A7985A [STMICROELECTRONICS]

2 A step-down switching regulator for automotive applications;
A7985A
型号: A7985A
厂家: ST    ST
描述:

2 A step-down switching regulator for automotive applications

开关 光电二极管
文件: 总44页 (文件大小:1134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A7985A  
2 A step-down switching regulator for automotive applications  
Datasheet - production data  
Applications  
Dedicated to automotive applications  
Automotive LED driving  
Description  
HSOP8 exposed pad  
The A7985A is a step-down switching regulator  
with a 2.5 A (minimum) current limited embedded  
Power MOSFET, so it is able to deliver up to 2 A  
current to the load depending on the application  
conditions.  
Features  
2 A DC output current  
Qualified following AEC-Q100 requirements  
The input voltage can range from 4.5 V to 38 V,  
while the output voltage can be set starting from  
(see PPAP for more details)  
0.6 V to V .  
4.5 V to 38 V input voltage  
IN  
Output voltage adjustable from 0.6 V  
Requiring a minimum set of external components,  
the device includes an internal 250 kHz switching  
frequency oscillator that can be externally  
adjusted up to 1 MHz.  
250 kHz switching frequency, programmable  
up to 1 MHz  
Internal soft-start and enable  
Low dropout operation: 100% duty cycle  
Voltage feed-forward  
The HSOP8 package with exposed pad allows  
the reduction of R  
down to 40 °C/W.  
th(JA)  
Zero load current operation  
Overcurrent and thermal protection  
HSOP8 package  
Figure 1. Application circuit  
/ꢈ  
9RXW ꢊꢁꢋꢃ9ꢃWR9&&  
&RXW  
287  
9,1 ꢀꢁꢂꢃ9ꢃWRꢃꢄꢅꢃ9  
9&&  
'ꢈ  
6<1&+  
(1  
$ꢆꢇꢅꢂ$  
*1'  
5ꢈ  
)%  
&LQ  
&ꢄ  
&203  
)6:  
5ꢄ  
&ꢂ  
5ꢉ  
$0ꢈꢈꢆꢆꢇYꢈ  
March 2014  
DocID023128 Rev 5  
1/44  
This is information on a product in full production.  
www.st.com  
 
Contents  
A7985A  
Contents  
1
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
3
4
5
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Error amplifier and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Enable function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1  
6.2  
6.3  
6.4  
Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.4.1  
6.4.2  
Type III compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.5  
6.6  
6.7  
Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7
Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.1  
7.2  
Positive buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Inverting buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2/44  
DocID023128 Rev 5  
A7985A  
Contents  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8
9
10  
DocID023128 Rev 5  
3/44  
44  
List of tables  
A7985A  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Uncompensated error amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input MLCC capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Inductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
HSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4/44  
DocID023128 Rev 5  
A7985A  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Oscillator circuit block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Sawtooth: voltage and frequency feed-forward; external synchronization . . . . . . . . . . . . . 12  
Oscillator frequency vs. the FSW pin resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft-start scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
The error amplifier, the PWM modulator and the LC output filter . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Type III compensation network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11. Open loop gain: module Bode diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. Open loop gain Bode diagram with ceramic output capacitor . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13. Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14. Open loop gain: module Bode diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15. Open loop gain Bode diagram with electrolytic/tantalum output capacitor . . . . . . . . . . . . . 28  
Figure 16. Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17. Layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Demonstration board application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19. PCB layout: A7985A (component side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20. PCB layout: A7985A (bottom side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 21. PCB layout: A7985A (front side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 22. Junction temperature vs. output current at V = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IN  
Figure 23. Junction temperature vs. output current at V = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IN  
Figure 24. Junction temperature vs. output current at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
IN  
Figure 25. Efficiency vs. output current at V = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
O
Figure 26. Efficiency vs. output current at V = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
O
Figure 27. Efficiency vs. output current at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
O
Figure 28. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 29. Line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 30. Load transient: from 0.4 A to 2 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 31. Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 32. Short-circuit behavior at V = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
IN  
Figure 33. Short-circuit behavior at V = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
IN  
Figure 34. Positive buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 35. Maximum output current according to max. DC switch current (2.0 A): V = 12 V. . . . . . . 38  
O
Figure 36. Inverting buck-boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 37. Maximum output current according to switch max. peak current (2.0 A): V = -5 V. . . . . . 39  
O
Figure 38. HSOP8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DocID023128 Rev 5  
5/44  
44  
Pin settings  
A7985A  
1
Pin settings  
1.1  
Pin connection  
Figure 2. Pin connection (top view)  
1.2  
Pin description  
Table 1. Pin description  
Description  
N.  
Type  
1
OUT  
Regulator output.  
Master/slave synchronization. When it is left floating, a signal with  
a phase shift of half a period in respect to the power turn-on is present at  
the pin. When connected to an external signal at a frequency higher than  
the internal one, the device is synchronized by the external signal, with  
zero phase shift.  
2
SYNCH  
Connecting together the SYNCH pins of two devices, the one with the  
higher frequency works as master and the other as slave; so the two  
power turn-ons have a phase shift of half a period.  
A logical signal (active high) enables the device. With EN higher than  
1.2 V the device is ON and with EN lower than 0.63 V the device is OFF.  
3
4
EN  
COMP  
Error amplifier output to be used for loop frequency compensation.  
Feedback input. Connecting the output voltage directly to this pin the  
output voltage is regulated at 0.6 V. To have higher regulated voltages an  
external resistor divider is required from VOUT to the FB pin.  
5
6
FB  
The switching frequency can be increased connecting an external  
resistor from the FSW pin and ground. If this pin is left floating the device  
works at its free-running frequency of 250 KHz.  
FSW  
7
8
GND  
VCC  
Ground.  
Unregulated DC input voltage.  
6/44  
DocID023128 Rev 5  
A7985A  
Maximum ratings  
2
Maximum ratings  
Table 2. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
Vcc  
Input voltage  
45  
OUT  
Output DC voltage  
-0.3 to VCC  
-0.3 to 4  
-0.3 to VCC  
-0.3 to 1.5  
2
FSW, COMP, SYNCH Analog pin  
V
EN  
FB  
Enable pin  
Feedback voltage  
PTOT  
TJ  
Power dissipation at TA < 60 °C  
Junction temperature range  
Storage temperature range  
HSOP8  
W
°C  
°C  
-40 to 150  
-55 to 150  
Tstg  
3
Thermal data  
Table 3. Thermal data  
Parameter  
Maximum thermal resistance junction ambient(1) HSOP8  
Symbol  
Value  
Unit  
Rth(JA)  
40  
°C/W  
1. Package mounted on demonstration board.  
DocID023128 Rev 5  
7/44  
44  
Electrical characteristics  
A7985A  
4
Electrical characteristics  
T = -40 °C to 125 °C, V = 12 V, unless otherwise specified.  
J
CC  
Table 4. Electrical characteristics  
Values  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ. Max.  
VCC  
VCCON  
VCCHYS  
RDS(on)  
ILIM  
Operating input voltage range  
Turn-on VCC threshold  
VCC UVLO hysteresis  
4.5  
38  
4.5  
0.4  
V
0.1  
2.5  
MOSFET on-resistance  
Maximum limiting current  
200  
400  
3.5  
m  
A
Oscillator  
FSW  
VFSW  
D
Switching frequency  
FSW pin voltage  
210  
0
250  
275  
100  
kHz  
V
1.254  
Duty cycle  
%
FADJ  
Adjustable switching frequency  
RFSW = 33 k  
1000  
0.6  
kHz  
Dynamic characteristics  
VFB  
Feedback voltage  
4.5 V < VCC < 38 V  
0.588  
0.612  
V
DC characteristics  
IQ  
Quiescent current  
Duty cycle = 0, VFB = 0.8 V  
2.4  
30  
mA  
IQST-BY  
Total standby quiescent current  
20  
A  
Enable  
Device OFF level  
Device ON level  
EN = VCC  
0.3  
10  
VEN  
EN threshold voltage  
EN current  
V
1.2  
7.3  
3
IEN  
7.5  
µA  
Soft-start  
FSW pin floating  
8.2  
2
9.8  
TSS  
Soft-start duration  
ms  
FSW = 1 MHz, RFSW = 33 k  
Error amplifier  
VCH  
VCL  
High level output voltage  
Low level output voltage  
Source COMP pin  
VFB < 0.6 V  
V
VFB > 0.6 V  
0.1  
IO SOURCE  
IO SINK  
GV  
VFB = 0.5 V, VCOMP = 1 V  
19  
30  
mA  
mA  
dB  
Sink COMP pin  
VFB = 0.7 V, VCOMP = 0.75 V  
(1)  
Open loop voltage gain  
100  
8/44  
DocID023128 Rev 5  
 
