................................................................................................................133  
Reset Timings.................................................................................................................................134  
Figure 25.10 Asynchronous Program Operation Timings: WE# Latched Addresses ......................................................136  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
9
A d v a n c e I n f o r m a t i o n  
Figure 25.11 Synchronous Program Operation Timings: CLK Latched Addresses.........................................................137  
Figure 25.12 Accelerated Unlock Bypass Programming Timing .................................................................................137  
Figure 25.13 Data# Polling Timings (During Embedded Algorithm)...........................................................................138  
Figure 25.14 Toggle Bit Timings (During Embedded Algorithm)................................................................................138  
Figure 25.15 Synchronous Data Polling Timings/Toggle Bit Timings ..........................................................................139  
Figure 25.16 DQ2 vs. DQ6..................................................................................................................................139  
Figure 25.17 Latency with Boundary Crossing........................................................................................................140  
Figure 25.18 Example of Wait States Insertion ......................................................................................................140  
Figure 25.19 Back-to-Back Read/Write Cycle Timings .............................................................................................141  
Figure 27.1  
Figure 28.2  
Figure 29.1  
Figure 29.2  
Figure 29.3  
Figure 29.4  
Figure 29.5  
Figure 29.6  
Figure 29.7  
Figure 29.8  
Figure 31.1  
Figure 31.2  
Figure 31.3  
Figure 31.4  
Figure 31.5  
Figure 31.6  
Figure 34.1  
Figure 34.2  
Figure 34.3  
Figure 34.4  
Figure 34.5  
Figure 34.6  
Figure 34.7  
Figure 34.8  
Figure 34.9  
Functional Block Diagram.................................................................................................................144  
Power-Up Initialization Timing...........................................................................................................148  
Read Operation (ADV# Low).............................................................................................................149  
Write Operation (ADV# Low) ............................................................................................................150  
Page Mode Read Operation (ADV# Low).............................................................................................151  
Burst Mode Read (4-word burst) .......................................................................................................152  
Burst Mode Write (4-word burst).......................................................................................................152  
Wired or Wait Configuration..............................................................................................................153  
Refresh Collision During Read Operation.............................................................................................154  
Refresh Collision During Write Operation ............................................................................................155  
Configuration Register Write, Asynchronous Mode Followed by Read ......................................................158  
Configuration Register Write, Synchronous Mode Followed by Read0......................................................159  
Wait Configuration (BCR[8] = 0).......................................................................................................162  
Wait Configuration (BCR[8] = 1).......................................................................................................162  
Wait Configuration During Burst Operation .........................................................................................163  
Latency Counter (Variable Initial Latency, No Refresh Collision).............................................................163  
AC Input/Output Reference Waveform ...............................................................................................170  
Output Load Circuit .........................................................................................................................170  
Initialization Period..........................................................................................................................174  
Asynchronous Read.........................................................................................................................175  
Asynchronous Read Using ADV# .......................................................................................................177  
Page Mode Read .............................................................................................................................179  
Single-Access Burst Read Operation—Variable Latency.........................................................................181  
Four-word Burst Read Operation—Variable Latency..............................................................................183  
Four-word Burst Read Operation (with LB#/UB#)................................................................................185  
Figure 34.10 Refresh Collision During Write Operation ............................................................................................187  
Figure 34.9. Continuous Burst Read Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition.....................188  
Figure 34.11 CE#-Controlled Asynchronous Write ..................................................................................................189  
Figure 34.12 LB#/UB#-Controlled Asynchronous Write ...........................................................................................191  
Figure 34.13 WE#-Controlled Asynchronous Write..................................................................................................193  
Figure 34.14 Asynchronous Write Using ADV#.......................................................................................................195  
Figure 34.15 Burst Write Operation......................................................................................................................197  
Figure 34.16 Continuous Burst Write Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition ....................198  
Figure 34.17 Burst Write Followed by Burst Read...................................................................................................199  
Figure 34.18 Asynchronous Write Followed by Burst Read .......................................................................................200  
Figure 34.19 Asynchronous Write (ADV# Low) Followed By Burst Read.....................................................................202  
Figure 34.23. Burst Read Followed by Asynchronous Write (WE#-Controlled)..............................................................204  
Figure 34.26. Burst Read Followed by Asynchronous Write Using ADV# .....................................................................206  
Figure 34.29. Asynchronous Write Followed by Asynchronous Read—ADV# Low..........................................................208  
Figure 34.32. Asynchronous Write Followed by Asynchronous Read ...........................................................................210  
Figure 35.1  
Figure 35.2  
Figure 35.3  
Extended Timing for tCEM............................................................................................................................................... 212  
Extended Timing for tTM................................................................................................................................................. 212  
Extended Write Operation ................................................................................................................213  
10  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
1 Product Selector Guide  
b
MCP Configuration  
Code  
Flash  
Density  
DYB  
Power-Up  
State  
Package  
84 ball  
FBGA  
(mm)  
RAM Data Storage Flash pSRAM  
Density Flash Density Speed Speed  
pSRAM  
(Cellular RAM)  
Supplier  
Model  
Numbers  
Device  
Code Code pSRAM Data Storage  
(Mb)  
(Mb/Gb)  
(MHz) (MHz)  
Flash  
(Mb)  
Flash  
(Mb)  
(See Note)  
MA  
PA  
0
1
0
1
54  
66  
54  
66  
S75WS256NDF  
WS256N  
128  
RS512N  
256  
128  
512 Mb  
2
9x12  
MB  
PB  
Note: 0 (Protected), 1 (Unprotected [Default State])  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
11  
A d v a n c e I n f o r m a t i o n  
2 Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S75WS 256  
N
D
F
BA  
W
M
A
RAM Supplier; Speed Combination  
A
B
=
=
Cellular RAM2, 54 MHz  
Cellular RAM2, 66 MHz  
Package Dimensions and Ball Count; DYB Power Up;  
Flash Device Family (Data Storage)  
M
P
=
=
1.4 mm, 9 x 12, 84 ball; 0; RS  
1.4 mm, 9 x 12, 84 ball; 1; RS  
Temperature Range  
Wireless (–25°C to +85°C)  
W
=
Package Type And Material  
BA  
=
Very Thin Fine-Pitch Ball Grid Array (BGA),  
Lead (Pb)-free Compliant Package  
Very Thin Fine-Pitch Ball Grid Array (BGA),  
Lead (Pb)-free Package  
BF  
=
Data Storage Density  
512 Mb  
Code Flash Density  
128 Mb  
F
=
D
=
Process Technology  
110 nm, Mirror Bit Technology  
N
=
Flash Density  
256 256 Mb  
=
Device Family  
S75WS = Multi-chip Product (MCP)  
1.8-volt Burst Mode Flash Memory, RAM, and NAND Data Storage  
Table 2.1 MCP Configurations and Valid Combinations  
Valid Combinations  
S75WS256N  
D
F
BA, BF  
W
M, P  
A, B  
Package Marking Note:  
The BGA package marking omits the leading S75 and packing type designator from the ordering part number.  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult  
your local sales office to confirm availability of specific valid combinations and to check on newly  
released combinations.  
12  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
3 Input/Output Descriptions and Logic Symbol  
Table 3.1 identifies the input and output package connections provided on the device.  
Table 3.1 Input/Output Descriptions  
Symbol  
– A0  
Description  
A
Address Inputs  
max  
DQ15 - DQ0  
OE#  
Data Inputs/Outputs  
Output Enable input  
Write Enable input  
Ground  
(Common)  
WE#  
V
SS  
NC  
No Connect; not connected internally.  
RDY  
Ready output. Indicates the status of the Burst read.  
(Flash)  
Clock input. In burst mode, after the initial word is output, subsequent  
CLK  
active edges of CLK increment the internal address counter. Should be at (Common)  
V
or V while in asynchronous mode.  
IL  
IH  
Address Valid input.  
Indicates to device that the valid address is present on the address inputs.  
AVD#  
F-RST#  
Hardware reset input.  
Hardware write protect input.  
F-WP#  
F-ACC  
At V , disables program and erase functions in the four outermost sectors.  
(Flash)  
IL  
Should be at V for all other conditions.  
IH  
Accelerated input.  
At V , accelerates programming; automatically places device in unlock  
HH  
bypass mode. At V , disables all program and erase functions. Should be  
IL  
at V for all other conditions.  
IH  
R-CE#  
F-CE#  
Chip-enable input for pSRAM  
Chip-enable input for Flash.  
Chip-enable input for Flash 1.  
Chip-enable input for Flash 2.  
Chip-enable input for Flash 3.  
Control Register Enable .  
Flash 1.8 Volt-only single power supply.  
pSRAM Power Supply.  
F1-CE#  
F2-CE#  
F3-CE#  
R-CRE  
Asynchronous relative to  
CLK for Burst Mode.  
(pSRAM – CellularRAM only)  
F-V  
CC  
R-V  
CC  
R-UB#  
R-LB#  
Upper Byte Control.  
(pSRAM)  
Lower Byte Control .  
A
– A0  
max  
16  
DQ15 – DQ0  
CLK  
CE#  
F-WP  
F-ACC  
F-CE#  
R-CE#  
OE#  
WE#  
RDY  
F-RST#  
AVD#  
R-UB#  
R-LB#  
R-CRE  
(See Note  
)
Note: R-CRE is only present in CellularRAM-compatible pSRAM.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
13  
A d v a n c e I n f o r m a t i o n  
4 MCP Block Diagram  
V
CCf  
VCC  
VID  
Flash-only Address  
Shared Address  
CLK  
Amax – A0  
16  
DQ15 – DQ0  
DQ15 – DQ0  
CLK  
WP#  
ACC  
CE#f1  
OE#  
WE#  
WP#  
ACC  
CE#  
OE#  
WE#  
RESET#  
AVD#  
Flash 1  
(Note 2)—  
Flash 2  
Flash 3  
(Note 3)  
RESET#  
AVD#  
RDY  
VSS  
RDY  
(Note 2)—  
(Note 2)—  
CE#f2  
CE#f3  
VCC  
s
VCC  
VCCQ  
Amax – A0  
16  
I/O15 – I/O0  
CLK  
CE#s  
CE#  
WE#  
OE#  
UB#  
LB#  
pSRAM  
UB#s  
LB#s  
VSSQ  
AVD#  
CRE  
CREs  
Notes:  
1. CREs is only present in CellularRAM-compatible pSRAM.  
2. CE#f1, CE#f2, and CE#f3 are the chip enable pins for the first, second, and third Flash devices, respectively. CE#f3  
may not be needed depending on the package.  
3. If necessary.  
14  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
5 Connection Diagrams/Physical Dimensions  
This section contains the I/O designations and package specifications for the S75WS.  
5.1  
Special Handling Instructions for FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning meth-  
ods. The package and/or data integrity may be compromised if the package body is exposed to  
temperatures above 150°C for prolonged periods of time.  
5.2 Connection Diagram – Cellular Ram-Based Pinout, 9 x 12 mm  
Legend:  
A10  
A1  
X
DNU  
DNU  
RFU  
B2  
B4  
B3  
B5  
B6  
B7  
B8  
B9  
X
ADV#  
RFU  
CLK  
RFU  
F-VCC  
RFU  
RFU  
RFU  
DNU  
C3  
A7  
C5  
C2  
C4  
C6  
C7  
C8  
C9  
X
F1-WP#  
R-LB#  
F-ACC  
WE#  
A8  
A11  
F2-CE#  
All Shared  
D2  
D3  
D5  
D7  
D8  
D9  
D4  
D6  
X
A3  
A6  
R-UB# F-RST#  
RFU  
A19  
A12  
A15  
MirrorBit™  
Data Flash Only  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
X
A2  
A5  
A18  
RDY  
A20  
A9  
A13  
A21  
Code  
Flash Only  
F2  
F3  
F4  
F5  
F7  
F8  
F9  
F5  
A1  
A4  
A17  
RFU  
A23  
A10  
A14  
A22  
X
RAM Only  
G2  
G3  
G4  
G7  
G9  
G5  
G6  
G8  
X
A0  
VSS  
DQ1  
RFU  
RFU  
DQ6  
A24  
A16  
Flash  
Shared Only  
H3  
H4  
H5  
H6  
H7  
H8  
H2  
H9  
F-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
R-CRE  
DQ15  
J3  
J4  
J7  
J8  
J9  
J2  
J5  
J6  
R-CE1#  
DQ0  
DQ10  
F-VCC  
R-VCC  
DQ12  
DQ7  
VSS  
K3  
K4  
K5  
K7  
K8  
K2  
K6  
K9  
RFU  
DQ8  
DQ2  
DQ11  
A25  
DQ5  
DQ14  
RFU  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
RFU  
RFU  
RFU  
F-VCC  
RFU  
RFU  
RFU  
RFU  
M1  
M10  
DNU  
DNU  
Figure 5.1 Connection Diagram – Cellular Ram-Based 84-ball Fine-Pitch Ball Grid Array  
5.3  
Physical Dimensions  
5.3.1  
Physical Dimensions – xxx084 – Fine Pitch Ball Grid Array 9 x 12 mm  
TBD  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
15  
A d v a n c e I n f o r m a t i o n  
5.4 Look-Ahead Connection Diagram  
Look Ahead Pinout – 1.8 V only x 16NOR + x16pSRAM + x16MirrorBit Data  
A2  
RFU  
B2  
A10  
RFU  
B10  
RFU  
A9  
RFU  
B9  
A1  
RFU  
B1  
Legend:  
X
RFU  
(Reserved for  
Future Use)  
RFU  
RFU  
C2  
RFU  
C9  
C8  
C3  
VSS  
D3  
A7  
C4  
CLK  
D4  
C5  
F2-CE#  
D5  
C6  
F-VCC  
D6  
C7  
X
AVD#  
D2  
F-CLK# R-OE# F2-OE#  
Code Flash Only  
D7  
A8  
D8  
A11  
E8  
D9  
F3-CE#  
E9  
WP#  
E2  
R-LB#  
D4  
ACC  
WE#  
E6  
X
E3  
E7  
C7  
MirrorBit Data  
Only  
A3  
A6  
R-UB# F-RST# R1-CE2  
F4 F5 F6  
A18 RDY/WAIT# A20  
A19  
A12  
A15  
F2  
F3  
F7  
F8  
F9  
X
A2  
A5  
A9  
A13  
A21  
Flash/Data  
Shared  
G2  
A1  
G3  
A4  
G4  
A17  
H4  
G5  
G6  
A23  
H6  
G7  
A10  
H7  
G8  
A14  
H8  
G9  
A22  
H9  
R2-CE1  
X
H2  
H3  
H5  
Flash/xRAM  
Shared  
A0  
VSS  
DQ1  
R2-VCC R2-CE2  
DQ6  
A24  
A16  
J9  
J3  
J4  
J5  
J6  
J7  
J8  
J2  
X
F1-CE#  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15 R-CRE or  
R-MRS  
pSRAM Only  
K2  
R1-CE1#  
L2  
K3  
DQ0  
L3  
K4  
DQ10  
L4  
E6  
R1-VCC  
L6  
K7  
K8  
DQ7  
L8  
K9  
K5  
F-VCC  
L5  
DQ12  
VSS  
XX  
L7  
DQ5  
M7  
L9  
WP#  
M9  
xRAM Shared  
R-VCC  
M2  
DQ8  
M3  
DQ2  
M4  
DQ11  
M5  
A25  
DQ14  
M8  
M6  
A27  
A26  
VSS  
F-VCC  
F4-CE# R-VCCQ F-VCCQ R-CLK#  
N2  
N1  
N10  
F-DQS1  
P10  
N9  
RFU  
P9  
RFU  
P2  
F-DQS0  
P1  
RFU  
RFU  
RFU  
RFU  
Notes:  
1. F1 and F2 denote XIP/Code Flash, while F3 and F4 denote Data/Companion Flash  
2. In addition to being defined as F2-CE#, Ball C5 can also be assigned as F1-CE2# for code that has two chip enable  
signals.  
Figure 5.2 Look Ahead Pinout – 1.8 V only x 16NOR + x16pSRAM + x16MirrorBit Data  
To provide customers with a migration path to higher densities, as well as the option to stack more  
die in a package, Spansion has prepared a standard pinout that supports:  
„ NOR Flash and SRAM densities up to 4 Gigabits  
„ NOR Flash and PSRAM densities up to 4 Gigabits  
„ NOR Flash and PSRAM and DATA STORAGE densities up to 4 Gigabits  
The signal locations of the resultant MCP device are shown above. Note that for different densi-  
ties, the actual package outline may vary. However, any pinout in any MCP will be a subset of the  
pinout above.  
16  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
In some cases, there may be outrigger balls in locations outside the grid shown above. In such  
cases, the user is recommended to treat these as RFUs, and not connect them to any other signal.  
In case of any further inquiries about the above look-ahead pinout, please refer to the application  
note on this subject, or contact your Spansion or Fujitsu sales office.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
17  
S75WS-N MirrorBit™ Flash Family  
S29WS256N, S29WS128N, S29WS064N  
256/128/64 Megabit (16/8/4 M x 16-Bit) CMOS 1.8 Volt-only  
Simultaneous Read/Write, Burst Mode Flash Memory  
Data Sheet  
PRELIMINARY  
General Description  
The Spansion S29WS256/128/064N are MirrorbitFlash products fabricated on 110 nm process technology. These burst  
mode Flash devices are capable of performing simultaneous read and write operations with zero latency on two separate  
banks using separate data and address pins. These products can operate up to 80 MHz and use a single VCC of  
1.7 V to 1.95 V that makes them ideal for today’s demanding wireless applications requiring higher density, better per-  
formance and lowered power consumption.  
Distinctive Characteristics  
„
„
„
Single 1.8 V read/program/erase (1.70–1.95 V)  
110 nm MirrorBit™ Technology  
Simultaneous Read/Write operation with zero  
latency  
„
Hardware (WP#) protection of top and bottom  
sectors  
„
„
Dual boot sector configuration (top and bottom)  
Offered Packages  
„
„
32-word Write Buffer  
WS064N: 80-ball FBGA (7 mm x 9 mm)  
WS256N/128N: 84-ball FBGA (8 mm x 11.6 mm)  
Sixteen-bank architecture consisting of 16/8/4  
Mwords for WS256N/128N/064N, respectively  
Four 16 Kword sectors at both top and bottom of  
memory array  
254/126/62 64 Kword sectors (WS256N/128N/  
064N)  
„
„
„
„
„
Low VCC write inhibit  
Persistent and Password methods of Advanced  
Sector Protection  
Write operation status bits indicate program and  
erase operation completion  
„
Programmable burst read modes  
Linear for 32, 16 or 8 words linear read with or  
without wrap-around  
„
„
„
Suspend and Resume commands for Program and  
Erase operations  
Unlock Bypass program command to reduce  
programming time  
Synchronous or Asynchronous program operation,  
independent of burst control register settings  
ACC input pin to reduce factory programming time  
Support for Common Flash Interface (CFI)  
Industrial Temperature range (contact factory)  
Continuous sequential read mode  
„
Secured Silicon Sector region consisting of 128  
words each for factory and customer  
20-year data retention (typical)  
Cycling Endurance: 100,000 cycles per sector  
(typical)  
„
„
„
„
„
„
„
RDY output indicates data available to system  
Command set compatible with JEDEC (42.4)  
standard  
Performance Characteristics  
Read Access Times  
Current Consumption (typical values)  
Speed Option (MHz)  
Max. Synch. Latency, ns (t  
80  
80  
66  
80  
54  
80  
Continuous Burst Read @ 66 MHz  
35 mA  
50 mA  
19 mA  
19 mA  
20 µA  
)
Simultaneous Operation (asynchronous)  
Program (asynchronous)  
IACC  
Max. Synch. Burst Access, ns (t  
)
9
11.2  
80  
13.5  
80  
BACC  
Max. Asynch. Access Time, ns (t  
)
80  
Erase (asynchronous)  
ACC  
Max CE# Access Time, ns (t  
)
80  
80  
80  
Standby Mode (asynchronous)  
CE  
Max OE# Access Time, ns (t  
)
13.5  
13.5  
13.5  
OE  
Typical Program & Erase Times  
Single Word Programming  
Effective Write Buffer Programming (V ) Per Word  
40 µs  
9.4 µs  
6 µs  
CC  
Effective Write Buffer Programming (V  
Sector Erase (16 Kword Sector)  
Sector Erase (64 Kword Sector)  
) Per Word  
ACC  
150 ms  
600 ms  
Publication Number S75WS-N-00 Revision A Amendment 0 Issue Date February 17, 2005  
A d v a n c e I n f o r m a t i o n  
6 Additional Resources  
Visit www.amd.com and www.fujitsu.com to obtain the following related documents:  
Application Notes  
„ Using the Operation Status Bits in AMD Devices  
„ Understanding Burst Mode Flash Memory Devices  
„ Simultaneous Read/Write vs. Erase Suspend/Resume  
„ MirrorBit™ Flash Memory Write Buffer Programming and Page Buffer Read  
„ Design-In Scalable Wireless Solutions with Spansion Products  
„ Common Flash Interface Version 1.4 Vendor Specific Extensions  
Specification Bulletins  
Contact your local sales office for details.  
Drivers and Software Support  
„ Spansion low-level drivers  
„ Enhanced Flash drivers  
„ Flash file system  
CAD Modeling Support  
„ VHDL and Verilog  
„ IBIS  
„ ORCAD  
Technical Support  
Contact your local sales office or contact Spansion LLC directly for additional technical support:  
Email  
US and Canada: HW.support@amd.com  
Asia Pacific: asia.support@amd.com  
Europe, Middle East, and Africa  
Japan: http://edevice.fujitsu.com/jp/support/tech/#b7  
Frequently Asked Questions (FAQ)  
http://ask.amd.com/  
http://edevice.fujitsu.com/jp/support/tech/#b7  
Phone  
US: (408) 749-5703  
Japan (03) 5322-3324  
Spansion LLC Locations  
915 DeGuigne Drive, P.O. Box 3453  
Sunnyvale, CA 94088-3453, USA  
Telephone: 408-962-2500 or  
1-866-SPANSION  
Spansion Japan Limited  
4-33-4 Nishi Shinjuku, Shinjuku-ku  
Tokyo, 160-0023  
Telephone: +81-3-5302-2200  
Facsimile: +81-3-5302-2674  
http://www.spansion.com  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
19  
A d v a n c e I n f o r m a t i o n  
7 Product Overview  
The S29WS-N family consists of 256, 128 and 64Mbit, 1.8 volts-only, simultaneous read/write  
burst mode Flash device optimized for today’s wireless designs that demand a large storage array,  
rich functionality, and low power consumption.  
These devices are organized in 16, 8 or 4 Mwords of 16 bits each and are capable of continuous,  
synchronous (burst) read or linear read (8-, 16-, or 32-word aligned group) with or without wrap  
around. These products also offer single word programming or a 32-word buffer for programming  
with program/erase and suspend functionality. Additional features include:  
„ Advanced Sector Protection methods for protecting sectors as required  
„ 256 words of Secured Silicon area for storing customer and factory secured information. The  
Secured Silicon Sector is One Time Programmable.  
7.1  
Memory Map  
The S29WS256/128/064N Mbit devices consist of 16 banks organized as shown in Tables  
Table 7.1, Table 7.2, and Table 7.3.  
Table 7.1 S29WS256N Sector & Memory Address Map  
Bank Sector Sector Size  
Sector/  
Sector Range  
Bank  
Address Range  
Notes  
Size Count  
(KB)  
SA000  
000000h–003FFFh  
SA001  
004000h–007FFFh  
Contains four smaller sectors at  
bottom of addressable memory.  
4
32  
2 MB  
0
SA002  
008000h–00BFFFh  
SA003  
00C000h–00FFFFh  
15  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
SA004 to SA018  
SA019 to SA034  
SA035 to SA050  
SA051 to SA066  
SA067 to SA082  
SA083 to SA098  
SA099 to SA114  
SA115 to SA130  
SA131 to SA146  
SA147 to SA162  
SA163 to SA178  
SA179 to SA194  
SA195 to SA210  
SA211 to SA226  
SA227 to SA242  
SA243 to SA257  
SA258  
010000h–01FFFFh to 0F0000h–0FFFFFh  
100000h–10FFFFh to 1F0000h–1FFFFFh  
200000h–20FFFFh to 2F0000h–2FFFFFh  
300000h–30FFFFh to 3F0000h–3FFFFFh  
400000h–40FFFFh to 4F0000h–4FFFFFh  
500000h–50FFFFh to 5F0000h–5FFFFFh  
600000h–60FFFFh to 6F0000h–6FFFFFh  
700000h–70FFFFh to 7F0000h–7FFFFFh  
800000h–80FFFFh to 8F0000h–8FFFFFh  
900000h–90FFFFh to 9F0000h–9FFFFFh  
A00000h–A0FFFFh to AF0000h–AFFFFFh  
B00000h–B0FFFFh to BF0000h–BFFFFFh  
C00000h–C0FFFFh to CF0000h–CFFFFFh  
D00000h–D0FFFFh to DF0000h–DFFFFFh  
E00000h–E0FFFFh to EF0000h–EFFFFFh  
F00000h–F0FFFFh to FE0000h–FEFFFFh  
FF0000h–FF3FFFh  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
2 MB  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
15  
1
2
3
4
5
6
All 128 KB sectors.  
Pattern for sector address  
range is xx0000h–xxFFFFh.  
(see note)  
7
8
9
10  
11  
12  
13  
14  
2 MB  
15  
SA259  
FF4000h–FF7FFFh  
Contains four smaller sectors  
at top of addressable memory.  
4
32  
SA260  
FF8000h–FFBFFFh  
SA261  
FFC000h–FFFFFFh  
Note: This table has been condensed to show sector-related information for an entire device on a single page.  
Sectors and their address ranges that are not explicitly listed (such as SA005–SA017) have sector  
starting and ending addresses that form the same pattern as all other sectors of that size. For example,  
all 128 KB sectors have the pattern xx00000h–xxFFFFh.  
20  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 7.2 S29WS128N Sector & Memory Address Map  
Bank Sector Sector Size  
Sector/  
Sector Range  
Bank  
Address Range  
Notes  
Size Count  
(KB)  
32  
SA000  
000000h–003FFFh  
32  
SA001  
004000h–007FFFh  
Contains four smaller sectors at  
bottom of addressable memory.  
4
1 MB  
32  
0
SA002  
008000h–00BFFFh  
32  
SA003  
00C000h–00FFFFh  
7
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
32  
SA004 to SA010  
SA011 to SA018  
SA019 to SA026  
SA027 to SA034  
SA035 to SA042  
SA043 to SA050  
SA051 to SA058  
SA059 to SA066  
SA067 to SA074  
SA075 to SA082  
SA083 to SA090  
SA091 to SA098  
SA099 to SA106  
SA107 to SA114  
SA115 to SA122  
SA123 to SA129  
SA130  
010000h–01FFFFh to 070000h–07FFFFh  
080000h–08FFFFh to 0F0000h–0FFFFFh  
100000h–10FFFFh to 170000h–17FFFFh  
180000h–18FFFFh to 1F0000h–1FFFFFh  
200000h–20FFFFh to 270000h–27FFFFh  
280000h–28FFFFh to 2F0000h–2FFFFFh  
300000h–30FFFFh to 370000h–37FFFFh  
380000h–38FFFFh to 3F0000h–3FFFFFh  
400000h–40FFFFh to 470000h–47FFFFh  
480000h–48FFFFh to 4F0000h–4FFFFFh  
500000h–50FFFFh to 570000h–57FFFFh  
580000h–58FFFFh to 5F0000h–5FFFFFh  
600000h–60FFFFh to 670000h–67FFFFh  
680000h–68FFFFh to 6F0000h–6FFFFFh  
700000h–70FFFFh to 770000h–77FFFFh  
780000h–78FFFFh to 7E0000h–7EFFFFh  
7F0000h–7F3FFFh  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
1 MB  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
1
2
3
4
5
6
All 128 KB sectors.  
Pattern for sector  
address range is  
xx0000h–xxFFFFh.  
(See Note)  
7
8
9
10  
11  
12  
13  
14  
1 MB  
32  
15  
SA131  
7F4000h–7F7FFFh  
Contains four smaller sectors  
at top of addressable memory.  
4
32  
SA132  
7F8000h–7FBFFFh  
32  
SA133  
7FC000h–7FFFFFh  
Note: This table has been condensed to show sector-related information for an entire device on a single page.  
Sectors and their address ranges that are not explicitly listed (such as SA005–SA009) have sector  
starting and ending addresses that form the same pattern as all other sectors of that size. For example,  
all 128 KB sectors have the pattern xx00000h–xxFFFFh.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
21  
A d v a n c e I n f o r m a t i o n  
Table 7.3 S29WS064N Sector & Memory Address Map  
Bank Sector Sector Size  
Sector/  
Sector Range  
Bank  
Address Range  
Notes  
Size  
Count  
(KB)  
SA000  
SA001  
000000h–003FFFh  
004000h–007FFFh  
Contains four smaller sectors  
at bottom of addressable memory.  
4
32  
SA002  
008000h–00BFFFh  
0.5 MB  
0
SA003  
00C000h–00FFFFh  
SA004  
010000h–01FFFFh  
3
128  
SA005  
020000h–02FFFFh  
SA006  
030000h–03FFFFh  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
0.5 MB  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
1
2
SA007–SA010  
SA011–SA014  
SA015–SA018  
SA019–SA022  
SA023–SA026  
SA027–SA030  
SA031–SA034  
SA035–SA038  
SA039–SA042  
SA043–SA046  
SA047–SA050  
SA051–SA054  
SA055–SA058  
SA059–SA062  
SA063  
040000h–04FFFFh to 070000h–07FFFFh  
080000h–08FFFFh to 0B0000h–0BFFFFh  
0C0000h–0CFFFFh to 0F0000h–0FFFFFh  
100000h–10FFFFh to 130000h–13FFFFh  
140000h–14FFFFh to 170000h–17FFFFh  
180000h–18FFFFh to 1B0000h–1BFFFFh  
1C0000h–1CFFFFh to 1F0000h–1FFFFFh  
200000h–20FFFFh to 230000h–23FFFFh  
240000h–24FFFFh to 270000h–27FFFFh  
280000h–28FFFFh to 2B0000h–2BFFFFh  
2C0000h–2CFFFFh to 2F0000h–2FFFFFh  
300000h–30FFFFh to 330000h–33FFFFh  
340000h–34FFFFh to 370000h–37FFFFh  
380000h–38FFFFh to 3B0000h–3BFFFFh  
3C0000h–3CFFFFh  
3
4
5
6
All 128 KB sectors.  
Pattern for sector  
address range is  
xx0000h–xxFFFFh.  
(see note)  
7
8
9
10  
11  
12  
13  
14  
3
128  
SA064  
3D0000h–3DFFFFh  
SA065  
3E0000h–3EFFFFh  
0.5 MB  
15  
SA066  
3F0000h–3F3FFFh  
SA067  
3F4000h–3F7FFFh  
Contains four smaller sectors a  
t top of addressable memory.  
4
32  
SA068  
3F8000h–3FBFFFh  
SA069  
3FC000h–3FFFFFh  
Note: This table has been condensed to show sector-related information for an entire device on a single page.  
Sectors and their address ranges that are not explicitly listed (such as SA008–SA009) have sector  
starting and ending addresses that form the same pattern as all other sectors of that size. For example,  
all 128 KB sectors have the pattern xx00000h–xxFFFFh.  
22  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
8 Device Operations  
This section describes the read, program, erase, simultaneous read/write operations, handshak-  
ing, and reset features of the Flash devices.  
Operations are initiated by writing specific commands or a sequence with specific address and  
data patterns into the command registers (see Table 13.1 and Table 13.2). The command register  
itself does not occupy any addressable memory location; rather, it is composed of latches that  
store the commands, along with the address and data information needed to execute the com-  
mand. The contents of the register serve as input to the internal state machine and the state  
machine outputs dictate the function of the device. Writing incorrect address and data values or  
writing them in an improper sequence may place the device in an unknown state, in which case  
the system must write the reset command to return the device to the reading array data mode.  
8.1  
Device Operation Table  
The device must be setup appropriately for each operation. Table 8.1 describes the required state  
of each control pin for any particular operation.  
Table 8.1 Device Operations  
Operation  
CE# OE#  
WE#  
Addresses  
Addr In  
Addr In  
Addr In  
Addr In  
X
DQ15–0  
Data Out  
Data Out  
I/O  
RESET#  
CLK  
X
AVD#  
Asynchronous Read - Addresses Latched  
Asynchronous Read - Addresses Steady State  
Asynchronous Write  
L
L
L
L
H
H
L
H
H
H
H
H
L
X
L
L
L
H
H
X
X
X
Synchronous Write  
L
L
I/O  
Standby (CE#)  
H
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
Hardware Reset  
X
Burst Read Operations (Synchronous)  
Load Starting Burst Address  
L
L
X
L
H
H
Addr In  
X
X
H
H
Advance Burst to next address with appropriate Data  
presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
X
X
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start new Burst  
read cycle  
L
X
H
Addr In  
I/O  
H
Legend: L = Logic 0, H = Logic 1, X = Don’t Care, I/O = Input/Output.  
8.2 Asynchronous Read  
All memories require access time to output array data. In an asynchronous read operation, data  
is read from one memory location at a time. Addresses are presented to the device in random  
order, and the propagation delay through the device causes the data on its outputs to arrive asyn-  
chronously with the address on its inputs.  
The device defaults to reading array data asynchronously after device power-up or hardware re-  
set. Asynchronous read requires that the CLK signal remain at VIL during the entire memory read  
operation. To read data from the memory array, the system must first assert a valid address on  
Amax–A0, while driving AVD# and CE# to VIL. WE# must remain at VIH. The rising edge of AVD#  
latches the address. The OE# signal must be driven to VIL, once AVD# has been driven to VIH.  
Data is output on A/DQ15-A/DQ0 pins after the access time (tOE) has elapsed from the falling  
edge of OE#.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
23  
A d v a n c e I n f o r m a t i o n  
8.3 Synchronous (Burst) Read Mode and Configuration Register  
When a series of adjacent addresses needs to be read from the device (in order from lowest to  
highest address), the synchronous (or burst read) mode can be used to significantly reduce the  
overall time needed for the device to output array data. After an initial access time required for  
the data from the first address location, subsequent data is output synchronized to a clock input  
provided by the system.  
The device offers both continuous and linear methods of burst read operation, which are dis-  
cussed in sections 8.3.1, 8.3.2, and 8.3.3.  
Since the device defaults to asynchronous read mode after power-up or a hardware reset, the  
configuration register must be set to enable the burst read mode. Other Configuration Register  
settings include the number of wait states to insert before the initial word (tIACC) of each burst  
access, the burst mode in which to operate, and when RDY indicates data is ready to be read.  
Prior to entering the burst mode, the system should first determine the configuration register set-  
tings (and read the current register settings if desired via the Read Configuration Register  
command sequence), and then write the configuration register command sequence. See 8.3.4  
and Table 13.1 for further details.  
Power-up/  
Hardware Reset  
Asynchronous Read  
Mode Only  
Set Burst Mode  
Configuration Register  
Command for  
Set Burst Mode  
Configuration Register  
Command for  
Synchronous Mode  
(CR15 = 0)  
Asynchronous Mode  
(CR15 = 1)  
Synchronous Read  
Mode Only  
Figure 8.1 Synchronous/Asynchronous State Diagram  
The device outputs the initial word subject to the following operational conditions:  
„ tIACC specification: the time from the rising edge of the first clock cycle after addresses are  
latched to valid data on the device outputs.  
„ Configuration register setting CR13–CR11: the total number of clock cycles (wait states)  
that occur before valid data appears on the device outputs. The effect is that tIACC is  
lengthened.  
The device outputs subsequent words tBACC after the active edge of each successive clock cycle,  
which also increments the internal address counter. The device outputs burst data at this rate sub-  
ject to the following operational conditions:  
24  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
„ Starting address: whether the address is divisible by four (where A[1:0] is 00). A divisible-  
by-four address incurs the least number of additional wait states that occur after the initial  
word. The number of additional wait states required increases for burst operations in which  
the starting address is one, two, or three locations above the divisible-by-four address (i.e.,  
where A[1:0] is 01, 10, or 11).  
„ Boundary crossing: There is a boundary at every 128 words due to the internal architecture  
of the device. One additional wait state must be inserted when crossing this boundary if the  
memory bus is operating at a high clock frequency. Please refer to the tables below.  
„ Clock frequency: the speed at which the device is expected to burst data. Higher speeds  
require additional wait states after the initial word for proper operation.  
In all cases, with or without latency, the RDY output indicates when the next data is available to  
be read.  
Tables 8.2 8.6 reflect wait states required for S29WS256/128/064N devices. Refer to the Con-  
figuration Register table (CR11 – CR14) and timing diagrams for more details.  
Table 8.2 Address Latency (S29WS256N)  
Word  
Wait States  
x ws  
Cycle  
D4  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
x ws  
1 ws  
1 ws  
1 ws  
D4  
x ws  
D3  
1 ws  
1 ws  
D4  
x ws  
1 ws  
D4  
Table 8.3 Address Latency (S29WS128N/S29WS064N)  
Word  
Wait States  
Cycle  
D4  
0
1
2
3
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
1 ws  
1 ws  
1 ws  
D4  
D3  
1 ws  
1 ws  
D4  
1 ws  
D4  
Table 8.4 Address/Boundary Crossing Latency (S29WS256N @ 80/66 MHz)  
Word  
Wait States  
7, 6 ws  
Cycle  
1 ws  
1 ws  
1 ws  
1 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
7, 6 ws  
1 ws  
1 ws  
1 ws  
7, 6 ws  
D3  
1 ws  
1 ws  
7, 6 ws  
1 ws  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
25  
A d v a n c e I n f o r m a t i o n  
Table 8.5 Address/Boundary Crossing Latency (S29WS256N @ 54MHz)  
Word  
Wait States  
5 ws  
Cycle  
D4  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
5 ws  
1 ws  
1 ws  
1 ws  
D4  
5 ws  
D3  
1 ws  
1 ws  
D4  
5 ws  
1 ws  
D4  
Table 8.6 Address/Boundary Crossing Latency (S29WS128N/S29WS064N)  
Word  
Wait States  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
5, 6, 7 ws  
Cycle  
1 ws  
1 ws  
1 ws  
1 ws  
0
1
2
3
D0  
D1  
D2  
D3  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
1 ws  
1 ws  
1 ws  
D3  
1 ws  
1 ws  
1 ws  
26  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Note: Setup Configuration Register parameters  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Set Configuration Register  
Command and Settings:  
Address 555h, Data D0h  
Address X00h, Data CR  
Command Cycle  
CR = Configuration Register Bits CR15-CR0  
Load Initial Address  
Address = RA  
RA = Read Address  
CR13-CR11 sets initial access time  
(from address latched to  
valid data) from 2 to 7 clock cycles  
Wait tIACC  
Programmable Wait State Setting  
+
Read Initial Data  
RD = DQ[15:0]  
RD = Read Data  
Wait X Clocks:  
Additional Latency Due to Starting  
Address, Clock Frequency, and  
Boundary Crossing  
Read Next Data  
RD = DQ[15:0]  
Delay X Clocks  
Crossing  
Boundary?  
No  
End of Data?  
Yes  
Yes  
Completed  
Figure 8.2 Synchronous Read  
8.3.1  
Continuous Burst Read Mode  
In the continuous burst read mode, the device outputs sequential burst data from the starting  
address given and then wrap around to address 000000h when it reaches the highest addressable  
memory location. The burst read mode continues until the system drives CE# high, or RESET=  
VIL. Continuous burst mode can also be aborted by asserting AVD# low and providing a new ad-  
dress to the device.  
If the address being read crosses a 128-word line boundary (as mentioned above) and the sub-  
sequent word line is not being programmed or erased, additional latency cycles are required as  
reflected by the configuration register table (Table 8.8).  
If the address crosses a bank boundary while the subsequent bank is programming or erasing,  
the device provides read status information and the clock is ignored. Upon completion of status  
read or program or erase operation, the host can restart a burst read operation using a new ad-  
dress and AVD# pulse.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
27  
A d v a n c e I n f o r m a t i o n  
8.3.2  
8-, 16-, 32-Word Linear Burst Read with Wrap Around  
In a linear burst read operation, a fixed number of words (8, 16, or 32 words) are read from con-  
secutive addresses that are determined by the group within which the starting address falls. The  
groups are sized according to the number of words read in a single burst sequence for a given  
mode (see Table 8.7).  
For example, if the starting address in the 8-word mode is 3Ch, the address range to be read  
would be 38-3Fh, and the burst sequence would be 3C-3D-3E-3F-38-39-3A-3Bh. Thus, the device  
outputs all words in that burst address group until all word are read, regardless of where the start-  
ing address occurs in the address group, and then terminates the burst read.  
In a similar fashion, the 16-word and 32-word Linear Wrap modes begin their burst sequence on  
the starting address provided to the device, then wrap back to the first address in the selected  
address group.  
Note that in this mode the address pointer does not cross the boundary that occurs every 128  
words; thus, no additional wait states are inserted due to boundary crossing.  
Table 8.7 Burst Address Groups  
Mode  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h,...  
0-Fh, 10-1Fh, 20-2Fh,...  
00-1Fh, 20-3Fh, 40-5Fh,...  
8-word  
16-word  
32-word  
16 words  
32 words  
8.3.3  
8-, 16-, 32-Word Linear Burst without Wrap Around  
If wrap around is not enabled for linear burst read operations, the 8-word, 16-word, or 32-word  
burst executes up to the maximum memory address of the selected number of words. The burst  
stops after 8, 16, or 32 addresses and does not wrap around to the first address of the selected  
group.  
For example, if the starting address in the 8- word mode is 3Ch, the address range to be read  
would be 39-40h, and the burst sequence would be 3C-3D-3E-3F-40-41-42-43h if wrap around  
is not enabled. The next address to be read requires a new address and AVD# pulse. Note that  
in this burst read mode, the address pointer may cross the boundary that occurs every 128 words,  
which will incur the additional boundary crossing wait state.  
8.3.4  
Configuration Register  
The configuration register sets various operational parameters associated with burst mode. Upon  
power-up or hardware reset, the device defaults to the asynchronous read mode, and the config-  
uration register settings are in their default state. The host system should determine the proper  
settings for the entire configuration register, and then execute the Set Configuration Register  
command sequence, before attempting burst operations. The configuration register is not reset  
after deasserting CE#. The Configuration Register can also be read using a command sequence  
(see Table 13.1). The following list describes the register settings.  
