W219B [SPECTRALINEAR]

Frequency Generator for Integrated Core Logic with 133MHz FSB; 频率发生器集成的核心逻辑与133MHz外频
W219B
型号: W219B
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Frequency Generator for Integrated Core Logic with 133MHz FSB
频率发生器集成的核心逻辑与133MHz外频

外围集成电路 光电二极管
文件: 总14页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W219B  
Frequency Generator for Integrated Core Logic with 133MHz FSB  
Features  
Table 1. Frequency Selections  
FS4 FS3 FS2 FS1 FS0 CPU SDRAM 3V66 PCI APIC  
SS  
OFF  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum technology  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
75.3  
95.0  
113.0  
95.0  
75.3 37.6 18.8  
63.3 31.6 15.8  
86.0 43.0 21.5  
75.3 37.6 18.8  
75.0 37.5 18.7  
73.0 36.6 18.3  
70.0 35.0 17.5  
72.0 36.0 18.0  
68.3 34.1 17.0  
70.0 35.0 17.5  
69.0 34.5 17.0  
70.0 35.0 17.5  
66.8 33.4 16.7  
66.8 33.4 16.7  
66.8 33.4 16.7  
66.8 33.4 16.7  
78.6 39.3 19.6  
80.0 40.0 20.0  
73.3 36.6 18.3  
61.0 30.5 15.2  
84.6 42.3 21.1  
81.3 40.6 20.3  
78.0 39.0 19.5  
76.0 38.0 19.0  
80.0 40.0 20.0  
78.0 39.0 19.5  
83.0 41.5 20.7  
89.0 44.5 22.2  
66.6 33.3 16.6  
66.6 33.3 16.6  
66.6 33.3 16.6  
66.6 33.3 16.6  
–0.6%  
OFF  
• Low jitter and tightly controlled clock skew  
129.0 129.0  
150.0 113.0  
150.0 150.0  
• Highly integrated device providing clocks required for  
CPU, core logic, and SDRAM  
OFF  
OFF  
• Two copies of CPU clock  
110.0  
110.0  
OFF  
• Nine copies of SDRAM clock  
140.0 140.0  
144.0 108.0  
OFF  
• Seven copies of PCI clock  
OFF  
68.3  
102.5  
OFF  
• One copy of synchronous APIC clock  
• Three copies of 66-MHz outputs  
• Two copies of 48-MHz outputs  
• One copy of selectable 24- or 48-MHz clock  
105.0 105.0  
138.0 138.0  
140.0 105.0  
OFF  
OFF  
OFF  
66.8  
100.2  
0.45%  
0.45%  
0.45%  
0.45%  
OFF  
100.2 100.2  
133.6 133.6  
133.6 100.2  
157.3 118.0  
160.0 120.0  
146.6 110.0  
• One copy of double strength 14.31818-MHz reference  
clock  
• Power-down control  
• SMBus interface for turning off unused clocks  
OFF  
OFF  
Key Specifications  
122.0  
91.5  
–0.6%  
OFF  
CPU, SDRAM Outputs Cycle-to-Cycle Jitter: .............250 ps  
127.0 127.0  
122.0 122.0  
APIC, 48-MHz, 3V66, PCI Outputs  
Cycle-to-Cycle Jitter: ...................................................500 ps  
–0.6%  
OFF  
117.0  
114.0  
80.0  
117.0  
114.0  
120.0  
117.0  
CPU, 3V66 Output Skew:............................................175 ps  
SDRAM, APIC, 48-MHz Output Skew:........................250 ps  
PCI Output Skew:........................................................500 ps  
CPU to SDRAM Skew (@ 133 MHz) ....................... 0.5 ns  
CPU to SDRAM Skew (@ 100 MHz) .................4.5 to 5.5 ns  
CPU to 3V66 Skew (@ 66 MHz)........................7.0 to 8.0 ns  
3V66 to PCI Skew (3V66 lead)...........................1.5 to 3.5 ns  
PCI to APIC Skew ..................................................... 0.5 ns  
OFF  
OFF  
78.0  
OFF  
166.0 124.5  
133.6 133.6  
OFF  
OFF  
66.6  
100.0  
–0.6%  
–0.6%  
–0.6%  
–0.6%  
100.0 100.0  
133.3 133.3  
133.3 100.0  
VDDQ3  
Pin Configuration[1]  
Block Diagram  
REF2X/FS3*  
X1  
X2  
XTAL  
OSC  
VDDQ2  
APIC  
VDDQ2  
CPU0  
CPU1  
REF2x/FS3*  
VDDQ3  
X1  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PLL REF FREQ  
VDDQ2  