A7985A  
Electrical characteristics  
Table 4. Electrical characteristics (continued)  
Values  
Unit  
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
Synchronization function  
VS_IN,HI High input voltage  
VS_IN,LO Low input voltage  
2
3.3  
1
V
V
S_IN,HI = 3 V, VS_IN,LO = 0 V  
100  
300  
tS_IN_PW  
Input pulse width  
ns  
VS_IN,HI = 2 V, VS_IN,LO = 1 V  
VSYNCH = 2.9 V  
ISYNCH,LO  
VS_OUT,HI  
tS_OUT_PW  
Slave sink current  
0.7  
1
mA  
V
Master output amplitude  
Output pulse width  
ISOURCE = 4.5 mA  
SYNCH floating  
2
110  
ns  
Protection  
Thermal shutdown  
Hysteresis  
150  
30  
TSHDN  
°C  
1. Guaranteed by design.  
DocID023128 Rev 5  
9/44  
44  
Functional description  
A7985A  
5
Functional description  
The A7985A device is based on a “voltage mode”, constant frequency control. The output  
voltage V is sensed by the feedback pin (FB) compared to an internal reference (0.6 V)  
OUT  
providing an error signal that, compared to a fixed frequency sawtooth, controls the ON and  
OFF time of the power switch.  
The main internal blocks are shown in the block diagram in Figure 3. They are:  
A fully integrated oscillator that provides sawtooth to modulate the duty cycle and the  
synchronization signal. Its switching frequency can be adjusted by an external resistor.  
The voltage and frequency feed-forward are implemented  
Soft-start circuitry to limit inrush current during the startup phase  
Voltage mode error amplifier  
Pulse width modulator and the relative logic circuitry necessary to drive the internal  
power switch  
High-side driver for embedded P-channel Power MOSFET switch  
Peak current limit sensing block, to handle overload and short-circuit conditions  
A voltage regulator and internal reference. It supplies internal circuitry and provides  
a fixed internal reference  
A voltage monitor circuitry (UVLO) that checks the input and internal voltages  
A thermal shutdown block, to prevent thermal runaway.  
Figure 3. Block diagram  
VCC  
REGULATOR  
TRIMMING  
UVLO  
&
BANDGAP  
EN  
EN  
PEAK  
CURRENT  
LIMIT  
1.254V  
3.3V  
0.6V  
THERMAL  
SOFT-  
START  
SHUTDOWN  
COMP  
DRIVER  
S
R
Q
E/A  
PWM  
OUT  
SYNCH  
&
OSCILLATOR  
PHASE SHIFT  
FB  
FSW  
SYNCH  
GND  
10/44  
DocID023128 Rev 5  
 