28  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 8.8 Configuration Register  
CR Bit  
Function  
Settings (Binary)  
Set Device Read  
Mode  
0 = Synchronous Read (Burst Mode) Enabled  
1 = Asynchronous Read Mode (default) Enabled  
CR15  
54 MHz 66 Mhz 80 MHz  
S29WS064N  
S29WS128N  
N/A  
0
N/A  
1
N/A  
1
Default value is 0  
CR14 Boundary Crossing  
0 = No extra boundary crossing latency  
1 = With extra boundary crossing latency (default)  
Must be set to 1 greater than 54 MHz.  
S29WS256N  
S29WS064N  
S29WS128N  
011 = Data valid on 5th active CLK  
edge after addresses latched  
100 = Data valid on 6th active CLK  
edge after addresses latched  
CR13  
0
1
1
1
0
0
1
0
1
S29WS256N  
101 = Data valid on 7th active CLK  
edge after addresses latched (default)  
110 = Reserved  
S29WS064N  
S29WS128N  
Programmable  
CR12  
Wait State  
S29WS256N  
111 = Reserved  
Inserts wait states before initial data  
is available. Setting greater number of wait  
states before initial data reduces latency  
after initial data. (Notes 1, 2)  
S29WS064N  
S29WS128N  
CR11  
S29WS256N  
0 = RDY signal active low  
CR10  
CR9  
RDY Polarity  
Reserved  
1 = RDY signal active high (default)  
1 = default  
0 = RDY active one clock cycle before data  
1 = RDY active with data (default)  
When CR13-CR11 are set to 000,  
CR8  
RDY  
RDY is active with data regardless of CR8 setting.  
CR7  
CR6  
CR5  
CR4  
Reserved  
Reserved  
Reserved  
Reserved  
1 = default  
1 = default  
0 = default  
0 = default  
0 = No Wrap Around Burst  
1 = Wrap Around Burst (default)  
CR3  
Burst Wrap Around  
000 = Continuous (default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
100 = 32-Word Linear Burst  
(All other bit settings are reserved)  
CR2  
CR1  
CR0  
Burst Length  
Notes:  
1. Refer to Tables 8.2 - 8.6 for wait states requirements.  
2. Refer to Synchronous Burst Read timing diagrams  
3. Configuration Register is in the default state upon power-up or hardware reset.  
Reading the Configuration Table. The configuration register can be read with a four-cycle com-  
mand sequence. See Table 13.1 for sequence details. Once the data has been read from the  
configuration register, a software reset command is required to set the device into the correct  
state.  
8.4 Autoselect  
The Autoselect is used for manufacturer ID, Device identification, and sector protection informa-  
tion. This mode is primarily intended for programming equipment to automatically match a device  
with its corresponding programming algorithm. The Autoselect codes can also be accessed in-sys-  
tem. When verifying sector protection, the sector address must appear on the appropriate highest  
order address bits (see Table 8.9). The remaining address bits are don't care. The most significant  
four bits of the address during the third write cycle selects the bank from which the Autoselect  
codes are read by the host. All other banks can be accessed normally for data read without exiting  
the Autoselect mode.  
„ To access the Autoselect codes, the host system must issue the Autoselect command.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
29  
A d v a n c e I n f o r m a t i o n  
„ The Autoselect command sequence may be written to an address within a bank that is either  
in the read or erase-suspend-read mode.  
„ The Autoselect command may not be written while the device is actively programming or  
erasing. Autoselect does not support simultaneous operations or burst mode.  
„ The system must write the reset command to return to the read mode (or erase-suspend-  
read mode if the bank was previously in Erase Suspend).  
See Table 13.1 for command sequence details.  
Table 8.9 Autoselect Addresses  
Description  
Manufacturer ID  
Device ID, Word 1  
Address  
Read Data  
(BA) + 00h 0001h  
(BA) + 01h 227Eh  
2230 (WS256N)  
Device ID, Word 2  
Device ID, Word 3  
(BA) + 0Eh 2231 (WS128N)  
2232 (WS064N)  
(BA) + 0Fh 2200  
DQ15 - DQ8 = Reserved  
DQ7 (Factory Lock Bit): 1 = Locked, 0 = Not Locked  
DQ6 (Customer Lock Bit): 1 = Locked, 0 = Not Locked  
DQ5 (Handshake Bit): 1 = Reserved, 0 = Standard Handshake  
DQ4, DQ3 (WP# Protection Boot Code): 00 = WP# Protects both Top Boot and  
Bottom Boot Sectors. 01, 10, 11 = Reserved  
Indicator Bits  
(See Note)  
(BA) + 03h  
DQ2 = Reserved  
DQ1 (DYB Power up State [Lock Register DQ4]): 1 = Unlocked (user option),  
0 = Locked (default)  
DQ0 (PPB Eraseability [Lock Register DQ3]): 1 = Erase allowed,  
0 = Erase disabled  
Sector Block Lock/  
Unlock  
(SA) + 02h 0001h = Locked, 0000h = Unlocked  
Note: For WS128N and WS064, DQ1 and DQ0 are reserved.  
30  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Software Functions and Sample Code  
Table 8.10 Autoselect Entry  
(LLD Function = lld_AutoselectEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
BAxAAAh  
BAx555h  
Word Address  
BAx555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
Autoselect Command  
0x00AAh  
0x0055h  
0x0090h  
Write  
BAx2AAh  
Write  
BAxAAAh  
BAx555h  
Table 8.11 Autoselect Exit  
(LLD Function = lld_AutoselectExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Word Address  
base + XXXh  
Data  
Unlock Cycle 1  
base + XXXh  
0x00F0h  
Notes:  
1. Any offset within the device works.  
2. BA = Bank Address. The bank address is required.  
3. base = base address.  
The following is a C source code example of using the autoselect function to read the manu-  
facturer ID. Refer to the Spansion Low Level Driver User Guide (available on www.amd.com  
and www.fujitsu.com) for general information on Spansion Flash memory software develop-  
ment guidelines.  
/* Here is an example of Autoselect mode (getting manufacturer ID) */  
/* Define UINT16 example: typedef unsigned short UINT16; */  
UINT16 manuf_id;  
/* Auto Select Entry */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA; /* write unlock cycle 1 */  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055; /* write unlock cycle 2 */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0090; /* write autoselect command */  
/* multiple reads can be performed after entry */  
manuf_id = *( (UINT16 *)bank_addr + 0x000 ); /* read manuf. id */  
/* Autoselect exit */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0; /* exit autoselect (write reset command) */  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
31  
A d v a n c e I n f o r m a t i o n  
8.5 Program/Erase Operations  
These devices are capable of several modes of programming and or erase operations which are  
described in detail in the following sections. However, prior to any programming and or erase op-  
eration, devices must be setup appropriately as outlined in the configuration register (Table 8.8).  
For any program and or erase operations, including writing command sequences, the system  
must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the device, and  
drive WE# and CE# to VIL, and OE# to VIH when writing commands or programming data.  
Addresses are latched on the last falling edge of WE# or CE#, while data is latched on the 1st  
rising edge of WE# or CE#.  
Note the following:  
„ When the Embedded Program algorithm is complete, the device returns to the read mode.  
„ The system can determine the status of the program operation by using DQ7 or DQ6. Refer  
to the Write Operation Status section for information on these status bits.  
„ A 0 cannot be programmed back to a 1. Attempting to do so causes the device to set DQ5 = 1  
(halting any further operation and requiring a reset command). A succeeding read shows that  
the data is still 0. Only erase operations can convert a 0 to a 1.  
„ Any commands written to the device during the Embedded Program Algorithm are ignored  
except the Program Suspend command.  
„ Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a program oper-  
ation is in progress.  
„ A hardware reset immediately terminates the program operation and the program command  
sequence should be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
„ Programming is allowed in any sequence and across sector boundaries for single word pro-  
gramming operation.  
8.5.1  
Single Word Programming  
Single word programming mode is the simplest method of programming. In this mode, four Flash  
command write cycles are used to program an individual Flash address. The data for this pro-  
gramming operation could be 8-, 16- or 32-bits wide. While this method is supported by all  
Spansion devices, in general it is not recommended for devices that support Write Buffer Pro-  
gramming. See Table 13.1 for the required bus cycles and Figure 8.3 for the flowchart.  
When the Embedded Program algorithm is complete, the device then returns to the read mode  
and addresses are no longer latched. The system can determine the status of the program oper-  
ation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these  
status bits.  
„ During programming, any command (except the Suspend Program command) is ignored.  
„ The Secured Silicon Sector, Autoselect, and CFI functions are unavailable when a program op-  
eration is in progress.  
„ A hardware reset immediately terminates the program operation. The program command se-  
quence should be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
32  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Program Command:  
Address 555h, Data A0h  
Setup Command  
Program Address (PA),  
Program Data (PD)  
Program Data to Address:  
PA, PD  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Polling Status  
= Busy?  
No  
Yes  
Polling Status  
= Done?  
Error condition  
No  
(Exceeded Timing Limits)  
PASS. Device is in  
read mode.  
FAIL. Issue reset command  
to return to read array mode.  
Figure 8.3 Single Word Program  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
33  
A d v a n c e I n f o r m a t i o n  
Software Functions and Sample Code  
Table 8.12 Single Word Program  
(LLD Function = lld_ProgramCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
Data  
00AAh  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Program  
Write  
0055h  
Write  
00A0h  
Write  
Data Word  
Note: Base = Base Address.  
The following is a C source code example of using the single word program function. Refer to  
the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: Program Command  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00A0;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write program setup command  
/* write data to be programmed  
*/  
*/  
*/  
*/  
*( (UINT16 *)pa )  
= data;  
/* Poll for program completion */  
8.5.2  
Write Buffer Programming  
Write Buffer Programming allows the system to write a maximum of 32 words in one program-  
ming operation. This results in a faster effective word programming time than the standard word  
programming algorithms. The Write Buffer Programming command sequence is initiated by first  
writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load  
command written at the Sector Address in which programming occurs. At this point, the system  
writes the number of word locations minus 1 that are loaded into the page buffer at the Sector  
Address in which programming occurs. This tells the device how many write buffer addresses are  
loaded with data and therefore when to expect the Program Buffer to Flash confirm command.  
The number of locations to program cannot exceed the size of the write buffer or the operation  
aborts. (Number loaded = the number of locations to program minus 1. For example, if the sys-  
tem programs 6 address locations, then 05h should be written to the device.)  
The system then writes the starting address/data combination. This starting address is the first  
address/data pair to be programmed, and selects the write-buffer-page address. All subsequent  
address/data pairs must fall within the elected-write-buffer-page.  
The write-buffer-page is selected by using the addresses AMAX - A5.  
The write-buffer-page addresses must be the same for all address/data pairs loaded into the write  
buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer-  
pages. This also means that Write Buffer Programming cannot be performed across multiple sec-  
tors. If the system attempts to load programming data outside of the selected write-buffer-page,  
the operation ABORTs.)  
After writing the Starting Address/Data pair, the system then writes the remaining address/data  
pairs into the write buffer.  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter  
is decremented for every data load operation. Also, the last data loaded at a location before the  
Program Buffer to Flash confirm command is programmed into the device. It is the software's re-  
sponsibility to comprehend ramifications of loading a write-buffer location more than once. The  
34  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
counter decrements for each data load operation, NOT for each unique write-buffer-address loca-  
tion. Once the specified number of write buffer locations have been loaded, the system must then  
write the Program Buffer to Flash command at the Sector Address. Any other address/data write  
combinations abort the Write Buffer Programming operation. The device goes busy. The Data Bar  
polling techniques should be used while monitoring the last address location loaded into the write  
buffer. This eliminates the need to store an address in memory because the system can load the  
last address location, issue the program confirm command at the last loaded address location,  
and then data bar poll at that same address. DQ7, DQ6, DQ5, DQ2, and DQ1 should be monitored  
to determine the device status during Write Buffer Programming.  
The write-buffer embedded programming operation can be suspended using the standard sus-  
pend/resume commands. Upon successful completion of the Write Buffer Programming operation,  
the device returns to READ mode.  
The Write Buffer Programming Sequence is ABORTED under any of the following conditions:  
„ Load a value that is greater than the page buffer size during the Number of Locations to Pro-  
gram step.  
„ Write to an address in a sector different than the one specified during the Write-Buffer-Load  
command.  
„ Write an Address/Data pair to a different write-buffer-page than the one selected by the  
Starting Address during the write buffer data loading stage of the operation.  
„ Write data other than the Confirm Command after the specified number of data load cycles.  
The ABORT condition is indicated by DQ1 = 1, DQ7 = Data# (for the last address location loaded),  
DQ6 = TOGGLE, DQ5 = 0. This indicates that the Write Buffer Programming Operation was  
ABORTED. A Write-to-Buffer-Abort reset command sequence is required when using the write  
buffer Programming features in Unlock Bypass mode. Note that the Secured Silicon sector, au-  
toselect, and CFI functions are unavailable when a program operation is in progress.  
Write buffer programming is allowed in any sequence of memory (or address) locations. These  
flash devices are capable of handling multiple write buffer programming operations on the same  
write buffer address range without intervening erases.  
Use of the write buffer is strongly recommended for programming when multiple words are to be  
programmed. Write buffer programming is approximately eight times faster than programming  
one word at a time.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
35  
A d v a n c e I n f o r m a t i o n  
Software Functions and Sample Code  
Table 8.13 Write Buffer Program  
(LLD Functions Used = lld_WriteToBufferCmd, lld_ProgramBufferToFlashCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Word Address  
Base + 555h  
Base + 2AAh  
Data  
00AAh  
1
2
3
4
Unlock  
Write  
0055h  
Write Buffer Load Command  
Write Word Count  
Write  
Program Address  
Program Address  
0025h  
Write  
Word Count (N–1)h  
Number of words (N) loaded into the write buffer can be from 1 to 32 words.  
5 to 36  
Last  
Load Buffer Word N  
Write Buffer to Flash  
Write  
Write  
Program Address, Word N  
Sector Address  
Word N  
0029h  
Notes:  
1. Base = Base Address.  
2. Last = Last cycle of write buffer program operation; depending on number of words written, the total  
number of cycles may be from 6 to 37.  
3. For maximum efficiency, it is recommended that the write buffer be loaded with  
the highest number of words (N words) possible.  
The following is a C source code example of using the write buffer program function. Refer to  
the Spansion Low Level Driver User Guide (available on www.amd.com and  
www.fujitsu.comm) for general information on Spansion Flash memory software develop-  
ment guidelines.  
/* Example: Write Buffer Programming Command  
*/  
/* NOTES: Write buffer programming limited to 16 words. */  
/*  
/*  
/*  
/*  
All addresses to be written to the flash in  
one operation must be within the same flash  
page. A flash page begins at addresses  
evenly divisible by 0x20.  
*/  
*/  
*/  
*/  
UINT16 *src = source_of_data;  
UINT16 *dst = destination_of_data;  
/* address of source data  
/* flash destination address  
/* word count (minus 1)  
/* write unlock cycle 1  
/* write unlock cycle 2  
*/  
*/  
*/  
*/  
*/  
UINT16 wc  
= words_to_program -1;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)sector_address )  
*( (UINT16 *)sector_address )  
= 0x0025;  
= wc;  
/* write write buffer load command */  
/* write word count (minus 1) */  
loop:  
*dst = *src; /* ALL dst MUST BE SAME PAGE */ /* write source data to destination */  
dst++;  
src++;  
/* increment destination pointer  
/* increment source pointer  
*/  
*/  
if (wc == 0) goto confirm  
wc--;  
goto loop;  
/* done when word count equals zero */  
/* decrement word count  
/* do it again  
*/  
*/  
confirm:  
*( (UINT16 *)sector_address )  
/* poll for completion */  
= 0x0029;  
/* write confirm command  
*/  
/* Example: Write Buffer Abort Reset */  
*( (UINT16 *)addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)addr + 0x555 ) = 0x00F0;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write buffer abort reset  
*/  
*/  
*/  
36  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Issue  
Write Buffer Load Command:  
Address 555h, Data 25h  
Load Word Count to Program  
Program Data to Address:  
SA = wc  
wc = number of words – 1  
Yes  
Confirm command:  
wc = 0?  
No  
SA 29h  
Wait 4 µs  
Write Next Word,  
Decrement wc:  
PA data , wc = wc – 1  
No  
Write Buffer  
Abort Desired?  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Write to a Different  
Sector Address to Cause  
Write Buffer Abort  
Yes  
Polling Status  
= Done?  
No  
Error?  
Yes  
No  
Yes  
Write Buffer  
Abort?  
No  
RESET. Issue Write Buffer  
Abort Reset Command  
PASS. Device is in  
read mode.  
FAIL. Issue reset command  
to return to read array mode.  
Figure 8.4 Write Buffer Programming Operation  
8.5.3  
Sector Erase  
The sector erase function erases one or more sectors in the memory array. (See Table 13.1 and  
Figure 8.5) The device does not require the system to preprogram prior to erase. The Embedded  
Erase algorithm automatically programs and verifies the entire memory for an all zero data pat-  
tern prior to electrical erase. After a successful sector erase, all locations within the erased sector  
contain FFFFh. The system is not required to provide any controls or timings during these  
operations.  
After the command sequence is written, a sector erase time-out of no less than tSEA occurs. Dur-  
ing the time-out period, additional sector addresses and sector erase commands may be written.  
Loading the sector erase buffer may be done in any sequence, and the number of sectors may be  
from one sector to all sectors. The time between these additional cycles must be less than tSEA  
.
February 17, 2005 S75WS-N-00_A0 S75WS256Nxx Based MCPs 37  
A d v a n c e I n f o r m a t i o n  
Any sector erase address and command following the exceeded time-out (tSEA) may or may not  
be accepted. Any command other than Sector Erase or Erase Suspend during the time-out period  
resets that bank to the read mode. The system can monitor DQ3 to determine if the sector erase  
timer has timed out (see DQ3: Sector Erase Timeout State Indicator). The time-out begins from  
the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and ad-  
dresses are no longer latched. Note that while the Embedded Erase operation is in progress, the  
system can read data from the non-erasing banks. The system can determine the status of the  
erase operation by reading DQ7 or DQ6/DQ2 in the erasing bank. See Write Operation Status for  
information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other  
commands are ignored. However, note that a hardware reset immediately terminates the erase  
operation. If that occurs, the sector erase command sequence should be reinitiated once that  
bank has returned to reading array data, to ensure data integrity.  
Figure 8.5 illustrates the algorithm for the erase operation. See Erase/Program Timing for param-  
eters and timing diagrams.  
Software Functions and Sample Code  
Table 8.14 Sector Erase  
(LLD Function = lld_SectorEraseCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Sector Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Sector Address  
Data  
1
2
3
4
5
6
00AAh  
0055h  
0080h  
00AAh  
0055h  
0030h  
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Sector Erase Command  
Write  
Unlimited additional sectors may be selected for erase; command(s) must be written within tSEA  
.
The following is a C source code example of using the sector erase function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Sector Erase Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
*/  
*/  
*/  
*( (UINT16 *)sector_address )  
= 0x0030;  
/* write sector erase command  
*/  
38  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write Sector Erase Cycles:  
Address 555h, Data 80h  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Sector Address, Data 30h  
Command Cycle 1  
Command Cycle 2  
Command Cycle 3  
Specify first sector for erasure  
Select  
Additional  
No  
Sectors?  
Yes  
Write Additional  
Sector Addresses  
• Each additional cycle must be written within tSEA timeout  
• Timeout resets after each additional cycle is written  
• The host system may monitor DQ3 or wait tSEA to ensure  
acceptance of erase commands  
Yes  
Last Sector  
Selected?  
No  
• No limit on number of sectors  
Poll DQ3.  
DQ3 = 1?  
• Commands other than Erase Suspend or selecting  
additional sectors for erasure during timeout reset device  
to reading array data  
No  
Yes  
Wait 4 µs  
Perform Write Operation  
Status Algorithm  
Status may be obtained by reading DQ7, DQ6 and/or DQ2.  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Device returns  
to reading array.  
FAIL. Write reset command  
to return to reading array.  
Notes:  
1. See Table 13.1 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timeout.  
Figure 8.5 Sector Erase Operation  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
39  
A d v a n c e I n f o r m a t i o n  
8.5.4  
Chip Erase Command Sequence  
Chip erase is a six-bus cycle operation as indicated by Table 13.1. These commands invoke the  
Embedded Erase algorithm, which does not require the system to preprogram prior to erase. The  
Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all  
zero data pattern prior to electrical erase. After a successful chip erase, all locations of the chip  
contain FFFFh. The system is not required to provide any controls or timings during these oper-  
ations. Table 13.1 and Table 13.2 in the appendix show the address and data requirements for  
the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and ad-  
dresses are no longer latched. The system can determine the status of the erase operation by  
using DQ7 or DQ6/DQ2. See Write Operation Status for information on these status bits.  
Any commands written during the chip erase operation are ignored. However, note that a hard-  
ware reset immediately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once that bank has returned to reading array data, to ensure data  
integrity.  
Software Functions and Sample Code  
Table 8.15 Chip Erase  
(LLD Function = lld_ChipEraseCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
1
2
3
4
5
6
00AAh  
0055h  
0080h  
00AAh  
0055h  
0010h  
Unlock  
Write  
Setup Command  
Unlock  
Write  
Write  
Unlock  
Write  
Chip Erase Command  
Write  
The following is a C source code example of using the chip erase function. Refer to the Span-  
sion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com) for  
general information on Spansion Flash memory software development guidelines.  
/* Example: Chip Erase Command */  
/* Note: Cannot be suspended  
*/  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0080;  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0010;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write setup command  
/* write additional unlock cycle 1 */  
/* write additional unlock cycle 2 */  
*/  
*/  
*/  
/* write chip erase command  
*/  
8.5.5  
Erase Suspend/Erase Resume Commands  
When the Erase Suspend command is written during the sector erase time-out, the device imme-  
diately terminates the time-out period and suspends the erase operation. The Erase Suspend  
command allows the system to interrupt a sector erase operation and then read data from, or  
program data to, any sector not selected for erasure. The bank address is required when writing  
this command. This command is valid only during the sector erase operation, including the min-  
imum tSEA time-out period during the sector erase command sequence. The Erase Suspend  
command is ignored if written during the chip erase operation.  
When the Erase Suspend command is written after the tSEA time-out period has expired and dur-  
ing the sector erase operation, the device requires a maximum of tESL (erase suspend latency) to  
suspend the erase operation.  
40  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode.  
The system can read data from or program data to any sector not selected for erasure. (The de-  
vice erase suspends all sectors selected for erasure.) Reading at any address within erase-  
suspended sectors produces status information on DQ7-DQ0. The system can use DQ7, or DQ6,  
and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to  
Table 8.23 for information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-  
read mode. The system can determine the status of the program operation using the DQ7 or DQ6  
status bits, just as in the standard program operation.  
In the erase-suspend-read mode, the system can also issue the Autoselect command sequence.  
See Write Buffer Programming and Autoselect for details.  
To resume the sector erase operation, the system must write the Erase Resume command. The  
bank address of the erase-suspended bank is required when writing this command. Further writes  
of the Resume command are ignored. Another Erase Suspend command can be written after the  
chip has resumed erasing.  
Software Functions and Sample Code  
Table 8.16 Erase Suspend  
(LLD Function = lld_EraseSuspendCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
The following is a C source code example of using the erase suspend function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Erase suspend command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Table 8.17 Erase Resume  
(LLD Function = lld_EraseResumeCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Bank Address  
Data  
1
Write  
Bank Address  
0030h  
The following is a C source code example of using the erase resume function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Erase resume command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
/* The flash needs adequate time in the resume state */  
8.5.6  
Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded programming op-  
eration or a Write to Buffer programming operation so that data can read from any non-  
suspended sector. When the Program Suspend command is written during a programming pro-  
cess, the device halts the programming operation within tPSL (program suspend latency) and  
updates the status bits. Addresses are don't-cares when writing the Program Suspend command.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
41  
A d v a n c e I n f o r m a t i o n  
After the programming operation has been suspended, the system can read array data from any  
non-suspended sector. The Program Suspend command may also be issued during a program-  
ming operation while an erase is suspended. In this case, data may be read from any addresses  
not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector  
area, then user must use the proper command sequences to enter and exit this region.  
The system may also write the Autoselect command sequence when the device is in Program Sus-  
pend mode. The device allows reading Autoselect codes in the suspended sectors, since the codes  
are not stored in the memory array. When the device exits the Autoselect mode, the device re-  
verts to Program Suspend mode, and is ready for another valid operation. See Autoselect for more  
information.  
After the Program Resume command is written, the device reverts to programming. The system  
can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard program operation. See Write Operation Status for more information.  
The system must write the Program Resume command (address bits are don't care) to exit the  
Program Suspend mode and continue the programming operation. Further writes of the Program  
Resume command are ignored. Another Program Suspend command can be written after the de-  
vice has resumed programming.  
Software Functions and Sample Code  
Table 8.18 Program Suspend  
(LLD Function = lld_ProgramSuspendCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
1
Write  
Bank Address  
Bank Address  
00B0h  
The following is a C source code example of using the program suspend function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Program suspend command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00B0;  
/* write suspend command  
*/  
Table 8.19 Program Resume  
(LLD Function = lld_ProgramResumeCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Bank Address  
Data  
1
Write  
Bank Address  
0030h  
The following is a C source code example of using the program resume function. Refer to the  
Spansion Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com)  
for general information on Spansion Flash memory software development guidelines.  
/* Example: Program resume command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0030;  
/* write resume command  
*/  
8.5.7  
Accelerated Program/Chip Erase  
Accelerated single word programming, write buffer programming, sector erase, and chip erase  
operations are enabled through the ACC function. This method is faster than the standard chip  
program and erase command sequences.  
The accelerated chip program and erase functions must not be used more than 10 times  
per sector. In addition, accelerated chip program and erase should be performed at room tem-  
perature (25°C ±10°C).  
42  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
If the system asserts VHH on this input, the device automatically enters the aforementioned Un-  
lock Bypass mode and uses the higher voltage on the input to reduce the time required for  
program and erase operations. The system can then use the Write Buffer Load command se-  
quence provided by the Unlock Bypass mode. Note that if a Write-to-Buffer-Abort Reset is  
required while in Unlock Bypass mode, the full 3-cycle RESET command sequence must be used  
to reset the device. Removing VHH from the ACC input, upon completion of the embedded pro-  
gram or erase operation, returns the device to normal operation.  
„ Sectors must be unlocked prior to raising ACC to VHH  
.
„ The ACC pin must not be at VHH for operations other than accelerated programming and ac-  
celerated chip erase, or device damage may result.  
„ The ACC pin must not be left floating or unconnected; inconsistent behavior of the device may  
result.  
„ ACC locks all sector if set to VIL. ACC should be set to VIH for all other conditions.  
8.5.8  
Unlock Bypass  
The device features an Unlock Bypass mode to facilitate faster word programming. Once the de-  
vice enters the Unlock Bypass mode, only two write cycles are required to program data, instead  
of the normal four cycles.  
This mode dispenses with the initial two unlock cycles required in the standard program command  
sequence, resulting in faster total programming time. See the Appendix for the requirements for  
the unlock bypass command sequences.  
During the unlock bypass mode, only the Read, Unlock Bypass Program and Unlock Bypass Reset  
commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock  
bypass reset command sequence. The first cycle must contain the bank address and the data 90h.  
The second cycle need only contain the data 00h. The bank then returns to the read mode.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
43  
A d v a n c e I n f o r m a t i o n  
Software Functions and Sample Code  
The following are C source code examples of using the unlock bypass entry, program, and exit  
functions. Refer to the Spansion Low Level Driver User’s Guide (available soon on www.amd.com  
and www.fujitsu.com) for general information on Spansion Flash “memory software development  
guidelines.  
Table 8.20 Unlock Bypass Entry  
(LLD Function = lld_UnlockBypassEntryCmd)  
Cycle  
Description  
Unlock  
Operation  
Write  
Write  
Write  
*/  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
1
2
3
00AAh  
0055h  
0020h  
Unlock  
Entry Command  
/* Example: Unlock Bypass Entry Command  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)bank_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0020;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write unlock bypass command  
*/  
*/  
*/  
/* At this point, programming only takes two write cycles.  
/* Once you enter Unlock Bypass Mode, do a series of like  
/* operations (programming or sector erase) and then exit  
/* Unlock Bypass Mode before beginning a different type of  
/* operations.  
*/  
*/  
*/  
*/  
*/  
Table 8.21 Unlock Bypass Program  
(LLD Function = lld_UnlockBypassProgramCmd)  
Cycle  
Description  
Operation  
Write  
Byte Address  
Base + xxxh  
Word Address  
Data  
00A0h  
1
2
Program Setup Command  
Program Command  
Base +xxxh  
Write  
Program Address  
Program Address  
Program Data  
/* Example: Unlock Bypass Program Command */  
/* Do while in Unlock Bypass Entry Mode! */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x00A0;  
/* write program setup command  
/* write data to be programmed  
*/  
*/  
*( (UINT16 *)pa )  
= data;  
*/  
/* Poll until done or error.  
/* If done and more to program, */  
/* do above two cycles again. */  
Table 8.22 Unlock Bypass Reset  
(LLD Function = lld_UnlockBypassResetCmd)  
Cycle  
Description  
Reset Cycle 1  
Reset Cycle 2  
Operation  
Write  
Byte Address  
Base + xxxh  
Base + xxxh  
Word Address  
Data  
1
2
Base +xxxh  
Base +xxxh  
0090h  
0000h  
Write  
/* Example: Unlock Bypass Exit Command */  
*( (UINT16 *)base_addr + 0x000 ) = 0x0090;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
8.5.9  
Write Operation Status  
The device provides several bits to determine the status of a program or erase operation. The  
following subsections describe the function of DQ1, DQ2, DQ3, DQ5, DQ6, and DQ7.  
DQ7: Data# Polling. The Data# Polling bit, DQ7, indicates to the host system whether an Em-  
bedded Program or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command se-  
44  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
quence. Note that the Data# Polling is valid only for the last word being programmed in the write-  
buffer-page during Write Buffer Programming. Reading Data# Polling status on any word other  
than the last word to be programmed in the write-buffer-page returns false status information.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend.  
When the Embedded Program algorithm is complete, the device outputs the datum programmed  
to DQ7. The system must provide the program address to read valid status information on DQ7.  
If a program address falls within a protected sector, Data# polling on DQ7 is active for approxi-  
mately tPSP, then that bank returns to the read mode.  
During the Embedded Erase Algorithm, Data# polling produces a 0 on DQ7. When the Embedded  
Erase algorithm is complete, or if the bank enters the Erase Suspend mode, Data# Polling pro-  
duces a 1 on DQ7. The system must provide an address within any of the sectors selected for  
erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately tASP, then the bank returns to the read mode.  
If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7  
at an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ6-DQ0 while Output Enable (OE#) is asserted low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when the system  
samples the DQ7 output, it may read the status or valid data. Even if the device has completed  
the program or erase operation and DQ7 has valid data, the data outputs on DQ6-DQ0 may be  
still invalid. Valid data on DQ7-D00 appears on successive read cycles.  
See the following for more information: Table 8.23, Write Operation Status, shows the outputs  
for Data# Polling on DQ7. Figure 8.6, Write Operation Status Flowchart, shows the Data# Polling  
algorithm; and Figure 12.17, Data# Polling Timings (During Embedded Algorithm), shows the  
Data# Polling timing diagram.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
45  
A d v a n c e I n f o r m a t i o n  
START  
Read 1  
(Note 6)  
YES  
Erase  
Operation  
Complete  
DQ7=valid  
data?  
NO  
YES  
YES  
Read 2  
Read 1  
DQ5=1?  
Read3=  
valid data?  
NO  
NO  
Read 3  
Read 2  
Read 3  
Program  
Operation  
Failed  
YES  
Write Buffer  
Programming?  
YES  
Programming  
NO  
Operation?  
NO  
Device BUSY,  
Re-Poll  
(Note 3)  
(Note 5)  
(Note 1)  
YES  
(Note 1)  
(Note 2)  
YES  
YES  
DQ6  
toggling?  
DQ6  
DEVICE  
ERROR  
TIMEOUT  
toggling?  
NO  
(Note 4)  
NO  
YES  
Read3  
DQ1=1?  
NO  
Device BUSY,  
Re-Poll  
DQ2  
toggling?  
NO  
Read 2  
Read 3  
Device BUSY,  
Re-Poll  
Erase  
Device in  
Erase/Suspend  
Mode  
Operation  
Complete  
Read3  
DQ1=1  
YES  
Write Buffer  
AND DQ7 ≠  
Valid Data?  
Operation  
Failed  
NO  
Notes:  
1) DQ6 is toggling if Read2 DQ6 does not equal Read3 DQ6.  
2) DQ2 is toggling if Read2 DQ2 does not equal Read3 DQ2.  
3) May be due to an attempt to program a 0 to 1. Use the RESET  
command to exit operation.  
Device BUSY,  
Re-Poll  
4) Write buffer error if DQ1 of last read =1.  
5) Invalid state, use RESET command to exit operation.  
6) Valid data is the data that is intended to be programmed or all 1's for  
an erase operation.  
7) Data polling algorithm valid for all operations except advanced sector  
protection.  
Figure 8.6 Write Operation Status Flowchart  
46  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
DQ6: Toggle Bit I . Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algo-  
rithm is in progress or complete, or whether the device has entered the Erase Suspend mode.  
Toggle Bit I may be read at any address in the same bank, and is valid after the rising edge of  
the final WE# pulse in the command sequence (prior to the program or erase operation), and dur-  
ing the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for approximately tASP [all sectors protected toggle time], then returns to reading array  
data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unpro-  
tected sectors, and ignores the selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or  
is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm  
is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops tog-  
gling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately tPAP after the  
program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embed-  
ded Program Algorithm is complete.  
See the following for additional information: Figure 8.6, Write Operation Status Flowchart;  
Figure 12.18, Toggle Bit Timings (During Embedded Algorithm), and Table 8.23 and Table 8.24.  
Toggle Bit I on DQ6 requires either OE# or CE# to be de-asserted and reasserted to show the  
change in state.  
DQ2: Toggle Bit II . The Toggle Bit II on DQ2, when used with DQ6, indicates whether a partic-  
ular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether  
that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse  
in the command sequence. DQ2 toggles when the system reads at addresses within those sectors  
that have been selected for erasure. But DQ2 cannot distinguish whether the sector is actively  
erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively eras-  
ing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus,  
both status bits are required for sector and mode information. Refer to Table 8.23 to compare  
outputs for DQ2 and DQ6. See the following for additional information: Figure 8.6, the DQ6: Tog-  
gle Bit I section, and Figures 12.1712.20.  
Reading Toggle Bits DQ6/DQ2. Whenever the system initially begins reading toggle bit status,  
it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typ-  
ically, the system would note and store the value of the toggle bit after the first read. After the  
second read, the system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erases operation. The system can  
read array data on DQ7–DQ0 on the following read cycle. However, if after the initial two read  
cycles, the system determines that the toggle bit is still toggling, the system also should note  
whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then deter-  
mine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just  
as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed  
the program or erases operation. If it is still toggling, the device did not complete the operation  
successfully, and the system must write the reset command to return to reading array data. The  
remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5  
has not gone high. The system may continue to monitor the toggle bit and DQ5 through succes-  