CPU0:1  
X2  
GND  
VDDQ3  
3V66_0  
3V66_1  
3V66_2  
GND  
FS0*/PCI0  
FS1*/PCI1  
FS2*/PCI2  
GND  
PCI3  
PCI4  
VDDQ3  
PCI5  
PCI6  
GND  
Divider,  
Delay,  
and  
Phase  
Con-  
trol  
GND  
2
SDATA  
SCLK  
SMBus  
Logic  
VDDQ3  
SDRAM0  
SDRAM1  
SDRAM2  
GND  
SDRAM3  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6  
SDRAM7  
SDRAM8  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
APIC  
(FS0:4*)  
VDDQ3  
3V66_0:2  
Logic  
2
PCI0/FS0*  
PLL 1  
PCI1/FS1*  
PCI2/FS2*  
PCI3:6  
5
9
PWR_DWN#  
SCLK  
VDDQ3  
GND  
SDATA  
^
SDRAM0:8  
48MHz_0  
PWR_DWN#  
FS4*/48MHz_1  
SI0/24_48#MHz*  
VDDQ3  
VDDQ3  
48MHz_0  
48MHz_1/FS4*  
PLL2  
Note:  
1. Internal 250K pull-down or pull up resistors present on inputs marked  
with * or ^ respectively. Design should not rely solely on internal  
pull-up or pull down resistor to set I/O pins HIGH or LOW respectively.  
SI0/24_48#MHz*  
/2  
Rev 1.0, November 20, 2006  
2200 Laurelwood Road, Santa Clara, CA 95054  
Page 1 of 14  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
W219B  
I
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
REF2x/FS3  
1
I/O  
Reference Clock with 2x Drive/Frequency Select 3: 3.3V 14.318-MHz clock  
output. This pin also serves as the select strap to determine device operating  
frequency as described in Table 1.  
X1  
3
4
I
I
Crystal Input: This pin has dual functions. It can be used as an external  
14.318-MHz crystal connection or as an external reference frequency input.  
X2  
Crystal Output: An input connection for an external 14.318-MHz crystal  
connection. If using an external reference, this pin must be left unconnected.  
PCI0/FS0  
11  
I/O  
PCI Clock 0/Frequency Selection 0: 3.3V 33-MHz PCI clock outputs. This pin also  
serves as the select strap to determine device operating frequency as described in  
Table 1.  
PCI1/FS1  
PCI2/FS2  
12  
13  
I/O  
I/O  
PCI Clock 1/Frequency Selection 1: 3.3V 33-MHz PCI clock outputs. This pin also  
serves as the select strap to determine device operating frequency as described in  
Table 1.  
PCI Clock 2/Frequency Selection 2: 3.3V 33-MHz PCI clock outputs. This pin also  
serves as the select strap to determine device operating frequency as described in  
Table 1.  
PCI3:6  
15, 16, 18, 19  
7, 8, 9  
O
O
PCI Clock 3 through 6: 3.3V 33-MHz PCI clock outputs. PCI0:6 can be individually  
turned off via SMBus interface.  
3V66_0:2  
66-MHz Clock Output: 3.3V output clocks. The operating frequency is controlled  
by FS0:4 (see Table 1).  
48MHz_0  
21  
22  
O
48-MHz Clock Output: 3.3V fixed 48-MHz, non-spread spectrum clock output.  
48MHz_1/  
FS4  
I/O  
48-MHz Clock Output/Frequency Selection 4: 3.3V fixed 48-MHz, non-spread  
spectrum clock output. This pin also serves as the select strap to determine device  
operating frequency as described in Table 1.  
SIO/  
24_48#MHz  
23  
I/O  
Clock Output for Super I/O: This is the input clock for a Super I/O (SIO) device.  
During power-up, it also serves as a selection strap. If it is sampled HIGH, the output  
frequency for SIO is 24 MHz. If the input is sampled LOW, the output is 48 MHz.  
PWR_DWN#  
CPU0:1  
29  
I
Power Down Control: LVTTL-compatible input that places the device in  
power-down mode when held LOW.  
45, 44  
O
O
CPU Clock Outputs: Clock outputs for the host bus interface. Output frequencies  