A7985A  
Functional description  
5.1  
Oscillator and synchronization  
Figure 4 shows the block diagram of the oscillator circuit. The internal oscillator provides  
a constant frequency clock. Its frequency depends on the resistor externally connected to  
the FSW pin. If the FSW pin is left floating, the frequency is 250 kHz; it can be increased as  
shown in Figure 6 by an external resistor connected to ground.  
To improve the line transient performance, keeping the PWM gain constant versus the input  
voltage, the voltage feed-forward is implemented by changing the slope of the sawtooth  
according to the input voltage change (see Figure 5.a).  
The slope of the sawtooth also changes if the oscillator frequency is increased by the  
external resistor. In this way, a frequency feed-forward is implemented (Figure 5.b) in order  
to keep the PWM gain constant versus the switching frequency (see Section 6.4 on page 20  
for PWM gain expression).  
On the SYNCH pin the synchronization signal is generated. This signal has a phase shift of  
180 ° with respect to the clock. This delay is useful when two devices are synchronized  
connecting the SYNCH pin together. When SYNCH pins are connected, the device with the  
higher oscillator frequency works as master, so the slave device switches at the frequency  
of the master but with a delay of half a period. This minimizes the RMS current flowing  
through the input capacitor (see the L5988D datasheet).  
Figure 4. Oscillator circuit block diagram  
Clock  
FSW  
Clock  
SYNCH  
Synchronization  
Generator  
Ramp  
Sawtooth  
Generator  
The device can be synchronized to work at a higher frequency feeding an external clock  
signal. The synchronization changes the sawtooth amplitude, changing the PWM gain  
(Figure 5.c). This change must be taken into account when the loop stability is studied. To  
minimize the change of the PWM gain, the free-running frequency should be set (with  
a resistor on the FSW pin) only slightly lower than the external clock frequency. This pre-  
adjusting of the frequency changes the sawtooth slope in order to render negligible the  
truncation of sawtooth, due to the external synchronization.  
DocID023128 Rev 5  
11/44  
44  
 
 
Functional description  
A7985A  
Figure 5. Sawtooth: voltage and frequency feed-forward; external synchronization  
Figure 6. Oscillator frequency vs. the FSW pin resistor  
ꢉꢊꢂꢊ  
ꢈꢅꢂꢊ  
ꢈꢋꢂꢊ  
ꢈꢀꢂꢊ  
ꢈꢉꢂꢊ  
ꢈꢊꢂꢊ  
ꢅꢂꢊ  
ꢋꢂꢊ  
ꢀꢂꢊ  
ꢉꢂꢊ  
ꢈꢊ  
ꢄꢊ  
ꢂꢊ  
ꢆꢊ  
ꢇꢊ  
 
ꢈꢄꢊ  
5
ꢃꢃꢃ>N2KPV@  
)6:  
12/44  
DocID023128 Rev 5  
A7985A  
Functional description  
where:  
Equation 1  
28.5 109  
RFSW = ----------------------------------------- 3.23 103  
F
SW 250 103  
F
is desired switching frequency.  
SW  
5.2  
Soft-start  
Soft-start is essential to assure the correct and safe startup of the step-down converter. It  
avoids inrush current surge and makes the output voltage increase monothonically.  
The soft-start is performed by a staircase ramp on the non inverting input (V  
amplifier. So the output voltage slew rate is:  
) of the error  
REF  
Equation 2  
R1  
SROUT = SRVREF 1 + -------  
R2  
where SR  
is the slew rate of the non inverting input, while R1and R2 is the resistor  
VREF  
divider to regulate the output voltage (see Figure 7). The soft-start staircase consists of 64  
steps of 9.5 mV each, from 0 V to 0.6 V. The time base of one step is of 32 clock cycles. So  
the soft-start time and then the output voltage slew rate depend on the switching frequency.  
Figure 7. Soft-start scheme  
Soft-start time results:  
Equation 3  
32 64  
SSTIME = -----------------  
Fsw  
For example, with a switching frequency of 250 kHz, the SS  
is 8 ms.  
TIME  
DocID023128 Rev 5  
13/44  
44  
 
Functional description  
A7985A  
5.3  
Error amplifier and compensation  
The error amplifier (E/A) provides the error signal to be compared with the sawtooth to  
perform the pulse width modulation. Its non inverting input is internally connected to a 0.6 V  
voltage reference, while its inverting input (FB) and output (COMP) are externally available  
for feedback and frequency compensation. In this device the error amplifier is a voltage  
mode operational amplifier, so with high DC gain and low output impedance.  
The uncompensated error amplifier characteristics are shown in Table 5.  
Table 5. Uncompensated error amplifier characteristics  
Parameter  
Value  
Low frequency gain  
GBWP  
100 dB  
4.5 MHz  
Slew rate  
7 V/s  
Output voltage swing  
Maximum source/sink current  
0 to 3.3 V  
17 mA/25 mA  
In continuous conduction mode (CCM), the transfer function of the power section has two  
poles due to the LC filter and one zero due to the ESR of the output capacitor. Different  
kinds of compensation networks can be used depending on the ESR value of the output  
capacitor. In case the zero introduced by the output capacitor helps to compensate the  
double pole of the LC filter, a Type II compensation network can be used. Otherwise, a Type  
III compensation network must be used (see Section 6.4 on page 20 for details of the  
compensation network selection).  
The methodology to compensate the loop is to introduce zeroes to obtain a safe phase  
margin.  
5.4  
Overcurrent protection  
The A7985A implements the overcurrent protection sensing current flowing through the  
Power MOSFET. Due to the noise created by the switching activity of the Power MOSFET,  
the current sensing is disabled during the initial phase of the conduction time. This avoids  
an erroneous detection of a fault condition. This interval is generally known as “masking  
time” or “blanking time”. The masking time is about 200 ns.  
If the overcurrent limit is reached, the Power MOSFET is turned off, implementing the pulse-  
by-pulse overcurrent protection. Under an overcurrent condition, the device can skip turn-on  
pulses in order to keep the output current constant and equal to the current limit. If, at the  
end of the “masking time”, the current is higher than the overcurrent threshold, the Power  
MOSFET is turned off and one pulse is skipped. If, at the following switching-on, when the  
“masking time” ends, the current is still higher than the overcurrent threshold, the device  
skips two pulses. This mechanism is repeated and the device can skip up to seven pulses.  
While, if at the end of the “masking time” the current is lower than the over current threshold,  
the number of skipped cycles is decreased by one unit (see Figure 8).  
So the overcurrent/short-circuit protection acts by switching off the Power MOSFET and  
reducing the switching frequency down to one eighth of the default switching frequency, in  
order to keep constant the output current around the current limit.  
14/44  
DocID023128 Rev 5  
 