sive read cycles, determining the status as described in the previous paragraph. Alternatively, it  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
47  
A d v a n c e I n f o r m a t i o n  
may choose to perform other system tasks. In this case, the system must start at the beginning  
of the algorithm when it returns to determine the status of the operation. Refer to Figure 8.6 for  
more details.  
DQ5: Exceeded Timing Limits. DQ5 indicates whether the program or erase time has exceeded  
a specified internal pulse count limit. Under these conditions DQ5 produces a 1, indicating that  
the program or erase cycle was not successfully completed. The device may output a 1 on DQ5 if  
the system tries to program a 1 to a location that was previously programmed to 0 Only an erase  
operation can change a 0 back to a 1. Under this condition, the device halts the operation, and  
when the timing limit has been exceeded, DQ5 produces a 1. Under both these conditions, the  
system must write the reset command to return to the read mode (or to the erase-suspend-read  
mode if a bank was previously in the erase-suspend-program mode).  
DQ3: Sector Erase Timeout State Indicator. After writing a sector erase command sequence,  
the system may read DQ3 to determine whether or not erasure has begun. (The sector erase  
timer does not apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command. When the time-out  
period is complete, DQ3 switches from a 0 to a 1. If the time between additional sector erase  
commands from the system can be assumed to be less than tSEA, the system need not monitor  
DQ3. See Sector Erase Command Sequence for more details.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and  
then read DQ3. If DQ3 is 1, the Embedded Erase algorithm has begun; all further commands (ex-  
cept Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 0 the device  
accepts additional sector erase commands. To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to and following each sub-sequent sector erase  
command. If DQ3 is high on the second status check, the last command might not have been  
accepted. Table 8.23 shows the status of DQ3 relative to the other status bits.  
DQ1: Write to Buffer Abort. DQ1 indicates whether a Write to Buffer operation was aborted.  
Under these conditions DQ1 produces a 1. The system must issue the Write to Buffer Abort Reset  
command sequence to return the device to reading array data. See Write Buffer Programming  
Operation for more details.  
Table 8.23 Write Operation Status  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
INVALID  
Program  
Suspend  
Mode  
Reading within Program Suspended Sector  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
(Not  
Allowed)  
Reading within Non-Program Suspended  
Sector  
(Note 3)  
Data  
Data  
Data  
Data  
Data  
Data  
BUSY State  
DQ7#  
DQ7#  
DQ7#  
Toggle  
Toggle  
Toggle  
0
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
0
1
Write to  
Buffer  
(Note 5)  
Exceeded Timing Limits  
ABORT State  
Notes:  
1. DQ5 switches to 1 when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to the  
section on DQ5 for more information.  
2. DQ7 a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. Data are invalid for addresses in a Program Suspended sector.  
4. DQ1 indicates the Write to Buffer ABORT status during Write Buffer Programming operations.  
5. The data-bar polling algorithm should be used for Write Buffer Programming operations. Note that DQ7# during Write Buffer Programming  
indicates the data-bar for DQ7 data for the Last Loaded Write-buffer Address location.  
48  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
8.6 Simultaneous Read/Write  
The simultaneous read/write feature allows the host system to read data from one bank of mem-  
ory while programming or erasing another bank of memory. An erase operation may also be  
suspended to read from or program another location within the same bank (except the sector  
being erased). Figure 12.24, Back-to-Back Read/Write Cycle Timings, shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. Refer to the DC Character-  
istics table for read-while-program and read-while-erase current specification.  
8.7 Writing Commands/Command Sequences  
When the device is configured for Asynchronous read, only Asynchronous write operations are  
allowed, and CLK is ignored. When in the Synchronous read mode configuration, the device is able  
to perform both Asynchronous and Synchronous write operations. CLK and AVD# induced address  
latches are supported in the Synchronous programming mode. During a synchronous write oper-  
ation, to write a command or command sequence (which includes programming data to the  
device and erasing sectors of memory), the system must drive AVD# and CE# to VIL, and OE#  
to VIH when providing an address to the device, and drive WE# and CE# to VIL, and OE# to VIH  
when writing commands or data. During an asynchronous write operation, the system must drive  
CE# and WE# to VIL and OE# to VIH when providing an address, command, and data. Addresses  
are latched on the last falling edge of WE# or CE#, while data is latched on the 1st rising edge of  
WE# or CE#. An erase operation can erase one sector, multiple sectors, or the entire device.  
Tables 7.17.3 indicate the address space that each sector occupies. The device address space is  
divided into sixteen banks: Banks 1 through 14 contain only 64 Kword sectors, while Banks 0 and  
15 contain both 16 Kword boot sectors in addition to 64 Kword sectors. A bank address is the set  
of address bits required to uniquely select a bank. Similarly, a sector address is the address bits  
required to uniquely select a sector. ICC2 in DC Characteristics represents the active current spec-  
ification for the write mode. AC Characteristics—Synchronous and AC Characteristics—  
Asynchronous Read contain timing specification tables and timing diagrams for write operations.  
8.8 Handshaking  
The handshaking feature allows the host system to detect when data is ready to be read by simply  
monitoring the RDY (Ready) pin, which is a dedicated output and controlled by CE#.  
When the device is configured to operate in synchronous mode, and OE# is low (active), the initial  
word of burst data becomes available after either the falling or rising edge of the RDY pin (de-  
pending on the setting for bit 10 in the Configuration Register). It is recommended that the host  
system set CR13–CR11 in the Configuration Register to the appropriate number of wait states to  
ensure optimal burst mode operation (see Table 8.8, Configuration Register).  
Bit 8 in the Configuration Register allows the host to specify whether RDY is active at the same  
time that data is ready, or one cycle before data is ready.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
49  
A d v a n c e I n f o r m a t i o n  
8.9 Hardware Reset  
The RESET# input provides a hardware method of resetting the device to reading array data.  
When RESET# is driven low for at least a period of tRP, the device immediately terminates any  
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data.  
To ensure data integrity the operation that was interrupted should be reinitiated once the device  
is ready to accept another command sequence.  
When RESET# is held at VSS, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL, but not at VSS, the standby current is greater.  
RESET# may be tied to the system reset circuitry which enables the system to read the boot-up  
firmware from the Flash memory upon a system reset.  
See Figures 12.5 and 12.12 for timing diagrams.  
8.10 Software Reset  
Software reset is part of the command set (see Table 13.1) that also returns the device to array  
read mode and must be used for the following conditions:  
1. to exit Autoselect mode  
2. when DQ5 goes high during write status operation that indicates program or erase cycle was  
not successfully completed  
3. exit sector lock/unlock operation.  
4. to return to erase-suspend-read mode if the device was previously in Erase Suspend mode.  
5. after any aborted operations  
Software Functions and Sample Code  
Table 8.24 Reset  
(LLD Function = lld_ResetCmd)  
Cycle  
Operation  
Byte Address  
Word Address  
Data  
Reset Command  
Write  
Base + xxxh  
Base + xxxh  
00F0h  
Note: Base = Base Address.  
The following is a C source code example of using the reset function. Refer to the Spansion  
Low Level Driver User’s Guide (available on www.amd.com and www.fujitsu.com) for general  
information on Spansion Flash memory software development guidelines.  
/* Example: Reset (software reset of Flash state machine) */  
*( (UINT16 *)base_addr + 0x000 ) = 0x00F0;  
The following are additional points to consider when using the reset command:  
„ This command resets the banks to the read and address bits are ignored.  
„ Reset commands are ignored once erasure has begun until the operation is complete.  
„ Once programming begins, the device ignores reset commands until the operation is com-  
plete  
„ The reset command may be written between the cycles in a program command sequence be-  
fore programming begins (prior to the third cycle). This resets the bank to which the system  
was writing to the read mode.  
50  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
„ If the program command sequence is written to a bank that is in the Erase Suspend mode,  
writing the reset command returns that bank to the erase-suspend-read mode.  
„ The reset command may be also written during an Autoselect command sequence.  
„ If a bank has entered the Autoselect mode while in the Erase Suspend mode, writing the reset  
command returns that bank to the erase-suspend-read mode.  
„ If DQ1 goes high during a Write Buffer Programming operation, the system must write the  
Write to Buffer Abort Reset command sequence to RESET the device to reading array data.  
The standard RESET command does not work during this condition.  
„ To exit the unlock bypass mode, the system must issue a two-cycle unlock bypass reset com-  
mand sequence [see command table for details].  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
51  
A d v a n c e I n f o r m a t i o n  
9 Advanced Sector Protection/Unprotection  
The Advanced Sector Protection/Unprotection feature disables or enables programming or erase  
operations in any or all sectors and can be implemented through software and/or hardware meth-  
ods, which are independent of each other. This section describes the various methods of  
protecting data stored in the memory array. An overview of these methods in shown in Figure 9.1.  
Hardware Methods  
Software Methods  
Lock Register  
(One Time Programmable)  
ACC = V  
IL  
All sectors locked)  
Persistent Method  
Password Method  
(
(DQ1)  
(DQ2)  
WP# = V  
IL  
(All boot  
sectors locked)  
64-bit Password  
(One Time Protect)  
1. Bit is volatile, and defaults to “1” on  
reset.  
PPB Lock Bit1,2,3  
2. Programming to “0” locks all PPBs to  
their current state.  
0 = PPBs Locked  
1 = PPBs Unlocked  
3. Once programmed to “0, requires  
hardware reset to unlock.  
Persistent  
Protection Bit  
(PPB)4,5  
Dynamic  
Protection Bit  
(PPB)6,7,8  
Memory Array  
Sector 0  
Sector 1  
Sector 2  
PPB 0  
PPB 1  
PPB 2  
DYB 0  
DYB 1  
DYB 2  
Sector N-2  
Sector N-1  
PPB N-2  
PPB N-1  
PPB N  
DYB N-2  
DYB N-1  
DYB N  
Sector N3  
3. N = Highest Address Sector.  
4. 0 = Sector Protected,  
1 = Sector Unprotected.  
6. 0 = Sector Protected,  
1 = Sector Unprotected.  
5. PPBs programmed individually,  
but cleared collectively  
7. Protect effective only if PPB Lock Bit  
is unlocked and corresponding PPB  
is “1” (unprotected).  
8. Volatile Bits: defaults to user choice  
upon power-up (see ordering  
options).  
Figure 9.1 Advanced Sector Protection/Unprotection  
52  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
9.1  
Lock Register  
As shipped from the factory, all devices default to the persistent mode when power is applied, and  
all sectors are unprotected, unless otherwise chosen through the DYB ordering option. The device  
programmer or host system must then choose which sector protection method to use. Program-  
ming (setting to 0) any one of the following two one-time programmable, non-volatile bits locks  
the part permanently in that mode:  
„ Lock Register Persistent Protection Mode Lock Bit (DQ1)  
„ Lock Register Password Protection Mode Lock Bit (DQ2)  
Table 9.1 Lock Register  
Device  
DQ15-05  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
Customer  
Secured Silicon  
Sector  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
S29WS256N  
1
1
1
Protection Bit  
DYB Lock Boot Bit  
PPB One-Time  
0 = sectors  
power up  
protected  
Programmable Bit  
Password  
Protection  
Mode Lock Bit  
Persistent  
Protection  
Mode Lock Bit  
Secured Silicon  
Sector  
Protection Bit  
S29WS128N/  
S29WS064N  
0 = All PPB erase  
command disabled  
Undefined  
1 = sectors  
power up  
unprotected  
1 = All PPB Erase  
command enabled  
For programming lock register bits refer to Table 13.2.  
Notes  
1. If the password mode is chosen, the password must be programmed before setting the cor-  
responding lock register bit.  
2. After the Lock Register Bits Command Set Entry command sequence is written, reads and  
writes for Bank 0 are disabled, while reads from other banks are allowed until exiting this  
mode.  
3. If both lock bits are selected to be programmed (to zeros) at the same time, the operation  
aborts.  
4. Once the Password Mode Lock Bit is programmed, the Persistent Mode Lock Bit is permanently  
disabled, and no changes to the protection scheme are allowed. Similarly, if the Persistent  
Mode Lock Bit is programmed, the Password Mode is permanently disabled.  
After selecting a sector protection method, each sector can operate in any of the following three  
states:  
1. Constantly locked. The selected sectors are protected and can not be reprogrammed unless  
PPB lock bit is cleared via a password, hardware reset, or power cycle.  
2. Dynamically locked. The selected sectors are protected and can be altered via software  
commands.  
3. Unlocked. The sectors are unprotected and can be erased and/or programmed.  
These states are controlled by the bit types described in Sections 9.29.6.  
9.2 Persistent Protection Bits  
The Persistent Protection Bits are unique and nonvolatile for each sector and have the same en-  
durances as the Flash memory. Preprogramming and verification prior to erasure are handled by  
the device, and therefore do not require system monitoring.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
53  
A d v a n c e I n f o r m a t i o n  
Notes  
1. Each PPB is individually programmed and all are erased in parallel.  
2. While programming PPB for a sector, array data can be read from any other bank, except  
Bank 0 (used for Data# Polling) and the bank in which sector PPB is being programmed.  
3. Entry command disables reads and writes for the bank selected.  
4. Reads within that bank return the PPB status for that sector.  
5. Reads from other banks are allowed while writes are not allowed.  
6. All Reads must be performed using the Asynchronous mode.  
7. The specific sector address (A23-A14 WS256N, A22-A14 WS128N, A21-A14 WS064N) are  
written at the same time as the program command.  
8. If the PPB Lock Bit is set, the PPB Program or erase command does not execute and times-  
out without programming or erasing the PPB.  
9. There are no means for individually erasing a specific PPB and no specific sector address is  
required for this operation.  
10. Exit command must be issued after the execution which resets the device to read mode and  
re-enables reads and writes for Bank 0  
11. The programming state of the PPB for a given sector can be verified by writing a PPB  
Status Read Command to the device as described by the flow chart shown in Figure 9.2.  
54  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Enter PPB  
Command Set.  
Addr = BA  
Program PPB Bit.  
Addr = SA  
Read Byte Twice  
Addr = SA0  
No  
DQ6 =  
Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Wait 500 µs  
Read Byte Twice  
Addr = SA0  
No  
Read Byte.  
Addr = SA  
DQ6 =  
Toggle?  
Yes  
DQ0 =  
No  
'1' (Erase)  
'0' (Pgm.)?  
FAIL  
Yes  
Issue Reset  
Command  
PASS  
Exit PPB  
Command Set  
Figure 9.2 PPB Program/Erase Algorithm  
9.3 Dynamic Protection Bits  
Dynamic Protection Bits are volatile and unique for each sector and can be individually modified.  
DYBs only control the protection scheme for unprotected sectors that have their PPBs cleared  
(erased to 1). By issuing the DYB Set or Clear command sequences, the DYBs are set (pro-  
grammed to 0) or cleared (erased to 1), thus placing each sector in the protected or unprotected  
state respectively. This feature allows software to easily protect sectors against inadvertent  
changes yet does not prevent the easy removal of protection when changes are needed.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
55  
A d v a n c e I n f o r m a t i o n  
Notes  
1. The DYBs can be set (programmed to 0) or cleared (erased to 1) as often as needed.  
When the parts are first shipped, the PPBs are cleared (erased to 1) and upon power up or reset,  
the DYBs can be set or cleared depending upon the ordering option chosen.  
2. If the option to clear the DYBs after power up is chosen, (erased to 1), then the sectorsmay  
be modified depending upon the PPB state of that sector (see Table 9.2).  
3. The sectors would be in the protected state If the option to set the DYBs after power up is  
chosen (programmed to 0).  
4. It is possible to have sectors that are persistently locked with sectors that are left in the  
dynamic state.  
5. The DYB Set or Clear commands for the dynamic sectors signify protected or unprotected  
state of the sectors respectively. However, if there is a need to change the status of the per-  
sistently locked sectors, a few more steps are required. First, the PPB Lock Bit must be  
cleared by either putting the device through a power-cycle, or hardware reset. The PPBs can  
then be changed to reflect the desired settings. Setting the PPB Lock Bit once again locks  
the PPBs, and the device operates normally again.  
6. To achieve the best protection, it is recommended to execute the PPB Lock Bit Set command  
early in the boot code and protect the boot code by holding WP# = VIL. Note that the PPB  
and DYB bits have the same function when ACC = VHH as they do when ACC =VIH.  
9.4 Persistent Protection Bit Lock Bit  
The Persistent Protection Bit Lock Bit is a global volatile bit for all sectors. When set (programmed  
to 0), it locks all PPBs and when cleared (programmed to 1), allows the PPBs to be changed. There  
is only one PPB Lock Bit per device.  
Notes  
1. No software command sequence unlocks this bit unless the device is in the password pro-  
tection mode; only a hardware reset or a power-up clears this bit.  
2. The PPB Lock Bit must be set (programmed to 0) only after all PPBs are configured to the  
desired settings.  
9.5 Password Protection Method  
The Password Protection Method allows an even higher level of security than the Persistent Sector  
Protection Mode by requiring a 64 bit password for unlocking the device PPB Lock Bit. In addition  
to this password requirement, after power up and reset, the PPB Lock Bit is set 0 to maintain the  
password mode of operation. Successful execution of the Password Unlock command by entering  
the entire password clears the PPB Lock Bit, allowing for sector PPBs modifications.  
56  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Notes  
1. There is no special addressing order required for programming the password. Once the  
Password is written and verified, the Password Mode Locking Bit must be set in order to pre-  
vent access.  
2. The Password Program Command is only capable of programming 0s. Programming a 1 after  
a cell is programmed as a 0 results in a time-out with the cell as a 0.  
3. The password is all 1s when shipped from the factory.  
4. All 64-bit password combinations are valid as a password.  
5. There is no means to verify what the password is after it is set.  
6. The Password Mode Lock Bit, once set, prevents reading the 64-bit password on the data  
bus and further password programming.  
7. The Password Mode Lock Bit is not erasable.  
8. The lower two address bits (A1–A0) are valid during the Password Read, Password Program,  
and Password Unlock.  
9. The exact password must be entered in order for the unlocking function to occur.  
10. The Password Unlock command cannot be issued any faster than 1 µs at a time to prevent  
a hacker from running through all the 64-bit combinations in an attempt to correctly match  
a password.  
11. Approximately 1 µs is required for unlocking the device after the valid 64-bit password is  
given to the device.  
12. Password verification is only allowed during the password programming operation.  
13. All further commands to the password region are disabled and all operations are ignored.  
14. If the password is lost after setting the Password Mode Lock Bit, there is no way to clear the  
PPB Lock Bit.  
15. Entry command sequence must be issued prior to any of any operation and it disables reads  
and writes for Bank 0. Reads and writes for other banks excluding Bank 0 are allowed.  
16. If the user attempts to program or erase a protected sector, the device ignores the com-  
mand and returns to read mode.  
17. A program or erase command to a protected sector enables status polling and returns to  
read mode without having modified the contents of the protected sector.  
18. The programming of the DYB, PPB, and PPB Lock for a given sector can be verified by writing  
individual status read commands DYB Status, PPB Status, and PPB Lock Status to the  
device.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
57  
A d v a n c e I n f o r m a t i o n  
Write Unlock Cycles:  
Address 555h, Data AAh  
Address 2AAh, Data 55h  
Unlock Cycle 1  
Unlock Cycle 2  
Write  
Enter Lock Register Command:  
Address 555h, Data 40h  
XXXh = Address don’t care  
* Not on future devices  
Program Lock Register Data  
Address XXXh, Data A0h  
Address 77h*, Data PD  
Program Data (PD): See text for Lock Register  
definitions  
Caution: Lock register can only be progammed  
once.  
Wait 4 µs  
Perform Polling Algorithm  
(see Write Operation Status  
flowchart)  
Yes  
Done?  
No  
No  
DQ5 = 1?  
Yes  
Error condition (Exceeded Timing Limits)  
PASS. Write Lock Register  
Exit Command:  
FAIL. Write rest command  
to return to reading array.  
Address XXXh, Data 90h  
Address XXXh, Data 00h  
Device returns to reading array.  
Figure 9.3 Lock Register Program Algorithm  
58  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
9.6 Advanced Sector Protection Software Examples  
Table 9.2  
Unique Device PPB Lock Bit  
0 = locked  
Sector PPB  
0 = protected  
1 = unprotected  
Sector DYB  
0 = protected  
1 = unprotected  
1 = unlocked  
Sector Protection Status  
Protected through PPB  
Protected through PPB  
Unprotected  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
Any Sector  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
x
x
1
0
x
x
0
1
Protected through DYB  
Protected through PPB  
Protected through PPB  
Protected through DYB  
Unprotected  
Table 9.2 contains all possible combinations of the DYB, PPB, and PPB Lock Bit relating to the sta-  
tus of the sector. In summary, if the PPB Lock Bit is locked (set to 0), no changes to the PPBs are  
allowed. The PPB Lock Bit can only be unlocked (reset to 1) through a hardware reset or power  
cycle. See also Figure 9.1 for an overview of the Advanced Sector Protection feature.  
9.7 Hardware Data Protection Methods  
The device offers two main types of data protection at the sector level via hardware control:  
„ When WP# is at VIL, the four outermost sectors are locked (device specific).  
„ When ACC is at VIL, all sectors are locked.  
There are additional methods by which intended or accidental erasure of any sectors can be pre-  
vented via hardware means. The following subsections describes these methods:  
9.7.1  
WP# Method  
The Write Protect feature provides a hardware method of protecting the four outermost sectors.  
This function is provided by the WP# pin and overrides the previously discussed Sector Protec-  
tion/Unprotection method.  
If the system asserts VIL on the WP# pin, the device disables program and erase functions in the  
outermost boot sectors. The outermost boot sectors are the sectors containing both the lower and  
upper set of sectors in a dual-boot-configured device.  
If the system asserts VIH on the WP# pin, the device reverts to whether the boot sectors were  
last set to be protected or unprotected. That is, sector protection or unprotection for these sectors  
depends on whether they were last protected or unprotected.  
Note that the WP# pin must not be left floating or unconnected as inconsistent behavior of the  
device may result.  
The WP# pin must be held stable during a command sequence execution  
9.7.2  
9.7.3  
ACC Method  
This method is similar to above, except it protects all sectors. Once ACC input is set to VIL, all  
program and erase functions are disabled and hence all sectors are protected.  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during  
VCC power-up and power-down.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
59  
A d v a n c e I n f o r m a t i o n  
The command register and all internal program/erase circuits are disabled, and the device resets  
to reading array data. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control inputs to prevent unintentional writes when VCC is  
greater than VLKO  
.
9.7.4  
9.7.5  
Write Pulse Glitch Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.  
Power-Up Write Inhibit  
If WE# = CE# = RESET# = VIL and OE# = VIH during power up, the device does not accept com-  
mands on the rising edge of WE#. The internal state machine is automatically reset to the read  
mode on power-up.  
60  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
10 Power Conservation Modes  
10.1 Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby  
mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the  
high impedance state, independent of the OE# input. The device enters the CMOS standby mode  
when the CE# and RESET# inputs are both held at VCC ± 0.2 V. The device requires standard  
access time (tCE) for read access, before it is ready to read data. If the device is deselected during  
erasure or programming, the device draws active current until the operation is completed. ICC3 in  
DC Characteristics represents the standby current specification  
10.2 Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption while in asynchronous  
mode. the device automatically enables this mode when addresses remain stable for tACC + 20  
ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Stan-  
dard address access timings provide new data when addresses are changed. While in sleep mode,  
output data is latched and always available to the system. While in synchronous mode, the auto-  
matic sleep mode is disabled. Note that a new burst operation is required to provide new data.  
ICC6 in DC Characteristics represents the automatic sleep mode current specification.  
10.3 Hardware RESET# Input Operation  
The RESET# input provides a hardware method of resetting the device to reading array data.  
When RESET# is driven low for at least a period of tRP, the device immediately terminates any  
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data. The operation that was interrupted should be reinitiated once the  
device is ready to accept another command sequence to ensure data integrity.  
When RESET# is held at VSS ± 0.2 V, the device draws CMOS standby current (ICC4). If RESET#  
is held at VIL but not within VSS ± 0.2 V, the standby current is greater.  
RESET# may be tied to the system reset circuitry and thus, a system reset would also reset the  
Flash memory, enabling the system to read the boot-up firmware from the Flash memory.  
10.4 Output Disable (OE#)  
When the OE# input is at VIH, output from the device is disabled. The outputs are placed in the  
high impedance state.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
61  
A d v a n c e I n f o r m a t i o n  
11 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector provides an extra Flash memory region that enables permanent part  
identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is 256 words  
in length that consists of 128 words for factory data and 128 words for customer-secured areas.  
All Secured Silicon reads outside of the 256-word address range returns invalid data. The Factory  
Indicator Bit, DQ7, (at Autoselect address 03h) is used to indicate whether or not the Factory Se-  
cured Silicon Sector is locked when shipped from the factory. The Customer Indicator Bit (DQ6)  
is used to indicate whether or not the Customer Secured Silicon Sector is locked when shipped  
from the factory.  
Please note the following general conditions:  
„ While Secured Silicon Sector access is enabled, simultaneous operations are allowed except  
for Bank 0.  
„ On power-up, or following a hardware reset, the device reverts to sending commands to the  
normal address space.  
„ Reads can be performed in the Asynchronous or Synchronous mode.  
„ Burst mode reads within Secured Silicon Sector wrap from address FFh back to address 00h.  
„ Reads outside of sector 0 return memory array data.  
„ Continuous burst read past the maximum address is undefined.  
„ Sector 0 is remapped from memory array to Secured Silicon Sector array.  
„ Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit  
command must be issued to exit Secured Silicon Sector Mode.  
„ The Secured Silicon Sector is not accessible when the device is executing an Embedded Pro-  
gram or Embedded Erase algorithm.  
Table 11.1 Addresses  
Sector  
Customer  
Factory  
Sector Size  
128 words  
128 words  
Address Range  
000080h-0000FFh  
000000h-00007Fh  
11.1 Factory Secured SiliconSector  
The Factory Secured Silicon Sector is always protected when shipped from the factory and has  
the Factory Indicator Bit (DQ7) permanently set to a 1. This prevents cloning of a factory locked  
part and ensures the security of the ESN and customer code once the product is shipped to the  
field.  
These devices are available pre programmed with one of the following:  
„ A random, 8 Word secure ESN only within the Factory Secured Silicon Sector  
„ Customer code within the Customer Secured Silicon Sector through the SpansionTM program-  
ming service.  
„ Both a random, secure ESN and customer code through the Spansion programming service.  
Customers may opt to have their code programmed through the Spansion programming services.  
Spansion programs the customer's code, with or without the random ESN. The devices are then  
shipped from the Spansion factory with the Factory Secured Silicon Sector and Customer Secured  
Silicon Sector permanently locked. Contact your local representative for details on using Spansion  
programming services.  
62  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
11.2 Customer Secured Silicon Sector  
The Customer Secured Silicon Sector is typically shipped unprotected (DQ6 set to 0), allowing  
customers to utilize that sector in any manner they choose. If the security feature is not required,  
the Customer Secured Silicon Sector can be treated as an additional Flash memory space.  
Please note the following:  
„ Once the Customer Secured Silicon Sector area is protected, the Customer Indicator Bit is  
permanently set to 1.  
„ The Customer Secured Silicon Sector can be read any number of times, but can be pro-  
grammed and locked only once. The Customer Secured Silicon Sector lock must be used with  
caution as once locked, there is no procedure available for unlocking the Customer Secured  
Silicon Sector area and none of the bits in the Customer Secured Silicon Sector memory space  
can be modified in any way.  
„ The accelerated programming (ACC) and unlock bypass functions are not available when pro-  
gramming the Customer Secured Silicon Sector, but reading in Banks 1 through 15 is avail-  
able.  
„ Once the Customer Secured Silicon Sector is locked and verified, the system must write the  
Exit Secured Silicon Sector Region command sequence which return the device to the mem-  
ory array at sector 0.  
11.3  
Secured Silicon Sector Entry and Secured Silicon Sector Exit Command Sequences  
The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured  
Silicon Sector command sequence. The device continues to access the Secured Silicon Sector re-  
gion until the system issues the four-cycle Exit Secured Silicon Sector command sequence.  
See Command Definition Table [Secured Silicon Sector Command Table, Appendix  
Table 13.1 for address and data requirements for both command sequences.  
The Secured Silicon Sector Entry Command allows the following commands to be executed  
„ Read customer and factory Secured Silicon areas  
„ Program the customer Secured Silicon Sector  
After the system has written the Enter Secured Silicon Sector command sequence, it may read  
the Secured Silicon Sector by using the addresses normally occupied by sector SA0 within the  
memory array. This mode of operation continues until the system issues the Exit Secured Silicon  
Sector command sequence, or until power is removed from the device.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
63  
A d v a n c e I n f o r m a t i o n  
Software Functions and Sample Code  
The following are C functions and source code examples of using the Secured Silicon Sector  
Entry, Program, and exit commands. Refer to the Spansion Low Level Driver User’s Guide  
(available soon on www.amd.com and www.fujitsu.com) for general information on Spansion  
Flash memory software development guidelines.  
Table 11.2 Secured Silicon Sector Entry  
(LLD Function = lld_SecSiSectorEntryCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
00AAh  
0055h  
0088h  
Write  
Entry Cycle  
Write  
Note: Base = Base Address.  
/* Example: SecSi Sector Entry Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0088;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write Secsi Sector Entry Cmd  
*/  
*/  
*/  
Table 11.3 Secured Silicon Sector Program  
(LLD Function = lld_ProgramCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Word Address  
Data  
00AAh  
Unlock Cycle 1  
Unlock Cycle 2  
Program Setup  
Write  
0055h  
Write  
00A0h  
Program  
Write  
Data Word  
Note: Base = Base Address.  
/* Once in the SecSi Sector mode, you program */  
/* words using the programming algorithm. */  
Table 11.4 Secured Silicon Sector Exit  
(LLD Function = lld_SecSiSectorExitCmd)  
Cycle  
Operation  
Write  
Byte Address  
Base + AAAh  
Base + 554h  
Base + AAAh  
Word Address  
Base + 555h  
Base + 2AAh  
Base + 555h  
Data  
Unlock Cycle 1  
Unlock Cycle 2  
00AAh  
0055h  
0090h  
Write  
Exit Cycle  
Write  
Note: Base = Base Address.  
/* Example: SecSi Sector Exit Command */  
*( (UINT16 *)base_addr + 0x555 ) = 0x00AA;  
*( (UINT16 *)base_addr + 0x2AA ) = 0x0055;  
*( (UINT16 *)base_addr + 0x555 ) = 0x0090;  
*( (UINT16 *)base_addr + 0x000 ) = 0x0000;  
/* write unlock cycle 1  
/* write unlock cycle 2  
/* write SecSi Sector Exit cycle 3 */  
/* write SecSi Sector Exit cycle 4 */  
*/  
*/  
64  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
12 Electrical Specifications  
12.1 Absolute Maximum Ratings  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground:  
All Inputs and I/Os except  
as noted below (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VIO + 0.5 V  
VCC (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +2.5 V  
VIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +2.5 V  
ACC (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +9.5 V  
Output Short Circuit Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Notes:  
1. Minimum DC voltage on input or I/Os is –0.5 V. During voltage transitions, inputs or I/Os may undershoot V to –2.0 V  
SS  
for periods of up to 20 ns. See Figure 12.1. Maximum DC voltage on input or I/Os is V + 0.5 V. During voltage  
CC  
transitions outputs may overshoot to V + 2.0 V for periods up to 20 ns. See Figure 12.2.  
CC  
2. Minimum DC input voltage on pin ACC is -0.5V. During voltage transitions, ACC may overshoot V to –2.0 V for periods  
SS  
of up to 20 ns. See Figure 12.1. Maximum DC voltage on pin ACC is +9.5 V, which may overshoot to 10.5 V for periods  
up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than  
one second.  
4. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for  
extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+0.8 V  
+2.0 V  
VCC  
+0.5 V  
–0.5 V  
–2.0 V  
1.0 V  
20 ns  
20 ns  
20 ns  
Figure 12.1 Maximum Negative  
Overshoot Waveform  
Figure 12.2 Maximum Positive  
Overshoot Waveform  
Note: The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document is  
Preliminary for the S29W256N.  
12.2 Operating Ranges  
Wireless (W) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Supply Voltages  
VCC Supply Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+1.70 V to +1.95 V  
VIO Supply Voltages: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.70 V to +1.95 V  
(Contact local sales office for VIO = 1.35 to +1.70 V.)  
Note: Operating ranges define those limits between which the device functionality is guaranteed.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
65  
A d v a n c e I n f o r m a t i o n  
12.3 Test Conditions  
Device  
Under  
Test  
C
L
Figure 12.3 Test Setup  
Table 12.1 Test Specifications  
Test Condition  
Output Load Capacitance, CL  
All Speed Options  
Unit  
30  
pF  
(including jig capacitance)  
3.0 @ 54, 66 MHz  
2.5 @ 80 MHz  
Input Rise and Fall Times  
ns  
Input Pulse Levels  
0.0–VIO  
VIO/2  
V
V
V
Input timing measurement reference levels  
Output timing measurement reference levels  
VIO/2  
Note: The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
12.4 Key to Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State  
(High Z)  
Note: The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
12.5 Switching Waveforms  
VIO  
All Inputs and Outputs  
VIO/2  
VIO/2  
Input  
Measurement Level  
Output  
0.0 V  
Figure 12.4 Input Waveforms and Measurement Levels  
66  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
12.6 V  
Power-up  
CC  
Parameter  
Description  
Test Setup  
Speed  
Unit  
tVCS  
VCC Setup Time  
Min  
1
ms  
Notes:  
1.  
V
>= V - 100mV and V ramp rate is > 1V / 100µs  
IO CC  
CC  
2.  
V
ramp rate <1V / 100µs, a Hardware Reset is required.  
CC  
3. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
tVCS  
VCC  
VIO  
RESET#  
Figure 12.5  
V
Power-up Diagram  
CC  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
67  
A d v a n c e I n f o r m a t i o n  
12.7 DC Characteristics  
(CMOS Compatible)  
Parameter  
Description (Notes)  
Test Conditions (Notes 1, 2, 9)  
= V to V , V = V max  
Min  
Typ  
Max  
±1  
±1  
54  
60  
66  
48  
54  
60  
42  
48  
54  
36  
42  
48  
30  
36  
18  
4
Unit  
µA  
I
Input Load Current  
V
V
LI  
IN  
SS  
CC  
CC  
CC  
I
Output Leakage Current (3)  
= V to V , V = V max  
µA  
LO  
OUT  
SS  
CC  
CC  
CC  
54 MHz  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
54 MHz  
66 MHz  
80 MHz  
27  
28  
30  
28  
30  
32  
29  
32  
34  
32  
35  
38  
20  
27  
13  
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 8  
IH  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 16  
IH  
I
V
Active burst Read Current  
CCB  
CC  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length = 32  
IH  
CE# = V , OE# = V , WE#  
IL  
IH  
= V , burst length =  
IH  
Continuous  
I
V
V
Non-active Output  
OE# = V  
IH  
IO1  
IO  
10 MHz  
5 MHz  
1 MHz  
mA  
mA  
mA  
µA  
Active Asynchronous  
Read Current (4)  
CE# = V , OE# = V , WE#  
CC  
IL  
IH  
I
CC1  
= V  
IH  
V
1
5
ACC  
CE# = V , OE# = V , ACC  
IL  
IH  
I
I
V
V
Active Write Current (5)  
Standby Current (6, 7)  
CC2  
CC3  
CC  
CC  
= V  
IH  
V
19  
1
52.5  
5
mA  
µA  
CC  
V
ACC  
CE# = RESET# =  
± 0.2 V  
V
CC  
V
20  
70  
40  
150  
µA  
CC  
I
I
I
V
V
Reset Current (7)  
Active Current  
RESET# = V CLK = V  
IL  
µA  
CC4  
CC5  
CC6  
CC  
CC  
IL,  
CE# = V , OE# = V , ACC = V  
@
IL  
IH  
IH  
50  
60  
mA  
5 MHz  
(Read While Write) (7)  
V
Sleep Current (7)  
CE# = V , OE# = V  
IL  
2
6
40  
20  
µA  
mA  
mA  
V
CC  
IH  
V
CE# = V , OE# = V  
IL  
ACC  
IH,  
I
Accelerated Program Current (8)  
ACC  
V
= 9.5 V  
ACC  
V
14  
20  
CC  
V
Input Low Voltage  
V
V
= 1.8 V  
= 1.8 V  
–0.5  
0.4  
IL  
IO  
V
Input High Voltage  
V
V
– 0.4  
V
+ 0.4  
V
IH  
IO  
IO  
IO  
V
Output Low Voltage  
I
I
= 100 µA, V = V  
= V  
IO  
0.1  
V
OL  
OH  
HH  
OL  
OH  
CC  
CC min  
V
V
Output High Voltage  
Voltage for Accelerated Program  
= –100 µA, V = V  
= V  
IO  
– 0.1  
8.5  
1.0  
V
CC  
CC min  
IO  
9.5  
1.4  
V
V
Low V Lock-out Voltage  
V
LKO  
CC  
Notes:  
1. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
2.  
3. CE# must be set high when measuring the RDY pin.  
4. The I current listed is typically less than 3 mA/MHz, with OE# at V  
V
= V .  
CC IO  
.
IH  
CC  
5.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
6. Device enters automatic sleep mode when addresses are stable for t  
+ 20 ns. Typical sleep mode current is equal to  
ACC  
I
.
CC3  
7.  
V
= V ± 0.2 V and V > –0.1 V.  
IH CC IL  
8. Total current during accelerated programming is the sum of V  
and V currents.  
ACC  
CC  
9.  
V
= V  
on ACC input.  
HH  
ACC  
10. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
68  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
12.8 AC Characteristics  
12.8.1 CLK Characterization  
Parameter  
fCLK  
Description  
CLK Frequency  
54 MHz  
54  
66 MHz  
66  
80 MHz  
80  
Unit  
MHz  
ns  
Max  
Min  
tCLK  
tCH  
CLK Period  
18.5  
15.1  
12.5  
CLK High Time  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
Min  
7.4  
3
6.1  
3
5.0  
2.5  
ns  
ns  
tCL  
tCR  
Max  
tCF  
Note: The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
t
CLK  
t
t
CL  
CH  
CLK  
t
t
CF  
CR  