depending on the configuration of FS0:4. Voltage swing is set by VDDQ2.  
SDRAM0:8  
41, 40, 39, 37,  
36, 35, 33, 32,  
31  
SDRAM Clock Outputs: 3.3V outputs for SDRAM. The operating frequency is  
controlled by FS0:4 (see Table 1).  
APIC  
47  
O
Synchronous APIC Clock Outputs: Clock outputs running synchronous with the  
PCI clock outputs. Voltage swing set by VDDQ2.  
SDATA  
SCLK  
25  
28  
I/O  
I
Data pin for SMBus circuitry.  
Clock pin for SMBus circuitry.  
VDDQ3  
2, 6, 17, 24, 27,  
34, 42  
P
3.3V Power Connection: Power supply for SDRAM output buffers, PCI output  
buffers, reference output buffers and 48-MHz output buffers. Connect to 3.3V.  
VDDQ2  
GND  
46, 48  
P
2.5V Power Connection: Power supply for IOAPIC and CPU output buffers.  
Connect to 2.5V or 3.3V.  
5,10,14,20,26,  
30, 38, 43,  
G
Ground Connections: Connect all ground pins to the common system ground  
plane.  
Rev 1.0,November 20, 2006  
Page 2 of 14  
W219B  
Output Strapping Resistor  
Series Termination Resistor  
Clock Load  
W219B  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10k:  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
is delivered on the pins. If the power supply has not yet  
reached full value, output frequency initially may be below  
target but will increase to target once supply voltage has stabi-  
lized. In either case, a short output clock cycle may be  
produced from the CPU clock outputs when the outputs are  
enabled.  
Overview  
The W219B is a highly integrated frequency timing generator,  
supplying all the required clock sources for an Intel® archi-  
tecture platform using graphics integrated core logic.  
Functional Description  
Offsets Among Clock Signal Groups  
I/O Pin Operation  
Figure 2 and Figure 3 represent the phase relationship among  
the different groups of clock outputs from W219B when it is  
providing a 66-MHz CPU clock and a 100-MHz CPU clock,  
respectively. It should be noted that when CPU clock is  
operating at 100 MHz, CPU clock output is 180 degrees out of  
phase with SDRAM clock outputs.  
Pin # 1, 11, 12, 13, 22, and 23 are dual-purpose l/O pins. Upon  
power-up the pin acts as a logic input. An external 10-k:  
strapping resistor should be used. Figure 1 shows a suggested  
method for strapping resistor connections.  
After 2 ms, the pin becomes an output. Assuming the power  
supply has stabilized by then, the specified output frequency  
10 ns  
20 ns  
30 ns  
40 ns  
0 ns  
CPU 66 Period  
CPU 66-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
Hub-PC  
3V66 66-MHz  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC  
Figure 2. Group Offset Waveforms (66.8 CPU Clock, 100.2 SDRAM Clock)  
Rev 1.0,November 20, 2006  
Page 3 of 14  
W219B  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
CPU 100 Period  
CPU 100-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
3V66 66-MHz  
Hub-PC  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC  
Figure 3. Group Offset Waveforms (100.2 CPU Clock, 100.2 SDRAM Clock)  
Power-Down Control  
W219B provides one PWRDWN# signal to place the device in low-power mode. In low-power mode, the PLLs are turned off and  
all clock outputs are driven LOW.  
0 ns  
25 ns  
50 ns  
75 ns  
Center  
1
2
VCO Internal  
CPU 100MHz  
3V66 66MHz  