 
A7985A  
Functional description  
This kind of overcurrent protection is effective if the output current is limited. To prevent the  
current from diverging, the current ripple in the inductor during the ON-time must not be  
higher than the current ripple during the OFF-time. That is:  
Equation 4  
V
IN VOUT RDSON IOUT DCR IOUT  
V
OUT + VF + RDSON IOUT + DCR IOUT  
------------------------------------------------------------------------------------------------------------ D = -----------------------------------------------------------------------------------------------------------  1 D  
L FSW  
L FSW  
If the output voltage is shorted, V  
0, I  
= I , D/F  
= T  
, (1-D)/F  
1/F  
.
OUT  
OUT  
LIM  
SW  
ON_MIN  
SW  
SW  
So from the above equation the maximum switching frequency that guarantees to limit the  
current results:  
Equation 5  
VF + DCR ILIM  
1
*
FSW = ------------------------------------------------------------------------------ ----------------------  
VIN RDSON + DCR  ILIMTON_MIN  
With R  
= 300 m, DRC = 0.08 , the worst condition is with V = 38 V, I  
= 2.5 A;  
LIM  
DS(on)  
IN  
the maximum frequency to keep the output current limited during the short-circuit results  
74 kHz.  
Based on the pulse-by-pulse mechanism, that reduces the switching frequency down to one  
eighth, the maximum F , adjusted by the FSW pin, that assures a full effective output  
SW  
current limitation is 74 kHz * 8 = 592 kHz.  
If, with V = 38 V, the switching frequency is set higher than 592 kHz, during short-circuit  
IN  
condition the system finds a different equilibrium with higher current. For example, with  
F
= 700 kHz and the output shorted to ground, the output current is limited around:  
SW  
Equation 6  
*
VIN FSW VF TON_MIN  
IOUT = --------------------------------------------------------------------------------------------------------------- = 3.68A  
*
DRC TON_MIN+ RDSON + DCR  FSW  
where F * is 700 kHz divided by eight.  
SW  
DocID023128 Rev 5  
15/44  
44  
Functional description  
A7985A  
Figure 8. Overcurrent protection  
5.5  
5.6  
Enable function  
The enable feature allows the device to be put into standby mode. With the EN pin lower  
than 0.3 V, the device is disabled and the power consumption is reduced to less than 30A.  
With the EN pin lower than 1.2 V, the device is enabled. If the EN pin is left floating, an  
internal pull-down ensures that the voltage at the pin reaches the inhibit threshold and the  
device is disabled. The pin is also V compatible.  
CC  
Hysteretic thermal shutdown  
The thermal shutdown block generates a signal that turns off the power stage if the junction  
temperature goes above 150 °C. Once the junction temperature goes back to about 120 °C,  
the device restarts in normal operation. The sensing element is very close to the PDMOS  
area, so ensuring an accurate and fast temperature detection.  
16/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
6
Application information  
6.1  
Input capacitor selection  
The capacitor connected to the input must be capable of supporting the maximum input  
operating voltage and the maximum RMS input current required by the device. The input  
capacitor is subject to a pulsed current, the RMS value of which is dissipated over its ESR,  
affecting the overall system efficiency.  
So the input capacitor must have an RMS current rating higher than the maximum RMS  
input current and an ESR value compliant with the expected efficiency.  
The maximum RMS input current flowing through the capacitor can be calculated as:  
Equation 7  
2 D2 D2  
IRMS = IO  
D -------------- + ------  
2  
where I is the maximum DC output current, D is the duty cycle, is the efficiency.  
o
Considering = 1, this function has a maximum at D = 0.5 and it is equal to Io/2.  
In a specific application the range of possible duty cycles must be considered in order to find  
out the maximum RMS input current. The maximum and minimum duty cycles can be  
calculated as:  
Equation 8  
V
OUT + VF  
DMAX = ------------------------------------  
INMIN VSW  
V
and  
Equation 9  
V
OUT + VF  
DMIN = --------------------------------------  
INMAX VSW  
V
where V is the forward voltage on the freewheeling diode and V  
is voltage drop across  
SW  
F
the internal PDMOS.  
The peak-to-peak voltage across the input capacitor can be calculated as:  
Equation 10  
IO  
VPP = ------------------------- 1 --- D + ---  1 D+ ESR IO  
D
D
CIN FSW  
where ESR is the equivalent series resistance of the capacitor.  
Given the physical dimension, ceramic capacitors can well meet the requirements of the  
input filter sustaining a higher input RMS current than electrolytic/tantalum types.  
DocID023128 Rev 5  
17/44  
44  
 