Figure 12.6 CLK Characterization  
12.8.2 Synchronous/Burst Read  
Parameter  
JEDEC  
Standard  
tIACC  
tBACC  
tACS  
tACH  
tBDH  
tCR  
Description  
54 MHz  
66 MHz  
80  
80 MHz  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Latency  
Max  
Burst Access Time Valid Clock to Output Delay Max  
13.5  
5
11.2  
9
Address Setup Time to CLK (Note 1)  
Address Hold Time from CLK (Note 1)  
Data Hold Time from Next Clock Cycle  
Chip Enable to RDY Valid  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Max  
4
6
3
7
4
13.5  
13.5  
11.2  
9
tOE  
Output Enable to Output Valid  
Chip Enable to High Z (Note 2)  
Output Enable to High Z (Note 2)  
CE# Setup Time to CLK  
11.2  
tCEZ  
10  
10  
4
tOEZ  
tCES  
tRDYS  
tRACC  
tCAS  
tAVC  
RDY Setup Time to CLK  
5
4
3.5  
9
Ready Access Time from CLK  
CE# Setup Time to AVD#  
AVD# Low to CLK  
13.5  
11.2  
0
4
tAVD  
tAOE  
AVD# Pulse  
8
AVD Low to OE# Low  
38.4  
Notes:  
1. Addresses are latched on the first rising edge of CLK.  
2. Not 100% tested.  
3. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
69  
A d v a n c e I n f o r m a t i o n  
12.8.3 Timing Diagrams  
5 cycles for initial access shown.  
18.5 ns typ. (54 MHz)  
tCEZ  
tCES  
CE#  
1
2
3
4
5
6
7
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Addresses  
Data (n)  
Aa  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da + 1  
Da + 2  
Da + n  
tOEZ  
Da + 3  
tAOE  
tBDH  
OE#  
tRACC  
tOE  
Hi-Z  
Hi-Z  
RDY (n)  
tCR  
tRDYS  
Hi-Z  
Hi-Z  
Data (n + 1)  
RDY (n + 1)  
Da  
Da + 1  
Da + 2  
Da + n  
Da + 2  
Hi-Z  
Hi-Z  
Hi-Z  
Data (n + 2)  
RDY (n + 2)  
Da  
Da + 1  
Da + 1  
Da + n  
Da + 1  
Hi-Z  
Hi-Z  
Hi-Z  
Data (n + 3)  
Da  
Da  
Da  
Da + n  
Da  
Hi-Z  
RDY (n + 3)  
Notes:  
1. Figure shows total number of wait states set to five cycles. The total number of wait states can be programmed from two  
cycles to seven cycles.  
2. If any burst address occurs at address + 1 , address + 2, or address + 3, additional clock delay cycles are inserted, and  
are indicated by RDY.  
3. The device is in synchronous mode.  
Figure 12.7 CLK Synchronous Burst Mode Read  
70  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
7 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
7
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
tAOE  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from  
two cycles to seven cycles.  
2. If any burst address occurs at address + 1 , address + 2, or address + 3, additional clock delay cycles are inserted, and  
are indicated by RDY.  
3. The device is in synchronous mode with wrap around.  
4. D8–DF in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting  
address in figure is the 4th address in range (0-F).  
Figure 12.8 8-word Linear Burst with Wrap Around  
7 cycles for initial access shown.  
tCES  
CE#  
1
2
3
4
5
6
7
CLK  
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D10  
D13  
tAOE  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to seven cycles. The total number of wait states can be programmed from  
two cycles to seven cycles. Clock is set for active rising edge.  
2. If any burst address occurs at address + 1 , address + 2, or address + 3, additional clock delay cycles are inserted, and  
are indicated by RDY.  
3. The device is in asynchronous mode with out wrap around.  
4. DC–D13 in data waveform indicate the order of data within a given 8-word address range, from lowest to highest.  
Starting address in figure is the 1st address in range (c-13).  
Figure 12.9 8-word Linear Burst without Wrap Around  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
71  
A d v a n c e I n f o r m a t i o n  
tCEZ  
6 wait cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
5
6
tAVC  
AVD#  
tAVD  
tACS  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da+1  
Da+2  
Da+3  
Da + n  
tBDH  
tAOE  
tOEZ  
tRACC  
OE#  
RDY  
tCR  
tOE  
Hi-Z  
Hi-Z  
tRDYS  
Notes:  
1. Figure assumes 6 wait states for initial access and synchronous read.  
2. The Set Configuration Register command sequence has been written with CR8=0; device outputs RDY one cycle before  
valid data.  
Figure 12.10 Linear Burst with RDY Set One Cycle Before Data  
12.8.4 AC Characteristics—Asynchronous Read  
Parameter  
Description  
54 MHz 66 MHz 80 MHz Unit  
JEDEC Standard  
tCE  
tACC  
Access Time from CE# Low  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
80  
80  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous Access Time  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
AVD# Low Time  
Address Setup Time to Rising Edge of AVD#  
Address Hold Time from Rising Edge of AVD#  
Output Enable to Output Valid  
4
7
6
13.5  
0
Read  
Output Enable Hold Time  
Data# Polling  
tOEH  
10  
10  
0
tOEZ  
tCAS  
Output Enable to High Z (see Note)  
CE# Setup Time to AVD#  
Notes:  
1. Not 100% tested.  
2. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
72  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
tAAVDH  
tCAS  
tAVDP  
tAAVDS  
Note: RA = Read Address, RD = Read Data.  
Figure 12.11 Asynchronous Mode Read  
12.8.5 Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std.  
Description  
All Speed Options  
Unit  
µs  
tRP  
tRH  
RESET# Pulse Width  
Reset High Time Before Read (See Note)  
Min  
Min  
30  
200  
ns  
Notes:  
1. Not 100% tested.  
2. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
CE#, OE#  
tRH  
RESET#  
tRP  
Figure 12.12 Reset Timings  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
73  
A d v a n c e I n f o r m a t i o n  
12.8.6 Erase/Program Timing  
Parameter  
Description  
54 MHz 66 MHz 80 MHz Unit  
JEDEC Standard  
t
t
Write Cycle Time (Note 1)  
Min  
80  
5
ns  
ns  
ns  
AVAV  
WC  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
t
t
Address Setup Time (Notes 2, 3)  
Address Hold Time (Notes 2, 3)  
Min  
Min  
AVWL  
AS  
0
9
t
t
ns  
WLAX  
AH  
20  
8
t
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Typ  
Typ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
AVDP  
t
t
t
Data Setup Time  
45  
20  
DVWH  
DS  
DH  
t
Data Hold Time  
0
0
WHDX  
t
t
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
GHWL  
GHWL  
t
0
CAS  
t
t
0
WHEH  
WLWH  
WHWL  
CH  
t
t
t
Write Pulse Width  
30  
20  
0
WP  
t
Write Pulse Width High  
WPH  
t
Latency Between Read and Write Operations  
SR/W  
t
V
V
V
Rise and Fall Time  
500  
1
VID  
ACC  
ACC  
t
Setup Time (During Accelerated Programming)  
VIDS  
t
Setup Time  
CC  
50  
5
VCS  
t
t
CE# Setup Time to WE#  
ELWL  
CS  
t
AVD# Setup Time to WE#  
5
AVSW  
AVHW  
t
AVD# Hold Time to WE#  
5
t
AVD# Setup Time to CLK  
5
AVSC  
AVHC  
t
AVD# Hold Time to CLK  
5
t
Clock Setup Time to WE#  
5
CSW  
t
Noise Pulse Margin on WE#  
Sector Erase Accept Time-out  
Erase Suspend Latency  
3
WEP  
t
50  
20  
20  
100  
1
SEA  
t
ESL  
PSL  
ASP  
t
Program Suspend Latency  
t
Toggle Time During Sector Protection  
Toggle Time During Programming Within a Protected Sector  
t
PSP  
Notes:  
1. Not 100% tested.  
2. Asynchronous read mode allows Asynchronous program operation only. Synchronous read mode allows both  
Asynchronous and Synchronous program operation.  
3. In asynchronous program operation timing, addresses are latched on the falling edge of WE#. In synchronous program  
operation timing, addresses are latched on the rising edge of CLK.  
4. See the Erase and Programming Performance section for more information.  
5. Does not include the preprogramming time.  
6. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
74  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Erase Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVDP  
AVD#  
tAH  
tAS  
SA  
VA  
VA  
Addresses  
Data  
2AAh  
555h for  
chip erase  
10h for  
chip erase  
In  
Complete  
55h  
30h  
Progress  
tDS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH2  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Figure 12.13 Chip/Sector Erase Operation Timings  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
75  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
AVD  
V
IL  
tAVSW  
tAVHW  
tAVDP  
tAS  
tAH  
Addresses  
Data  
555h  
PA  
VA  
VA  
In  
Progress  
A0h  
tDS  
Complete  
PD  
tCAS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. In progress and complete refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N, A21–A14 for the WS064N) are don’t care during command  
sequence unlock cycles.  
4. CLK can be either V or V  
.
IH  
IL  
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the Configuration Register.  
Figure 12.14 Asynchronous Program Operation Timings  
76  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Program Command Sequence (last two cycles)  
Read Status Data  
tAVCH  
CLK  
tAS  
tAH  
tAVSC  
AVD#  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Progress  
Complete  
A0h  
PD  
tDS  
tDH  
tCAS  
CE#  
tCH  
OE#  
WE#  
tCSW  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. In progress and complete refer to status of program operation.  
3. A23–A14 for the WS256N (A22–A14 for the WS128N, A21–A14 for the WS064N) are don’t care during command  
sequence unlock cycles.  
4. Addresses are latched on the first rising edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration Register.  
The Configuration Register must be set to the Synchronous Read Mode.  
Figure 12.15 Synchronous Program Operation Timings  
CE#  
AVD#  
WE#  
Addresses  
Data  
PA  
Don't Care  
A0h  
Don't Care  
PD  
Don't Care  
OE#  
ACC  
tVIDS  
V
V
ID  
tVID  
or V  
IH  
IL  
Note: Use setup and hold times from conventional program operation.  
Figure 12.16 Accelerated Unlock Bypass Programming Timing  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
77  
A d v a n c e I n f o r m a t i o n  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
High Z  
Addresses  
VA  
Status Data  
Status Data  
Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
completeData# Polling outputs true data.  
Figure 12.17 Data# Polling Timings (During Embedded Algorithm)  
AVD#  
tCEZ  
tCE  
CE#  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
Addresses  
VA  
High Z  
Data  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, .  
Figure 12.18 Toggle Bit Timings (During Embedded Algorithm)  
78  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
CLK  
AVD#  
Addresses  
OE#  
VA  
VA  
tIACC  
tIACC  
Data  
Status Data  
Status Data  
RDY  
Notes:  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, .  
3. RDY is active with data (D8 = 1 in the Configuration Register). When D8 = 0 in the Configuration Register, RDY is active  
one clock cycle before data.  
Figure 12.19 Synchronous Data Polling Timings/Toggle Bit Timings  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to  
toggle DQ2 and DQ6  
Figure 12.20 DQ2 vs. DQ6  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
79  
A d v a n c e I n f o r m a t i o n  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
C128  
80  
C129  
81  
C130  
82  
C131  
83  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
tRACC  
tRACC  
RDY(1)  
latency  
tRACC  
tRACC  
RDY(2)  
Data  
latency  
D124  
D125  
D126  
D127  
D128  
D129  
D130  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY(1) active with data (D8 = 1 in the Configuration Register).  
2. RDY(2) active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device not crossing a bank in the process of performing an erase or program.  
5. RDY does not go low and no additional wait states are required if the Burst frequency is <=66 MHz and the Boundary  
Crossing bit (D14) in the Configuration Register is set to 0  
Figure 12.21 Latency with Boundary Crossing when Frequency > 66 MHz  
80  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Address boundary occurs every 128 words, beginning at address  
00007Fh: (0000FFh, 00017Fh, etc.) Address 000000h is also a boundary crossing.  
C124  
C125  
7D  
C126  
7E  
C127  
7F  
C127  
7F  
CLK  
7C  
Address (hex)  
(stays high)  
AVD#  
tRACC  
tRACC  
RDY(1)  
latency  
tRACC  
tRACC  
RDY(2)  
Data  
latency  
D124  
D125  
D126  
D127  
Read Status  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY(1) active with data (D8 = 1 in the Configuration Register).  
2. RDY(2) active one clock cycle before data (D8 = 0 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. Figure shows the device crossing a bank in the process of performing an erase or program.  
5. RDY does not go low and no additional wait states are required if the Burst frequency is < 66 MHz and the Boundary  
Crossing bit (D14) in the Configuration Register is set to 0.  
Figure 12.22 Latency with Boundary Crossing into Program/Erase Bank  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
81  
A d v a n c e I n f o r m a t i o n  
Data  
D0  
D1  
Rising edge of next clock cycle  
following last wait state triggers  
next burst data  
AVD#  
OE#  
total number of clock cycles  
following addresses being latched  
1
2
0
3
1
4
5
6
4
7
5
CLK  
2
3
number of clock cycles  
programmed  
Wait State Configuration Register Setup:  
D13, D12, D11 = 111 Reserved  
D13, D12, D11 = 110 Reserved  
D13, D12, D11 = 101 5 programmed, 7 total  
D13, D12, D11 = 100 4 programmed, 6 total  
D13, D12, D11 = 011 3 programmed, 5 total  
D13, D12, D11 = 010 2 programmed, 4 total  
D13, D12, D11 = 001 1 programmed, 3 total  
D13, D12, D11 = 000 0 programmed, 2 total  
Note: 6.Figure assumes address D0 is not at an address boundary, and wait state is set to 101  
Figure 12.23 Example of Wait State Insertion  
82  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE#  
OE#  
tOE  
tGHWL  
tOEH  
WE#  
Data  
tWPH  
tOEZ  
tWP  
tDS  
tACC  
tOEH  
tDH  
PD/30h  
RD  
RD  
AAh  
tSR/W  
RA  
Addresses  
AVD#  
PA/SA  
tAS  
RA  
555h  
tAH  
Note: Breakpoints in waveforms indicate that system may alternately read array data from the non-busy bank while check-  
ing the status of the program or erase operation in the busy bank. The system should read status twice to ensure  
valid information.  
Figure 12.24 Back-to-Back Read/Write Cycle Timings  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
83  
A d v a n c e I n f o r m a t i o n  
12.8.7 Erase and Programming Performance  
Parameter  
Typ (Note 1)  
0.6  
Max (Note 2)  
Unit  
Comments  
64 Kword  
16 Kword  
VCC  
VCC  
3.5  
2
Sector Erase Time  
s
<0.15  
153.6 (WS256N)  
77.4 (WS128N)  
39.3 (WS064N)  
308 (WS256N)  
154 (WS128N)  
78 (WS064N)  
Excludes 00h  
programming prior  
to erasure (Note 4)  
VCC  
Chip Erase Time  
s
130.6 (WS256N)  
65.8 (WS128N)  
33.4 (WS064N)  
262 (WS256N)  
132 (WS128N)  
66 (WS064N)  
ACC  
VCC  
ACC  
VCC  
ACC  
VCC  
ACC  
40  
24  
400  
240  
94  
Single Word Programming Time  
(Note 8)  
µs  
µs  
µs  
9.4  
6
Effective Word Programming Time  
utilizing Program Write Buffer  
60  
300  
192  
3000  
1920  
Total 32-Word Buffer Programming  
Time  
157.3 (WS256N)  
78.6 (WS128N)  
39.3 (WS064N)  
314.6 (WS256N)  
157.3 (WS128N)  
78.6 (WS064N)  
VCC  
Excludes system  
level overhead  
(Note 5)  
Chip Programming Time (Note 3)  
s
100.7 (WS256N)  
50.3 (WS128N)  
25.2 (WS064N)  
201.3 (WS256N)  
100.7 (WS128N)  
50.3 (WS064N)  
ACC  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V V , 10,000 cycles; checkerboard data  
CC  
pattern.  
2. Under worst case conditions of 90°C, V = 1.70 V, 100,000 cycles.  
CC  
3. Typical chip programming time is considerably less than the maximum chip programming time listed, and is based on  
utilizing the Write Buffer.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command.  
See the Appendix for further information about command definitions.  
6. Contact the local sales office for minimum cycling endurance values in specific applications and operating conditions.  
7. Refer to Application Note Erase Suspend/Resume Timing for more details.  
8. Word programming specification is based upon a single word programming operation not utilizing the write buffer.  
9. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
84  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
12.8.8 BGA Ball Capacitance  
Parameter Symbol  
Parameter Description  
Input Capacitance  
Test Set up  
Typ.  
5.3  
5.8  
6.3  
Max  
6.3  
6.8  
7.3  
Unit  
pF  
C
V
= 0  
= 0  
= 0  
IN  
IN  
C
Output Capacitance  
Control Pin Capacitance  
V
pF  
OUT  
OUT  
C
V
pF  
IN2  
IN  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C; f = 1.0 MHz.  
A
3. The content in this document is Advance information for the S29WS064N and S29WS128N. Content in this document  
is Preliminary for the S29W256N.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
85  
A d v a n c e I n f o r m a t i o n  
13 Appendix  
This section contains information relating to software control or interfacing with the Flash device.  
For additional information and assistance regarding software, see the Additional Resources on  
page 19, or explore the Web at www.amd.com and www.fujitsu.com.  
86  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 13.1 Memory Array Commands  
Bus Cycles (Notes 1–5)  
Third Fourth  
Addr Addr Data  
First  
Addr  
Second  
Fifth  
Addr  
Sixth  
Addr Data  
Command Sequence  
(Notes)  
Data  
RD  
Addr  
Data  
Data  
Data  
Asynchronous Read (6)  
Reset (7)  
Manufacturer ID  
1
1
4
6
RA  
XXX  
555  
555  
F0  
AA  
2AA  
2AA  
55  
55  
[BA]555  
[BA]555  
90  
90  
[BA]X00 0001  
[BA]X01 227E  
Device ID (9)  
AA  
BA+X0E  
PA  
Data  
PD  
BA+X0F 2200  
Indicator Bits (10)  
4
555  
AA  
2AA  
55  
[BA]555  
90  
[BA]X03  
Data  
Program  
4
6
1
3
6
6
1
1
4
4
1
3
2
1
555  
555  
SA  
555  
555  
555  
BA  
AA  
AA  
29  
AA  
AA  
AA  
B0  
30  
AA  
AA  
98  
AA  
A0  
98  
2AA  
2AA  
55  
55  
555  
PA  
A0  
25  
PA  
PA  
PD  
Write to Buffer (11)  
Program Buffer to Flash  
Write to Buffer Abort Reset (12)  
Chip Erase  
WC  
WBL  
PD  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
F0  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase/Program Suspend (13)  
Erase/Program Resume (14)  
Set Configuration Register (18)  
Read Configuration Register  
CFI Query (15)  
BA  
555  
555  
[BA]555  
555  
XXX  
XXX  
2AA  
2AA  
55  
55  
555  
555  
D0  
C6  
X00  
X00  
CR  
CR  
Entry  
Program (16)  
2AA  
PA  
55  
PD  
555  
20  
CFI (16)  
Reset  
2
XXX  
90  
XXX  
00  
Entry  
3
4
1
555  
555  
00  
AA  
AA  
Data  
2AA  
2AA  
55  
55  
555  
555  
88  
A0  
Program (17)  
Read (17)  
PA  
PD  
00  
Exit (17)  
4
555  
AA  
2AA  
55  
555  
90  
XXX  
Legend:  
X = Don’t care.  
RA = Read Address.  
RD = Read Data.  
PA = Program Address. Addresses latch on the rising edge of the  
AVD# pulse or active edge of CLK, whichever occurs first.  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14;  
WS064N = A21–A14.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20;  
WS064N = A21–A18.  
CR = Configuration Register data bits D15–D0.  
WBL = Write Buffer Location. Address must be within the same write  
buffer page as PA.  
PD = Program Data. Data latches on the rising edge of WE# or CE#  
pulse, whichever occurs first.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes:  
1. See Table 8.1 for description of bus operations.  
2. All values are in hexadecimal.  
11. Total number of cycles in the command sequence is determined  
by the number of words written to the write buffer.  
12. Command sequence resets device for next command after write-  
to-buffer operation.  
13. System may read and program in non-erasing sectors, or enter  
the autoselect mode, when in the Erase Suspend mode. The  
Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
14. Erase Resume command is valid only during the Erase Suspend  
mode, and requires the bank address.  
15. Command is valid when device is ready to read array data or  
when device is in autoselect mode. Address equals 55h on all  
future devices, but 555h for WS256N/128N/064N.  
3. Shaded cells indicate read cycles.  
4. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
5. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
6. No unlock or command cycles required when bank is reading  
array data.  
7. Reset command is required to return to reading array data (or to  
the erase-suspend-read mode if previously in Erase Suspend)  
when a bank is in the autoselect mode, or if DQ5 goes high  
(while the bank is providing status information) or performing  
sector lock/unlock.  
16. Requires Entry command sequence prior to execution. Unlock  
Bypass Reset command is required to return to reading array  
data.  
17. Requires Entry command sequence prior to execution. Secured  
Silicon Sector Exit Reset command is required to exit this mode;  
device may otherwise be placed in an unknown state.  
8. The system must provide the bank address. See Autoselect  
section for more information.  
9. Data in cycle 5 is 2230 (WS256N), 2232 (WS064N), or 2231  
(WS128N).  
18. Requires reset command to configure the Configuration Register.  
10. See Table 8.9 for indicator bit values.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
87  
A d v a n c e I n f o r m a t i o n  
Table 13.2 Sector Protection Commands  
Bus Cycles (Notes 14)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Seventh  
Command Sequence  
(Notes)  
Addr  
Data  
AA  
Addr  
Data  
55  
Addr  
Data  
Addr Data Addr Data Addr Data Addr Data  
Command Set Entry (5)  
3
2
1
2
3
2
4
7
2
3
2
2
1
2
3
2
1
555  
XX  
2AA  
555  
40  
Lock  
Register  
Bits  
Program (6, 12)  
Read (6)  
A0  
77/00  
data  
77  
data  
90  
Command Set Exit (7)  
Command Set Entry (5)  
Program [0-3] (8)  
Read (9)  
XX  
XX  
2AA  
00  
00  
55  
PWD[0-3]  
PWD1  
03  
555  
XX  
AA  
A0  
555  
60  
Password  
Protection  
0...00 PWD0 0...01  
0...02  
00  
PWD2 0...03 PWD3  
Unlock  
00  
XX  
555  
XX  
XX  
SA  
XX  
555  
XX  
BA  
25  
90  
00  
XX  
PWD0  
01  
PWD1  
02  
PWD2  
03  
PWD3  
00  
29  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Program (10)  
All PPB Erase (10, 11)  
PPB Status Read  
00  
AA  
2AA  
SA  
55  
[BA]555  
C0  
A0  
80  
00  
Non-Volatile  
Sector  
Protection (PPB)  
00  
30  
RD(0)  
90  
Command Set Exit (7)  
Command Set Entry (5)  
PPB Lock Bit Set  
XX  
2AA  
XX  
00  
55  
00  
Global  
Volatile Sector  
Protection  
Freeze  
AA  
[BA]555  
[BA]555  
50  
E0  
A0  
PPB Lock Bit Status Read  
RD(0)  
Command Set Exit (7)  
2
XX  
90  
XX  
00  
(PPB Lock)  
Command Set Entry (5)  
DYB Set  
3
2
2
1
2
555  
XX  
XX  
SA  
XX  
AA  
A0  
2AA  
SA  
55  
00  
01  
Volatile Sector  
Protection  
(DYB)  
DYB Clear  
DYB Status Read  
Command Set Exit (7)  
A0  
SA  
RD(0)  
90  
XX  
00  
Legend:  
X = Don’t care.  
RA = Address of the memory location to be read.  
PD(0) = Secured Silicon Sector Lock Bit. PD(0), or bit[0].  
PD(1) = Persistent Protection Mode Lock Bit. PD(1), or bit[1], must  
be set to ‘0’ for protection while PD(2), bit[2] must be left as ‘1’.  
PD(2) = Password Protection Mode Lock Bit. PD(2), or bit[2], must  
be set to ‘0’ for protection while PD(1), bit[1] must be left as ‘1’.  
BA = Bank Address. WS256N = A23–A20; WS128N = A22–A20;  
WS064N = A21–A18.  
PWD3–PWD0 = Password Data. PD3–PD0 present four 16 bit  
combinations that represent the 64-bit Password  
PWA = Password Address. Address bits A1 and A0 are used to select  
each 16-bit portion of the 64-bit entity.  
PWD = Password Data.  
RD(0), RD(1), RD(2) = DQ0, DQ1, or DQ2 protection indicator bit. If  
protected, DQ0, DQ1, or DQ2 = 0. If unprotected, DQ0, DQ1,  
DQ2 = 1.  
PD(3) = Protection Mode OTP Bit. PD(3) or bit[3].  
SA = Sector Address. WS256N = A23–A14; WS128N = A22–A14;  
WS064N = A21–A14.  
Notes:  
1. All values are in hexadecimal.  
2. Shaded cells indicate read cycles.  
currently 77h for the WS256N only. See Table 9.1 and Table 9.2  
for explanation of lock bits.  
7. Exit command must be issued to reset the device into read  
mode; device may otherwise be placed in an unknown state.  
3. Address and data bits not specified in table, legend, or notes are  
don’t cares (each hex digit implies 4 bits of data).  
4. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state.  
The system must write the reset command to return the device  
to reading array data.  
5. Entry commands are required to enter a specific mode to enable  
instructions only available within that mode.  
6. If both the Persistent Protection Mode Locking Bit and the  
Password Protection Mode Locking Bit are set at the same time,  
the command operation aborts and returns the device to the  
default Persistent Sector Protection Mode during 2nd bus cycle.  
Note that on all future devices, addresses equal 00h, but is  
8. Entire two bus-cycle sequence must be entered for each portion  
of the password.  
9. Full address range is required for reading password.  
10. See Figure 9.2 for details.  
11. The All PPB Erase command pre-programs all PPBs before  
erasure to prevent over-erasure.  
12. The second cycle address for the lock register program operation  
is 77 for S29Ws256N; however, for WS128N and Ws064N this  
address is 00.  
88  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
13.1 Common Flash Memory Interface  
The Common Flash Interface (CFI) specification outlines device and host system software inter-  
rogation handshake, which allows specific vendor-specified soft-ware algorithms to be used for  
entire families of devices. Software support can then be device-independent, JEDEC ID-indepen-  
dent, and forward- and back-ward-compatible for the specified flash device families. Flash  
vendors can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to  
address (BA)555h any time the device is ready to read array data. The system can read CFI in-  
formation at the addresses given in Tables 13.3–13.6) within that bank. All reads outside of the  
CFI address range, within the bank, returns non-valid data. Reads from other banks are allowed,  
writes are not. To terminate reading CFI data, the system must write the reset command.  
The following is a C source code example of using the CFI Entry and Exit functions. Refer to  
the Spansion Low Level Driver User’s Guide (available on www.amd.com and  
www.fujitsu.com) for general information on Spansion Flash memory software development  
guidelines.  
/* Example: CFI Entry command */  
*( (UINT16 *)bank_addr + 0x555 ) = 0x0098;  
/* write CFI entry command  
/* write cfi exit command  
*/  
*/  
/* Example: CFI Exit command */  
*( (UINT16 *)bank_addr + 0x000 ) = 0x00F0;  
For further information, please refer to the CFI Specification (see JEDEC publications JEP137-A  
and JESD68.01and CFI Publication 100). Please contact your sales office for copies of these  
documents.  
Table 13.3 CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string QRY  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 13.4 System Interface String  
Addresses  
Data  
Description  
V
Min. (write/erase)  
CC  
1Bh  
0017h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
1Ch  
0019h  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0006h  
0009h  
000Ah  
0000h  
0004h  
0004h  
0003h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
PP  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
89  
A d v a n c e I n f o r m a t i o n  
Table 13.5 Device Geometry Definition  
Addresses  
Data  
Description  
0019h (WS256N)  
0018h (WS128N)  
0017h (WS064N)  
Device Size = 2N byte  
27h  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
Max. number of bytes in multi-byte write = 2N  
(00h = not supported)  
2Ah  
2Bh  
0006h  
0000h  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (WS256N)  
007Dh (WS128N)  
003Dh (WS064N)  
31h  
Erase Block Region 2 Information  
32h  
33h  
34h  
0000h  
0000h  
0002h  
35h  
36h  
37h  
38h  
0003h  
0000h  
0080h  
0000h  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Table 13.6 Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string PRI  
43h  
44h  
0031h  
0034h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0), 0 = Required, 1 = Not Required  
Silicon Technology (Bits 5-2) 0100 = 0.11 µm  
45h  
46h  
47h  
48h  
49h  
0100h  
0002h  
0001h  
0000h  
0008h  
Erase Suspend,  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect,  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
08 = Advanced Sector Protection  
00F3h (WS256N)  
007Bh (WS128N)  
003Fh (WS064N)  
Simultaneous Operation  
Number of Sectors in all banks except boot bank  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
0001h  
0000h  
0085h  
Page Mode Type,  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page, 04 = 16 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
4Eh  
0095h  
4Fh  
50h  
0001h  
0001h  
0001h = Dual Boot Device  
Program Suspend. 00h = not supported  
90  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 13.6 Primary Vendor-Specific Extended Query (Continued)  
Addresses  
51h  
Data  
0001h  
0007h  
Description  
Unlock Bypass, 00 = Not Supported, 01=Supported  
Secured Silicon Sector (Customer OTP Area) Size 2N bytes  
52h  
Hardware Reset Low Time-out during an embedded  
algorithm to read mode Maximum 2N ns  
53h  
54h  
0014h  
0014h  
Hardware Reset Low Time-out not during an embedded  
algorithm to read mode Maximum 2N ns  
55h  
56h  
57h  
0005h  
0005h  
Erase Suspend Time-out Maximum 2N ns  
Program Suspend Time-out Maximum 2N ns  
Bank Organization: X = Number of banks  
0010h  
0013h (WS256N)  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
000Bh (WS128N) Bank 0 Region Information. X = Number of sectors in bank  
0007h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
Bank 1 Region Information. X = Number of sectors in bank  
Bank 2 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N) Bank 3 Region Information. X = Number of sectors in bank  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
Bank 4 Region Information. X = Number of sectors in bank  
Bank 5 Region Information. X = Number of sectors in bank  
Bank 6 Region Information. X = Number of sectors in bank  
Bank 7 Region Information. X = Number of sectors in bank  
Bank 8 Region Information. X = Number of sectors in bank  
Bank 9 Region Information. X = Number of sectors in bank  
Bank 10 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N) Bank 11 Region Information. X = Number of sectors in bank  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
Bank 12 Region Information. X = Number of sectors in bank  
Bank 13 Region Information. X = Number of sectors in bank  
0010h (WS256N)  
0008h (WS128N)  
0004h (WS064N)  
0010h (WS256N)  
0008h (WS128N) Bank 14 Region Information. X = Number of sectors in bank  
0004h (WS064N)  
0013h (WS256N)  
000Bh (WS128N)  
0007h (WS064N)  
Bank 15 Region Information. X = Number of sectors in bank  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
91  
A d v a n c e I n f o r m a t i o n  
14 Commonly Used Terms  
Ter m  
D efi nit i on  
ACCelerate. A special purpose input signal which allows for faster programming or  
erase operation when raised to a specified voltage above VCC. In some devices ACC  
may protect all sectors when at a low voltage.  
ACC  
Most significant bit of the address input [A23 for 256Mbit, A22 for128Mbit, A21 for  
64Mbit]  
Amax  
Amin  
Least significant bit of the address input signals (A0 for all devices in this document).  
Operation where signal relationships are based only on propagation delays and are  
unrelated to synchronous control (clock) signal.  
Asynchronous  
Read mode for obtaining manufacturer and device information as well as sector  
protection status.  
Autoselect  
Bank  
Section of the memory array consisting of multiple consecutive sectors. A read  
operation in one bank, can be independent of a program or erase operation in a  
different bank for devices that offer simultaneous read and write feature.  
Smaller size sectors located at the top and or bottom of Flash device address space.  
The smaller sector size allows for finer granularity control of erase and protection for  
code or parameters used to initiate system operation after power-on or reset.  
Boot sector  
Boundary  
Burst Read  
Byte  
Location at the beginning or end of series of memory locations.  
See synchronous read.  
8 bits  
Common Flash Interface. A Flash memory industry standard specification [JEDEC 137-  
A and JESD68.01] designed to allow a system to interrogate the Flash to determine its  
size, type and other performance parameters.  
CFI  
Clear  
Zero (Logic Low Level)  
Special purpose register which must be programmed to enable synchronous read  
mode  
Configuration Register  
Synchronous method of burst read whereby the device reads continuously until it is  
stopped by the host, or it has reached the highest address of the memory array, after  
which the read address wraps around to the lowest memory array address  
Continuous Read  
Erase  
Returns bits of a Flash memory array to their default state of a logical One (High Level).  
Halts an erase operation to allow reading or programming in any sector that is not  
selected for erasure  
Erase Suspend/Erase Resume  
Ball Grid Array package. Spansion LLC offers two variations: Fortified Ball Grid Array  
and Fine-pitch Ball Grid Array. See the specific package drawing or connection diagram  
for further details.  
BGA  
Synchronous (burst) read operation in which 8, 16, or 32 words of sequential data with  
Linear Read  
or without wraparound before requiring a new initial address  
.
Multi-Chip Package. A method of combining integrated circuits in a single package by  
stacking multiple die of the same or different devices.  
MCP  
Memory Array  
MirrorBit™ Technology  
The programmable area of the product available for data storage.  
Spansion™ trademarked technology for storing multiple bits of data in the same  
transistor.  
92  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Ter m  
D efi nit i on  
Group of words that may be accessed more rapidly as a group than if the words were  
accessed individually.  
Page  
Asynchronous read operation of several words in which the first word of the group  
takes a longer initial access time and subsequent words in the group take less page  
access time to be read. Different words in the group are accessed by changing only the  
least significant address lines.  
Page Read  
Sector protection method which uses a programmable password, in addition to the  
Password Protection  
Persistent Protection  
Program  
Persistent Protection method, for protection of sectors in the Flash memory device  
.
Sector protection method that uses commands and only the standard core voltage  
supply to control protection of sectors in the Flash memory device. This method  
replaces a prior technique of requiring a 12V supply to control the protection method.  
Stores data into a Flash memory by selectively clearing bits of the memory array in  
order to leave a data pattern of ones and zeros.  
Program Suspend/Program  
Resume  
Halts a programming operation to read data from any location that is not selected for  
programming or erase.  
Read  
Host bus cycle that causes the Flash to output data onto the data bus.  
Dynamic storage bits for holding device control information or tracking the status of  
an operation.  
Registers  
Secured Silicon. An area consisting of 256 bytes in which any word may be  
programmed once, and the entire area may be protected once from any future  
programming. Information in this area may be programmed at the factory or by the  
user. Once programmed and protected there is no way to change the secured  
information. This area is often used to store a software readable identification such as  
a serial number.  
Secured Silicon  
Use of one or more control bits per sector to indicate whether each sector may be  
programmed or erased. If the Protection bit for a sector is set the embedded  
algorithms for program or erase ignores program or erase commands related to that  
sector.  
Sector Protection  
Sector  
An Area of the memory array in which all bits must be erased together by an erase  
operation.  
Mode of operation in which a host system may issue a program or erase command to  
one bank, that embedded algorithm operation may then proceed while the host  
immediately follows the embedded algorithm command with reading from another  
bank. Reading may continue concurrently in any bank other than the one executing  
the embedded algorithm operation.  
Simultaneous Operation  
Synchronous Operation  
Operation that progresses only when a timing signal, known as a clock, transitions  
between logic levels (that is, at a clock edge).  
Separate power supply or voltage reference signal that allows the host system to set  
the voltage levels that the device generates at its data outputs and the voltages  
tolerated at its data inputs.  
VersatileIO™ (VIO  
Unlock Bypass  
Word  
)
Mode that facilitates faster program times by reducing the number of command bus  
cycles required to issue a write operation command. In this mode the initial two Unlock  
write cycles, of the usual 4 cycle Program command, are not required – reducing all  
Program commands to two bus cycles while in this mode.  
Two contiguous bytes (16 bits) located at an even byte boundary. A double word is two  
contiguous words located on a two word boundary. A quad word is four contiguous  
words located on a four word boundary.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
93  
A d v a n c e I n f o r m a t i o n  
Ter m  
D efi nit i on  
Special burst read mode where the read address wraps or returns back to the lowest  
address boundary in the selected range of words, after reading the last Byte or Word  
in the range, e.g. for a 4 word range of 0 to 3, a read beginning at word 2 would read  
words in the sequence 2, 3, 0, 1.  
Wraparound  
Interchangeable term for a program/erase operation where the content of a register  
and or memory location is being altered. The term write is often associated with writing  
command cycles to enter or exit a particular mode of operation.  
Write  
Multi-word area in which multiple words may be programmed as a single operation. A  
Write Buffer  
Write Buffer may be 16 to 32 words long and is located on a 16 or 32 word boundary  
respectively.  
Method of writing multiple words, up to the maximum size of the Write Buffer, in one  
Write Buffer Programming  
Write Operation Status  
operation. Using Write Buffer Programming results in  
time than by using single word at a time programming commands.  
8 times faster programming  
Allows the host system to determine the status of a program or erase operation by  
reading several special purpose register bits  
.
94  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
S29RS512N  
512 Megabit (32 M x 16-Bit) CMOS 1.8 Volt-only  
Read/Write, Burst Mode, Mass Storage Flash Memory  
for Multi-Chip Products (MCP)  
DATA SHEET  
Distinctive Characteristics  
Architectural Advantages  
„ Single 1.8 volt read, program and erase (1.65  
Hardware Features  
„ Sector Protection  
to 1.95 volt)  
„ Manufactured on 0.11 µm MirrorBitTM process  
Dynamic Protection Bits (DYB) are assigned to every  
sector  
Read/Write operation  
A command sector protection to lock/unlock  
combinations of individual sectors to prevent/allow  
program or erase operations within that sector.  
Zero latency between read and write operations  
„ Programable Burst Interface  
„ Handshaking feature available  
2 Modes of Burst Read Operation  
Linear Burst: 8, 16, and 32 words with or without  
wrap-around  
Provides host system with minimum possible latency  
by monitoring RDY  
Continuous Sequential Burst  
„ ACC input: Acceleration function reduces  
„ Sector Architecture  
programming time in a factory setting  
one-hundred-twenty-eight 256 Kword sectors  
„ Low VCC write inhibit  
„ 100,000 erase cycle per sector typical  
„ 20-year data retention typical  
Software Features  
„ Software command set compatible with  
JEDEC 42.4 standards  
„ Data# Polling and toggle bits  
Performance Charcteristics  
„ Read access times at 80/66/54 MHz  
Provides a software method of detecting program and  
erase operation completion  
Burst access times of 9.1/11.2/13.5 ns  
Synchronous latency of 148 ns  
Asynchronous random access times of 143 ns  
„ Erase Suspend/Resume  
Suspends an erase operation to read data from, or  
program data to, a sector that is not being erased,  
then resumes the erase operation  
„ High Performance  
Typical word programming time of 40 µs  
Typical effective word programming time of 9.4 µs  
utilizing a 32-Word Write Buffer at Vcc Level  
Typical effective word programming time of 6 µs  
utilizing a 32-Word Write Buffer at ACC Level  
Typical 2 s sector erase time for 256 Kword sectors  
„ Program Suspend/Resume  
Suspends a programming operation to read data from  
a sector other than the one being programmed, then  
resume the programming operation  
„ Power dissipation (typical values, CL = 30 pF)  
„ Unlock Bypass Program command  
@ 80 MHz  
Reduces overall programming time when issuing  
multiple program command sequences  
Continuous Burst Mode Read: 35 mA  
Program: 19 mA  
Erase: 19 mA  
Additional Features  
„ Program Operation  
Standby mode: 20 µA  
Ability to perform synchronous and asynchronous  
write operation independent of burst control register  
setting  
Publication Number S75WS-N-00 Revision A Amendment 0 Issue Date February 17, 2005  
D a t a S h e e t  
General Description  
The S29RS512N is a 512 Mbit, 1.8 Volt-only, simultaneous Read/Write, Burst Mode Flash memory  
device, organized as 33,554,432words of 16 bits each. This device uses a single VCC of 1.65 to  
1.95 V to read, program, and erase the memory array. A 9.0-volt VHH on ACC may be used for  
faster program performance in a factory setting environment.  
The device uses Chip Enable (CE#), Write Enable (WE#), Address Valid (AVD#) and Output En-  
able (OE#) to control asynchronous read and write operations. For burst operations, the device  
additionally requires Ready (RDY), and Clock (CLK). This implementation allows easy interface  
with minimal glue logic to a wide range of microprocessors/microcontrollers for high performance  
read operations.  
The burst read mode feature gives system designers flexibility in the interface to the device. The  
user can preset the burst length and then wrap or non-wrap through the same memory space, or  
read the currently addressable flash array block in continuous mode.  