APIC 33MHz  
PCI 33MHz  
PwrDwn  
SDRAM 100MHz  
REF 14.318MHz  
USB 48MHz  
Figure 4. PWRDWN# Timing Diagram[2, 3, 4, 5]  
Notes:  
2. Once the PWRDWN# signal is sampled LOW for two consecutive rising edges of CPU, clocks of interest will be held LOW on the next HIGH-to-LOW transition.  
3. PWRDWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside W219B.  
4. The shaded sections on the SDRAM, REF, and USB clocks indicate “Don’t Care” states.  
5. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66 MHz.  
Rev 1.0,November 20, 2006  
Page 4 of 14  
W219B  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Frequency Timing Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the ampli-  
tudes of the radiated electromagnetic emissions are reduced.  
This effect is depicted in Figure 5.  
The output clock is modulated with a waveform depicted in  
Figure 6. This waveform, as discussed in “Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissions” by  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is 0.45% or –0.6% of the  
selected frequency. Figure 6 details the Cypress spreading  
pattern. Cypress does offer options with more spread and  
greater EMI reduction. Contact your local Sales representative  
for details on these devices.  
As shown in Figure 5, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
SSFTG  
EMI Reduction  
Typical Clock  
Spread  
Spectrum  
Enabled  
Non-  
Spread  
Spectrum  
Frequency Span (MHz)  
Center Spread  
Frequency Span (MHz)  
Figure 5. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX.  
MIN.  
Figure 6. Typical Modulation Profile  
Rev 1.0,November 20, 2006  
Page 5 of 14  
W219B  
1 bit  
7 bits  
1
1
8 bits  
1
Start bit  
Slave Address  
R/W  
Ack  
Command Code  
Ack  
Byte Count = N  
Ack  
1 bit  
Data Byte 1  
8 bits  
Ack  
Data Byte 2  
8 bits  
Ack  
1
...  
Data Byte N  
8 bits  
Ack  
1
Stop  
1
1
Figure 7. An Example of a Block Write[6]  
Serial Data Interface  
transfer a maximum of 32 data bytes. The slave receiver  
address for W219B is 11010010. Figure 7 shows an example  
of a block write.  
The W219B features a two-pin, serial data interface that can  
be used to configure internal register settings that control  
particular device functions.  
The command code and the byte count bytes are required as  
the first two bytes of any transfer. W219B expects a command  
code of 0000 0000. The byte count byte is the number of  
additional bytes required for the transfer, not counting the  
command code and byte count bytes. Additionally, the byte  
count byte is required to be a minimum of 1 byte and a  
maximum of 32 bytes to satisfy the above requirement. Table  
2 shows an example of a possible byte count value.  
Data Protocol  
The clock driver serial protocol accepts only block writes from  
the controller. The bytes must be accessed in sequential order  
from lowest to highest byte with the ability to stop after any  
complete byte has been transferred. Indexed bytes are not  
allowed.  
A transfer is considered valid after the acknowledge bit corre-  
sponding to the byte count is read by the controller. The  
command code and byte count bytes are ignored by the  
W219B. However, these bytes must be included in the data  
write sequence to maintain proper byte allocation.  
A block write begins with a slave address and a write condition.  