Application information  
Equation 11  
A7985A  
In this case, the equation of C as a function of the target V can be written as follows:  
IN  
PP  
IO  
CIN = -------------------------- 1 --- D + ---  1 D  
D
D
VPP FSW  
neglecting the small ESR of ceramic capacitors.  
Considering = 1, this function has its maximum in D = 0.5, therefore, given the maximum  
peak-to-peak input voltage (V  
), the minimum input capacitor (C  
) value is:  
PP_MAX  
IN_MIN  
Equation 12  
IO  
CIN_MIN = -----------------------------------------------  
2 VPP_MAX FSW  
Typically, C is dimensioned to keep the maximum peak-to-peak voltage in the order of 1%  
IN  
of V  
.
INMAX  
In Table 6, some multi-layer ceramic capacitors suitable for this device are reported.  
Table 6. Input MLCC capacitors  
Manufacturer  
Series  
Cap value (F)  
Rated voltage (V)  
UMK325BJ106MM-T  
GMK325BJ106MN-T  
GRM32ER71H475K  
10  
10  
50  
35  
50  
Taiyo Yuden  
muRata  
4.7  
A ceramic bypass capacitor, as close to the VCC and GND pins as possible, so that  
additional parasitic ESR and ESL are minimized, is suggested in order to prevent instability  
on the output voltage due to noise. The value of the bypass capacitor can go from 100 nF to  
1 µF.  
6.2  
Inductor selection  
The inductance value fixes the current ripple flowing through the output capacitor. So the  
minimum inductance value in order to have the expected current ripple must be selected.  
The rule to fix the current ripple value is to have a ripple at 20% -40% of the output current.  
In continuous current mode (CCM), the inductance value can be calculated by the following  
equation:  
Equation 13  
V
IN VOUT  
VOUT + VF  
IL = ----------------------------- TON = --------------------------- TOFF  
L
L
where T is the conduction time of the internal high-side switch and T  
is the conduction  
ON  
OFF  
time of the external diode (in CCM, F  
= 1/(T + T  
)). The maximum current ripple, at  
SW  
ON  
OFF  
fixed V  
, is obtained at maximum T , that is at minimum duty cycle (see Section 6.1 to  
OUT  
OFF  
calculate minimum duty). So by fixing I = 20% to 30% of the maximum output current, the  
L
minimum inductance value can be calculated:  
18/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
Equation 14  
V
OUT + VF 1 D  
LMIN = --------------------------- --------------M-----I-N--  
IMAX FSW  
where F  
is the switching frequency, 1/(T + T  
).  
SW  
ON  
OFF  
For example, for V  
= 5 V, V = 24 V, I = 2 A and F  
= 250 kHz, the minimum  
SW  
OUT  
IN  
O
inductance value to have I = 30% of I is about 28 H.  
L
O
The peak current through the inductor is given by:  
Equation 15  
IL  
ILPK = IO + -------  
2
So if the inductor value decreases, then the peak current (that must be lower than the  
minimum current limit of the device) increases. According to the maximum DC output  
current for this product family (2 A), the higher the inductor value, the higher the average  
output current that can be delivered, without triggering the overcurrent protection.  
In Table 7 some inductor part numbers are listed.  
Table 7. Inductors  
Manufacturer  
Series  
Inductor value (H)  
Saturation current (A)  
MSS1038  
MSS1048  
3.8 to 10  
12 to 22  
8.2 to 15  
2.2 to 4.7  
1.5 to 3.3  
6.6 to 12  
3.9 to 6.5  
3.84 to 5.34  
3.75 to 6.25  
4 to 6  
Coilcraft  
PD Type L  
Wurth  
PD Type M  
CDRH6D226/HP  
CDR10D48MN  
3.6 to 5.2  
4.1 to 5.7  
SUMIDA  
6.3  
Output capacitor selection  
The current in the capacitor has a triangular waveform which generates a voltage ripple  
across it. This ripple is due to the capacitive component (charge or discharge of the output  
capacitor) and the resistive component (due to the voltage drop across its ESR). So the  
output capacitor must be selected in order to have a voltage ripple compliant with the  
application requirements.  
The amount of the voltage ripple can be calculated starting from the current ripple obtained  
by the inductor selection.  
Equation 16  
IMAX  
VOUT = ESR  IMAX + ------------------------------------  
8 COUT fSW  
Usually the resistive component of the ripple is much higher than the capacitive one, if the  
output capacitor adopted is not a multi-layer ceramic capacitor (MLCC) with very low ESR  
value.  
DocID023128 Rev 5  
19/44  
44  
 
Application information  
A7985A  
The output capacitor is important also for loop stability: it fixes the double LC filter pole and  
the zero due to its ESR. In Section 6.4, how to consider its effect in the system stability is  
illustrated.  
For example, with V  
= 5 V, V = 24 V, I = 0.9 A (resulting by the inductor value), in  
OUT  
IN  
L
order to have a V  
= 0.01 · V  
, if the multi-layer ceramic capacitors are adopted,  
OUT  
OUT  
10 µF are needed and the ESR effect on the output voltage ripple can be neglected. In case  
of not-negligible ESR (electrolytic or tantalum capacitors), the capacitor is chosen taking into  
account its ESR value. So, in the case of 330 µF with ESR = 70 mthe resistive  
component of the drop dominates and the voltage ripple is 43 mV  
The output capacitor is also important to sustain the output voltage when a load transient  
with high slew rate is required by the load. When the load transient slew rate exceeds the  
system bandwidth the output capacitor provides the current to the load. So if the high slew  
rate load transient is required by the application, the output capacitor and system bandwidth  
must be chosen in order to sustain the load transient.  
In Table 8 below some capacitor series are listed.  
Table 8. Output capacitors  
Manufacturer  
Series  
Cap value (F)  
Rated voltage (V)  
ESR (m)  
GRM32  
GRM31  
ECJ  
22 to 100  
10 to 47  
6.3 to 25  
6.3 to 25  
6.3  
< 5  
< 5  
muRata  
10 to 22  
< 5  
PANASONIC  
EEFCD  
TPA/B/C  
C3225  
10 to 68  
6.3  
15 to 55  
40 to 80  
< 5  
SANYO  
TDK  
100 to 470  
22 to 100  
4 to 16  
6.3  
6.4  
Compensation network  
The compensation network must assure stability and good dynamic performance. The loop  
of the A7985A is based on the voltage mode control. The error amplifier is  
a voltage operational amplifier with high bandwidth. So by selecting the compensation  
network the E/A is considered as ideal, that is, its bandwidth is much larger than the system  
one.  
The transfer functions of the PWM modulator and the output LC filter are studied (see  
Figure 10). The transfer function of the PWM modulator, from the error amplifier output  
(COMP pin) to the OUT pin, results:  
Equation 17  
VIN  
GPW0 = --------  
Vs  
where V is the sawtooth amplitude. As seen in Section 5.1 on page 11, the voltage feed-  
S
forward generates a sawtooth amplitude directly proportional to the input voltage, that is:  
Equation 18  
VS = K VIN  
20/44  
DocID023128 Rev 5  
 