The rising clock edge initiates burst accesses and determines when data will be output.  
The device is entirely command set compatible with the JEDEC 42.4 single-power-supply  
Flash standard. Commands are written to the command register using standard microprocessor  
write timing. Register contents serve as inputs to an internal state-machine that controls the  
erase and programming circuitry. Write cycles also internally latch addresses and data needed for  
the programming and erase operations. Reading data out of the device is similar to reading from  
other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. This initiates the Em-  
bedded Program algorithm - an internal algorithm that automatically times the program pulse  
widths and verifies proper cell margin. The Unlock Bypass mode facilitates faster program times  
by requiring only two write cycles to program data instead of four. Additionally, Write Buffer Pro-  
gramming is available on this family of devices. This feature provides superior programming  
performance by grouping locations being programmed.  
Device erasure occurs by executing the erase command sequence. This initiates the Embedded  
Erase algorithm - an internal algorithm that automatically preprograms the array (if it is not al-  
ready programmed) before executing the erase operation. During erase, the device automatically  
times the erase pulse widths and verifies proper cell margin.  
The Program Suspend/Program Resume feature enables the user to put program on hold to  
read data from any sector that is not selected for programming. If a read is needed from the Dy-  
namic Protection area after a program suspend, then the user must use the proper command  
sequence to enter and exit this region. The program suspend/resume functionality is also avail-  
able when programming in erase suspend (1 level depth only).  
The Erase Suspend/Erase Resume feature enables the user to put erase on hold to read data  
from, or program data to, any sector that is not selected for erasure. True background erase can  
thus be achieved. If a read is needed from the Dynamic Protection area, after an erase suspend,  
then the user must use the proper command sequence to enter and exit this region.  
The hardware RESET# pin terminates any operation in progress and resets the internal state  
machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A sys-  
tem reset would thus also reset the device, enabling the system microprocessor to read boot-up  
firmware from the Flash memory device.  
The host system can detect whether a memory array program or erase operation is complete by  
using the device status bit DQ7 (Data# Polling), DQ6/DQ2 (toggle bits), DQ5 (exceeded timing  
limit), DQ3 (sector erase start timeout state indicator), and DQ1 (write to buffer abort). After a  
program or erase cycle has been completed, the device automatically returns to reading array  
data.  
96  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
The sector erase architecture allows memory sectors to be erased and reprogrammed without  
affecting the data contents of other sectors [The device is fully erased when shipped from the  
factory].  
Hardware data protection measures include a low VCC detector that automatically inhibits write  
operations during power transitions.  
When the ACC pin = VIL, the entire flash memory array is protected.  
The device offers two power-saving features. When addresses have been stable for a specified  
amount of time, the device enters the automatic sleep mode. The system can also place the  
device into the standby mode. Power consumption is greatly reduced in both modes.  
Spansion’s Flash technology combines years of Flash memory manufacturing experience to pro-  
duce the highest levels of quality, reliability and cost effectiveness. The device electrically erases  
all bits within a sector. The data is programmed using hot electron injection.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
97  
D a t a S h e e t  
15 Product Selector Guide  
S29RS512N  
Synchronous/Burst  
Speed Option  
80 MHz  
66 MHz  
54 MHz  
Asynchronous  
Max Access Time,  
Max Latency,  
ns (tIACC  
148  
160  
160  
143  
)
ns (tACC  
)
Max CE# Access,  
Max Burst Access Time, ns (tBACC  
Max OE# Access, ns (tOE  
)
9.1  
9.1  
11.2  
11.2  
13.5  
13.5  
148  
9.1  
ns (tCE  
)
)
Max OE# Access, ns (tOE  
)
98  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
16 Block Diagram  
VCC  
VSS  
DQ15DQ0  
RDY  
Buffer  
RDY  
Erase Voltage  
Generator  
Input/Output  
Buffers  
WE#  
RESET#  
ACC  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Y-Decoder  
Y-Gating  
VCC  
Detector  
Timer  
Cell Matrix  
X-Decoder  
Burst  
State  
Control  
Burst  
Address  
Counter  
AVD#  
CLK  
Amax–A0*  
Amax = A24  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
99  
D a t a S h e e t  
17 Logic Symbol  
25 or 24  
Amax–  
CLK  
16  
DQ15–DQ0  
ACC  
CE#  
OE#  
WE#  
RDY  
RESET#  
AVD#  
Note: Amax = A24 for 512Mb.  
100  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
18 Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated  
through the internal command register. The command register itself does not occupy any addres-  
sable memory location. The register is composed of latches that store the commands, along with  
the address and data information needed to execute the command. The contents of the register  
serve as inputs to the internal state machine. The state machine outputs dictate the function of  
the device. Table 18.1 lists the device bus operations, the inputs and control levels they require,  
and the resulting output. The following subsections describe each of these operations in further  
detail.  
Table 18.1 Device Bus Operations  
Operation  
CE#  
L
OE#  
L
WE#  
Addresses  
Addr In  
Addr In  
Addr In  
Addr In  
X
DQ15–0  
I/O  
RESET#  
CLK  
X
AVD#  
Asynchronous Read - Addresses Latched  
Asynchronous Read - Addresses Steady State  
Asynchronous Write  
H
H
L
H
H
H
H
H
L
L
L
I/O  
X
L
L
L
H
I/O  
X
Synchronous Write  
L
H
L
I/O  
Standby (CE#)  
H
X
X
X
X
HIGH Z  
HIGH Z  
X
X
X
X
Hardware Reset  
X
X
Burst Read Operations  
Load Starting Burst Address  
L
L
X
L
H
H
Addr In  
X
X
H
H
Advance Burst to next address with  
appropriate Data presented on the Data Bus  
Burst  
Data Out  
H
Terminate current Burst read cycle  
H
X
X
X
H
H
X
X
HIGH Z  
HIGH Z  
H
L
X
X
Terminate current Burst read cycle via RESET#  
X
Terminate current Burst read cycle and start  
new Burst read cycle  
L
X
H
Addr In  
I/O  
H
Legend: L = Logic 0, H = Logic 1, X = Don’t Care.  
18.1 Requirements for Asynchronous Read Operation (Non-Burst)  
To read data from the memory array, the system must first assert a valid address on Amax–A0,  
while driving AVD# and CE# to VIL. WE# should remain at VIH. The rising edge of AVD# latches  
the address. The data will appear on DQ15–DQ0.  
Address access time (tACC) is equal to the delay from stable addresses to valid output data. The  
chip enable access time (tCE) is the delay from the stable CE# to valid data at the outputs. The  
output enable access time (tOE) is the delay from the falling edge of OE# to valid data at the  
output.  
The internal state machine is set for reading array data in asynchronous mode upon device  
power-up, or after a hardware reset. This ensures that no spurious alteration of the memory con-  
tent occurs during the power transition.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
101  
D a t a S h e e t  
18.2 Requirements for Synchronous (Burst) Read Operation  
The device is capable of continuous sequential burst operation and linear burst operation of a pre-  
set length. When the device first powers up, it is enabled for asynchronous read operation.  
Prior to entering burst mode, the system should determine how many wait states are desired for  
the initial word (tIACC) of each burst access, what mode of burst operation is desired and how the  
RDY signal will transition with valid data. The system would then write the configuration register  
command sequence. See Set Configuration Register Command Sequence for further details.  
Table 2-4 shows the address latency scheme for varying frequencies.  
Table 18.2 Address Latency Scheme for < 56Mhz  
Cycle  
Add ws  
Initial  
Addr  
X
X+1  
D1  
D2  
D3  
X+2  
D2  
X+3  
D3  
X+4  
D4  
X+5  
D5  
X+6  
D6  
00  
01  
10  
11  
D0  
D1  
D2  
D3  
0ws  
0ws  
0ws  
0ws  
D3  
1ws  
1ws  
1ws  
D4  
D5  
D6  
1ws  
1ws  
D4  
D5  
D6  
1ws  
D4  
D5  
D6  
Table 18.3 Address Latency Scheme for < 70Mhz  
Cycle  
Initial  
Addr  
X
X+1  
D1  
D2  
D3  
X+2  
D2  
X+3  
D3  
Add ws  
1ws  
X+4  
D4  
X+5  
D5  
X+6  
D6  
00  
01  
10  
11  
D0  
D1  
D2  
D3  
D3  
1ws  
1ws  
1ws  
1ws  
D4  
D5  
D6  
1ws  
1ws  
1ws  
D4  
D5  
D6  
1ws  
1ws  
D4  
D5  
D6  
Table 18.4 Address Latency Scheme for < 84Mhz  
Cycle  
Initial  
Addrs  
X
X+1  
D1  
D2  
D3  
X+2  
D2  
X+3  
D3  
Add ws  
2ws  
X+4  
D4  
X+5  
D5  
X+6  
D6  
00  
01  
10  
11  
D0  
D1  
D2  
D3  
D3  
1ws  
1ws  
1ws  
2ws  
D4  
D5  
D6  
1ws  
1ws  
2ws  
D4  
D5  
D6  
1ws  
2ws  
D4  
D5  
D6  
Address Latency Scheme for < 84Mhz  
The initial word is output tIACC after the rising edge of the first CLK cycle. Subsequent words are  
output tBACC after the rising edge of each successive clock cycle, which automatically increments  
the internal address counter. Note that the device has a fixed internal address boundary that oc-  
curs every 512 words and there is a boundary crossing latency of 4/8 wait states, when  
the device is operating at frequencies lower than 56/80Mhz respectively.  
During the time the device is outputting data with the starting burst address not divisible by four,  
additional waits are required. For example, if the device is operating at frequency of 80Mhz and  
if the starting burst address is divisible by four A1:0 = 00, two additional wait state is required.  
102  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
If the starting burst address is at address A1:0 = 01, 10, 11 then three, four or five wait states  
are required, respectively, until data D4 is read and burst sequence becomes linear. Please refer  
to Table 18.4 for further details. The RDY output indicates this condition to the system by  
deasserting.  
18.2.1 Continuous Burst  
The device will continue to output sequential burst data, wrapping around to address 000000h  
after it reaches the highest addressable memory location, until the system drives CE# high, RE-  
SET# low, or AVD# low in conjunction with a new address. See Table 18.1.  
18.2.2 8-, 16-, and 32-Word Linear Burst with Wrap Around  
The remaining three modes are of the linear wrap around design, in which a fixed number of  
words are read from consecutive addresses. In each of these modes, the burst addresses read  
are determined by the group within which the starting address falls. The groups are sized accord-  
ing to the number of words read in a single burst sequence for a given mode (see Table 18.5.).  
Table 18.5 Burst Address Groups  
Mode  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h,...  
0-Fh, 10-1Fh, 20-2Fh,...  
00-1Fh, 20-3Fh, 40-5Fh,...  
8-word  
16-word  
32-word  
16 words  
32 words  
As an example: if the starting address in the 8-word mode is 3ch, the address range to be read  
would be 38-3Fh, and the burst sequence would be 3C, 3D, 3E, 3F, 38, 39, 3A, 3Bh. if wrap around  
is enable. The burst sequence begins with the starting address written to the device, but wraps  
back to the first address in the selected group and stops at the group size, terminating the burst  
read. In a similar fashion, the 16-word and 32-word Linear Wrap modes begin their burst se-  
quence on the starting address written to the device, and then wrap back to the first address in  
the selected address group. Note that in these three burst read modes the address pointer  
does not cross the boundary that occurs every 512 words; thus, no wait states are in-  
serted (except during the initial access). (see Figure 25.4)  
18.2.3 8-, 16-, and 32-Word Linear Burst without Wrap Around  
If wrap around is not enabled, 8-word, 16-word, or 32-word burst will execute linearly up to word  
boundary. The burst will stop after 8, 16, or 32 addresses and will not wrap around to the first  
address of the selected group. As an example: if the starting address in the 8-word mode is 3ch,  
the address range to be read would be 39-40h, and the burst sequence would be 3C, 3D-3E-3F-  
40-41-42-43h if wrap around is not enabled. The next address to be read will require a new ad-  
dress and AVD# pulse. The address range would stay within the address block, causing address  
FFFFh to be followed by 0000h. Note that in this burst mode, the address pointer may cross the  
boundary that occurs every 128 words.  
18.3 Configuration Register  
The device uses a configuration register to set the various burst parameters: number of wait  
states, burst read mode, RDY configuration, and synchronous mode active.  
18.4 RDY: Ready  
The RDY is a dedicated output that, when the device is configured in the Synchronous mode, in-  
dicates (when at logic low) the system should wait 1 clock cycle before expecting the next word  
of data. The RDY pin is only controlled by CE#. Using the RDY Configuration Command Sequence,  
RDY can be set so that a logic low indicates the system should wait 2 clock cycles before expecting  
valid data.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
103  
D a t a S h e e t  
The following conditions cause the RDY output to be low: during the initial access (in burst mode),  
and at the boundary crossing, that occurs every 512 words beginning with address 1FFh.  
18.5 Handshaking  
The device is equipped with a handshaking feature that allows the host system to simply monitor  
the RDY signal from the device to determine when the burst data is ready to be read. The host  
system should use the programmable wait state configuration to set the number of wait states  
for optimal burst mode operation. The initial word of burst data is indicated by the rising edge of  
RDY after OE# goes low.  
For optimal burst mode performance, the host system must set the appropriate number of wait  
states in the flash device depending on clock frequency. See Set Configuration Register Command  
Sequence and Requirements for Synchronous (Burst) Read Operation for more information.  
18.6 Writing Commands/Command Sequences  
The device has the capability of performing an asynchronous or synchronous write operation.  
While the device is configured in Asynchronous read it is able to perform Asynchronous write op-  
erations only. CLK is ignored when the device is configured in the Asynchronous mode. When in  
the Synchronous read mode configuration, the device is able to perform both Asynchronous and  
Synchronous write operations. CLK and AVD# address latch is supported in the Synchronous pro-  
gramming mode. During a synchronous write operation, to write a command or command  
sequence (which includes programming data to the device and erasing sectors of memory), the  
system must drive AVD# and CE# to VIL, and OE# to VIH when providing an address to the de-  
vice, and drive WE# and CE# to VIL, and OE# to VIH. when writing commands or data. During an  
asynchronous write operation, the system must drive CE# and WE# to VIL and OE# to VIH when  
providing an address, command, and data. Addresses are latched on the last falling edge of WE#  
or CE#, while data is latched on the 1st rising edge of WE# or CE# (see ).  
The device features an Unlock Bypass mode to facilitate faster programming. Once the device en-  
ters the Unlock Bypass mode, only two write cycles are required to program a word, instead of  
four.  
An erase operation can erase one sector, multiple sectors or the entire device. Table 19.6 indicates  
the address space that each sector occupies. A sector address is the address bits required to  
uniquely select a sector.  
ICC2 in the DC Characteristics section represents the active current specification for the write  
mode. The AC Characteristics section contains timing specification tables and timing diagrams for  
write operations.  
18.7 Accelerated Program/Chip Erase Operations  
The device offers accelerated program and accelerated chip erase operations through the ACC  
functionACC is intended to allow faster manufacturing throughput at the factory and not to be  
used in system operations.  
The system can use the Write Buffer Load command sequence. Note that if a Write-to-Buffer-  
Abort Reset is required, the full 3-cycle RESET command sequence must be used to reset  
the device. Removing VHH from the ACC input, upon completion of the embedded program or  
erase operation, returns the device to normal operation. Note that sectors must be unlocked prior  
to raising ACC to VHH. When at VIL, ACC locks all sectors. ACC should be at VIH for all other  
conditions.  
number loaded = the number of locations to program minus 1. For example, if the system will  
program 6 address locations, then 05h should be written to the device.)  
104  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
The system then writes the starting address/data combination. This starting address is the first  
address/data pair to be programmed, and selects the write-buffer-page address. All subsequent  
address/data pairs must fall within the selected-write-buffer-page where Amax = 24 for RS512N.  
The write-buffer-page is selected by addresses Amax - A5.  
The write-buffer-page addresses must be the same for all address/data pairs loaded into  
the write buffer. (This means Write Buffer Programming cannot be performed across multiple  
write-buffer-pages. This also means that Write Buffer Programming cannot be performed across  
multiple sectors. If the system attempts to load programming data outside of the selected write-  
buffer-page, the operation will ABORT.)  
After writing the Starting Address/Data pair, the system then writes the remaining address/data  
paris into the write buffer. Write buffer locations may be loaded in any order.  
Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter  
will be decremented for every data load operation. Also, the last data loaded at a location  
before the Program Buffer to Flash confirm command will be programmed into the device. It is  
the software’s responsibility to comprehend ramifications of loading a write-buffer location more  
than once. The counter decrements for each data load operation, not for each unique write-  
buffer-address location.  
Once the specified number of write buffer locations have been loaded, the system must then write  
the Program Buffer to Flash command at the Sector Address. Any other address/data write com-  
binations will abort the Write Buffer Programming operation. The device then goes busy. The Data  
Bar polling techniques should be used while monitoring the last address location loaded into  
the write buffer. This eliminates the need to store an address in memory because the system  
can load the last address location, issue the program confirm command at the last loaded address  
location, and then data bar poll at that same address. DQ7, DQ6, DQ5, DQ2, and DQ1 should be  
monitored to determine the device status during Write Buffer Programming.  
The write-buffer embedded programming operation can be suspended using the standard sus-  
pend/resume commands. Upon successful completion of the Write Buffer Programming operation,  
the device will return to READ mode.  
The Write Buffer Programming Sequence can be ABORTED in the following ways:  
„ Load a value that is greater than the page buffer size during the Number of Locations to Pro-  
gram step.  
„ Write to an address in a sector different than the one specified during the Write-Buffer-Load  
command.  
„ Write an Address/Data pair to a different write-buffer-page than the one selected by the  
Starting Address during the write buffer data loading stage of the operation.  
„ Write data other than the Confirm Command after the specified number of data load cycles.  
The ABORT condition is indicated by DQ1 = 1, DQ7 = Data# (for the last address location loaded),  
DQ6 = TOGGLE, DQ5 = 0. This indicates that the Write Buffer Programming Operation was  
ABORTED. A Write-to-Buffer-Abort reset command sequence is required when using the Write-  
Buffer-Programming features in Unlock Bypass mode. [Use of the write buffer is strongly rec-  
ommended for programming when multiple words are to be programmed.]  
from the internal register (which is separate from the memory array)  
18.8 Dynamic Sector Protection  
The device offers data protection at the sector level and the DYB associated command sequences  
disables or re-enables both program and erase operations in any sector or sector group.  
„ Dynamically Locked—The sector is protected and can be changed by a simple command  
„ Unlocked—The sector is unprotected and can be changed by a simple command  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
105  
D a t a S h e e t  
18.8.1 Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware reset, the con-  
tents of all DYBs is cleared erased to 1. In other words, the DYB powers-up in an unprotected  
state. Each DYB is individually modifiable through the DYB Write Command.  
The Protection State for each sector is determined by the DYB related to that sector. The DYBs  
control whether or not the sector is protected or unprotected. By issuing the DYB Write com-  
mand sequences, the DYBs will be set (programmed to 0) or cleared (erased to 1), thus placing  
each sector in the protected or unprotected state. These are the so-called Dynamic Locked or  
Unlocked states. They are called dynamic states because it is very easy to switch back and forth  
between the protected and unprotected conditions. This allows software to easily protect sectors  
against inadvertent changes yet does not prevent the easy removal of protection when changes  
are needed. The DYBs maybe set or cleared as often as needed.  
18.9 Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby  
mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the  
high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# and RESET# inputs are both held at  
VCC. The device requires standard access time (tCE) for read access, before it is ready to read  
data.  
If the device is deselected during erasure or programming, the device draws active current until  
the operation is completed.  
ICC3 in the DC Characteristics section represents the standby current specification.  
18.10 Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. While in asynchronous  
mode, the device automatically enables this mode when addresses remain stable for tACC + 20  
ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Stan-  
dard address access timings provide new data when addresses are changed. While in sleep mode,  
output data is latched and always available to the system. While in synchronous mode, the Auto-  
matic Sleep Mode is disabled. Note that a new burst operation is required to provide new data.  
ICC6 in the DC Characteristics section represents the automatic sleep mode current specification.  
18.11 RESET#: Hardware Reset Input  
The RESET# input provides a hardware method of resetting the device to reading array data.  
When RESET# is driven low for at least a period of tRP, the device immediately terminates any  
operation in progress, tristates all outputs, resets the configuration register, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state  
machine to reading array data. The operation that was interrupted should be reinitiated once the  
device is ready to accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS, the device  
draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS, the standby cur-  
rent will be greater.  
RESET# may be tied to the system reset circuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted tRP operation, the device requires a time of tRH + tRP before the device is  
ready to read data again. If RESET# is asserted when a program or erase operation is not exe-  
cuting, the reset operation is completed within a time of tRP (not during Embedded Algorithms).  
The system can read data tRH after RESET# returns to VIH.  
106  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
Refer to the Synchronous/Burst Read section for RESET# parameters and to Figure 25.9 for the  
timing diagram.  
18.12 Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The outputs are placed in the  
high impedance state.  
18.13 Hardware Data Protection  
The following hardware data protection measures prevent accidental erasure or programming,  
which might otherwise be caused by spurious system level signals during VCC power-up and  
power-down transitions, or from system noise.  
18.13.1 Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during  
VCC power-up and power-down. The command register and all internal program/erase circuits are  
disabled, and the device resets to reading array data. Subsequent writes are ignored until VCC is  
greater than VLKO. The system must provide the proper signals to the control inputs to prevent  
unintentional writes when VCC is greater than VLKO  
.
18.13.2 Write Pulse Glitch Protection  
Noise pulses do not initiate a write cycle.  
18.13.3 Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate  
a write cycle, CE# and WE# must be a logical zero while OE# is a logical one.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
107  
D a t a S h e e t  
19 Sector Address / Memory Address Map  
Table 19.6 Sector Address / Memory Address Map for the RS512N  
(A24-A0)  
(A24-A0)  
Sector  
SA0  
Sector Size  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
Address Range  
Sector  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
Sector Size  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
Address Range  
0000000h-003FFFFh  
0040000h-007FFFFh  
0080000h-00BFFFFh  
00C0000h-00FFFFFh  
0100000h-013FFFFh  
0140000h-017FFFFh  
0180000h-01BFFFFh  
01C0000h-01FFFFFh  
0200000h-023FFFFh  
0240000h-027FFFFh  
0280000h-02BFFFFh  
02C0000h-02FFFFFh  
0300000h-033FFFFh  
0340000h-037FFFFh  
0380000h-03BFFFFh  
03C0000h-03FFFFFh  
0400000h-043FFFFh  
0440000h-047FFFFh  
0480000h-04BFFFFh  
04C0000h-04FFFFFh  
0500000h-053FFFFh  
0540000h-057FFFFh  
0580000h-05BFFFFh  
05C0000h-05FFFFFh  
0600000h-063FFFFh  
0640000h-067FFFFh  
0680000h-06BFFFFh  
06C0000h-06FFFFFh  
0700000h-073FFFFh  
0740000h-077FFFFh  
0780000h-07BFFFFh  
07C0000h-07FFFFFh  
0800000h-083FFFFh  
0840000h-087FFFFh  
0880000h-08BFFFFh  
08C0000h-08FFFFFh  
0900000h-093FFFFh  
0940000h-097FFFFh  
0980000h-09BFFFFh  
09C0000h-09FFFFFh  
1000000h-103FFFFh  
1040000h-107FFFFh  
1080000h-10BFFFFh  
10C0000h-10FFFFFh  
1100000h-113FFFFh  
1140000h-117FFFFh  
1180000h-11BFFFFh  
11C0000h-11FFFFFh  
1200000h-123FFFFh  
1240000h-127FFFFh  
1280000h-12BFFFFh  
12C0000h-12FFFFFh  
1300000h-133FFFFh  
1340000h-137FFFFh  
1380000h-13BFFFFh  
13C0000h-13FFFFFh  
1400000h-143FFFFh  
1440000h-147FFFFh  
1480000h-14BFFFFh  
14C0000h-14FFFFFh  
1500000h-153FFFFh  
1540000h-157FFFFh  
1580000h-15BFFFFh  
15C0000h-15FFFFFh  
1600000h-163FFFFh  
1640000h-167FFFFh  
1680000h-16BFFFFh  
16C0000h-16FFFFFh  
1700000h-173FFFFh  
1740000h-177FFFFh  
1780000h-17BFFFFh  
17C0000h-17FFFFFh  
1800000h-183FFFFh  
1840000h-187FFFFh  
1880000h-18BFFFFh  
18C0000h-18FFFFFh  
1900000h-193FFFFh  
1940000h-197FFFFh  
1980000h-19BFFFFh  
19C0000h-19FFFFFh  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
108  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
Table 19.6 Sector Address / Memory Address Map for the RS512N (Continued)  
(A24-A0)  
(A24-A0)  
Sector  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
Sector Size  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
Address Range  
Sector  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
Sector Size  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
256 Kwords  
Address Range  
0A00000h-0A3FFFFh  
0A40000h-0A7FFFFh  
0A80000h-0ABFFFFh  
0AC0000h-0AFFFFFh  
0B00000h-0B3FFFFh  
0B40000h-0B7FFFFh  
0B80000h-0BBFFFFh  
0BC0000h-0BFFFFFh  
0C00000h-0C3FFFFh  
0C40000h-0C7FFFFh  
0C80000h-0CBFFFFh  
0CC0000h-0CFFFFFh  
0D00000h-0D3FFFFh  
0D40000h-0D7FFFFh  
0D80000h-0DBFFFFh  
0DC0000h-0DFFFFFh  
0E00000h-0E3FFFFh  
0E40000h-0E7FFFFh  
0E80000h-0EBFFFFh  
0EC0000h-0EFFFFFh  
0F00000h-0F3FFFFh  
0F40000h-0F7FFFFh  
0F80000h-0FBFFFFh  
0FC0000h-0FFFFFFh  
1A00000h-1A3FFFFh  
1A40000h-1A7FFFFh  
1A80000h-1ABFFFFh  
1AC0000h-1AFFFFFh  
1B00000h-1B3FFFFh  
1B40000h-1B7FFFFh  
1B80000h-1BBFFFFh  
1BC0000h-1BFFFFFh  
1C00000h-1C3FFFFh  
1C40000h-1C7FFFFh  
1C80000h-1CBFFFFh  
1CC0000h-1CFFFFFh  
1D00000h-1D3FFFFh  
1D40000h-1D7FFFFh  
1D80000h-1DBFFFFh  
1DC0000h-1DFFFFFh  
1E00000h-1E3FFFFh  
1E40000h-1E7FFFFh  
1E80000h-1EBFFFFh  
1EC0000h-1EFFFFFh  
1F00000h-1F3FFFFh  
1F40000h-1F7FFFFh  
1F80000h-1FBFFFFh  
1FC0000h-1FFFFFFh  
19.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are  
required to retrieve data in asynchronous mode. The device is ready to read array data after com-  
pleting an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the device enters the erase-suspend-read  
mode, after which the system can read data from any non-erase-suspended sector within the  
same device. After completing a programming operation in the Erase Suspend mode, the system  
may once again read array data from any non-erase-suspended sector within the same device.  
See the Erase Suspend/Erase Resume Commands section for more information.  
After the device accepts a Program Suspend command, the device enters the program-suspend-  
read mode, after which the system can read data from any non-program-suspended sector within  
the device. See Program Suspend/Program Resume Commands for more information.  
The system must issue the reset command to return device to the read (or erase-suspend-read)  
mode if DQ5 goes high during an active program or erase operation, or if the device is in the au-  
toselect mode. See the Reset Command section for more information. If DQ1 goes high during  
Write Buffer Programming, the system must issue the Write Buffer Abort Reset command.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
109  
D a t a S h e e t  
See also the Requirements for Asynchronous Read Operation (Non-Burst) and the Requirements  
for Synchronous (Burst) Read Operation sections for more information. The Asynchronous Read  
and Synchronous/Burst Read tables provide the read parameters, Figure 25.2, Figure 25.3, and  
Figure 25.7 show the timings.  
19.2 Set Configuration Register Command Sequence  
The device uses a configuration register to set the various burst parameters: number of wait  
states, burst read mode, RDY configuration, and synchronous mode active. The configuration reg-  
ister must be set before the device will enter burst mode.  
The configuration register is loaded with a four-cycle command sequence. The first two cycles are  
standard unlock sequences. On the third cycle, the data should be D0h and address bits should  
be 555h. During the fourth cycle, the configuration code should be entered onto the data bus with  
the address bus set to address 000h or 001h. Once the data has been programmed into the con-  
figuration register, a software reset command is required to set the device into the correct state.  
The device will power up or after a hardware reset with the default setting, which is in asynchro-  
nous mode. The register must be set before the device can enter synchronous mode. The  
configuration register can not be changed during device operations (program, erase, or sector  
lock).  
19.3 Read Configuration Register Command Sequence  
The configuration register can be read with a four-cycle command sequence. The first two cycles  
are standard unlock sequences. On the third cycle, the data should be C6h and address bits  
should be 555h. During the fourth cycle, the configuration code should be read out of the data  
bus with the address bus set to address 000h or 001h. Once the data has been read from the  
configuration register, a software reset command is required to set the device into array read  
mode.  
Power-up/  
Hardware Reset  
Asynchronous Read  
Mode Only  
Set Burst Mode  
Configuration Register  
Command for  
Set Burst Mode  
Configuration Register  
Command for  
Synchronous Mode  
(D15 = 0)  
Asynchronous Mode  
(D15 = 1)  
Synchronous Read  
Mode Only  
Figure 19.1 Synchronous/Asynchronous State Diagram  
110  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
19.3.1 Read Mode Setting  
On power-up or hardware reset, the device is set to be in asynchronous read mode. This setting  
allows the system to enable or disable burst mode during system operations. Configuration Bit  
CR0.15 determines this setting: 1 for asynchronous mode, 0 for synchronous mode.  
19.3.2 Programmable Wait State Configuration  
The programmable wait state feature informs the device of the number of clock cycles that must  
elapse after AVD# is driven active before data will be available. This value is determined by the  
input frequency of the device. Configuration Bit CR1.0 & CR0.13–CR0.11 determine the set-  
ting (see Table 19.7).  
The wait state command sequence instructs the device to set a particular number of clock cycles  
for the initial access in burst mode. The number of wait states that should be programmed into  
the device is directly related to the clock frequency.  
Table 19.7 Programmable Wait State Settings  
CR1.0  
0
CR0.13  
CR0.12  
CR0.11  
Total Initial Access Cycles  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
0
3
0
4
0
5
0
6
0
7
Reserved  
Reserved  
8
0
0
1
1
9
1
10  
1
11  
1
12 (default)  
13  
1
1
Reserved  
Reserved  
1
Notes:  
1. Upon power-up or hardware reset, the default setting is twelve wait states.  
2. All other but setting are reserved.  
It is recommended that the wait state command sequence be written, even if the default wait  
state value is desired, to ensure the device is set as expected. A hardware reset will set the wait  
state to the default setting.  
19.3.3 Programmable Wait State  
The host system should set CR1.0 & CR0.13-CR0.11 to 1100/1010/1000 for a clock frequency  
of 80/66/54 MHz for the system/device to execute at maximum speed.  
19.3.4 Boundary Crossing Latency  
Additional wait states must be inserted to account for boundary crossing latency. This is done by  
setting CR0.14 to a ‘1’ (default). If required, CR0.14 can be changed to a ‘0’ to remove the  
boundary crossing latency.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
111  
D a t a S h e e t  
19.3.5 Handshaking  
For optimal burst mode performance, the host system must set the appropriate number of wait  
states in the flash device depending on the clock frequency.  
The autoselect function allows the host system to determine whether the flash device is enabled  
for handshaking. See the Autoselect Command Sequence for more information.  
19.3.6 Burst Length Configuration  
The device supports four different read modes: continuous mode, and 8, 16, and 32 word linear  
with or without wrap around modes. A continuous sequence (default) begins at the starting ad-  
dress and advances the address pointer until the burst operation is complete. If the highest  
address in the device is reached during the continuous burst read mode, the address pointer  
wraps around to the lowest address.  
For example, an eight-word linear read with wrap around begins on the starting address written  
to the device and then advances to the next 8 word boundary. The address pointer then returns  
to the 1st word after the previous eight word boundary, wrapping through the starting location.  
The sixteen- and thirty-two linear wrap around modes operate in a fashion similar to the eight-  
word mode.  
Table 19.8 shows the CR0.2-CR0.0 and settings for the four read modes.  
Table 19.8 Burst Length Configuration  
Address Bits  
Burst Modes  
Continuous  
CR0.2  
CR0.1  
CR0.0  
0
0
0
1
0
1
1
0
0
0
1
0
8-word linear  
16-word linear  
32-word linear  
Note: Upon power-up or hardware reset the default setting is continuous.  
19.3.7 Burst Wrap Around  
By default, the device will perform burst wrap around with CR0.3 set to a ‘1. Changing the CR0.3  
to a ‘0’ disables burst wrap around.  
19.3.8 RDY Configuration  
By default, the device is set so that the RDY pin will output VOH whenever there is valid data on  
the outputs. The device can be set so that RDY goes active one data cycle before active data.  
CR0.8 determines this setting; 1 for RDY active (default) with data, 0 for RDY active one clock  
cycle before valid data.  
19.3.9 RDY Polarity  
By default, the RDY pin will always indicate that the device is ready to handle a new transaction  
with CR0.10 set to a ‘1. In this case, the RDY pin is active high. Changing the CR0.10 to a ‘0’  
sets the RDY pin to be active low. In this case, the RDY pin will always indicate that the device is  
ready to handle a new transaction when low.  
112  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
19.4 Configuration Register  
Table 19.9 shows the address bits that determine the configuration register settings for various  
device functions.  
Table 19.9 Configuration Register  
CR0. Bit  
Function  
Settings (Binary)  
0 = Synchronous Read (Burst Mode) Enabled  
1 = Asynchronous Mode (default)  
CR0.15 Set Device Read Mode  
0 = No extra boundary crossing latency  
1 = With extra boundary crossing latency (default)  
CR0.14  
Boundary Crossing  
0000 = Reserved  
0001 = Data is valid on the 4th active CLK edge after addresses are latched  
0010 = Data is valid on the 5th active CLK edge after addresses are latched  
0011 = Data is valid on the 6th active CLK edge after addresses are latched  
0100 = Data is valid on the 7th active CLK edge after addresses are latched  
0101 = Data is valid on the 8th active CLK edge after addresses are latched  
0110 = Reserved  
0111 = Reserved  
CR1.0  
1000 = Data is valid on the 9th active CLK edge after addresses are latched  
1001 = Data is valid on the 10th active CLK edge after addresses are latched  
1010 = Data is valid on the 11th active CLK edge after addresses are latched  
1011 = Data is valid on the 12th active CLK edge after addresses are latched  
1100 = Data is valid on the 13th active CLK edge after addresses are latched (default)  
1101 = Data is valid on the 14th active CLK edge after addresses are latched  
1110 = Reserved  
Programmable  
Wait State  
1111 = Reserved  
CR0.13  
CR0.12  
CR0.11  
0 = RDY signal is active low  
1 = RDY signal is active high (default)  
CR0.10  
CR0.9  
CR0.8  
RDY Polarity  
Reserved  
RDY  
1 = default  
0 = RDY active one clock cycle before data  
1 = RDY active with data (default)  
CR0.7  
CR0.6  
CR0.5  
CR0.4  
Reserved  
Reserved  
Reserved  
Reserved  
1 = default  
1 = default  
0 = default  
0 = default  
0 = No Wrap Around Burst  
1 = Wrap Around Burst (default)  
CR0.3  
Burst Wrap Around  
000 = Continuous (default)  
010 = 8-Word Linear Burst  
011 = 16-Word Linear Burst  
100 = 32-Word Linear Burst  
(All other bit settings are reserved)  
CR0.2  
Burst Length  
CR0.1  
CR0.0  
Note: 3.Device will be in the default state upon power-up or hardware reset.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
113  
D a t a S h e e t  
19.5 Reset Command  
Writing the reset command resets the device to the read or erase-suspend-read mode. Address  
bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase command sequence  
before erasing begins. This resets the device to which the system was writing to the read mode.  
[Once erasure begins, however, the device ignores reset commands until the operation is  
complete].  
The reset command may be written between the sequence cycles in a program command se-  
quence before programming begins (prior to the third cycle). This resets the device to which the  
system was writing to the read mode. If the program command sequence is written to the device  
that is in the Erase Suspend mode, writing the reset command returns the device to the erase-  
suspend-read mode. Once programming begins, however, the device ignores reset commands  
until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command se-  
quence. Once in the autoselect mode, the reset command must be written to return to the read  
mode. If a device entered the autoselect mode while in the Erase Suspend mode, writing the reset  
command returns that device to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the  
device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend and  
program-suspend-read mode if the device was in Program Suspend).  
Note: If DQ1 goes high during a Write Buffer Programming operation, the system must  
write the Write to Buffer Abort Reset command sequence to RESET the device to read-  
ing array data. The standard RESET command will not work. See Table 19.9 for details  
on this command sequence.  
19.6 Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device  
codes, and determine whether or not a sector is protected. The Command Definitions table shows  
the address and data requirements. The autoselect command sequence may be written to an ad-  
dress within the device that is either in the read or erase-suspend-read mode. The autoselect  
command may not be written while the device is actively programming or erasing.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed  
by a third write cycle that contains the autoselect command. The device then enters the autose-  
lect mode. No subsequent data will be made available if the autoselect data is read in synchronous  
mode. The system may read at any address within the device any number of times without initi-  
ating another autoselect command sequence. The following table describes the address  
requirements for the various autoselect functions, and the resulting data. The device ID is read  
in three cycles.  
Table 19.10 Autoselect Addresses  
Description  
Address  
00h  
Read Data  
01h  
Manufacturer ID  
Device ID, Word 1  
Device ID, Word 2  
Device ID, Word 3  
01h  
227Eh  
0Eh  
2229 (RS512N)  
2201 (RS512N)  
0Fh  
DQ15 - DQ5 = 0  
DQ4 & DQ3 = 11  
DQ2 - DQ0 = 0  
Indicator Bits  
03h  
114  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