After the command code the core logic issues a byte count  
which describes how many more bytes will follow in the  
message. If the host had 20 bytes to send, the first byte would  
be the number 20 (14h), followed by the 20 bytes of data. The  
byte count may not be 0. A block write command is allowed to  
Table 2. Example of Possible Byte Count Value  
Byte Count Byte  
Notes  
MSB  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0010  
LSB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
Not allowed. Must have at least one byte.  
Data for functional and frequency select register (currently byte 0 in spec)  
Reads first two bytes of data. (byte 0 then byte1)  
Reads first three bytes (byte 0, 1, 2 in order)  
Reads first four bytes (byte 0, 1, 2, 3 in order)  
Reads first five bytes (byte 0, 1, 2, 3, 4 in order)[7]  
Reads first six bytes (byte 0, 1, 2, 3, 4, 5 in order)[7]  
Reads first seven bytes (byte 0, 1, 2, 3, 4, 5, 6 in order)  
Max. byte count supported = 32  
Table 3. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Output Disable  
Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI and  
system power. Examples are clock outputs to unused  
PCI slots.  
(Reserved)  
Reserved function for future device revision or  
production device testing.  
No user application. Register bit must be written as 0.  
Notes:  
6. The acknowledgment bit is returned by the slave/receiver (W219B).  
7. Bytes 6 and 7 are not defined for W219B.  
Rev 1.0,November 20, 2006  
Page 6 of 14  
W219B  
2. All unused register bits (reserved and N/A) should be  
written to a “0” level.  
Serial Configuration Map  
1. The serial bits will be read by the clock driver in the following  
order:  
3. All register bits labeled “Initialize to 0" must be written to  
zero during initialization. Failure to do so may result in  
higher than normal operating current. The controller will  
read back the written value.  
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 0: Control Register (1 = Enable, 0 = Disable)[8]  
Bit  
Pin#  
Name  
Reserved  
Default  
Pin Function  
Pin Description  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
0
0
0
0
0
1
1
0
Reserved  
-
Reserved  
Reserved  
Reserved  
Reserved  
24/48 MHz  
48 MHz  
Reserved  
-
Reserved  
-
Reserved  
-
23  
Reserved  
(Active/Inactive)  
(Active/Inactive)  
Reserved  
21, 22  
-
Reserved  
Byte 1: Control Register (1 = Enable, 0 = Disable)[8]  
Bit  
Pin#  
32  
Name  
SDRAM7  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
1
1
1
1
1
1
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
33  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
35  
36  
37  
39  
40  
41  
Byte 2: Control Register (1 = Enable, 0 = Disable)[8]  
Bit  
Pin#  
--  
Name  
Reserved  
PCI6  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
1
1
1
1
1
1
1
Reserved  
19  
18  
16  
15  
13  
12  
11  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
Bit 0  
PCI0  
Note:  
8. Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be  
configured during the normal modes of operation.  
Rev 1.0,November 20, 2006  
Page 7 of 14  
W219B  
Byte 3: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
SDRAM8  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
31  
-
1
0
0
0
1
0
1
0
(Active/Inactive)  
Reserved  