 
A7985A  
Application information  
In this way the PWM modulator gain results constant and equal to:  
Equation 19  
VIN  
GPW0 = -------- = --- = 18  
Vs  
1
K
The synchronization of the device with an external clock provided through the SYNCH pin  
can modify the PWM modulator gain (see Section 5.1 on page 11 to understand how this  
gain changes and how to keep it constant in spite of the external synchronization).  
Figure 9. The error amplifier, the PWM modulator and the LC output filter  
VCC  
VS  
VREF  
PWM  
L
OUT  
E/A  
FB  
COMP  
ESR  
GPW0  
GLC  
COUT  
The transfer function on the LC filter is given by:  
Equation 20  
s
1 + -------------------------  
2  fzESR  
GLCs= ------------------------------------------------------------------------  
2  
s
s
1 + ---------------------------- + -------------------  
2  Q fLC  
2  fLC  
where:  
Equation 21  
1
1
fLC = -----------------------------------------------------------------------  
fzESR = -------------------------------------------  
2  ESR COUT  
ESR  
2  L COUT  
1 + --------------  
ROUT  
Equation 22  
ROUT L COUT  ROUT + ESR  
VOUT  
Q = ------------------------------------------------------------------------------------------ ,  
L + COUT ROUT E SR  
ROUT = --------------  
IOUT  
As seen in Section 5.3 on page 14, two different kinds of network can compensate the loop.  
In the two following paragraphs the guidelines to select the Type II and Type III  
compensation network are illustrated.  
DocID023128 Rev 5  
21/44  
44  
Application information  
A7985A  
6.4.1  
Type III compensation network  
The methodology to stabilize the loop consists in placing two zeroes to compensate the  
effect of the LC double pole, thereby increasing phase margin; then to place one pole in the  
origin to minimize the DC error on the regulated output voltage; finally to place other poles  
far from the zero dB frequency.  
If the equivalent series resistance (ESR) of the output capacitor introduces a zero with  
a frequency higher than the desired bandwidth (that is: 2ESR C  
< 1 / BW), the Type  
OUT  
III compensation network is needed. Multi-layer ceramic capacitors (MLCC) have very low  
ESR (< 1 m), with very high frequency zero, so a Type III network is adopted to  
compensate the loop.  
In Figure 10, the Type III compensation network is shown. This network introduces two  
zeroes (f , f ) and three poles (f , f , f ). They are expressed as:  
Z1 Z2  
P0 P1 P2  
Equation 23  
1
1
fZ1 = ------------------------------------------------   
2  C3  R1 + R3  
fZ2 = -----------------------------  
2  R4 C4  
Equation 24  
1
1
fP2 = -------------------------------------------  
C4 C5  
fP0 = 0  
fP1 = -----------------------------  
2  R3 C3  
2  R4 --------------------  
C4 + C5  
Figure 10. Type III compensation network  
22/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
In Figure 11 the Bode diagram of the PWM and LC filter transfer function (G  
· G (f))  
LC  
PW0  
and the open loop gain (G  
(f) = G  
· G (f) · G  
(f)) are drawn.  
LOOP  
PW0  
LC  
TYPEIII  
Figure 11. Open loop gain: module Bode diagram  
The guidelines for positioning the poles and the zeroes and for calculating the component  
values can be summarized as follows:  
1. Choose a value for R , usually between 1 kand 5 k.  
1
2. Choose a gain (R /R ) in order to have the required bandwidth (BW), that means:  
4
1
Equation 25  
BW  
R4 = --------- K R1  
fLC  
where K is the feed-forward constant and 1/K is equal to 18.  
3. Calculate C by placing the zero at 50% of the output filter double pole frequency (f ):  
4
LC  
Equation 26  
1
C4 = ---------------------------  
  R4 fLC  
4. Calculate C by placing the second pole at four times the system bandwidth (BW):  
5
Equation 27  
C4  
C5 = -------------------------------------------------------------  
2  R4 C4 4 BW 1  
5. Set also the first pole at four times the system bandwidth and also the second zero at  
the output filter double pole:  
Equation 28  
R1  
1
R3 = --------------------------  
4 BW  
C3 = ----------------------------------------  
2  R3 4 BW  
----------------- – 1  
fLC  
DocID023128 Rev 5  
23/44  
44  
 
Application information  
A7985A  
The suggested maximum system bandwidth is equal to the switching frequency divided by  
3.5 (F /3.5), so lower than 100 kHz if the F is set higher than 500 kHz.  
SW  
SW  
For example, with V  
= 5 V, V = 24 V, I = 2 A, L = 22 H, C  
= 22 F, and  
OUT  
IN  
O
OUT  
ESR < 1 m, the Type III compensation network is:  
Equation 29  
R1 = 4.99k R2 = 680 R3 = 270 R4 = 1.1k C3 = 4.7nFC4 = 47nFC5 = 1pF  
In Figure 12 the module and phase of the open loop gain is shown. The bandwidth is about  
32 kHz and the phase margin is 51 °.  
Figure 12. Open loop gain Bode diagram with ceramic output capacitor  
24/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
6.4.2  
Type II compensation network  
If the equivalent series resistance (ESR) of the output capacitor introduces a zero with  
a frequency lower than the desired bandwidth (that is: 2ESR C > 1 / BW), this zero  
OUT  
helps stabilize the loop. Electrolytic capacitors show not-negligible ESR (> 30 m), so with  
this kind of output capacitor the Type II network combined with the zero of the ESR allows  
the stabilizing of the loop.  
In Figure 13 the Type II network is shown.  
Figure 13. Type II compensation network  
The singularities of the network are:  
Equation 30  
1
1
fP1 = -------------------------------------------  
C4 C5  
fZ1 = -----------------------------  
2  R4 C4  
fP0 = 0  
2  R4 --------------------  
C4 + C5  
DocID023128 Rev 5  
25/44  
44  
 