The system must write the reset command to return to the read mode (or erase-suspend-read  
mode if the device was previously in Erase Suspend).  
19.7 Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writ-  
ing two unlock write cycles, followed by the program set-up command. The program address and  
data are written next, which in turn initiate the Embedded Program algorithm. The system is not  
required to provide further controls or timings. The device automatically provides internally gen-  
erated program pulses and verifies the programmed cell margin. The Command Definitions table  
shows the address and data requirements for the program command sequence.  
When the Embedded Program algorithm is complete, the device then returns to the read mode  
and addresses are no longer latched. The system can determine the status of the program oper-  
ation by monitoring DQ7 or DQ6/DQ2. Refer to the “Write Operation Status” section for  
information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note  
that a hardware reset immediately terminates the program operation. The program command se-  
quence should be reinitiated once the device has returned to the read mode, to ensure data  
integrity.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be pro-  
grammed from 0 back to a 1. Only erase operations can convert a 0 back to a 1.  
Attempting to program a 1 over a 0 will result in a programming failure.  
Note: See the Command Definitions table for program command sequence.  
Figure 19.2 Program Word Operation  
19.8 Write Buffer Programming Command Sequence  
Write Buffer Programming Sequence allows for faster programming as compared to the standard  
Program Command Sequence. See the Write Buffer Programming Operation section for the pro-  
gram command sequence.  
Table 19.11 Write Buffer Command Sequence  
Sequence  
Unlock Command 1  
Address  
555  
Data  
00AA  
0055  
0025h  
Comment  
Not required in the Unlock Bypass mode  
Same as above  
Unlock Command 2  
Write Buffer Load  
2AA  
Sector Address  
Specify the Number of Program  
Locations  
Starting Address  
Starting Address  
Word Count Number of locations to program minus 1  
All addresses must be within write-buffer-  
Program Data page boundaries, but do not have to be  
loaded in any order  
Load 1st data word  
Load next data word  
...  
Write Buffer Location Program Data Same as above  
... ... Same as above  
Write Buffer Location Program Data Same as above  
This command must follow the last write  
Load last data word  
Write Buffer Program Confirm  
Device goes busy  
Sector Address  
0029h  
buffer location loaded, or the operation will  
ABORT  
Status monitoring through DQ pins  
(Perform Data Bar Polling on the Last  
Loaded Address)  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
115  
D a t a S h e e t  
Write “Write to Buffer”  
command and  
Sector Address  
Part of “Write to Buffer”  
Command Sequence  
Write number of addresses  
to program minus 1  
and Sector Address  
Write first address/data  
Yes  
WC = 0 ?  
No  
Write to a different  
sector address  
Abort Write to  
Buffer Operation?  
Yes  
Write to buffer ABORTED.  
Must write “Write-to-buffer  
Abort Reset” command  
sequence to return  
No  
Write next address/data pair  
to read mode.  
WC = WC - 1  
Write program buffer to  
flash sector address  
Read DQ15 - DQ0 at  
Last Loaded Address  
Yes  
DQ7 = Data?  
No  
No  
No  
DQ1 = 1?  
Yes  
DQ5 = 1?  
Yes  
Read DQ15 - DQ0 with  
address = Last Loaded  
Address  
Yes  
DQ7 = Data?  
No  
FAIL or ABORT  
PASS  
Figure 19.3 Write Buffer Programming Operation  
116  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
19.8.1 Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to primarily program to the device faster than using  
the standard word program command sequence. The unlock bypass command sequence is initi-  
ated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock  
bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock by-  
pass program command sequence is all that is required to program in this mode. The first cycle  
in this sequence contains the unlock bypass program command, A0h; the second cycle contains  
the program address and data. Additional data is programmed in the same manner. This mode  
dispenses with the initial two unlock cycles required in the standard program command sequence,  
resulting in faster total programming time.  
During the unlock bypass mode, only the Unlock Bypass Program command is valid. To exit the  
unlock bypass mode, the system must issue the two-cycle unlock bypass reset command se-  
quence. The first cycle must contain the data 90h. The second cycle need only contain the data  
00h. The device then returns to the read mode.  
19.9 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing  
two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then  
followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The  
device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to provide any controls or timings during these oper-  
ations. The Command Definitions table shows the address and data requirements for the chip  
erase command sequence.  
When the Embedded Erase algorithm is complete, the device returns to the read mode and ad-  
dresses are no longer latched. The system can determine the status of the erase operation by  
using DQ7 or DQ6/DQ2. Refer to the Write Operation Status section for information on these sta-  
tus bits.  
Any commands written during the chip erase operation are ignored. However, note that a hard-  
ware reset immediately terminates the erase operation. If that occurs, the chip erase command  
sequence should be reinitiated once the device has returned to reading array data, to ensure data  
integrity.  
Figure 20.4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Opera-  
tions table in the AC Characteristics section for parameters and timing diagrams.  
19.10 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writ-  
ing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written,  
and are then followed by the address of the sector to be erased, and the sector erase command.  
The Command Definitions table shows the address and data requirements for the sector erase  
command sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algo-  
rithm automatically programs and verifies the entire memory for an all zero data pattern prior to  
electrical erase. The system is not required to provide any controls or timings during these  
operations.  
After the command sequence is written, a sector erase time-out of no less than 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase commands may be writ-  
ten. Loading the sector erase buffer may be done in any sequence, and the number of sectors  
may be from one sector to all sectors. The time between these additional cycles must be less than  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
117  
D a t a S h e e t  
tSEA. Any sector erase address and command following the exceeded time-out may or may not  
be accepted. Any command other than Sector Erase or Erase Suspend during the time-out period  
resets the device to the read mode.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See DQ3: Sec-  
tor Erase Timer.) The time-out begins from the rising edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete, the device returns to reading array data and  
addresses are no longer latched. The system can determine the status of the erase operation by  
reading DQ7 or DQ6/DQ2. Refer to the Write Operation Status section for information on these  
status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other  
commands are ignored. However, note that a hardware reset immediately terminates the erase  
operation. If that occurs, the sector erase command sequence should be reinitiated once the de-  
vice has returned to reading array data, to ensure data integrity.  
Figure 20.4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Opera-  
tions table in the Erase/Program Operations section for parameters and timing diagrams.  
19.10.1 Accelerated Sector Erase  
Under certain conditions, the device can erase sectors in parallel. This method of erasing sectors  
is faster than the standard sector erase command sequence. Table 19.6lists the sectors.  
The accelerated sector erase function must not be used more than 100 times per sector.  
In addition, accelerated sector erase should be performed at room temperature 30°C (+/-) 5°C.  
Use the following procedure to perform accelerated sector erase:  
1. Unlock all sectors in a sector to be erased using the sector lock/unlock command sequence.  
All sectors that remain locked will not be erased.  
2. Apply 9 V to the ACC input. This voltage must be applied at least 1 µs before executing  
step 3.  
3. Write 80h to any address within a sector to be erased.  
4. Write 30h to any address within a sector to be erased.  
5. Monitor status bits DQ2/DQ6 or DQ7 to determine when erasure is complete, just as in the  
standard erase operation. See the Write Operation Status section for further details.  
6. Lower ACC from 9 V to VCC  
7. Relock sectors as required.  
.
118  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
20 Erase Suspend/Erase Resume Commands  
Notes:  
1.See the Command Definitions table for erase command sequence.  
2.See the section on DQ3 for information on the sector erase timer.  
Figure 20.4 Erase Operation  
The Erase Suspend command allows the system to interrupt a sector erase operation and then  
read data from, or program data to, any sector not selected for erasure. This command is valid  
only during the sector erase operation, including the minimum tSEA time-out period during the  
sector erase command sequence. The Erase Suspend command is ignored if written during the  
chip erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device re-  
quires a maximum of tESL (Erase Suspend Latency) to suspend the erase operation. However,  
when the Erase Suspend command is written during the sector erase time-out, the device imme-  
diately terminates the time-out period and suspends the erase operation.  
After the erase operation has been suspended, the device enters the erase-suspend-read mode.  
The system can read data from or program data to any sector not selected for erasure. (The de-  
vice erase suspends all sectors selected for erasure.) Reading at any address within erase-  
suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6  
and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See Write  
Operation Status for information on these status bits.  
After an erase-suspended program operation is complete, the device returns to the erase-sus-  
pend-read mode. The system can determine the status of the program operation using the DQ7  
or DQ6 status bits, just as in the standard program operation. See Write Operation Status for  
more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence.  
See Write Buffer Programming Operation and Autoselect Command Sequence for details. To re-  
sume the sector erase operation, the system must write the Erase Resume command. Further  
writes of the Resume command are ignored. Another Erase Suspend command can be written  
after the chip has resumed erasing.  
20.1 Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt a embedded programming oper-  
ation or a Write to Buffer programming operation so that data can read from any non-suspended  
sector. When the Program Suspend command is written during a programming process, the de-  
vice halts the programming operation within tPSL (Program Suspend Latency) and updates the  
status bits. Addresses are don’t-cares when writing the Program Suspend command.  
After the programming operation has been suspended, the system can read array data from any  
non-suspended sector. The Program Suspend command may also be issued during a program-  
ming operation while an erase is suspended. In this case, data may be read from any addresses  
not in Erase Suspend or Program Suspend. If a read is needed from the SecSi Sector area (One  
Time Program area), then user must use the proper command sequences to enter and exit this  
region. The system may also write the autoselect command sequence when the device is in Pro-  
gram Suspend mode. The device allows reading autoselect codes in the suspended sectors, since  
the codes are not stored in the memory array. When the device exits the autoselect mode, the  
device reverts to Program Suspend mode, and is ready for another valid operation. See Autoselect  
Command Sequence for more information.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
119  
D a t a S h e e t  
After the Program Resume command is written, the device reverts to programming. The system  
can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in  
the standard program operation. See Write Operation Status for more information. The system  
must write the Program Resume command (address bits are don’t care) to exit the Program Sus-  
pend mode and continue the programming operation. Further writes of the Program Resume  
command are ignored. Another Program Suspend command can be written after the device has  
resume programming.  
20.2 Volatile Sector Protection Command Set  
The Volatile Sector Protection Command Set permits the user to set the Dynamic Protection Bit  
(DYB), clear the Dynamic Protection Bit (DYB), and read the logic state of the Dynamic Protection  
Bit (DYB).  
The Volatile Sector Protection Command Set Entry command sequence must be issued prior  
to any of the commands listed following to enable proper command execution. Note that issuing  
the Volatile Sector Protection Command Set Entry command disables reads and writes for  
the device with the command.  
„ DYB Set Command  
„ DYB Clear Command  
„ DYB Status Read Command  
The DYB Set/Clear command is used to set or clear a DYB for a given sector. The address bits  
are issued at the same time as the code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are  
ignored during the data write cycle. The DYBs are modifiable at any time, regardless of the state  
of the PPB or PPB Lock Bit. The DYBs are cleared (erased to ‘1’) at power-up or hardware reset  
and are thus in an unprotected state.  
The programming state of the DYB for a given sector can be verified by writing a DYB Status  
Read Command to the device.  
The Volatile Sector Protection Command Set Exit command must be issued after the execu-  
tion of the commands listed previously to reset the device to read mode. Otherwise the device  
will hang.  
Note that issuing the Volatile Sector Protection Command Set Exit command re-enables  
reads and writes for the device.  
120  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
21 Command Definitions  
Bus Cycles (Notes 1–6)  
Third Fourth  
Addr  
Command Sequence  
(Note 1)  
First  
Second  
Fifth  
Sixth  
Addr  
Data  
RD  
F0  
Addr Data Addr Data  
Data  
Addr Data Addr Data  
Asynchronous Read (7)  
1
1
4
6
4
4
6
1
3
6
6
1
1
4
4
3
2
2
RA  
XXX  
555  
555  
555  
555  
555  
SA  
555  
555  
555  
XXX  
XXX  
555  
555  
555  
XX  
Reset (8)  
Manufacturer ID  
Device ID (10)  
Indicator Bits  
AA  
AA  
AA  
AA  
AA  
29  
AA  
AA  
AA  
B0  
30  
AA  
AA  
AA  
A0  
90  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
555  
555  
555  
555  
SA  
90  
90  
90  
A0  
25  
X00  
X01  
X03  
PA  
0001  
(11)  
(11)  
Data  
WC  
Autoselect  
(9)  
X0E (10) X0F (10)  
Program  
Write to Buffer (18)  
PA  
PA  
PD  
WBL  
PD  
Program Buffer to Flash  
Write to Buffer Abort Reset (22)  
Chip Erase  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
F0  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Erase Suspend (15)  
Erase Resume (15)  
Set Configuration Register (16)  
Read Configuration Register (17)  
2AA  
2AA  
2AA  
PA  
55  
55  
55  
PD  
00  
555  
555  
555  
D0  
C6  
20  
X00 or X01  
X00 or X01  
CR  
CR  
Unlock Bypass Entry (21)  
Unlock Bypass Program (12, 13)  
Unlock Bypass Reset  
Unlock  
Bypass  
Mode  
XX  
XXX  
Volatile Sector Protection Command Set Definitions  
Volatile Sector Protection  
Command Set Entry  
3
555  
AA  
2AA  
55  
555  
E0  
DYB Set  
DYB Clear  
DYB Status Read  
2
2
1
XX  
XX  
SA  
A0  
A0  
RD(0)  
SA  
SA  
00  
01  
DYB  
Volatile Sector Protection  
Command Set Exit  
2
XX  
90  
XX  
00  
Legend:  
X = Don’t care  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses latch on the rising edge of the AVD# pulse or active edge of CLK which ever  
comes first.  
PD = Data to be programmed at location PA. Data latches on the rising edge of WE# or CE# pulse, whichever happens first.  
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A24–A14 for the RS512N uniquely select any sector.  
CR = Configuration Register data bits D15–D0.  
WBL = Write Buffer Location. Address must be within the same write buffer page as PA.  
WC = Word Count. Number of write buffer locations to load minus 1.  
Notes:  
1. See Table 18.1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Except for the following, all bus cycles are write cycle: read cycle, fourth through sixth cycles of the Autoselect commands, fourth cycle of  
the configuration register verify command, and any cycle reading at RD(0) and RD(1).  
4. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD, PD, and WD.  
5. Unless otherwise noted, address bits Amax–A12 are don’t cares.  
6. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system  
must write the reset command to return the device to reading array data.  
7. No unlock or command cycles required when device is reading array data.  
8. The Reset command is required to return to reading array data (or to the erase-suspend-read mode if previously in Erase Suspend) when  
device is in the autoselect mode, or if DQ5 goes high (while the device is providing status information) or performing sector lock/unlock.  
9. The fourth cycle of the autoselect command sequence is a read cycle. See the Autoselect Command Sequence section.  
10. 512 Mb: 0Eh = 29h and 0Fh = 01h.  
11. See the Autoselect Command Sequence section.  
12. The Unlock Bypass command sequence is required prior to this command sequence.  
13. The Unlock Bypass Reset command is required to return to reading array data when the device is in the unlock bypass mode.  
14. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase  
Suspend command is valid only during a sector erase operation.  
15. The Erase Resume command is valid only during the Erase Suspend mode  
16. See the Set Configuration Register Command Sequence section.  
17. See the Read Configuration Register Command Sequence section which further provides information on Reset Command to Configure the  
Configuration Register.  
18. The total number of cycles in the command sequence is determined by the number of words written to the write buffer. The maximum  
number of cycles in the command sequence is 37.  
19. ACC must be at V  
during the entire operation of this command  
HH  
20. Command sequence resets device for next command after write-to-buffer operation.  
21. Entry commands are needed to enter a specific mode to enable instructions only available within that mode.  
22. Write Buffer Programming can be initiated after Unlock Bypass Entry.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
121  
D a t a S h e e t  
22 Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ1,  
DQ2, DQ3, DQ5, DQ6, and DQ7. Table 22.13 and the following subsections describe the function  
of these bits. DQ7 and DQ6 each offers a method for determining whether a program or erase  
operation is complete or in progress.  
22.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase  
algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling  
is valid after the rising edge of the final WE# pulse in the command sequence. Note that the  
Data# Polling is valid only for the last word being programmed in the write-buffer-page  
during Write Buffer Programming. Reading Data# Polling status on any word other  
than the last word to be programmed in the write-buffer-page will return false status  
information.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the  
datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend.  
When the Embedded Program algorithm is complete, the device outputs the datum programmed  
to DQ7. The system must provide the program address to read valid status information on DQ7.  
If a program address falls within a protected sector, Data# Polling on DQ7 is active for approxi-  
mately tPSP, then the device returns to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded  
Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling pro-  
duces a 1 on DQ7. The system must provide an address within any of the sectors selected for  
erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected,  
Data# Polling on DQ7 is active for approximately tASP, then the device returns to the read mode.  
If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7  
at an address within a protected sector, the status may not be valid.  
Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ6–DQ0 while Output Enable (OE#) is asserted low. That is, the device may  
change from providing status information to valid data on DQ7. Depending on when the system  
samples the DQ7 output, it may read the status or valid data. Even if the device has completed  
the program or erase operation and DQ7 has valid data, the data outputs on DQ6-DQ0 may be  
still invalid. Valid data on DQ7-D00 will appear on successive read cycles.  
Table 22.13 shows the outputs for Data# Polling on DQ7. Figure 22.5 shows the Data# Polling  
algorithm. Figure 25.13 in the AC Characteristics section shows the Data# Polling timing diagram.  
Notes:  
1. VA = Valid adntsbdress for programming. During a sector erase operation, a valid address is any sector address within  
the sector being erased. During chip erase, a valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1 because DQ7 may change simultaneously with DQ5.  
Figure 22.5 Data# Polling Algorithm  
22.2 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or  
complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read  
at any address in the device, and is valid after the rising edge of the final WE# pulse in the com-  
mand sequence (prior to the program or erase operation), and during the sector erase time-out.  
122  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
During an Embedded Program or Erase algorithm operation, successive read cycles to any ad-  
dress cause DQ6 to toggle. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6  
toggles for approximately tASP (All Sectors Protected toggle time), then returns to reading array  
data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unpro-  
tected sectors, and ignores the selected sectors that are protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or  
is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm  
is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops tog-  
gling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).  
If a program address falls within a protected sector, DQ6 toggles for approximately tPSP after the  
program command sequence is written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embed-  
ded Program algorithm is complete.  
See the following for additional information: Figure 22.6, Figure 25.14 (toggle bit timing dia-  
gram), and Table 22.12.  
Toggle Bit I on DQ6 requires either OE# or CE# to be deasserted and reasserted to show the  
change in state.  
Note: The system should recheck the toggle bit even if DQ5 = 1 because the toggle bit may stop toggling as DQ5 changes  
to 1. See the subsections on DQ6 and DQ2 for more information.  
Figure 22.6 Toggle Bit Algorithm  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
123  
D a t a S h e e t  
DQ2: Toggle Bit II  
The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively  
erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-  
suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command  
sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected  
for erasure. But DQ2 by itself cannot distinguish whether the sector is actively erasing or is erase-  
suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase  
Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are  
required for sector and mode information. Refer to Table 22.12 to compare outputs for DQ2 and  
DQ6.  
See Figure 22.6 and Figure 25.14 for additional information.  
22.3 Reading Toggle Bits DQ6/DQ2  
Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least  
twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the system would com-  
pare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has  
completed the program or erase operation. The system can read array data on DQ7–DQ0 on the  
following read cycle. (See Figure 22.6)  
However, if after the initial two read cycles, the system determines that the toggle bit is still tog-  
gling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If  
it is, the system should then determine again whether the toggle bit is toggling, since the toggle  
bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the  
device has successfully completed the program or erase operation. If it is still toggling, the device  
did not completed the operation successfully, and the system must write the reset command to  
return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and  
DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through suc-  
cessive read cycles, determining the status as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this case, the system must start at the beginning  
of the algorithm when it returns to determine the status of the operation.  
22.4 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count  
limit. Under these conditions DQ5 produces a 1, indicating that the program or erase cycle was  
not successfully completed.  
The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was pre-  
viously programmed to 0 Only an erase operation can change a 0 back to a 1. Under this  
condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 pro-  
duces a 1.  
Under both these conditions, the system must write the reset command to return to the read  
mode (or to the erase-suspend-read mode if the device was previously in the erase-suspend-pro-  
gram mode).  
22.5 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether  
or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If  
additional sectors are selected for erasure, the entire time-out also applies after each additional  
sector erase command. When the time-out period is complete, DQ3 switches from a 0 to a 1. If  
124  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
the time between additional sector erase commands from the system can be assumed to be less  
than tSEA, the system need not monitor DQ3. See also the Sector Erase Command Sequence  
section.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and  
then read DQ3. If DQ3 is 1, the Embedded Erase algorithm has begun; all further commands (ex-  
cept Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 00 the device  
will accept additional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each subsequent sector  
erase command. If DQ3 is high on the second status check, the last command might not have  
been accepted.  
Table 22.13 shows the status of DQ3 relative to the other status bits.  
22.6 DQ1: Write to Buffer Abort  
DQ1 indicates whether a Write to Buffer operation was aborted. Under these conditions DQ1 pro-  
duces a ‘1. The system must issue the Write to Buffer Abort Reset command sequence to return  
the device to reading array data. See the Write Buffer Programming Operation section for more  
details.  
3.  
4. DQ1 indicates the Write to Buffer ABORT status during Write Buffer Programming operations.  
5. The data-bar polling algorithm should be used for Write Buffer Programming operations. Note that DQ7# during Write  
Buffer Programming indicates the data-bar for DQ7 data for the LAST LOADED WRITE-BUFFER ADDRESS location.  
ACC (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.5 V to +9.5 V  
6. Minimum DC input voltage on pin ACC is -0.5V. During voltage transitions, ACC may overshoot  
20 ns  
20 ns  
+0.8 V  
–0.5 V  
–2.0 V  
20 ns  
Table 22.1 Maximum Negative Overshoot Waveform  
20 ns  
V
CC  
+2.0 V  
V
CC  
+0.5 V  
1.0 V  
20 ns  
20 ns  
Figure 22.7 Maximum Positive Overshoot Waveform  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
125  
D a t a S h e e t  
23 DC Characteristics  
23.1 CMOS Compatible  
Typ  
(Note 7)  
Parameter  
Description  
Test Conditions (Note 1)  
Min  
Max  
Unit  
I
Input Load Current  
V
V
= V to V , V = V max  
±1  
±1  
66  
µA  
µA  
LI  
IN  
SS  
CC  
CC  
CC  
I
Output Leakage Current  
= V to V , V = V max  
OUT SS CC CC CC  
LO  
80 MHz  
30  
28  
27  
32  
30  
28  
34  
32  
29  
38  
35  
22  
27  
13  
3
CE# = V , OE# = V  
WE# = V , burst length = 66 MHz  
8
,
IH  
IL  
60  
mA  
mA  
mA  
mA  
IH  
54 MHz  
54  
80 MHz  
60  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length = 66 MHz  
54  
IH  
16  
54 MHz  
48  
V
Active burst  
CC  
I
CCB  
Read Current  
80 MHz  
54  
CE# = V , OE# = V  
,
IH  
IL  
WE# = V , burst length = 66 MHz  
48  
IH  
32  
54 MHz  
42  
80 MHz  
48  
CE# = V , OE# = V  
WE# = V , burst length = 66 MHz  
Continuous  
54 MHz  
,
IH  
IL  
42  
IH  
36  
10 MHz  
36  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
V
V
Active Asynchronous  
CE# = V , OE# = V ,  
IL IH  
WE# = V  
CC  
I
5 MHz  
1 MHz  
18  
CC1  
Read Current (Note 2)  
IH  
4
V
<35  
20  
20  
10  
70  
20  
<30  
<15  
<50  
30  
CC  
V
Active Write Current  
CE# = V ,  
IL  
OE# = V , ACC = V  
CC  
I
I
CC2  
CC3  
(Note 3)  
IH  
IH  
V
ACC  
V
40  
CC  
CE# = RESET# =  
V
Standby Current  
CC  
(Note 6)  
V
± 0.2 V  
CC  
V
15  
ACC  
I
I
V
V
Reset Current  
Sleep Current  
RESET# = V CLK = V  
IL  
150  
40  
CC4  
CC6  
CC  
CC  
IL,  
CE# = V , OE# = V  
IL  
IH  
V
<40  
<20  
0.4  
CC  
Accelerated Program Current CE# = V , OE# = V  
(Note 5)  
IL  
IH,  
I
ACC  
V
= 9.5 V  
ACC  
V
ACC  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
IL  
V
V
V
– 0.4  
V
+ 0.4  
IH  
CC  
CC  
V
I
I
= 100 µA, V = V min  
0.1  
V
V
OL  
OH  
OL  
CC  
CC  
V
V
= –100 µA, V = V min  
– 0.1  
OH  
CC  
CC  
CC  
Voltage for  
Accelerated Program  
8.5  
1.0  
9.5  
1.4  
V
V
HH  
V
Low V Lock-out Voltage  
CC  
LKO  
Notes:  
1. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
2. The I current listed is typically less than 2-3 mA/MHz, with OE# at V  
.
IH  
CC  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Device enters automatic sleep mode when addresses are stable for t  
+ 20 ns. Typical sleep mode current is equal to  
ACC  
I
.
CC3  
5. Total current during accelerated programming is the sum of V  
and V currents.  
CC  
ACC  
6.  
U
= V  
± 0.2 V and VIL > -.1 V  
CC  
IH  
7. Typical test conditions of room temperature and 1.8 V V  
.
CC  
126  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
24 Test Conditions  
Device  
Under  
Test  
C
L
Figure 24.1 Test Setup  
Table 24.1 Test Specifications  
Test Condition  
All Speed Options  
Unit  
pF  
ns  
V
Output Load Capacitance, C (including jig capacitance)  
L
30  
Input Rise and Fall Times  
2.5  
Input Pulse Levels  
0.0–V  
CC  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
/2  
V
CC  
CC  
/2  
V
Figure 24.2 Input Waveforms and Measurement Levels  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
127  
D a t a S h e e t  
25 AC Characteristics  
25.1 V  
Power-up  
CC  
Parameter  
Description  
Setup Time  
CC  
Test Setup  
Speed  
Unit  
t
V
Min  
1
ms  
VCS  
Notes:  
1.  
V
>= V - 100mV and V ramp rate is > 1V / 100µs  
IO CC  
CC  
2.  
V
ramp rate <1V / 100µs, a Hardware Reset will be required.  
CC  
tVCS  
VCC  
RESET#  
Figure 25.1  
V
Power-up Diagram  
CC  
25.2 CLK Characterization  
Parameter  
Description  
80 MHz  
80  
66 MHz  
54 MHz  
Unit  
f
CLK Frequency  
CLK Period  
Max  
Min  
66  
54  
MHz  
ns  
CLK  
CLK  
t
12.5  
15.1  
18.5  
t
CLK High Time  
CLK Low Time  
CLK Rise Time  
CLK Fall Time  
CH  
Min  
3.5  
2
6.1  
3
7.40  
3
ns  
ns  
t
CL  
t
CR  
Max  
t
CF  
t
CLK  
t
CF  
t
t
CL  
CH  
t
CR  
CLK  
Figure 25.2 CLK Characterization  
128  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
25.3 Synchronous/Burst Read  
Parameter  
JEDEC Standard  
Description  
80 MHz  
66 MHz  
54 MHz  
Unit  
t
Latency  
Max  
Max  
148  
ns  
ns  
IACC  
Burst Access Time Valid  
Clock to Output Delay  
t
9.1  
11.2  
13.5  
BACC  
t
Address Setup Time to CLK (Note 1)  
Address Hold Time from CLK (Note 1)  
Data Hold Time from Next Clock Cycle  
Chip Enable to RDY Valid  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
4
2
4
2
5
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACS  
ACH  
BDH  
t
t
4
4
5
t
t
9.1  
9.1  
10  
10  
4
11.2  
11.2  
10  
10  
4
13.5  
13.5  
10  
10  
4
CR  
Output Enable to Output Valid  
Chip Enable to High Z (Note 2)  
Output Enable to High Z (Note 2)  
CE# Setup Time to CLK  
OE  
t
CEZ  
OEZ  
t
t
CES  
t
t
RDY Setup Time to CLK  
4
4
5
RDYS  
RACC  
Ready Access Time from CLK  
Address Setup Time to AVD# (Note 1)  
Address Hold Time to AVD# (Note 1)  
CE# Setup Time to AVD#  
9.1  
4
11.2  
4
13.5  
5
t
AAS  
t
2
2
3
AAH  
t
t
0
0
0
CAS  
AVC  
AVD  
AVD# Low to CLK  
4
4
4
t
AVD# Pulse  
8
8
8
Notes:  
1. Addresses are latched on the first rising edge of CLK.  
2. Not 100% tested.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
129  
D a t a S h e e t  
10 cycles for initial access shown.  
18.5 ns typ. (54 MHz)  
tCEZ  
tCES  
CE#  
CLK  
1
2
3
9
10  
11  
12  
tAVC  
AVD#  
tAVD  
tACS  
Addresses  
Data (n)  
Aa  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da + 1  
Da + 2  
Da + n  
tOEZ  
tBDH  
OE#  
tRACC  
tOE  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
RDY (n)  
tCR  
tRDYS  
Hi-Z  
Hi-Z  
Data (n + 1)  
RDY (n + 1)  
Da  
Da + 1  
Da + 1  
Da  
Da + 2  
Da + 1  
Da  
Da + n  
Da + n  
Da + n  
Hi-Z  
Hi-Z  
Data (n + 2)  
RDY (n + 2)  
Da  
Hi-Z  
Hi-Z  
Data (n + 3)  
Da  
RDY (n + 3)  
Notes:  
1. Figure shows total number of wait states set to ten cycles. The total number of wait states can be programmed from  
three cycles to thirteen cycles.  
2. If any burst address occurs at address + 1, address + 2, ..., or address + 7, additional clock delay cycles are inserted,  
and are indicated by RDY.  
3. The device is in synchronous mode.  
4. In order for the device to operate at 80Mhz/66Mhz/54Mhz, there is an additional wait state latency of 2/1/0 accordingly,  
every 4 clock cycles with the first data being read.  
Figure 25.3 CLK Synchronous Burst Mode Read  
130  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
12 cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
9
10  
11  
12  
tAVC  
AVD#  
tAVD  
tACS  
Ac  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D8  
DB  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tOE  
tRACC  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to twelve cycles. The total number of wait states can be programmed from  
three cycles to thirteen cycles. Clock is set for active rising edge.  
2. If any burst address occurs at address + 1, address + 2, ..., or address + 7, additional clock delay cycles are inserted,  
and are indicated by RDY. The device is in synchronous mode with wrap around.  
3. In order for the device to operate at 80Mhz/66Mhz/54Mhz, there is an additional wait state latency of 2/1/0 accordingly,  
every 4 clock cycles with the first data being read.  
4. D8–DF in data waveform indicate the order of data within a given 8-word address range, from lowest to highest. Starting  
address in figure is the 4th address in range (O-F).  
Figure 25.4 8-word Linear Burst with Wrap Around  
12 cycles for initial access shown.  
tCES  
CE#  
1
2
3
9
10  
11  
12  
CLK  
tAVC  
AVD#  
tAVD  
tACS  
AC  
Addresses  
Data  
tBACC  
tACH  
tIACC  
DC  
DD  
DE  
DF  
D10  
D13  
tBDH  
OE#  
RDY  
tCR  
tRACC  
tRACC  
tOE  
Hi-Z  
tRDYS  
Notes:  
1. Figure shows total number of wait states set to twelve cycles. The total number of wait states can be programmed from  
three cycles to thirteen cycles. Clock is set for active rising edge.  
2. If any burst address occurs at address + 1, address + 2, ..., or address + 7, additional clock delay cycles are inserted,  
and are indicated by RDY.  
3. In order for the device to operate at 80Mhz/66Mhz/54Mhz, there is an additional wait state latency of 2/1/0 accordingly,  
every 4 clock cycles with the first data being read.  
4. DC–D13 in data waveform indicate the order of data within a given 8-word address range, from lowest to highest.  
Starting address in figure is the 4th address in range (C-13).  
Figure 25.5 8-word Linear Burst without Wrap Around  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
131  
D a t a S h e e t  
tCEZ  
12 wait cycles for initial access shown.  
tCES  
CE#  
CLK  
1
2
3
4
10  
11  
tAVC  
AVD#  
tAVD  
tACS  
Aa  
Addresses  
Data  
tBACC  
tACH  
Hi-Z  
tIACC  
Da  
Da+1  
Da+2  
Da+3  
Da + n  
tBDH  
tOEZ  
tRACC  
OE#  
tCR  
tOE  
Hi-Z  
Hi-Z  
RDY  
tRDYS  
Notes:  
1. Figure assumes eleven wait states for initial access and synchronous read.  
2. The Set Configuration Register command sequence has been written with A18=0; device will output RDY one cycle  
before valid data.  
Figure 25.6 Burst with RDY Set One Cycle Before Data  
25.4 Asynchronous Mode Read @ VIO = 1.8 V  
Parameter  
Description  
80 MHz 66 MHz 54 MHz Unit  
JEDEC Standard  
t
Access Time from CE# Low  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Min  
148  
143  
8
ns  
CE  
t
Asynchronous Access Time (Note 1)  
AVD# Low Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACC  
t
8
4
10  
5
AVDP  
t
Address Setup Time to Rising Edge of AVD#  
Address Hold Time from Rising Edge of AVD#  
Output Enable to Output Valid  
4
AAVDS  
AAVDH  
t
2
2
3
t
9.1  
0
11.2  
0
13.5  
0
OE  
Read  
Output Enable Hold Time  
Data# Polling  
t
OEH  
10  
10  
0
10  
10  
0
10  
10  
0
t
Output Enable to High Z (Note 2)  
CE# Setup Time to AVD#  
OEZ  
CAS  
t
Notes:  
1. Asynchronous Access Time is from the last of either stable addresses or the falling edge of AVD#.  
2. Not 100% tested.  
132  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
25.5 Timing Diagrams  
CE#  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
tAAVDH  
tCAS  
tAVDP  
tAAVDS  
Note: RA = Read Address, RD = Read Data.  
Figure 25.7 Asynchronous Mode Read with Latched Addresses  
CE#  
OE#  
tOE  
tOEH  
WE#  
Data  
tCE  
tOEZ  
Valid RD  
tACC  
RA  
Addresses  
AVD#  
Note: RA = Read Address, RD = Read Data.  
Figure 25.8 Asynchronous Mode Read  
25.6 Hardware Reset (RESET#)  
Parameter  
Description  
All Speeds  
Unit  
JEDEC  
Std  
t
RESET# Pulse Width  
Min  
Min  
Min  
30  
300  
20  
µs  
µs  
µs  
RP  
t
Reset High Time Before Read to Read Mode  
RESET# Low to Standby Mode  
RH  
t
RPD  
Note: Not 100% tested.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
133  
D a t a S h e e t  
CE#, OE#  
RESET#  
tRH  
tRP  
Reset Timings  
Figure 25.9 Reset Timings  
134  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
25.7 Erase/Program Operations  
Parameter  
JEDEC Standard  
Description  
80 MHz 66 MHz 54 MHz Unit  
t
t
Write Cycle Time (Note 1)  
Min  
Min  
70  
5
ns  
ns  
AVAV  
WC  
Synchronous  
Asynchronous  
Synchronous  
Asynchronous  
t
t
Address Setup Time (Notes 2, 3)  
Address Hold Time (Notes 2, 3)  
AVWL  
AS  
0
2
0
0
3
2
t
t
Min  
ns  
WLAX  
AH  
0
0
0
t
AVD# Low Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Max  
Max  
Max  
Typ  
Typ  
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
AVDP  
t
t
t
Data Setup Time  
20  
0
20  
0
25  
0
DVWH  
WHDX  
DS  
DH  
t
Data Hold Time  
t
t
Read Recovery Time Before Write  
CE# Setup Time to AVD#  
CE# Hold Time  
0
0
0
GHWL  
GHWL  
t
0
0
0
CAS  
t
t
0
0
0
WHEH  
WLWH  
WHWL  
CH  
WP  
t
t
t
Write Pulse Width  
30  
20  
0
t
Write Pulse Width Highs  
20  
0
25  
0
WPH  
t
Latency Between Read and Write Operations  
SR/W  
t
V
V
V
Rise and Fall Time  
500  
1
VID  
ACC  
ACC  
t
Setup Time (During Accelerated Programming)  
VIDS  
t
Setup Time  
CC  
50  
5
VCS  
t
t
CE# Setup Time to WE#  
ELWL  
CS  
t
AVD# Setup Time to WE#  
5
AVSW  
AVHW  
t
AVD# Hold Time to WE#  
2
2
2
3
3
t
AVD# Setup Time to CLK  
5
AVSC  
t
AVD# Hold Time to CLK  
2
AVHC  
t
Clock Setup Time to WE#  
5
CSW  
t
Noise Pulse Margin on WE#  
Sector Erase Accept Time-out  
Erase Suspend Latency  
3
WEP  
t
50  
20  
20  
100  
1
SEA  
t
ESL  
PSL  
ASP  
t
Program Suspend Latency  
t
Toggle Time During Sector Protection  
Toggle Time During Programming Within a Protected Sector  
t
PSP  
Notes:  
1. Not 100% tested.  
2. Asynchronous read mode allows Asynchronous program operation only. Synchronous read mode allows both  
Asynchronous and Synchronous program operation.  
3. In asynchronous program operation timing, addresses are latched on the falling edge of WE#. In synchronous program  
operation timing, addresses are latched on the rising edge of CLK.  
4. See the Erase and Programming Performance section for more information. Does not include the preprogramming time.  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
135  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
Read Status Data  
V
IH  
CLK  
V
IL  
tAVSW  
tAVHW  
tAVDP  
AVD#  
tAS  
tAH  
Addresses  
Data  
555h  
PA  
VA  
VA  
In  
A0h  
tDS  
Complete  
PD  
Progress  
tCAS  
tDH  
CE#  
tCH  
OE#  
WE#  
tWP  
tWHWH1  
tCS  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. In progress and complete refer to status of program operation.  
3. Amax–A14 are don’t care during command sequence unlock cycles.  
4. CLK can be either V or V  
.
IH  
IL  
5. The Asynchronous programming operation is independent of the Set Device Read Mode bit in the Configuration Register.  
Figure 25.10 Asynchronous Program Operation Timings: WE# Latched Addresses  
136  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
Program Command Sequence (last two cycles)  
tAVCH  
Read Status Data  
CLK  
tAS  
tAH  
tAVSC  
AVD#  
tAVDP  
Addresses  
Data  
PA  
VA  
VA  
555h  
In  
Complete  
A0h  
PD  
tDS  
Progress  
tCAS  
tDH  
CE#  
tCH  
OE#  
WE#  
tCSW  
tWP  
tWHWH1  
tWPH  
tWC  