Reserved  
Reserved  
Reserved  
APIC  
-
Reserved  
-
Reserved  
47  
-
(Active/Inactive)  
Reserved  
Reserved  
Reserved  
Reserved  
-
Reserved  
-
Reserved  
Byte 4: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Default  
Pin Function  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
-
-
-
-
-
SEL3  
SEL2  
SEL1  
SEL0  
0
0
0
0
0
See Table 4  
See Table 4  
See Table 4  
See Table 4  
FS(0:4) Override  
0 = Select operating frequency by FS(0:4) strapping  
1 = Select operating frequency by SEL(0:4) bit settings  
Bit 2  
Bit 1  
Bit 0  
-
-
-
SEL4  
0
0
0
See Table 4  
Reserved  
Test Mode  
Reserved  
0 = All output enable  
1 = All output three-stated  
Byte 5: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Reserved  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 6: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
-
-
-
-
-
-
-
0
0
0
0
0
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev 1.0,November 20, 2006  
Page 8 of 14  
W219B  
Byte 6: Reserved Register (1 = Enable, 0 = Disable)  
Bit  
Pin#  
Name  
Default  
Pin Description  
Bit 0  
-
Reserved  
0
Reserved  
Table 4. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
Data Byte 4, Bit 3 = 1  
Bit 2  
SEL_4  
Bit 7  
SEL_3  
Bit 6  
SEL_2  
Bit 5  
SEL_1  
Bit 4  
SEL_0  
Spread  
Spectrum  
CPU  
75.3  
SDRAM  
113.0  
95.0  
3V66  
75.3  
63.3  
86.0  
75.3  
75.0  
73.0  
70.0  
72.0  
68.3  
70.0  
69.0  
70.0  
66.8  
66.8  
66.8  
66.8  
78.6  
80.0  
73.3  
61.0  
84.6  
81.3  
78.0  
76.0  
80.0  
78.0  
83.0  
89.0  
66.6  
66.6  
66.6  
66.6  
PCI  
37.6  
31.6  
43.0  
37.6  
37.5  
36.6  
35.0  
36.0  
34.1  
35.0  
34.5  
35.0  
33.4  
33.4  
33.4  
33.4  
39.3  
40.0  
36.6  
30.5  
42.3  
40.6  
39.0  
38.0  
40.0  
39.0  
41.5  
44.5  
33.3  
33.3  
33.3  
33.3  
APIC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
18.8  
15.8  
21.5  
18.8  
18.7  
18.3  
17.5  
18.0  
17.0  
17.5  
17.0  
17.5  
16.7  
16.7  
16.7  
16.7  
19.6  
20.0  
18.3  
15.2  
21.1  
20.3  
19.5  
19.0  
20.0  
19.5  
20.7  
22.2  
16.6  
16.6  
16.6  
16.6  
OFF  
–0.6%  
OFF  
95.0  
129.0  
150.0  
150.0  
110.0  
140.0  
144.0  
68.3  
129.0  
113.0  
150.0  
110.0  
140.0  
108.0  
102.5  
105.0  
138.0  
105.0  
100.2  
100.2  
133.6  
100.2  
118.0  
120.0  
110.0  
91.5  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
105.0  
138.0  
140.0  
66.8  
OFF  
OFF  
OFF  
0.45%  
0.45%  
0.45%  
0.45%  
OFF  
100.2  
133.6  
133.6  
157.3  
160.0  
146.6  
122.0  
127.0  
122.0  
117.0  
114.0  
80.0  
OFF  
OFF  
–0.6%  
OFF  
127.0  
122.0  
117.0  
114.0  
120.0  
117.0  
124.5  
133.6  
100.0  
100.0  
133.3  
100.0  
–0.6%  
OFF  
OFF  
OFF  
78.0  
OFF  
166.0  
133.6  
66.6  
OFF  
OFF  
–0.6%  
–0.6%  
–0.6%  
–0.6%  
100.0  
133.3  
133.3  
Rev 1.0,November 20, 2006  
Page 9 of 14  
W219B  
DC Electrical Characteristics[9]  
DC parameters must be sustainable under steady state (DC) conditions.  
Absolute Maximum DC Power Supply  
Parameter  
VDDQ3  
VDDQ2  
TS  
Description  
3.3V Core Supply Voltage  
Min.  
–0.5  
–0.5  
–65  
Max.  
4.6  
Unit  
V
2.5V I/O Supply Voltage  
Storage Temperature  
3.6  
V
150  
°C  
Absolute Maximum DC I/O  
Parameter  
Description  
Min.  
–0.5  
–0.5  
2000  
Max.  
4.6  
Unit  
V
Vi/o3  
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