Application information  
A7985A  
In Figure 14 the Bode diagram of the PWM and LC filter transfer function (G  
· G (f))  
LC  
PW0  
and the open loop gain (G  
(f) = G  
· G (f) · G  
(f)) are drawn.  
LOOP  
PW0  
LC  
TYPEII  
Figure 14. Open loop gain: module Bode diagram  
The guidelines for positioning the poles and the zeroes and for calculating the component  
values can be summarized as follows:  
1. Choose a value for R , usually between 1 kand 5 k, in order to have values of C4  
1
and C5 not comparable with parasitic capacitance of the board.  
2. Choose a gain (R /R ) in order to have the required bandwidth (BW), that means:  
4
1
Equation 31  
2
fESR  
VS  
BW  
fESR VIN  
R4  
=
----------- ----------- -------- R1  
fLC  
where f  
is the ESR zero:  
ESR  
Equation 32  
1
fESR = -------------------------------------------  
2  ESR COUT  
and V is the sawtooth amplitude. The voltage feed-forward keeps the ratio V /V constant.  
S
S
IN  
3. Calculate C by placing the zero one decade below the output filter double pole:  
4
Equation 33  
10  
C4 = ------------------------------  
2  R4 fLC  
26/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
4. Then calculate C in order to place the second pole at four times the system bandwidth  
3
(BW):  
Equation 34  
C4  
C5 = -------------------------------------------------------------  
2  R4 C4 4 BW 1  
For example, with V  
= 5 V, V = 24 V, I = 2 A, L = 22 H, C  
= 330 F, and  
OUT  
IN  
O
OUT  
ESR = 70 m the Type II compensation network is:  
Equation 35  
R1 = 1.1k R2 = 150 R4 = 4.99k C4 = 180nFC5 = 180pF  
DocID023128 Rev 5  
27/44  
44  
Application information  
A7985A  
In Figure 15 the module and phase of the open loop gain is shown. The bandwidth is about  
36 kHz and the phase margin is 53 °.  
Figure 15. Open loop gain Bode diagram with electrolytic/tantalum output capacitor  
28/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
6.5  
Thermal considerations  
The thermal design is important to prevent the thermal shutdown of the device if the junction  
temperature goes above 150 °C. The three different sources of losses within the device are:  
a) conduction losses due to the not-negligible R  
equal to:  
of the power switch; these are  
DS(on)  
Equation 36  
PON = RDSon IOUT2 D  
where D is the duty cycle of the application and the maximum R  
overtemperature is  
DS(on)  
220 m. Note that the duty cycle is theoretically given by the ratio between V  
and V ,  
OUT  
IN  
but actually it is quite higher to compensate the losses of the regulator. So the conduction  
losses increase compared with the ideal case.  
b) switching losses due to Power MOSFET turn-on and turn-off; these can be  
calculated as:  
Equation 37  
TRISE + TFALL  
PSW = VIN IOUT ------------------------------------------ Fsw = VIN IOUT TSW FSW  
2
where T  
and T  
are the overlap times of the voltage across the power switch (V  
)
DS  
RISE  
FALL  
and the current flowing into it during turn-on and turn-off phases, as shown in Figure 16.  
is the equivalent switching time. For this device the typical value for the equivalent  
T
SW  
switching time is 40 ns.  
c) Quiescent current losses, calculated as:  
Equation 38  
PQ = VIN IQ  
where I is the quiescent current (I = 2.4 mA).  
Q
Q
The junction temperature T can be calculated as:  
J
Equation 39  
TJ = TA + RthJA PTOT  
where T is the ambient temperature and P is the sum of the power losses just seen.  
A
TOT  
R
is the equivalent thermal resistance junction to ambient of the device; it can be  
th(JA)  
calculated as the parallel of many paths of heat conduction from the junction to the ambient.  
For this device the path through the exposed pad is the one conducting the largest amount  
of heat. The R  
measured on the demonstration board described in the following  
th(JA)  
paragraph is about 40 °C/W for the HSOP8 package.  
DocID023128 Rev 5  
29/44  
44  
Application information  
A7985A  
Figure 16. Switching losses  
6.6  
Layout considerations  
The PC board layout of the switching DC/DC regulator is very important to minimize the  
noise injected in high impedance nodes and interference generated by the high switching  
current loops.  
In a step-down converter, the input loop (including the input capacitor, the Power MOSFET  
and the freewheeling diode) is the most critical one. This is due to the fact that the high  
value pulsed current is flowing through it. In order to minimize the EMI, this loop must be as  
short as possible.  
The feedback pin (FB) connection to the external resistor divider is a high impedance node,  
so the interference can be minimized by placing the routing of the feedback node as far as  
possible from the high current paths. To reduce the pick-up noise, the resistor divider must  
be placed very close to the device.  
To filter the high frequency noise, a small bypass capacitor (220 nF -1 µF) can be added as  
close as possible to the input voltage pin of the device.  
Thanks to the exposed pad of the device, the ground plane helps to reduce the thermal  
resistance junction to ambient; so a large ground plane enhances the thermal performance  
of the converter allowing high power conversion.  
30/44  
DocID023128 Rev 5  
A7985A  
Application information  
In Figure 17 a layout example is shown.  
Figure 17. Layout example  
DocID023128 Rev 5  
31/44  
44  
 