tVCS  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. In progress and complete refer to status of program operation.  
3. Amax9–A14 are don’t care during command sequence unlock cycles.  
4. Addresses are latched on the rising edge of CLK.  
5. Either CE# or AVD# is required to go from low to high in between programming command sequences.  
6. The Synchronous programming operation is dependent of the Set Device Read Mode bit in the Configuration Register.  
The Configuration Register must be set to the Synchronous Read Mode.  
Figure 25.11 Synchronous Program Operation Timings: CLK Latched Addresses  
CE#  
AVD#  
WE#  
Addresses  
Data  
PA  
Don't Care  
A0h  
Don't Care  
PD  
Don't Care  
OE#  
ACC  
tVIDS  
V
V
ID  
tVID  
or V  
IL  
IH  
Note: Use setup and hold times from conventional program operation.  
Figure 25.12 Accelerated Unlock Bypass Programming Timing  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
137  
D a t a S h e e t  
AVD#  
CE#  
tCEZ  
tCE  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
VA  
High Z  
High Z  
Addresses  
VA  
Status Data  
Status Data  
Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
completeData# Polling will output true data.  
Figure 25.13 Data# Polling Timings (During Embedded Algorithm)  
AVD#  
tCEZ  
tCE  
CE#  
tOEZ  
tCH  
tOE  
OE#  
WE#  
tOEH  
tACC  
High Z  
High Z  
Addresses  
VA  
VA  
Data  
Status Data  
Status Data  
Notes:  
1. Status reads in figure are shown as asynchronous.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, .  
Figure 25.14 Toggle Bit Timings (During Embedded Algorithm)  
138  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
CE#  
CLK  
AVD#  
Addresses  
OE#  
VA  
VA  
tIACC  
tIACC  
Data  
Status Data  
Status Data  
RDY  
Notes:  
1. The timings are similar to synchronous read timings.  
2. VA = Valid Address. Two read cycles are required to determine status. When the Embedded Algorithm operation is  
complete, .  
3. RDY is active with data (D8 = 0 in the Configuration Register). When D8 = 1 in the Configuration Register, RDY is active  
one clock cycle before data.  
Figure 25.15 Synchronous Data Polling Timings/Toggle Bit Timings  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to  
toggle DQ2 and DQ6.  
Figure 25.16 DQ2 vs. DQ6  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
139  
D a t a S h e e t  
Address boundary occurs every 512 words, beginning at address  
0001FFh: (0002FFh, 0003FFh, etc.) Address 000000h is also a boundary crossing.  
C508  
C509  
C510  
C511  
1FF  
C511  
1FF  
C512  
200  
C513  
201  
C514  
202  
C515  
203  
CLK  
1FC  
(stays high)  
1FD  
1FE  
Address (hex)  
AVD#  
RDY(1)  
RDY(2)  
tRACC  
tRACC  
latency  
tRACC  
tRACC  
latency  
Data  
D508  
D509  
D510  
D511  
D512  
D513  
D514  
OE#,  
CE#  
(stays low)  
Notes:  
1. RDY active with data (D8 = 0 in the Configuration Register).  
2. RDY active one clock cycle before data (D8 = 1 in the Configuration Register).  
3. Cxx indicates the clock that triggers Dxx on the outputs; for example, C60 triggers D60.  
4. There will be an additional 4/8 wait state latency for 54/80 Mhz respectively.  
Figure 25.17 Latency with Boundary Crossing  
Data  
D0  
D1  
Rising edge of next clock cycle  
following last wait state triggers  
AVD#  
next burst data  
total number of clock cycles  
following AVD# falling edge  
OE#  
1
2
3
4
5
6
7
8
0
9
1
10  
2
11  
3
12  
4
13  
5
14  
CLK  
number of clock cycles  
programmed  
Wait State Configuration Register Setup  
CR1.0, CR0.13, CR0.12, CR0.11= 1101  
CR1.0, CR0.13, CR0.12, CR0.11= 1100  
CR1.0, CR0.13, CR0.12, CR0.11= 1011  
CR1.0, CR0.13, CR0.12, CR0.11= 1010  
CR1.0, CR0.13, CR0.12, CR0.11= 1001  
CR1.0, CR0.13, CR0.12, CR0.11= 1000  
CR1.0, CR0.13, CR0.12, CR0.11= 0101  
CR1.0, CR0.13, CR0.12, CR0.11= 0100  
CR1.0, CR0.13, CR0.12, CR0.11= 0011  
CR1.0, CR0.13, CR0.12, CR0.11= 0010  
CR1.0, CR0.13, CR0.12, CR0.11= 0001  
13 total  
12 total  
11 total  
10 total  
9 total  
8 total  
7 total  
6 total  
5 total  
4 total  
3 total  
Note: Figure assumes address D0 is not at an address boundary.  
Figure 25.18 Example of Wait States Insertion  
140  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
D a t a S h e e t  
Last Cycle in  
Program or  
Sector Erase  
Read status (at least two cycles) in same bank  
and/or array data from other bank  
Begin another  
write or program  
command sequence  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE#  
OE#  
tOE  
tOEH  
tGHWL  
WE#  
Data  
tOEZ  
tWPH  
tWP  
tDS  
tACC  
tOEH  
tDH  
PD/30h  
RD  
RD  
AAh  
tSR/W  
RA  
Addresses  
AVD#  
PA/SA  
tAS  
RA  
555h  
tAH  
Note: Breakpoints in waveforms indicate that system may alternately read the status of the program or erase operation in  
the device. The system should read status twice to ensure valid information.  
Figure 25.19 Back-to-Back Read/Write Cycle Timings  
February 17, 2005 S75WS-N-00_00_A0  
S75WS256Nxx Based MCPs  
141  
D a t a S h e e t  
26 Erase and Programming Performance  
Typ  
(Note 1)  
Max  
(Note 2)  
Parameter  
Unit  
Comments  
V
2
1
20  
10  
CC  
Sector Erase Time  
Chip Erase Time  
256 Kword  
s
ACC  
Excludes 00h programming prior to  
erasure (Note 4)  
V
308  
616  
CC  
s
ACC  
262  
524  
V
<40  
<400  
<240  
<94  
CC  
Excludes system level overhead  
(Note 5)  
Word Programming Time  
µs  
µs  
µs  
s
ACC  
<24  
V
<9.4  
<6  
CC  
Effective Word Programming  
Time utilizing Program Write Buffer  
ACC  
<60  
V
<300  
<192  
<314.6  
<201.4  
<3000  
<1920  
<629.2  
<402.6  
CC  
Total 32-Word BufferProgramming Time  
ACC  
V
CC  
Excludes system level overhead  
(Note 5)  
Chip Programming Time (Note 3)  
ACC  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 1.8 V V , 100,000 cycles typical. Additionally,  
CC  
programming typically assumes a checkerboard pattern.  
2. Under worst case conditions of 90°C, V = 1.65 V, 100,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all words are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command.  
See the Command Definitions table for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
142  
S75WS256Nxx Based MCPs  
S75WS-N-00_00_A0 February 17, 2005  
CellularRAM  
128/64/32 Megabit  
Burst CellularRAM  
Features  
„ Single device supports asynchronous, page,  
„ Low-Power Consumption  
and burst operations  
Asynchronous Read < 25mA  
Intrapage Read < 15mA  
Initial access, burst Read < 35mA  
Continuous burst Read < 11mA  
Standby: 180µA  
„ VCC Voltages  
1.70V–1.95V VCC  
„ Random Access Time: 70ns  
„ Burst Mode Write Access  
Deep power-down < 10µA  
Continuous burst  
„ Low-Power Features  
„ Burst Mode Read Access  
Temperature Compensated Refresh (TCR) On-chip  
sensor control  
4, 8, or 16 words, or continuous burst  
Partial Array Refresh (PAR)  
Deep Power-Down (DPD) Mode  
„ Page Mode Read Access  
Sixteen-word page size  
Interpage Read access: 70ns  
Intrapage Read access: 20ns  
General Description  
CellularRAM™ products are High-speed, CMOS dynamic random access memories developed for low-  
power, portable applications. These devices include an industry standard burst mode Flash interface that  
dramatically increases Read/Write bandwidth compared with other low-power SRAM or Pseudo SRAM  
offerings.  
To operate seamlessly on a burst Flash bus, CellularRAM products incorporate a transparent self-refresh  
mechanism. The hidden refresh requires no additional support from the system memory controller and  
has no significant impact on device Read/Write performance.  
Two user-accessible control registers define device operation. The bus configuration register (BCR) de-  
fines how the CellularRAM device interacts with the system memory bus and is nearly identical to its  
counterpart on burst mode Flash devices. The refresh configuration register (RCR) is used to control how  
refresh is performed on the DRAM array. These registers are automatically loaded with default settings  
during power-up and can be updated anytime during normal operation.  
Special attention has been focused on standby current consumption during self refresh. CellularRAM prod-  
ucts include three mechanisms to minimize standby current. Partial array refresh (PAR) enables the  
system to limit refresh to only that part of the DRAM array that contains essential data. Temperature com-  
pensated refresh (TCR) adjusts the refresh rate to match the device temperature—the refresh rate  
decreases at lower temperatures to minimize current consumption during standby. Deep power-down  
(DPD) enables the system to halt the refresh operation altogether when no vital information is stored in  
the device. The system-configurable refresh mechanisms are accessed through the RCR.  
Publication Number S75WS-N-00 Revision A Amendment 0 Issue Date February 17, 2005  
A d v a n c e I n f o r m a t i o n  
27 Functional Block Diagram  
128M: A[22:0]  
64M: A[21:0]  
32M: A[20:0]  
Address Decode  
Logic  
Input/  
Output  
MUX  
and  
Buffers  
DQ[7:0]  
DRAM  
MEMORY  
ARRAY  
DQ[15:8]  
Refresh Configuration  
Register (RCR)  
Bus Configuration  
Register (BCR)  
CE#  
WE#  
OE#  
CLK  
Control  
Logic  
ADV#  
CRE  
WAIT  
LB#  
UB#  
Note: Functional block diagrams illustrate simplified device operation. See truth table, ball descriptions, and timing di-  
agrams for detailed information.  
Figure 27.1 Functional Block Diagram  
144  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 27.1 Signal Descriptions  
Symbol  
Type  
Description  
128M: A[22:0]  
64M: A[21:0]  
32M: A[20:0]  
Address Inputs: Inputs for addresses during Read and Write operations. Addresses are  
internally latched during Read and Write cycles. The address lines are also used to define  
the value to be loaded into the BCR or the RCR.  
Input  
Clock: Synchronizes the memory to the system operating frequency during synchronous  
operations. When configured for synchronous operation, the address is latched on the first  
rising CLK edge when ADV# is active. CLK is static (High or Low) during asynchronous  
access Read and Write operations and during Page Read Access operations.  
CLK  
Input  
Input  
Address Valid: Indicates that a valid address is present on the address inputs. Addresses  
can be latched on the rising edge of ADV# during asynchronous Read and Write operations.  
ADV# can be held Low during asynchronous Read and Write operations.  
ADV#  
CRE  
CE#  
Input  
Input  
Configuration Register Enable: When CRE is High, Write operations load the RCR or BCR.  
Chip Enable: Activates the device when Low. When CE# is High, the device is disabled and  
goes into standby or deep power-down mode.  
Output Enable: Enables the output buffers when Low. When OE# is High, the output buffers  
are disabled.  
OE#  
WE#  
Input  
Input  
Write Enable: Determines if a given cycle is a Write cycle. If WE# is Low, the cycle is a Write  
to either a configuration register or to the memory array.  
LB#  
UB#  
Input  
Input  
Lower Byte Enable. DQ[7:0]  
Upper Byte Enable. DQ[15:8]  
Input/  
Output  
DQ[15:0]  
Data Inputs/Outputs.  
Wait: Provides data-valid feedback during burst Read and Write operations. The signal is  
gated by CE#. Wait is used to arbitrate collisions between refresh and Read/Write  
operations. Wait is asserted when a burst crosses a row boundary. Wait is also used to mask  
the delay associated with opening a new internal page. Wait is asserted and should be  
ignored during asynchronous and page mode operations. Wait is High-Z when CE# is High.  
Wait  
VCC  
Output  
Supply  
Supply  
Supply  
Supply  
Device Power Supply: (1.7V–1.95V) Power supply for device core operation.  
I/O Power Supply: (1.7V–1.95V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VCC  
VSS  
SSQ  
Q
V
VSSQ must be connected to ground.  
Note: The CLK and ADV# inputs can be tied to V if the device is always operating in asynchronous or page mode.  
SS  
Wait will be asserted but should be ignored during asynchronous and page mode operations.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
145  
A d v a n c e I n f o r m a t i o n  
Table 27.2 Bus Operations—Asynchronous Mode  
Clk  
LB#/  
UB#  
Wait  
(Note 2)  
DQ[15:0]  
(Note 3)  
Mode  
Read  
Power  
Active  
Active  
Standby  
Idle  
(Note 1) ADV#  
CE#  
L
OE#  
L
WE#  
CRE  
Notes  
4
X
X
X
X
L
L
H
L
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
Write  
L
X
4
Standby  
No Operation  
X
X
H
X
X
X
X
X
5, 6  
4, 6  
L
X
Configuration  
Register  
Active  
X
X
L
L
H
X
L
H
X
X
X
Low-Z  
High-Z  
High-Z  
High-Z  
Deep  
Power-down  
DPD  
X
H
X
7
Notes:  
1. CLK may be High or Low, but must be static during synchronous Read, synchronous Write, burst suspend, and DPD modes; and to achieve  
standby power during standby and active modes.  
2. The Wait polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (Low), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0] are affected. When only  
UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external influence.  
6.  
V
= V Q or 0V; all device balls must be static (unswitched) to achieve standby current.  
IN CC  
7. DPD is maintained until RCR is reconfigured.  
146  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 27.3 Bus Operations—Burst Mode  
CLK  
(Note 1) ADV#  
LB#/  
UB#  
Wait  
(Note 2)  
DQ[15:0]  
(Note 3)  
Mode  
Power  
Active  
Active  
Standby  
Idle  
CE#  
L
OE#  
L
WE#  
CRE  
Notes  
4
Async Read  
Async Write  
Standby  
X
X
X
X
L
L
H
L
L
L
L
L
L
Low-Z  
Low-Z  
High-Z  
Low-Z  
Data-Out  
Data-In  
High-Z  
X
L
X
L
4
X
X
H
X
X
X
X
5, 6  
4, 6  
No Operation  
L
X
X
Initial Burst Read  
Initial Burst Write  
Active  
Active  
L
L
L
L
X
H
H
L
L
L
L
Low-Z  
Low-Z  
Data-Out  
Data-In  
4, 8  
4, 8  
X
Data-In or  
Data-Out  
Burst Continue  
Burst Suspend  
Active  
Active  
Active  
H
X
L
L
L
L
X
H
H
X
X
L
L
L
X
X
X
Low-Z  
Low-Z  
Low-Z  
4, 8  
4, 8  
8
X
X
High-Z  
High-Z  
Configuration  
Register  
H
Deep  
Power-Down  
DPD  
X
H
X
X
X
X
High-Z  
High-Z  
7
Notes:  
1. CLK may be High or Low, but must be static during asynchronous Read, synchronous Write, burst suspend, and DPD modes; and to achieve  
standby power during standby and active modes.  
2. The Wait polarity is configured through the bus configuration register (BCR[10]).  
3. When LB# and UB# are in select mode (Low), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0] are affected. When only  
UB# is in the select mode, DQ[15:8] are affected.  
4. The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external influence.  
6.  
V
= V Q or 0V; all device balls must be static (unswitched) to achieve standby current.  
IN CC  
7. DPD is maintained until RCR is reconfigured.  
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
147  
A d v a n c e I n f o r m a t i o n  
28 Functional Description  
The CellularRAM bus interface supports both asynchronous and burst mode transfers. Page mode  
accesses are also included as a bandwidth-enhancing extension to the asynchronous Read  
protocol.  
28.1 Power-Up Initialization  
CellularRAM products include an on-chip voltage sensor used to launch the power-up initialization  
process. Initialization will configure the BCR and the RCR with their default settings (see  
Table 31.1 and Table 31.5). VCC and VCCQ must be applied simultaneously. When they reach a sta-  
ble level at or above 1.7V, the device will require 150 µs to complete its self-initialization process.  
During the initialization period, CE# should remain High. When initialization is complete, the de-  
vice is Ready for normal operation.  
>
150 μs  
VCC = 1.7 V  
tPU  
Device ready for  
normal operation  
VCC  
VCCQ  
Device Initialization  
Figure 28.2 Power-Up Initialization Timing  
148  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
29 Bus Operating Modes  
CellularRAM products incorporate a burst mode interface found on Flash products targeting low-  
power, wireless applications. This bus interface supports asynchronous, page mode, and burst  
mode Read and Write transfers. The specific interface supported is defined by the value loaded  
into the BCR. Page mode is controlled by the refresh configuration register (RCR[7]).  
29.1 Asynchronous Mode  
CellularRAM products power up in the asynchronous operating mode. This mode uses the industry  
standard SRAM control bus (CE#, OE#, WE#, LB#/ UB#). Read operations (Figure 29.1) are ini-  
tiated by bringing CE#, OE#, and LB#/UB# Low while keeping WE# High. Valid data will be driven  
out of the I/Os after the specified access time has elapsed. Write operations (Figure 29.2) occur  
when CE#, WE#, and LB#/ UB# are driven Low. During asynchronous Write operations, the OE#  
level is a don't care, and WE# will override OE#. The data to be written is latched on the rising  
edge of CE#, WE#, or LB#/UB# (whichever occurs first). Asynchronous operations (page mode  
disabled) can either use the ADV input to latch the address, or ADV can be driven Low during the  
entire Read/Write operation.  
During asynchronous operation, the CLK input must be held static (High or Low, no transitions).  
Wait will be driven while the device is enabled and its state should be ignored.  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
RC  
= READ Cycle Time  
Don't Care  
Note: ADV must remain Low for page mode operation.  
Figure 29.1 Read Operation (ADV# Low)  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
149  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
WE#  
ADDRESS  
Address Valid  
Data Valid  
DATA  
LB#/UB#  
t
= WRITE Cycle Time  
WC  
Don't Care  
Figure 29.2 Write Operation (ADV# Low)  
29.2 Page Mode Read Operation  
Page mode is a performance-enhancing extension to the legacy asynchronous Read operation. In  
page mode-capable products, an initial asynchronous Read access is performed, then adjacent  
addresses can be Read quickly by simply changing the low-order address. Addresses A[3:0] are  
used to determine the members of the 16-address CellularRAM page. Addresses A[4] and higher  
must remain fixed during the entire page mode access. Figure 29.3 shows the timing for a page  
mode access. Page mode takes advantage of the fact that adjacent addresses can be Read in a  
shorter period of time than random addresses. Write operations do not include comparable page  
mode functionality.  
During asynchronous page mode operation, the CLK input must be held Low. CE# must be driven  
High upon completion of a page mode access. Wait will be driven while the device is enabled and  
its state should be ignored. Page mode is enabled by setting RCR[7] to High. Write operations do  
not include comparable page mode functionality. ADV must be driven Low during all page mode  
Read accesses.  
150  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
CE#  
OE#  
WE#  
ADDRESS  
ADD[0]  
ADD[1] ADD[2] ADD[3]  
t
AA  
t
t
t
APA  
APA  
APA  
D[0]  
D[1]  
D[2]  
D[3]  
DATA  
LB#/UB#  
Don't Care  
Figure 29.3 Page Mode Read Operation (ADV# Low)  
29.3 Burst Mode Operation  
Burst mode operations enable High-speed synchronous Read and Write operations. Burst opera-  
tions consist of a multi-clock sequence that must be performed in an ordered fashion. After CE#  
goes Low, the address to access is latched on the rising edge of the next clock that ADV# is Low.  
During this first clock rising edge, WE# indicates whether the operation is going to be a Read  
(WE# = High, Figure 29.4) or Write (WE# = Low, Figure 29.5).  
The size of a burst can be specified in the BCR either as a fixed length or continuous. Fixed-length  
bursts consist of four, eight, or sixteen words. Continuous bursts have the ability to start at a  
specified address and burst through the entire memory.  
The latency count stored in the BCR defines the number of clock cycles that elapse before the  
initial data value is transferred between the processor and CellularRAM device.  
The Wait output asserts as soon as a burst is initiated, and de-asserts to indicate when data is to  
be transferred into (or out of) the memory. Wait will again be asserted if the burst crosses a row  
boundary. Once the CellularRAM device has restored the previous row's data and accessed the  
next row, Wait will be deasserted and the burst can continue (see Figure 34.9).  
To access other devices on the same bus without the timing penalty of the initial latency for a new  
burst, burst mode can be suspended. Bursts are suspended by stopping CLK. CLK can be stopped  
High or Low. If another device will use the data bus while the burst is suspended, OE# should be  
taken High to disable the CellularRAM outputs; otherwise, OE# can remain Low. Note that the  
Wait output will continue to be active, and as a result no other devices should directly share the  
Wait connection to the controller. To continue the burst sequence, OE# is taken Low, then CLK is  
restarted after valid data is available on the bus.  
See How Extended Timings Impact CellularRAM™ Operation for restrictions on the maximum CE#  
Low time during burst operations. If a burst suspension will cause CE# to remain Low for longer  
than tCEM, CE# should be taken High and the burst restarted with a new CE# Low/ADV# low  
cycle.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
151  
A d v a n c e I n f o r m a t i o n  
CLK  
A[22:0]  
ADV#  
Address  
Valid  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't care  
Undefined  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); Wait active Low; Wait asserted dur-  
ing delay.  
Figure 29.4 Burst Mode Read (4-word burst)  
CLK  
Address  
Valid  
A[22:0]  
ADV#  
Latency Code 2 (3 clocks), variable  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0]  
LB#/UB#  
D[0]  
D[1]  
D[2]  
D[3]  
Legend:  
Don't care  
WRITE Burst Identified  
(WE# = LOW)  
Note: Non-default BCR settings: Variable latency; latency code two (three clocks); Wait active Low; Wait asserted dur-  
ing delay.  
Figure 29.5 Burst Mode Write (4-word burst)  
152  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
29.4 Mixed-Mode Operation  
The device can support a combination of synchronous Read and asynchronous Write operations  
when the BCR is configured for synchronous operation. The asynchronous Write operation re-  
quires that the clock (CLK) remain static (High or Low) during the entire sequence. The ADV#  
signal can be used to latch the target address, or it can remain Low during the entire Write oper-  
ation. CE# can remain Low when transitioning between mixed-mode operations with fixed latency  
enabled. Note that the tCKA period is the same as a Read or Write cycle. This time is required to  
ensure adequate refresh. Mixed-mode operation facilitates a seamless interface to legacy burst  
mode Flash memory controllers. See Figure 34.18, Asynchronous Write Followed by Burst Read  
(timing diagram).  
29.5 Wait Operation  
The Wait output on a CellularRAM device is typically connected to a shared, system-level Wait sig-  
nal (Figure 29.6). The shared Wait signal is used by the processor to coordinate transactions with  
multiple memories on the synchronous bus.  
External  
Pull-Up/  
Pull-Down  
Resistor  
CellularRAM  
WAIT  
READY  
WAIT  
WAIT  
Other  
Other  
Device  
Device  
Processor  
Figure 29.6 Wired or Wait Configuration  
Once a Read or Write operation has been initiated, Wait goes active to indicate that the Cellular-  
RAM device requires additional time before data can be transferred. For Read operations, Wait will  
remain active until valid data is output from the device. For Write operations, Wait will indicate to  
the memory controller when data will be accepted into the CellularRAM device. When Wait tran-  
sitions to an inactive state, the data burst will progress on successive clock edges.  
CE# must remain asserted during Wait cycles (Wait asserted and Wait configuration BCR[8] = 1).  
Bringing CE# High during Wait cycles may cause data corruption. (Note that for BCR[8] = 0, the  
actual Wait cycles end one cycle after Wait de-asserts, and for row boundary crossings, start one  
cycle after the Wait signal asserts.)  
When using variable initial access latency (BCR[14] = 0), the Wait output performs an arbitration  
role for Read or Write operations launched while an on-chip refresh is in progress. If a collision  
occurs, the Wait pin is asserted for additional clock cycles until the refresh has completed  
(Figure 29.7 and Figure 29.8). When the refresh operation has completed, the Read or Write op-  
eration will continue normally.  
Wait is also asserted when a continuous Read or Write burst crosses the boundary between 128-  
word rows. The Wait assertion allows time for the new row to be accessed, and permits any pend-  
ing refresh operations to be performed.  
Wait will be asserted but should be ignored during asynchronous Read and Write, and page Read  
operations.  
29.6 LB#/UB# Operation  
The LB# enable and UB# enable signals support byte-wide data transfers. During Read opera-  
tions, the enabled byte(s) are driven onto the DQs. The DQs associated with a disabled byte are  
put into a High-Z state during a Read operation. During Write operations, any disabled bytes will  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
153  
A d v a n c e I n f o r m a t i o n  
not be transferred to the RAM array and the internal value will remain unchanged. During an asyn-  
chronous Write cycle, the data to be written is latched on the rising edge of CE#, WE#, LB#, or  
UB#, whichever occurs first.  
When both the LB# and UB# are disabled (High) during an operation, the device will disable the  
data bus from receiving or transmitting data. Although the device will seem to be deselected, it  
remains in an active mode as long as CE# remains Low.  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 29.7 Refresh Collision During Read Operation  
154  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
CLK  
A[22:0]  
ADV#  
V
V
IH  
IL  
Address  
Valid  
V
V
IH  
IL  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
LB#/UB#  
High-Z  
V
V
OH  
OL  
WAIT  
V
V
OH  
OL  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
Additional WAIT states inserted to allow refresh completion.  
Legend:  
Don't care  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 29.8 Refresh Collision During Write Operation  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
155  
A d v a n c e I n f o r m a t i o n  
30 Low-Power Operation  
30.1 Standby Mode Operation  
During standby, the device current consumption is reduced to the level necessary to perform the  
DRAM refresh operation. Standby operation occurs when CE# is High.  
The device will enter a reduced power state upon completion of a Read or Write operation, or  
when the address and control inputs remain static for an extended period of time. This mode will  
continue until a change occurs to the address or control inputs.  
30.2 Temperature Compensated Refresh  
Temperature compensated refresh (TCR) is used to adjust the refresh rate depending on the de-  
vice operating temperature. DRAM technology requires increasingly frequent refresh operation to  
maintain data integrity as temperatures increase. More frequent refresh is required due to in-  
creased leakage of the DRAM capacitive storage elements as temperatures rise. A decreased  
refresh rate at lower temperatures will facilitate a savings in standby current.  
TCR allows for adequate refresh at four different temperature thresholds (+15°C, +45°C, +70°C,  
and +85°C). The setting selected must be for a temperature higher than the case temperature  
of the CellularRAM device. For example, if the case temperature is 50°C, the system can minimize  
self refresh current consumption by selecting the +7°0C setting. The +15°C and +45°C settings  
would result in inadequate refreshing and cause data corruption.  
30.3 Partial Array Refresh  
Partial array refresh (PAR) restricts refresh operation to a portion of the total memory array. This  
feature enables the device to reduce standby current by refreshing only that part of the memory  
array required by the host system. The refresh options are full array, one-half array, one-quarter  
array, three-quarter array, or none of the array. The mapping of these partitions can start at either  
the beginning or the end of the address map (Table 31.6). Read and Write operations to address  
ranges receiving refresh will not be affected. Data stored in addresses not receiving refresh will  
become corrupted. When re-enabling additional portions of the array, the new portions are avail-  
able immediately upon writing to the RCR.  
30.4 Deep Power-Down Operation  
Deep power-down (DPD) operation disables all refresh-related activity. This mode is used if the  
system does not require the storage provided by the CellularRAM device. Any stored data will be-  
come corrupted when DPD is enabled. When refresh activity has been re-enabled by rewriting the  
RCR, the CellularRAM device will require 150µs to perform an initialization procedure before nor-  
mal operations can resume. During this 150µs period, the current consumption will be higher than  
the specified standby levels, but considerably lower than the active current specification.  
DPD cannot be enabled or disabled by writing to the RCR using the software access sequence;  
the RCR should be accessed using CRE instead.  
156  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
31 Configuration Registers  
Two user-accessible configuration registers define the device operation. The bus configuration  
register (BCR) defines how the CellularRAM interacts with the system memory bus and is nearly  
identical to its counterpart on burst mode Flash devices. The refresh configuration register (RCR)  
is used to control how refresh is performed on the DRAM array. These registers are automatically  
loaded with default settings during power-up, and can be updated any time the devices are op-  
erating in a standby state.  
31.1 Access Using CRE  
The configuration registers can be written to using either a synchronous or an asynchronous op-  
eration when the configuration register enable (CRE) input is High (see Figure 31.1 and  
Figure 31.2). When CRE is Low, a Read or Write operation will access the memory array. The reg-  
ister values are written via address pins A[21:0]. In an asynchronous Write, the values are  
latched into the configuration register on the rising edge of ADV#, CE#, or WE#, whichever oc-  
curs first; LB# and UB# are Don’t Care. The BCR is accessed when A[19] is High; the RCR is  
accessed when A[19] is Low. For Reads, address inputs other than A[19] are Don’t Care, and reg-  
ister bits 15:0 are output on DQ[15:0].  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
157  
A d v a n c e I n f o r m a t i o n  
A[22:0]  
(except A19)  
ADDRESS  
ADDRESS  
OPCODE  
t
t
AVH  
AVS  
Select Control Register  
A19  
(Note)  
CRE  
t
AVS  
t
AVH  
t
VPH  
ADV#  
t
VP  
t
CBPH  
Initiate Control Register Access  
CE#  
OE#  
t
CW  
t
WP  
Write Address  
Bus Value to  
Control Register  
WE#  
LB#/UB#  
DQ[15:0]  
DATA VALID  
Legend:  
Don't care  
Note: A[19] = Low to load RCR; A[19] = High to load BCR.  
Figure 31.1 Configuration Register Write, Asynchronous Mode Followed by Read  
158  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
CLK  
Latch Control Register Value  
OPCODE  
A[22:0]  
(except A19)  
ADDRESS  
ADDRESS  
t
HD  
Latch Control Register Address  
t
SP  
SP  
A19  
(Note 2)  
t
CRE  
t
t
HD  
t
SP  
ADV#  
HD  
t
CBPH  
(Note 3)  
t
CSP  
CE#  
OE#  
t
SP  
WE#  
t
HD  
LB#/UB#  
t
CEW  
WAIT  
High-Z  
High-Z  
DATA  
VALID  
DQ[15:0]  
Legend:  
Don't care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. A[19] = Low to load RCR; A[19] = High to load BCR.  
3. CE# must remain Low to complete a burst-of-one Write. Wait must be monitored—additional Wait cycles caused by refresh collisions  
require a corresponding number of additional CE# Low cycles.  
Figure 31.2 Configuration Register Write, Synchronous Mode Followed by Read0  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
159  
A d v a n c e I n f o r m a t i o n  
31.2 Bus Configuration Register  
The BCR defines how the CellularRAM device interacts with the system memory bus. Page mode  
operation is enabled by a bit contained in the RCR. Table 31.1 below describes the control bits in  
the BCR. At powerup, the BCR is set to 9D4Fh.  
The BCR is accessed using CRE and A[19] High.  
Table 31.1 Bus Configuration Register Definition  
A[22:20]  
A19  
A[18:16]  
A15  
A14  
A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2 A1 A0  
22–20  
19  
18–16  
15  
14  
13 12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Burst  
Wrap  
Impedance (BW)  
(Note)  
Burst  
Length  
(BL)  
WAIT  
Register  
Select  
Operating  
Mode  
Initial  
Latency  
Latency  
Counter  
WAIT  
Polarity  
Output  
Reserved  
Reserved  
Reserved Configuration Reserved Reserved  
(WC)  
(Note)  
All must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Must be set to "0"  
Setting is ignored  
Output Impedance  
BCR[5] BCR[4]  
0
0
1
1
0
1
0
1
Full Drive (default)  
1/2 Drive  
1/4 Drive  
Reserved  
BCR[13] BCR[12] BCR[11]  
Latency Counter  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Code 0–Reserved  
Code 1–Reserved  
Code 2  
BCR[3]  
Burst Wrap (Note)  
0
1
Burst wraps within the burst length  
Burst no wrap (default)  
Code 3 (Default)  
Code 4  
Code 5  
Code 6  
Code 7–Reserved  
BCR[8]  
WAIT Configuration  
Asserted during delay  
0
1
Asserted one data cycle before delay (default)  
BCR[10] WAIT Polarity  
0
1
Active LOW  
Active HIGH (default)  
BCR[15]  
Operating Mode  
Burst Length (Note)  
BCR[2] BCR[1] BCR[0]  
0
1
Synchronous burst access mode  
Asynchronous access mode (default)  
0
0
0
1
0
1
0
1
1
4 words  
1
8 words  
1
16 words  
Register Select  
BCR[19]  
1
Continuous burst (default)  
0
1
Select RCR  
Select BCR  
Others  
Reserved  
Note: Burst wrap and length apply to Read operations only.  
160  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 31.2 Sequence and Burst Length  
4-word  
Burst  
Address Length 8-word Burst Length  
Starting  
Burst Wrap  
16-word Burst Length  
Continuous Burst  
BCR[3] Wrap (Decimal) Linear  
Linear  
Linear  
Linear  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3  
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4  
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11-…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13-…  
2
3
4
5
0
Yes  
6
7
14  
15  
0
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13  
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17  
3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18  
4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19  
5-6-7-8-9-10-11-12-13-…-15-16-17-18-19-20  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21…  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10-…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12…  
7-8-9-10-11-12-13…  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
1
2
3
4
5
1
No  
6
6-7-8-9-10-11-12-13 6-7-8-9-10-11-12-13-14-…-16-17-18-19-20-21  
7
7-8-9-10-11-12-13-14  
7-8-9-10-11-12-13-14-…-17-18-19-20-21-22  
14  
15  
14-15-16-17-18-19-…-23-24-25-26-27-28-29  
5-16-17-18-19-20-…-24-25-26-27-28-29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
31.2.1 Burst Length (BCR[2:0]): Default = Continuous Burst  
Burst lengths define the number of words the device outputs during burst Read operations. The  
device supports a burst length of 4, 8, or 16 words. The device can also be set in continuous burst  
mode where data is accessed sequentially without regard to address boundaries. Enabling burst  
no-wrap with BCR[3] = 1 overrides the burst-length setting.  
31.2.2 Burst Wrap (BCR[3]): Default = No Wrap  
The burst-wrap option determines if a 4-, 8-, or 16-word Read burst wraps within the burst length  
or steps through sequential addresses. If the wrap option is not enabled, the device accesses data  
from sequential addresses without regard to burst boundaries. When continuous burst operation  
is selected, the internal address wraps to 000000h if the burst goes past the last address. En-  
abling burst nowrap (BCR[3] = 1) overrides the burst-length setting.  
31.2.3 Output Impedance (BCR[5:4]): Default = Outputs Use Full Drive  
Strength  
The output driver strength can be altered to full, one-half, or one-quarter strength to adjust for  
different data bus loading scenarios. The reduced-strength options are intended for stacked chip  
(Flash + CellularRAM) environments when there is a dedicated memory bus. The reduced-drive-  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
161  
A d v a n c e I n f o r m a t i o n  
strength option minimizes the noise generated on the data bus during Read operations. Normal  
output drive strength should be selected when using a discrete CellularRAM device in a more  
heavily loaded data bus environment. Outputs are configured at full drive strength during testing.  
Table 31.3 Output Impedance  
BCR[5]  
BCR[4]  
DRIVE STRENGTH  
0
0
1
1
0
1
0
1
Full  
1/2  
1/4  
Reserved  
31.2.4 Wait Configuration (BCR[8]): Default = Wait Transitions One  
Clock Before Data Valid/Invalid  
The Wait configuration bit is used to determine when Wait transitions between the asserted and  
the de-asserted state with respect to valid data presented on the data bus. The memory controller  
will use the Wait signal to coordinate data transfer during synchronous Read and Write operations.  
When BCR[8] = 0, data will be valid or invalid on the clock edge immediately after Wait transitions  
to the de-asserted or asserted state, respectively (Figure 31.3 and Figure 31.5). When A8 = 1,  
the Wait signal transitions one clock period prior to the data bus going valid or invalid  
(Figure 31.4).  
31.2.5 Wait Polarity (BCR[10]): Default = Wait Active High  
The Wait polarity bit indicates whether an asserted Wait output should be High or Low. This bit  
will determine whether the Wait signal requires a pull-up or pull-down resistor to maintain the de-  
asserted state.  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data[1]  
Data immediately valid (or invalid)  
Note: Data valid/invalid immediately after Wait transitions (BCR[8] = 0). See Figure 31.5.  
Figure 31.3 Wait Configuration (BCR[8] = 0)  
CLK  
WAIT  
High-Z  
DQ[15:0]  
Data[0]  
Data valid (or invalid) after one clock delay  
Note: Valid/invalid data delayed for one clock after Wait transitions (BCR[8] = 1). See Figure 31.5.  
Figure 31.4 Wait Configuration (BCR[8] = 1)  
162  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
CLK  
BCR[8]  
= 0  
WAIT  
DATA VALID IN CURRENT CYCLE  
BCR[8]  
= 1  
WAIT  
DATA VALID IN NEXT CYCLE  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
Legend:  
Don't care  
Note: Non-default BCR setting: Wait active Low.  
Figure 31.5 Wait Configuration During Burst Operation  
31.2.6 Latency Counter (BCR[13:11]): Default = Three-Clock Latency  
The latency counter bits determine how many clocks occur between the beginning of a Read or  
Write operation and the first data value transferred. Latency codes from two (three clocks) to six  
(seven clocks) are allowed (see Table 31.4 and Figure 31.6 below).  
Table 31.4 Variable Latency Configuration Codes  
Latency (Note)  
Max Input Clk Frequency (MHz)  
Latency Configuration  
Code  
BCR[13:11]  
010  
Normal  
Refresh Collision  
70 ns/80 MHz  
85 ns/66 MHz  
2 (3 clocks)  
3 (4 clocks)—default  
4 (5 clocks)  
2
3
4
4
6
8
75 (13.0 ns)  
44 (22.7 ns)  
011  
80 (12.5 ns)  
66 (15.2 ns)  
100  
Note: Latency is the number of clock cycles from the initiation of a burst operation until data appears. Data is trans-  
ferred on the next clock cycle.  
V
IH  
CLK  
V
IL  
V
IH  
A[21:0]  
Valid Address  
V
IL  
V
IH  
ADV#  
A/DQ[15:0]  
A/DQ[15:0]  
A/DQ[15:0]  
V
IL  
Code 2  
Code 3  
Code 4  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
(Default)  
V
V
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
V
OH  
Valid  
Output  
Valid  
Output  
Valid  
Output  
V
OL  
Legend:  
Don't care  
Undefined  
Figure 31.6 Latency Counter (Variable Initial Latency, No Refresh Collision)  
February 17, 2005 S75WS-N-00_A0 S75WS256Nxx Based MCPs  
163  
A d v a n c e I n f o r m a t i o n  
31.2.7 Operating Mode (BCR[15]): Default = Asynchronous Operation  
The operating mode bit selects either synchronous burst operation or the default asynchronous  
mode of operation.  
31.3 Refresh Configuration Register  
The refresh configuration register (RCR) defines how the CellularRAM device performs its trans-  
parent self refresh. Altering the refresh parameters can dramatically reduce current consumption  
during standby mode. Page mode control is also embedded into the RCR. Table 31.5 below de-  
scribes the control bits used in the RCR. At power-up, the RCR is set to 0070h. The RCR is  
accessed using CRE and A[19] Low.  
Table 31.5 Refresh Configuration Register Mapping  
A[22:20]  
A19  
A[18:8]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
22–20  
Reserved  
19  
18–8  
Reserved  
7
6
5
4
3
2
1
0
Read Configuration  
Register  
Register  
Select  
Page  
TCR  
DPD  
Reserved  
PAR  
Must be set to "0"  
All must be set to "0"  
All must be set to "0"  
RCR[19] Register Select  
RCR[2] RCR[1] RCR[0] Refresh Coverage  
0
1
Select RCR  
Select BCR  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full array (default)  
Bottom 1/2 array  
Bottom 1/4 array  
Bottom 1/8 array  
None of array  
RCR[7]  
Page Mode Enable/Disable  
Page Mode Disabled (default)  
Page Mode Enable  
0
1
Top 1/2 array  
Top 1/4 array  
Maximum Case Temp  
RCR[6]  
RCR[5]  
Top 3/4 array  
1
1
0
1
0
+85ºC (default)  
+70ºC  
0
0
1
RCR[4]  
Deep Power-Down  
DPD Enable  
+45ºC  
0
1
+15ºC  
DPD Disable (default)  
31.3.1 Partial Array Refresh (RCR[2:0]): Default = Full Array Refresh  
The PAR bits restrict refresh operation to a portion of the total memory array. This feature allows  
the device to reduce standby current by refreshing only that part of the memory array required  
by the host system. The refresh options are full array, one-half array, one-quarter array, three-  
quarters array, or none of the array. The mapping of these partitions can start at either the be-  
ginning or the end of the address map (see Table 31.6 through Table 31.8).  
Table 31.6 128Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
Full die  
Address Space  
000000h–7FFFFFh  