Input ESD Protection  
Vi/o3  
3.6  
V
ESD prot.  
V
DC Operating Requirements  
Parameter  
Description  
Condition  
3.3V 5%  
3.3V 5%  
2.5V 5%  
Min.  
Max.  
Unit  
V
VDD3  
3.3V Core Supply Voltage  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.135  
3.135  
2.375  
3.465  
3.465  
2.625  
VDDQ3  
V
VDDQ2  
V
VDD3 = 3.3V 5%  
Vih3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input Leakage Current[10]  
VDD3  
2.0  
GND – 0.3  
–5  
VDD + 0.3  
0.8  
V
V
Vil3  
Iil  
0<Vin<VDDQ3  
+5  
µA  
VDDQ2 = 2.5V 5%  
Voh2  
2.5V Output High Voltage  
2.5V Output Low Voltage  
Ioh=(–1 mA)  
Iol=(1 mA)  
2.0  
2.4  
2.4  
V
V
Vol2  
0.4  
0.4  
VDDQ3 = 3.3V 5%  
Voh3  
3.3V Output High Voltage  
3.3V Output Low Voltage  
Ioh=(–1 mA)  
Iol=(1 mA)  
V
V
Vol3  
VDDQ3 = 3.3V 5%  
Vpoh3  
PCI Bus Output High Voltage  
PCI Bus Output Low Voltage  
Ioh=(–1 mA)  
Iol=(1 mA)  
V
V
Vpol3  
0.55  
Cin  
Input Pin Capacitance  
Xtal Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
22.5  
6
pF  
pF  
pF  
nH  
°C  
Cxtal  
Cout  
Lpin  
13.5  
0
0
7
Ta  
Ambient Temperature  
No Airflow  
70  
Note:  
9. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
10. Input Leakage Current does not include inputs with pull-up or pull-down resistors.  
Rev 1.0,November 20, 2006  
Page 10 of 14  
W219B  
AC Electrical Characteristics[9]  
TA = 0°C to +70°C, VDDQ3 = 3.3V 5ꢀ, VDDQ2= 2.5V 5ꢀ  
f
XTL = 14.31818 MHz  
66.6-MHz Host  
100-MHz Host  
133-MHz Host  
Parameter  
Description  
Min.  
15.0  
5.2  
Max.  
15.5  
N/A  
N/A  
1.6  
Min.  
10.0  
3.0  
Max.  
10.5  
N/A  
N/A  
1.6  
Min.  
7.5  
Max.  
8.0  
Unit  
Notes  
11  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
Host/CPUCLK Period  
ns  
ns  
ns  
ns  
ns  
Host/CPUCLK High Time  
Host/CPUCLK Low Time  
Host/CPUCLK Rise Time  
Host/CPUCLK Fall Time  
1.87  
1.67  
0.4  
N/A  
N/A  
1.6  
14  
5.0  
2.8  
0.4  
0.4  
15  
15  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
SDRAM CLK Period  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
11  
14  
SDRAM CLK High Time  
SDRAM CLK Low Time  
SDRAM CLK Rise Time  
SDRAM CLK Fall Time  
15  
15  
1.6  
1.6  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
APIC CLK Period  
60.0  
25.5  
25.3  
0.4  
64.0  
N/A  
N/A  
1.6  
60.0  
25.5  
25.30  
0.4  
N/A  
N/A  
N/A  
1.6  
60.0  
25.5  
25.30  
0.4  
64.0  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
11  
14  
APIC CLK High Time  
APIC CLK Low Time  
APIC CLK Rise Time  
APIC CLK Fall Time  
15  
15  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
3V66 CLK Period  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
30.0  
12.0  
12.0  
0.4  
N/A  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
11, 13  
14  
3V66 CLK High Time  
3V66 CLK Low Time  
3V66 CLK Rise Time  
3V66 CLK Fall Time  
15  
15  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
PCI CLK Period  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
11, 12  
14  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Rise Time  
PCI CLK Fall Time  
15  
15  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
tpZL, tpZH  
tpLZ, tpZH  
Output Enable Delay (All outputs)  
30.0  
12.0  
N/A  
N/A  
30.0  
12.0  
N/A  
N/A  
30.0  
12.0  
N/A  
N/A  
ns  
ns  
Output Disable Delay  
(All outputs)  
15  
15  
tstable  