000000h–3FFFFFh  
000000h–1FFFFFh  
000000h–0FFFFFh  
0
Size  
Density  
128Mb  
64Mb  
32Mb  
16Mb  
0Mb  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
8 Meg x 16  
4 Meg x 16  
2 Meg x 16  
1 Meg x 16  
0 Meg x 16  
4 Meg x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
One-half of die  
400000h–7FFFFFh  
64Mb  
164  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 31.6 128Mb Address Patterns for PAR (RCR[4] = 1) (Continued)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
One-quarter of die  
One-eighth of die  
Address Space  
Size  
Density  
32Mb  
16Mb  
1
1
1
1
0
1
600000h–7FFFFFh  
700000h–7FFFFFh  
2 Meg x 16  
1 Meg x 16  
Table 31.7 64Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
Full die  
Address Space  
000000h–3FFFFFh  
000000h–2FFFFFh  
000000h–1FFFFFh  
000000h–0FFFFFh  
0
Size  
Density  
64Mb  
48Mb  
32Mb  
16Mb  
0Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4 Meg x 16  
3 Meg x 16  
2 Meg x 16  
1 Meg x 16  
0 Meg x 16  
3 Meg x 16  
2 Meg x 16  
1 Meg x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
One-half of die  
One-quarter of die  
One-eighth of die  
100000h–3FFFFFh  
200000h–3FFFFFh  
300000h–3FFFFFh  
48Mb  
32Mb  
16Mb  
Table 31.8 32Mb Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
ACTIVE SECTION  
Full die  
ADDRESS SPACE  
000000h–1FFFFFh  
000000h–17FFFFh  
000000h–0FFFFFh  
000000h–07FFFFh  
0
SIZE  
DENSITY  
32Mb  
24Mb  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2 Meg x 16  
1.5 Meg x 16  
1 Meg x 16  
512K x 16  
0 Meg x 16  
1.5 Meg x 16  
1 Meg x 16  
512K x 16  
One-half of die  
One-quarter of die  
One-eighth of die  
None of die  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
080000h–1FFFFFh  
100000h–1FFFFFh  
180000h–1FFFFFh  
24Mb  
16Mb  
8Mb  
31.3.2 Deep Power-Down (RCR[4]): Default = DPD Disabled  
The deep power-down bit enables and disables all refresh-related activity. This mode is used if  
the system does not require the storage provided by the CellularRAM device. Any stored data will  
become corrupted when DPD is enabled. When refresh activity has been re-enabled, the Cellular-  
RAM device will require 150µs to perform an initialization procedure before normal operations can  
resume.  
Deep power-down is enabled when RCR[4] = 0, and remains enabled until RCR[4] is set to 1.  
31.3.3 Temperature Compensated Refresh (RCR[6:5]): Default = +85ºC  
Operation  
The TCR bits allow for adequate refresh at four different temperature thresholds (+15ºC, +45ºC,  
+70ºC, and +85ºC). The setting selected must be for a temperature higher than the case tem-  
perature of the CellurlarRAM device. If the case temperature is +50ºC, the system can minimize  
self refresh current consumption by selecting the +70ºC setting. The +15ºC and +45ºC settings  
would result in inadequate refreshing and cause data corruption.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
165  
A d v a n c e I n f o r m a t i o n  
31.3.4 Page Mode Operation (RCR[7]): Default = Disabled  
The page mode operation bit determines whether page mode is enabled for asynchronous Read  
operations. In the power-up default state, page mode is disabled.  
166  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
32 Absolute Maximum Ratings  
Voltage to Any Ball Except VCC, VCC  
Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . Relative to VSS-0.50V to (4.0V or VCCQ + 0.3V, whichever is less)  
Voltage on VCC Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.2V to +2.45V  
Voltage on VCCQ Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.2V to +2.45V  
Storage Temperature (plastic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55ºC to +150ºC  
Operating Temperature (case)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wireless-25ºC to +85ºC  
Note: *Stresses greater than those listed may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at these or any other conditions above those indi-  
cated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect reliability.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
167  
A d v a n c e I n f o r m a t i o n  
33 DC Characteristics  
Table 33.1 Electrical Characteristics and Operating Conditions  
Description  
Conditions  
Symbol  
Min  
1.70  
Max  
1.95  
Units  
V
Notes  
Supply Voltage  
VCC  
W: 1.8V  
J: 1.5V  
1.70  
1.95  
V
I/O Supply Voltage  
VCCQ  
1.35  
1.65  
V
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
VCCQ - 0.4  
-0.20  
VCCQ + 0.2  
0.4  
V
2
3
4
4
V
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
IOH = -0.2mA  
IOL = +0.2mA  
VOH  
VOL  
ILI  
0.80 VCC  
Q
V
0.20 VCC  
Q
V
VIN = 0 to VCC  
Q
1
µA  
OE# = VIH or  
Chip Disabled  
Output Leakage Current  
ILO  
1
µA  
Operating Current  
-70  
-85  
25  
20  
Asynchronous Random Read  
Asynchronous Page Read  
Initial Access, Burst Read  
Continuous Burst Read  
V
IN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
ICC  
1
mA  
5
5
-70  
-85  
15  
12  
80 MHz  
66 MHz  
80 MHz  
66 MHz  
-70  
35  
V
IN = VCCQ or 0V  
Chip Enabled,  
IOUT = 0  
30  
ICC1  
mA  
18  
15  
25  
VIN = VCCQ or 0V  
Chip Enabled  
Write Operating Current  
ICC2  
mA  
µA  
-85  
20  
128 M  
64 M  
180  
120  
110  
VIN = VCCQ or 0V  
Standby Current  
ISB  
6
CE# = VCC  
Q
32 M  
Notes:  
1. Wireless Temperature (-25ºC < TC < +85ºC); Industrial Temperature (-40ºC < TC < +85ºC).  
2. Input signals may overshoot to V Q + 1.0V for periods less than 2ns during transitions.  
CC  
3. Input signals may undershoot to V - 1.0V for periods less than 2ns during transitions.  
SS  
4. BCR[5:4] = 00b.  
5. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current required to drive  
output capacitance expected in the actual system.  
6. ISB (MAX) values measured with PAR set to FULL ARRAY and TCR set to +85°C. To achieve Low standby current, all inputs must be driven  
to either V Q or V  
.
CC  
SS  
168  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 33.2 Temperature Compensated Refresh Specifications and Conditions  
Standard  
Power  
Tem pe r ature (No Desig.)  
Max Case  
Description  
Conditions  
Symbol  
Density  
Units  
+85  
+70  
+45  
+15  
+85  
+70  
+45  
+15  
°
°
°
°
°
°
°
°
C
C
C
C
C
C
C
C
120  
105  
85  
64 Mb  
70  
Temperature Compensated  
Refresh Standby Current  
VIN = VCCQ or 0V,  
ITCR  
µA  
CE# = VCC  
Q
110  
95  
32 Mb  
80  
70  
Note: I  
(MAX) values measured with TCR set to 85°C.  
PAR  
Table 33.3 Partial Array Refresh Specifications and Conditions  
Standard  
Power  
Array  
Description  
Conditions  
Symbol  
Density  
Partition  
Full  
1/2  
1/4  
1/8  
0
(No Desig.)  
Units  
120  
115  
110  
105  
70  
64 Mb  
Full  
1/2  
1/4  
1/8  
0
110  
105  
100  
95  
Partially Array Refresh Standby  
Current  
VIN = VCCQ or 0V,  
IPAR  
µA  
CE# = VCC  
Q
32 Mb  
70  
Full  
0
180  
50  
128 Mb  
Note:IPAR (MAX) values measured with TCR set to 85°C.  
Table 33.4 Deep Power-Down Specifications  
Description  
Conditions  
Symbol  
Typ  
Units  
µA  
Deep Power-down  
VIN = VCCQ or 0V; +25°C; VCC = 1.8V  
IZZ  
10  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
169  
A d v a n c e I n f o r m a t i o n  
34 AC Characteristics  
V
CC  
Q
V
Q
/2  
V
Q/2  
CC  
(Note 2)  
CC  
Input  
(Note 1)  
Output  
Test Points  
(Note 3)  
V
SS  
Notes:  
1. AC test inputs are driven at V Q for a logic 1 and V for a logic 0. Input rise and fall times (10% to 90%) < 1.6ns.  
CC  
SS  
2. Input timing begins at V Q/2.  
CC  
3. Output timing ends at V Q/2.  
CC  
Figure 34.1 AC Input/Output Reference Waveform  
V
Q
CC  
R1  
Test Point  
DUT  
30pF  
R2  
Note: All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
Figure 34.2 Output Load Circuit  
Table 34.1 Output Load Circuit  
V
Q
R1/R2  
2.7K  
CC  
1.8V  
170  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.2 Asynchronous Read Cycle Timing Requirements  
85ns/66 MHz  
70ns/80 MHz  
Units  
Notes  
Parameter  
Address Access Time  
Symbol  
tAA  
Min  
Max  
85  
Min  
Max  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ADV# Access Time  
tAADV  
tAPA  
tAVH  
tAVS  
tBA  
85  
70  
Page Access Time  
25  
20  
Address Hold from ADV# High  
Address Setup to ADV# High  
LB#/UB# Access Time  
5
5
10  
10  
85  
8
70  
8
LB#/UB# Disable to DQ High-Z Output  
LB#/UB# Enable to Low-Z Output  
CE# High between Subsequent Mixed-Mode Operations  
Maximum CE# Pulse Width  
CE# Low to Wait Valid  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tCEW  
tCO  
4
3
10  
5
10  
5
4
4
2
1
10  
10  
5
7.5  
85  
1
10  
10  
5
7.5  
70  
Chip Select Access Time  
CE# Low to ADV# High  
tCVS  
tHZ  
Chip Disable to DQ and Wait High-Z Output  
Chip Enable to Low-Z Output  
Output Enable to Valid Output  
Output Hold from Address Change  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Page Cycle Time  
8
20  
8
8
20  
8
4
3
tLZ  
tOE  
tOH  
tOHZ  
tOLZ  
tPC  
4
3
5
5
25  
85  
10  
10  
20  
70  
10  
10  
Read Cycle Time  
tRC  
ADV# Pulse Width Low  
tVP  
ADV# Pulse Width High  
tVPH  
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. See How Extended Timings Impact CellularRAM™ Operation below.  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 34.2. The Low-Z timings measure a  
4. 100mV transition away from the High-Z (V Q/2) level toward either V or V  
.
OL  
CC  
OH  
5. Low-Z to High-Z timings are tested with the circuit shown in Figure 34.2. The High-Z timings measure a 100mV transition from either V  
OH  
or V toward V Q/2.  
OL  
CC  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
171  
A d v a n c e I n f o r m a t i o n  
Table 34.3 Burst Read Cycle Timing Requirements  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Burst to Read Access Time (Variable Latency)  
CLK to Output Delay  
Symbol  
tABA  
tACLK  
tAVS  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
11  
Address Setup to ADV# High  
Burst OE# Low to Output Delay  
CE# High between Subsequent Mixed-Mode Operations  
CE# Low to Wait Valid  
10  
10  
20  
20  
5
1
5
1
7.5  
7.5  
CLK Period  
12.5  
4
15  
5
CE# Setup Time to Active CLK Edge  
Hold Time from Active CLK Edge  
Chip Disable to DQ and Wait High-Z Output  
CLK Rise or Fall Time  
2
2
tHZ  
8
1.6  
9
8
1.6  
11  
8
2
tKHKL  
tKHTL  
tKHZ  
tKLZ  
tKOH  
tKP  
CLK to Wait Valid  
CLK to DQ High-Z Output  
3
2
2
3
8
3
2
2
3
CLK to Low-Z Output  
5
5
Output Hold from CLK  
CLK High or Low Time  
Output Disable to DQ High-Z Output  
Output Enable to Low-Z Output  
Setup Time to Active CLK Edge  
tOHZ  
tOLZ  
tSP  
8
8
2
3
5
3
5
3
Notes:  
1. All tests are performed with the outputs configured for full drive strength (BCR[5] = 0).  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 34.2. The High-Z timings measure a 100mV transition from either V  
OH  
or V toward V Q/2.  
OL  
CC  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 34.2. The Low-Z timings measure a 100mV transition away from the  
High-Z (V Q/2) level toward either V or V  
.
OL  
CC  
OH  
172  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.4 Asynchronous Write Cycle Timing Requirements  
70 ns/80 MHz  
85 ns/66 MHz  
Parameter  
Address and ADV# Low Setup Time  
Address Hold from ADV# Going High  
Address Setup to ADV# Going High  
Address Valid to End of Write  
LB#/UB# Select to End of Write  
Maximum CE# Pulse Width  
CE# Low to Wait Valid  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
Notes  
tAVH  
tAVS  
tAW  
5
5
ns  
10  
70  
70  
10  
85  
85  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBW  
tCEM  
tCEW  
tCKA  
tCVS  
tCW  
tDH  
4
4
1
1
7.5  
1
7.5  
Async Address-to-Burst Transition Time  
CE# Low to ADV# High  
70  
10  
70  
0
85  
10  
85  
0
Chip Enable to End of Write  
Data Hold from Write Time  
Data Write Setup Time  
tDW  
tHZ  
23  
23  
1
Chip Disable to Wait High-Z Output  
Chip Enable to Low-Z Output  
End Write to Low-Z Output  
ADV# Pulse Width  
8
8
tLZ  
10  
5
10  
5
3
3
tOW  
tVP  
tVPH  
tVS  
10  
10  
70  
70  
10  
10  
85  
85  
ADV# Pulse Width High  
ADV# Setup to End of Write  
Write Cycle Time  
tWC  
tWHZ  
tWP  
Write to DQ High-Z Output  
Write Pulse Width  
8
8
2
1
46  
10  
0
55  
10  
0
Write Pulse Width High  
tWPH  
tWR  
Write Recovery Time  
Notes:  
1. See How Extended Timings Impact CellularRAM™ Operation below.  
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 34.2. The High-Z timings measure a 100mV transition from either V  
OH  
or V toward V Q/2.  
OL  
CC  
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 34.2. The Low-Z timings measure a 100mV transition away from the  
High-Z (V Q/2) level toward either V  
or V  
.
CC  
OH  
OL  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
173  
A d v a n c e I n f o r m a t i o n  
Table 34.5 Burst Write Cycle Timing Requirements  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
CE# High between Subsequent Mixed-Mode Operations  
CE# Low to Wait Valid  
Symbol  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
Notes  
1
7.5  
1
7.5  
ns  
Clock Period  
12.5  
4
15  
5
ns  
CE# Setup to CLK Active Edge  
Hold Time from Active CLK Edge  
Chip Disable to Wait High-Z Output  
CLK Rise or Fall Time  
ns  
2
2
ns  
tHZ  
8
1.6  
9
8
ns  
tKHKL  
tKHTL  
tKP  
1.6  
11  
ns  
Clock to Wait Valid  
ns  
CLK High or Low Time  
3
3
3
3
ns  
Setup Time to Activate CLK Edge  
tSP  
ns  
34.1 Timing Diagrams  
V
(MIN)  
CC  
V
, V Q = 1.7V  
CC CC  
t
PU  
Device ready for  
normal operation  
Figure 34.3 Initialization Period  
Table 34.1 Initialization Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Units  
Notes  
Initialization Period (required before normal operations)  
tPU  
150  
150  
µs  
174  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
VALID ADDRESS  
A[22:0]  
t
AA  
V
V
IH  
IL  
ADV#  
CE#  
t
t
CBPH  
HZ  
V
V
IH  
IL  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 34.4 Asynchronous Read  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
175  
A d v a n c e I n f o r m a t i o n  
Table 34.2 Asynchronous Read Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
70  
8
Min  
Max  
85  
85  
8
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBA  
tBHZ  
tBLZ  
tCBPH  
tCEW  
tCO  
10  
5
10  
5
1
7.5  
70  
8
1
7.5  
8
tHZ  
tLZ  
10  
10  
tOE  
20  
8
20  
8
tOHZ  
tOLZ  
tRC  
5
5
70  
85  
176  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AA  
t
t
AVH  
AVS  
t
VPH  
V
V
IH  
IL  
ADV#  
t
AADV  
t
VP  
t
t
CVS  
t
CBPH  
HZ  
V
V
IH  
IL  
CE#  
t
CO  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
BLZ  
t
LZ  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
t
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 34.5 Asynchronous Read Using ADV#  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
177  
A d v a n c e I n f o r m a t i o n  
Table 34.3 Asynchronous Read Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
Min  
Max  
85  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAADV  
tCVS  
tAVH  
tAVS  
tBA  
70  
85  
10  
5
10  
5
10  
10  
70  
8
85  
8
tBHZ  
tBLZ  
tCBPH  
tCEW  
tCO  
10  
5
10  
5
1
7.5  
70  
1
7.5  
85  
tCVS  
tHZ  
10  
10  
10  
10  
8
8
tLZ  
tOE  
20  
8
20  
8
tOHZ  
tOLZ  
tVP  
5
5
10  
10  
10  
10  
tVPH  
178  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
RC  
V
V
IH  
IL  
A[22:0]  
A[3:0]  
VALID ADDRESS  
V
V
IH  
IL  
VALID  
VALID  
VALID  
ADDRESS  
VALID ADDRESS  
ADDRESS  
ADDRESS  
t
t
PC  
AA  
V
V
IH  
IL  
ADV#  
t
t
CEM  
CBPH  
t
t
t
CBPH  
CO  
HZ  
V
V
IH  
IL  
CE#  
t
t
BHZ  
BA  
V
V
IH  
IL  
LB#/UB#  
t
t
OHZ  
OE  
V
V
V
V
IH  
IL  
IH  
IL  
OE#  
WE#  
t
OLZ  
t
t
APA  
BLZ  
t
t
OH  
LZ  
V
V
OH  
OL  
High-Z  
t
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
t
HZ  
CEW  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Undefined  
Figure 34.6 Page Mode Read  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
179  
A d v a n c e I n f o r m a t i o n  
Table 34.4 Asynchronous Read Timing Parameters—Page Mode Operation  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
20  
70  
8
Min  
Max  
85  
25  
85  
8
Units  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAPA  
tBA  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tCEW  
tCO  
10  
5
10  
5
4
7.5  
70  
8
4
7.5  
85  
8
1
1
tHZ  
tLZ  
10  
5
10  
5
tOE  
20  
8
20  
8
tOH  
tOHZ  
tOLZ  
tPC  
5
5
20  
70  
25  
85  
tRC  
180  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
KHKL  
t
t
SP  
HD  
V
V
IH  
IL  
A[22:0]  
ADV#  
VALID ADDRESS  
t
t
SP  
HD  
V
V
IH  
IL  
t
HD  
t
t
HZ  
t
ABA  
CSP  
V
V
IH  
IL  
CE#  
OE#  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
OLZ  
t
t
SP  
SP  
HD  
V
V
IH  
IL  
WE#  
t
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
CEW  
t
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
High-Z  
DQ[15:0]  
VALID OUTPUT  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 34.7 Single-Access Burst Read Operation—Variable Latency  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
181  
A d v a n c e I n f o r m a t i o n  
Table 34.5 Burst Read Timing Parameters—Single Access, Variable Latency  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tABA  
tACLK  
tBOE  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11  
20  
7.5  
20  
1
12.5  
4
1
15  
5
7.5  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
182  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
t
t
t
KP  
KHKL  
KP  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
t
HD  
CSP  
ABA  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 34.8 Four-word Burst Read Operation—Variable Latency  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
183  
A d v a n c e I n f o r m a t i o n  
Table 34.6 Burst Read Timing Parameters—4-word Burst  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tABA  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
35  
9
Min  
Max  
55  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
184  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
CE#  
t
t
SP  
HD  
V
V
IH  
IL  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
t
HZ  
t
t
OHZ  
BOE  
V
V
IH  
IL  
OE#  
t
OLZ  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
KHTL  
V
V
OH  
OL  
High-Z  
High-Z  
WAIT  
t
KOH  
t
ACLK  
t
t
t
KHTL  
KHTL  
KHTL  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
High-Z  
Legend:  
READ Burst Identified  
(WE# = HIGH)  
Don't Care  
Undefined  
Note: Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
Figure 34.9 Four-word Burst Read Operation (with LB#/UB#)  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
185  
A d v a n c e I n f o r m a t i o n  
Table 34.7 Burst Read Timing Parameters—4-word Burst with LB#/UB#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
2
2
tHZ  
8
9
8
5
8
11  
8
tKHTL  
tKHZ  
tKLZ  
3
2
2
3
2
2
5
tKOH  
tOHZ  
tOLZ  
tSP  
8
8
5
3
5
3
186  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
t
CSP  
HZ  
V
V
IH  
IL  
CE#  
OE#  
t
OHZ  
OHZ  
(Note 2)  
V
V
IH  
IL  
t
t
t
SP  
HD  
HD  
V
V
IH  
IL  
WE#  
t
SP  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
BOE  
t
OLZ  
High-Z  
V
V
High-Z  
IH  
IL  
WAIT  
t
KOH  
t
BOE  
t
ACLK  
t
OLZ  
V
V
OH  
OL  
High-Z  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. OE# can stay Low during burst suspend. If OE# is Low, DQ[15:0] will continue to output valid data.  
Figure 34.10 Refresh Collision During Write Operation  
Table 34.8 Burst Read Timing Parameters—Burst Suspend  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
12.5  
4
5
15  
5
tCSP  
tHD  
2
2
tHZ  
8
8
8
8
tKOH  
tOHZ  
tOLZ  
2
5
2
5
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
187  
A d v a n c e I n f o r m a t i o n  
Table 34.8 Burst Read Timing Parameters—Burst Suspend (Continued)  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
Min  
Max  
Min  
Max  
Units  
tSP  
3
3
ns  
V
CLK  
V
IH  
IL  
t
CLK  
V
IH  
IL  
A[22:0]  
V
V
V
IH  
IL  
ADV#  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
OE#  
WE#  
V
V
IH  
IL  
V
V
IH  
IL  
t
t
KHTL  
KHTL  
V
V
OH  
OL  
(Note 2)  
WAIT  
t
t
KOH  
ACLK  
V
V
OH  
OL  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ[15:0]  
Legend:  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. Wait will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 34.9. Continuous Burst Read Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition  
Table 34.10 Burst Read Timing Parameters—BCR[8] = 0  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tCLK  
Min  
12.5  
2
Max  
Min  
15  
2
Max  
Units  
ns  
9
11  
ns  
tKHTL  
tKOH  
9
11  
ns  
ns  
188  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
AA  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 34.11 CE#-Controlled Asynchronous Write  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
189  
A d v a n c e I n f o r m a t i o n  
Table 34.11 Asynchronous Write Timing Parameters—CE#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
70  
70  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
tDH  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
70  
10  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
46  
10  
0
55  
10  
0
190  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
t
AS  
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
WHZ  
LZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
HZ  
t
CEW  
High-Z  
V
V
IH  
IL  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 34.12 LB#/UB#-Controlled Asynchronous Write  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
191  
A d v a n c e I n f o r m a t i o n  
Table 34.12 Asynchronous Write Timing Parameters—LB#/UB#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
70  
70  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
tDH  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
70  
10  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
46  
10  
0
55  
10  
0
192  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
WC  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
AW  
t
WR  
V
V
IH  
IL  
ADV#  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
AS  
t
t
WP  
WPH  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 34.13 WE#-Controlled Asynchronous Write  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
193  
A d v a n c e I n f o r m a t i o n  
Table 34.13 Asynchronous Write Timing Parameters—WE#-Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
70  
70  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
tDH  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
8
8
tLZ  
10  
5
10  
5
tOW  
tWC  
tWHZ  
tWP  
70  
85  
46  
10  
0
55  
10  
0
tWPH  
tWR  
194  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
A[22:0]  
VALID ADDRESS  
t
t
AVH  
AVS  
t
VS  
t
t
VP  
VPH  
t
AS  
V
V
IH  
IL  
ADV#  
t
AS  
t
AW  
t
CEM  
t
CW  
V
V
IH  
IL  
CE#  
t
BW  
V
V
IH  
IL  
LB#/UB#  
OE#  
V
V
IH  
IL  
t
t
WPH  
WP  
V
V
IH  
IL  
WE#  
t
t
DH  
DW  
High-Z  
V
V
IH  
IL  
DQ[15:0]  
IN  
VALID  
INPUT  
t
t
t
OW  
LZ  
WHZ  
V
V
OH  
OL  
DQ[15:0]  
OUT  
t
t
CEW  
HZ  
V
V
IH  
IL  
High-Z  
High-Z  
WAIT  
Legend:  
Don't Care  
Figure 34.14 Asynchronous Write Using ADV#  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
195  
A d v a n c e I n f o r m a t i o n  
Table 34.14 Asynchronous Write Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVH  
tAVS  
tAW  
tBW  
tCEM  
tCEW  
tCW  
tDH  
5
5
10  
70  
70  
10  
85  
85  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
tLZ  
10  
5
10  
5
tOW  
tAS  
0
0
tVP  
10  
10  
70  
10  
10  
85  
tVPH  
tVS  
tWHZ  
tWP  
8
8
46  
10  
55  
10  
tWPH  
196  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
t
KHKL  
t
t
KP  
t
KP  
CLK  
V
V
IH  
IL  
CLK  
t
t
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
A[22:0]  
ADV#  
t
t
SP  
HD  
V
V
IH  
IL  
t
SP  
t
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CSP  
t
HD  
CBPH  
V
V
IH  
IL  
CE#  
OE#  
V
V
IH  
IL  
t
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
HZ  
t
t
CEW  
KHTL  
High-Z  
V
V
(Note 2)  
IH  
IL  
High-Z  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
DQ[15:0]  
D[1]  
D[2]  
D[3]  
D[0]  
Legend:  
READ Burst Identified  
(WE# = LOW)  
Don't Care  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay; burst length four; burst wrap  
enabled.  
Figure 34.15 Burst Write Operation  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
197  
A d v a n c e I n f o r m a t i o n  
Table 34.15 Burst Write Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCBPH  
tCEW  
tCLK  
tCSP  
tHD  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
1
7.5  
1
7.5  
ns  
12.5  
4
15  
5
ns  
ns  
2
2
ns  
tHZ  
8
1.6  
9
8
ns  
tKHKL  
tKHTL  
tKP  
1.6  
11  
ns  
ns  
3
3
3
3
ns  
tSP  
ns  
V
CLK  
V
IH  
IL  
t
CLK  
V
IH  
IL  
A[22:0]  
V
V
V
IH  
IL  
ADV#  
V
V
IH  
IL  
LB#/UB#  
V
V
IH  
IL  
CE#  
V
V
IH  
IL  
WE#  
V
V
IH  
IL  
OE#  
t
t
KHTL  
KHTL  
(Note 2)  
V
V
OH  
OL  
WAIT  
t
t
HD  
SP  
V
V
OH  
OL  
Valid Input  
D[n+3]  
Valid Input  
D[n+2]  
Valid Input Valid Input  
D[n] D[n+1]  
DQ[15:0]  
Legend:  
Don't Care  
END OF ROW  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. Wait will assert LC + 1 or 2LC + 1 cycles for variable latency (depending upon refresh status).  
Figure 34.16 Continuous Burst Write Showing an Output Delay with BCR[8] = 0 for End-of-Row Condition  
198  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.16 Burst Write Timing Parameters—BCR[8] = 0  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCLK  
Min  
12.5  
2
Max  
Min  
15  
2
Max  
Units  
ns  
tHD  
ns  
tKHTL  
tSP  
8
3
11  
3
ns  
ns  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
t
HD  
SP  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
SP  
t
t
HD  
SP  
HD  
V
V
IH  
IL  
ADV#  
t
t
HD  
SP  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
HD  
CSP  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
CSP  
t
OHZ  
V
V
IH  
IL  
OE#  
t
SP  
t
t
HD  
t
SP  
HD  
V
V
IH  
IL  
WE#  
t
BOE  
V
V
High-Z  
High-Z  
OH  
OL  
WAIT  
t
t
t
t
HD  
ACLK  
KOH  
SP  
V
V
V
High-Z  
IH  
IL  
High-Z  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
D[0]  
D[1]  
D[2]  
D[3]  
V
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
1. To allow self-refresh operations to occur between transactions, CE# must remain High for at least 5ns (t  
) to schedule the appropriate  
CBPH  
internal refresh operation. CE# can stay Low between burst Read and burst Write operations. See How Extended Timings Impact  
CellularRAM™ Operation for restrictions on the maximum CE# Low time (t ).  
CEM  
Figure 34.17 Burst Write Followed by Burst Read  
Table 34.17 Write Timing Parameters—Burst Write Followed by Burst Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tCBPH  
tCLK  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
12.5  
4
20  
20  
15  
5
20  
20  
ns  
tCSP  
ns  
tHD  
2
2
ns  
tSP  
3
3
ns  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
199  
A d v a n c e I n f o r m a t i o n  
Table 34.18 Read Timing Parameters—Burst Write Followed by Burst Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCLK  
Min  
Max  
Min  
Max  
ns  
Units  
9
11  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
12.5  
15  
5
tCSP  
tHD  
4
2
2
2
tKOH  
tOHZ  
tSP  
2
8
8
3
3
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
WR  
AVS  
AVH  
AW  
t
t
HD  
t
SP  
VPH  
V
V
IH  
IL  
ADV#  
t
t
t
VP  
VS  
t
t
t
BW  
SP  
HD  
CVS  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CBPH  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
t
t
HD  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
WHZ  
t
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
t
DH  
DW  
KOH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
1. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact CellularRAM™ Operation  
CBPH  
for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.18 Asynchronous Write Followed by Burst Read  
200  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.19 Write Timing Parameters—Asynchronous Write Followed by Burst Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAVH  
tAS  
Min  
5
Max  
Min  
5
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
tAVS  
tAW  
10  
70  
70  
70  
10  
70  
0
10  
85  
85  
85  
10  
85  
0
tBW  
tCKA  
tCVS  
tCW  
tDH  
tDW  
tVP  
tVPH  
tVS  
20  
10  
10  
70  
70  
23  
10  
10  
85  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
8
8
46  
10  
0
55  
10  
0
Table 34.20 Read Timing Parameters—Asynchronous Write Followed by Burst Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
20  
20  
ns  
5
1
5
1
ns  
7.5  
7.5  
ns  
12.5  
4
15  
5
ns  
tCSP  
ns  
tHD  
2
2
ns  
tKOH  
tOHZ  
tSP  
2
2
ns  
8
8
ns  
3
3
ns  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
201  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
t
t
HD  
WC  
WC  
CKA  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
WR  
AW  
t
t
HD  
SP  
V
V
IH  
IL  
ADV#  
t
t
SP  
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
t
CSP  
CW  
CSP  
V
V
IH  
IL  
(Note 2)  
t
OHZ  
V
V
IH  
IL  
OE#  
t
WC  
t
t
t
t
HD  
WP  
WPH  
SP  
V
V
IH  
IL  
WE#  
t
t
BOE  
CEW  
V
V
High-Z  
OH  
OL  
WAIT  
t
t
WHZ  
t
t
KOH  
DW  
ACLK  
V
V
High-Z  
V
V
High-Z  
IH  
IL  
OH  
OL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
DH  
Legend:  
Don't Care  
Undefined  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact CellularRAM™ Operation  
CBPH  
for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.19 Asynchronous Write (ADV# Low) Followed By Burst Read  
202  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.21 Asynchronous Write Timing Parameters—ADV# Low  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAW  
Min  
70  
70  
70  
70  
0
Max  
Min  
85  
85  
85  
85  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBW  
tCKA  
tCW  
tDH  
tDW  
23  
70  
23  
85  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
8
8
46  
10  
0
55  
10  
0
Table 34.22 Burst Read Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
20  
20  
ns  
5
1
5
1
ns  
7.5  
7.5  
ns  
12.5  
4
15  
5
ns  
tCSP  
ns  
tHD  
2
2
ns  
tKOH  
tOHZ  
tSP  
2
2
ns  
8
8
ns  
3
3
ns  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
203  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
t
WC  
SP  
HD  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AW  
SP  
t
WR  
t
HD  
V
V
IH  
IL  
ADV#  
t
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
IH  
IL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact CellularRAM™ Operation  
CBPH  
for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.23. Burst Read Followed by Asynchronous Write (WE#-Controlled)  
204  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.24 Burst Read Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
tCSP  
tHD  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
8
8
Table 34.25 Asynchronous Write Timing Parameters—WE# Controlled  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
Max  
Units  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
tAW  
70  
70  
85  
85  
tBW  
tCEM  
tCW  
tDH  
4
4
8
70  
0
85  
0
tDW  
tHZ  
tWC  
tWP  
tWPH  
tWR  
23  
23  
8
70  
46  
10  
0
85  
55  
10  
0
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
205  
A d v a n c e I n f o r m a t i o n  
t
CLK  
V
V
IH  
IL  
CLK  
t
t
HD  
SP  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
AVS  
AVH  
t
t
t
VPH  
VS  
SP  
t
t
HD  
VP  
V
V
IH  
IL  
ADV#  
t
AW  
t
t
AS  
CBPH  
t
t
CEM  
HD  
t
t
t
CSP  
CW  
HZ  
V
V
IH  
IL  
CE#  
OE#  
(Note 2)  
t
t
OHZ  
BOE  
V
V
IH  
IL  
t
AS  
t
OLZ  
t
t
t
t
t
WPH  
SP  
SP  
HD  
WP  
V
V
IH  
IL  
WE#  
t
t
BW  
HD  
V
V
IH  
IL  
LB#/UB#  
t
t
CEW  
CEW  
t
t
KHTL  
HZ  
High-Z  
V
V
High-Z  
OH  
OL  
WAIT  
t
DW  
t
DH  
t
t
KOH  
ACLK  
High-Z  
V
V
OH  
OL  
Valid  
Output  
DQ[15:0]  
Valid  
Input  
Legend:  
Don't Care  
Undefined  
READ Burst Identified  
(WE# = HIGH)  
Notes:  
1. Non-default BCR settings: Latency code two (three clocks); Wait active Low; Wait asserted during delay.  
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go High. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact CellularRAM™ Operation  
CBPH  
for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.26. Burst Read Followed by Asynchronous Write Using ADV#  
206  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.27 Burst Read Timing Parameters  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tACLK  
tBOE  
tCBPH  
tCEW  
tCLK  
Min  
Max  
9
Min  
Max  
11  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
5
1
5
1
7.5  
7.5  
12.5  
4
15  
5
tCSP  
tHD  
2
2
tHZ  
8
1.6  
9
8
tKHKL  
tKHTL  
tKOH  
tKP  
1.6  
11  
2
3
2
3
tOHZ  
8
8
Table 34.28 Asynchronous Write Timing Parameters Using ADV#  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVH  
tAVS  
tAW  
5
5
10  
70  
70  
10  
85  
85  
tBW  
tCEM  
tCEW  
tCW  
tDH  
4
4
1
70  
0
7.5  
1
85  
0
7.5  
tDW  
tHZ  
23  
23  
8
8
tVP  
10  
10  
70  
46  
10  
0
10  
10  
85  
55  
10  
0
tVPH  
tVS  
tWP  
tWPH  
tWR  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
207  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
Valid  
Address  
Valid  
Valid  
Address  
A[22:0]  
ADV#  
Address  
t
t
t
AW  
WR  
AA  
V
V
IH  
IL  
t
BHZ  
t
t
BW  
BLZ  
V
V
IH  
IL  
LB#/UB#  
CE#  
t
t
CEM  
t
CBPH  
t
HZ  
CW  
V
V
IH  
IL  
(Note)  
t
LZ  
t
t
OHZ  
OE  
V
V
IH  
IL  
OE#  
t
WC  
t
t
WP  
t
AS  
WPH  
V
V
IH  
IL  
WE#  
t
t
HZ  
HZ  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OLZ  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay Low when transitioning between asynchronous operations. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact Cel-  
CBPH  
lularRAM™ Operation for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.29. Asynchronous Write Followed by Asynchronous Read—ADV# Low  
208  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.30 Write Timing Parameters—ADV# Low  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAW  
70  
70  
70  
0
85  
85  
85  
0
tBW  
tCW  
tDH  
tDW  
tHZ  
23  
23  
8
8
8
8
tWC  
tWHZ  
tWP  
70  
85  
46  
10  
0
55  
10  
0
tWPH  
tWR  
Table 34.31 Read Timing Parameters—ADV# Low  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
8
Min  
Max  
85  
8
Units  
ns  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tHZ  
ns  
10  
5
10  
5
ns  
ns  
4
8
4
8
µs  
ns  
tLZ  
10  
5
10  
5
ns  
tOE  
20  
8
20  
8
ns  
tOHZ  
tOLZ  
ns  
ns  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
209  
A d v a n c e I n f o r m a t i o n  
V
V
IH  
IL  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A[22:0]  
t
t
t
t
t
AA  
AVS  
AVH  
AW  
WR  
t
t
t
VPH VP  
VS  
V
V
IH  
IL  
ADV#  
t
t
t
BHZ  
t
BW  
BLZ  
CVS  
V
V
IH  
IL  
LB#/UB#  
t
t
t
CBPH  
CEM  
t
HZ  
CW  
V
V
IH  
IL  
CE#  
OE#  
(Note)  
t
t
LZ  
AS  
t
OHZ  
V
V
IH  
IL  
t
WC  
t
t
WP  
t
AS  
WPH  
t
OLZ  
V
V
IH  
IL  
WE#  
V
V
OH  
OL  
WAIT  
t
WHZ  
t
OE  
High-Z  
High-Z  
V
V
V
V
IH  
IL  
OH  
OL  
Valid  
Output  
DQ[15:0]  
DATA  
DATA  
t
t
DW  
DH  
Legend:  
Don't Care  
Undefined  
Note: CE# can stay Low when transitioning between asynchronous operations. If CE# goes High, it must remain High  
for at least 5ns (t ) to schedule the appropriate internal refresh operation. See How Extended Timings Impact Cel-  
CBPH  
lularRAM™ Operation for restrictions on the maximum CE# Low time (t  
).  
CEM  
Figure 34.32. Asynchronous Write Followed by Asynchronous Read  
210  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
Table 34.33 Write Timing Parameters—Asynchronous Write Followed by Asynchronous Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAS  
Min  
0
Max  
Min  
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVH  
tAVS  
tAW  
5
5
10  
70  
70  
10  
70  
0
10  
85  
85  
10  
85  
0
tBW  
tCVS  
tCW  
tDH  
tDW  
tVP  
tVPH  
tVS  
23  
10  
10  
70  
70  
23  
10  
10  
85  
85  
tWC  
tWHZ  
tWP  
8
8
46  
10  
0
55  
10  
0
tWPH  
tWR  
Table 34.34 Read Timing Parameters—Asynchronous Write Followed by Asynchronous Read  
70ns/80 MHz  
85ns/66 MHz  
Symbol  
tAA  
Min  
Max  
70  
8
Min  
Max  
85  
8
Units  
ns  
tBHZ  
tBLZ  
tCBPH  
tCEM  
tHZ  
ns  
10  
5
10  
5
ns  
ns  
4
8
4
8
µs  
ns  
tLZ  
10  
5
10  
5
ns  
tOE  
20  
8
20  
8
ns  
tOHZ  
tOLZ  
ns  
ns  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
211  
A d v a n c e I n f o r m a t i o n  
35 How Extended Timings Impact CellularRAM™ Operation  
35.1 Introduction  
This section describes CellularRAM™ timing requirements in systems that perform extended  
operations.  
CellularRAM products use a DRAM technology that periodically requires refresh to ensure against  
data corruption. CellularRAM devices include on-chip circuitry that performs the required refresh  
in a manner that is completely transparent in systems with normal bus timings. The refresh cir-  
cuitry imposes constraints on timings in systems that take longer than 4µs to complete an  
operation. Write operations are affected if the device is configured for asynchronous operation.  
Both Read and Write operations are affected if the device is configured for page or burst-mode  
operation.  
35.2 Asynchronous Write Operation  
The timing parameters provided in Figure 34.4 require that all Write operations must be com-  
pleted within 4µs. After completing a Write operation, the device must either enter standby (by  
transitioning CE# High), or else perform a second operation (Read or Write) using a new address.  
Figure 35.1 and Figure 35.2 demonstrate these constraints as they apply during an asynchronous  
(page-mode-disabled) operation. Either the CE# active period (tCEM in Figure 35.1) or the ad-  
dress valid period (tTM in Figure 35.2) must be less than 4µs during any Write operation,  
otherwise, the extended Write timings must be used.  
t
< 4 μs  
CEM  
CE#  
ADDRESS  
Figure 35.1 Extended Timing for t  
CEM  
CE#  
t
<
TM 4μs  
ADDRESS  
Figure 35.2 Extended Timing for t  
TM  
Table 35.1 Extended Cycle Impact on Read and Write Cycles  
Page Mode  
Timing Constraint  
Read Cycle  
Write Cycle  
tCEM and tTM > 4µs  
(See Figure 35.1 and  
Figure 35.2.)  
Must use extended Write  
timing.  
Asynchronous  
Page Mode Disabled  
No impact.  
(See Figure 35.2)  
Must use extended Write  
timing.  
Asynchronous  
Page Mode Enabled  
tCEM > 4µs  
(See Figure 35.1.)  
All following intrapage Read  
access times are tAA (not tAPA).  
(See Figure 35.3)  
Burst  
tCEM > 4µs (See Figure 35.1.)  
Burst must cross a row boundary within 4µs.  
212  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  
A d v a n c e I n f o r m a t i o n  
35.2.1 Extended Write Timing— Asynchronous Write Operation  
Modified timings are required during extended Write operations (see Figure 35.3). An extended  
Write operation requires that both the Write pulse width (tWP) and the data valid period (tDW) be  
lengthened to at least the minimum Write cycle time (tWC [MIN]). These increased timings ensure  
that time is available for both a refresh operation and a successful completion of the Write  
operation.  
t
or t  
> 4μs  
TM  
CEM  
ADDRESS  
CE#  
LB#/UB#  
t
t
> t  
(MIN)  
(MIN)  
WP  
DW  
WC  
WC  
WE#  
> t  
DATA-IN  
Figure 35.3 Extended Write Operation  
35.3 Page Mode Read Operation  
When a CellularRAM device is configured for page mode operation, the address inputs are used  
to accelerate Read accesses and cannot be used by the on-chip circuitry to schedule refresh. If  
CE# is Low longer than the tCEM maximum time of 4µs during a Read operation, the system must  
allow tAA (not tAPA, as would otherwise be expected) for all subsequent intrapage accesses until  
CE# goes High.  
35.4 Burst-Mode Operation  
When configured for burst-mode operation, it is necessary to allow the device to perform a refresh  
within any 4µs window. One of two conditions will enable the device to schedule a refresh within  
4µs. The first condition is when all burst operations complete within 4µs. A burst completes when  
the CE# signal is registered High on a rising clock edge. The second condition that allows a refresh  
is when a burst access crosses a row boundary. The row-boundary crossing causes Wait to be  
asserted while the next row is accessed and enables the scheduling of refresh.  
35.5 Summary  
CellularRAM products are designed to ensure that any possible asynchronous timings do not  
cause data corruption due to lack of refresh. Slow bus timings on asynchronous Write operations  
require that tWP and tDW be lengthened. Slow bus timings during asynchronous page Read oper-  
ations cause the next intrapage Read data to be delayed to tAA.  
Burst mode timings must allow the device to perform a refresh within any 4µs period. A burst  
operation must either complete (CE# registered High) or cross a row boundary within 4µs to en-  
sure successful refresh scheduling. These timing requirements are likely to have little or no impact  
when interfacing a CellularRAM device with a low-speed memory bus.  
February 17, 2005 S75WS-N-00_A0  
S75WS256Nxx Based MCPs  
213  
A d v a n c e I n f o r m a t i o n  
36 Revisions  
Revision A0 (February 17, 2005)  
Initial Release  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion LLC will not be liable to you and/or any third party for any claims or damages arising in connection with above-  
mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such  
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels  
and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on ex-  
port under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the  
prior authorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
214  
S75WS256Nxx Based MCPs  
S75WS-N-00_A0 February 17, 2005  

相关型号:

S75WS256NDFBAWMJ

Memory Circuit, 32MX16, CMOS, PBGA84, 9 X 12 MM, 1.40 MM HEIGHT, FBGA-84
SPANSION

S75WS256NDFBAWNH

Memory Circuit, 16MX16, CMOS, PBGA84, 9 X 12 MM, 1.40 MM HEIGHT, FBGA-84
SPANSION

S75WS256NDFBAWNH0

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNH2

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNH3

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNJ0

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNJ2

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNJ3

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNK0

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNK2

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWNK3

Stacked Multi-Chip Product (MCP)
SPANSION

S75WS256NDFBAWPA

Stacked Multi-Chip Product (MCP)
SPANSION