All Clock Stabilization from  
Power-Up  
12.0  
N/A  
12.0  
N/A  
12.0  
N/A  
ms  
Notes:  
11. Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.  
12. T  
13. T  
14. The time specified is measured from when V  
is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
is measured at 0.4V for all outputs.  
HIGH  
LOW  
achieves its nominal operating level (typical condition V  
= 3.3V) until the frequency output is stable and  
DDQ3  
DDQ3  
operating within specification.  
15. T and T  
RISE  
and V = 2.4V for 3.3V.  
are measured as a transition through the threshold region V = 0.4V and V = 2.0V (1 mA) JEDEC specification for 2.5V outputs, and V = 0.4V  
FALL  
ol  
oh  
ol  
oh  
Rev 1.0,November 20, 2006  
Page 11 of 14  
W219B  
Group Skew and Jitter Limits  
Skew, Jitter  
Output Group  
CPU  
Pin-Pin Skew Max.  
Cycle-Cycle Jitter  
250 ps  
Duty Cycle  
45/55  
Nom Vdd  
2.5V  
Measure Point  
1.25V  
1.5V  
175 ps  
250 ps  
250 ps  
250 ps  
175 ps  
500 ps  
N/A  
SDRAM  
APIC  
250 ps  
45/55  
3.3V  
500 ps  
45/55  
2.5V  
1.25V  
1.5V  
48MHz  
3V66  
500 ps  
45/55  
3.3V  
500 ps  
45/55  
3.3V  
1.5V  
PCI  
500 ps  
45/55  
3.3V  
1.5V  
REF  
1000 ps  
45/55  
3.3V  
1.5V  
Test Point  
Output  
Buffer  
Test Load  
Clock Output Wave  
T
PERIOD  
Duty Cycle  
T
HIGH  
2.0  
1.25  
2.5V Clocking  
Interface  
0.4  
T
LOW  
T
T
RISE  
FALL  
T
PERIOD  
Duty Cycle  
T
HIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
T
LOW  
T
T
RISE  
FALL  
Figure 8. Output Buffer  
Rev 1.0,November 20, 2006  
Page 12 of 14  
W219B  
Layout Example  
+2.5V Supply  
FB  
+3.3V Supply  
FB  
VDDQ2  
VDDQ3  
0.005 PF  
G
10 PF  
10 PF  
0.005 PF  
C1  
C2  
C3  
C4  
G
G
G
G
V
G
G
1
2
3
4
48  
G
V
G
47  
46  
45  
G
V
G
G
G
V
5
6
7
8
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
G
G
G
V
G
G
G
G
G
9
10  
11  
12  
G
13  
14  
15  
16  
17  
G
G
G
V
G
G
G
V
18 G  
19  
G
G
20  
21  
22  
23  
G 28  
V
VDDQ3  
(Core)  
G
27  
26  
3.3V  
G
5:  
G
G
24  
25  
0.1PF  
20PF  
C5  
C6  
G
G
FB = Dale ILB1206 - 300 (300: @ 100 MHz) or TDK ACB2012L-120  
PF C6 = 0.1 PF  
µF C2 & C4 = 0.005  
Ceramic Caps  
C1 & C3, C5 = 10 – 22  
= VIA to GND plane layer V =VIA to respective supply plane trace  
G
Note: Each supply plane or strip should have a ferrite bead and capacitors  
All VDD by pass capacitors = 0.1 PF  
Rev 1.0,November 20, 2006  
Page 13 of 14  
W219B  
Ordering Information  
Ordering Code  
Package Name  
Package Type  
48-pin SSOP (300 mils)  
W219B  
H
Package Drawing and Dimensions  
48-Lead Shrunk Small Outline Package O48  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 20, 2006  
Page 14 of 14  

相关型号:

W219BH

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W219BHT

Processor Specific Clock Generator, 166MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
SILICON

W219K1FA

Vitreous Enamelled Wirewound Resistors
TTELEC

W219K1GA

Vitreous Enamelled Wirewound Resistors
TTELEC

W219K1JA

Vitreous Enamelled Wirewound Resistors
TTELEC

W22

Vitreous Enamelled Wirewound Resistors
TTELEC

W22-100RJI

WIDERSTAND DRAHT EMAILL 100R 200V 6W
ETC

W22-10KJI

WIDERSTAND DRAHT EMAILL 10K 200V 6W
ETC

W22-10RJI

WIDERSTAND DRAHT EMAILL 10R 200V 6W
ETC

W22-120RJI

WIDERSTAND DRAHT EMAILL 120R 200V 6W
ETC

W22-12KJI

WIDERSTAND DRAHT EMAILL12K 200V 6W
ETC