Application information  
A7985A  
6.7  
Application circuit  
In Figure 18 the demonstration board application circuit is shown.  
Figure 18. Demonstration board application circuit  
Table 9. Component list  
Reference  
Part number  
Description  
Manufacturer  
C1  
C2  
C3  
C4  
C5  
C6  
R1  
R2  
R3  
R4  
R5  
D1  
UMK325BJ106MM-T  
10 F, 50 V  
22 F, 25 V  
Taiyo Yuden  
muRata  
GRM32ER61E226KE15  
3.3 nF, 50 V  
33 nF, 50 V  
100 pF, 50 V  
470 nF, 50 V  
4.99 k, 1%, 0.1 W 0603  
1.1 k, 1%, 0.1 W 0603  
330 , 1%, 0.1 W 0603  
1.5 k, 1%, 0.1 W 0603  
150 k1%, 0.1 W 0603  
3 A DC, 40 V  
STPS3L40  
STMicroelectronics  
Coilcraft  
10 H, 30%, 3.9 A,  
DCRMAX = 35 m  
L1  
MSS1038-103NL  
32/44  
DocID023128 Rev 5  
 
A7985A  
Application information  
Figure 19. PCB layout: A7985A (component side)  
Figure 20. PCB layout: A7985A (bottom side)  
Figure 21. PCB layout: A7985A (front side)  
DocID023128 Rev 5  
33/44  
44  
Application information  
A7985A  
Figure 22. Junction temperature vs. output  
Figure 23. Junction temperature vs. output  
current at V = 12 V  
current at V = 24 V  
IN  
IN  
VQFN  
HSOP  
VQFN  
HSOP  
VOUT=5V  
VOUT=3.3V  
VOUT=1.8V  
VOUT=5V  
VOUT=3.3V  
VOUT=1.8V  
VIN=24V  
FSW=250KHz  
VIN=12V  
SW=250KHz  
TAMB=25 C  
F
TAMB=25 C  
Figure 24. Junction temperature vs. output  
current at V = 5 V  
Figure 25. Efficiency vs. output current  
at V = 1.8 V  
IN  
O
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Vo=1.8V  
FSW=250kHz  
VQFN  
HSOP  
VOUT=3.3V  
VOUT=1.8V  
VOUT=1.2V  
VIN=5V  
F
SW=250KHz  
TAMB=25 C  
Vin=5V  
Vin=12V  
Vin=24V  
0.100  
0.600  
1.100  
1.600  
2.100  
Io [A]  
Figure 26. Efficiency vs. output current  
Figure 27. Efficiency vs. output current  
at V = 5 V  
at V = 3.3 V  
O
O
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vo=5.0V  
FSW=250kHz  
Vo=3.3V  
FSW=250kHz  
Vin=12V  
Vin=18V  
Vin=24V  
Vin=5V  
Vin=12V  
Vin=24V  
0.100  
0.600  
1.100  
1.600  
2.100  
0.100  
0.600  
1.100  
1.600  
2.100  
Io [A]  
Io [A]  
34/44  
DocID023128 Rev 5  
A7985A  
Application information  
Figure 28. Load regulation  
Figure 29. Line regulation  
3.345  
3.340  
3.335  
3.330  
3.325  
3.320  
3.315  
3.3500  
3.3450  
3.3400  
3.3350  
3.3300  
3.3250  
3.3200  
Vin=5V  
Io=1A  
Io=2A  
Vin=12V  
Vin=24V  
5.0  
10.0  
15.0  
20.0  
25.0  
VIN [V]  
30.0  
35.0  
40.0  
3.310  
0.00  
0.50  
1.00  
1.50  
2.00  
Io [A]  
Figure 30. Load transient: from 0.4 A to 2 A  
Figure 31. Soft-start  
VOUT  
500mV/div  
VOUT  
100mV/div  
AC coupled  
IL  
500mA/div  
VIN=24V  
V
C
OUT=3.3V  
OUT=47uF  
L=10uH  
SW=520k  
VFB  
200mV/div  
I
L 500mA/div  
F
Time base 1ms/div  
Time base 100us/div  
Figure 32. Short-circuit behavior at V = 12 V  
Figure 33. Short-circuit behavior at V = 24 V  
IN  
IN  
SYNCH  
5V/div  
SYNCH  
5V/div  
OUT  
5V/div  
OUT  
5V/div  
VOUT  
1V/div  
VOUT  
1V/div  
IL  
IL  
1A/div  
0.5A/div  
Timebase 10us/div  
Timebase 10us/div  
DocID023128 Rev 5  
35/44  
44  
Application ideas  
A7985A  
7
Application ideas  
7.1  
Positive buck-boost  
The A7985A can implement the step-up/down converter with a positive output voltage.  
Figure 34 shows the schematic: one Power MOSFET and one Schottky diode are added to  
the standard buck topology to provide a 12 V output voltage with input voltage from 4.5 V to  
38 V.  
Figure 34. Positive buck-boost regulator  
5ꢅ  
'ꢉ  
/ꢈ ꢈꢂꢃ—+  
9,1  
6736ꢄ/ꢀꢊ8  
9287  
9&&  
*1'  
)6:  
)%  
287  
6<1&  
(1  
&ꢄ  
ꢉꢁꢉꢃQ)  
$ꢆꢇꢅꢂ$  
'ꢈ  
&ꢉ  
ꢀꢆꢃ—)  
6736ꢄ/ꢀꢊ8  
5ꢈ  
ꢀꢆ  
&ꢈ  
ꢈꢊꢃ—)  
&203  
5ꢄ  
ꢉꢉ  
73  
&ꢂ  
ꢀꢆꢊꢃS)  
&ꢋ  
ꢊꢁꢈꢃ—)  
0ꢈ  
&ꢀ  
ꢈꢊꢊꢃQ)  
671ꢄ1)ꢊꢋ/  
5ꢂ  
5ꢀ  
5ꢉ  
*1'  
*1'  
$0ꢊꢄꢋꢇꢇ  
The relationship between input and output voltage is:  
Equation 40  
D
VOUT = VIN -------------  
1 D  
so the duty cycle is:  
Equation 41  
VOUT  
D = -----------------------------  
V
OUT + VIN  
The output voltage isn’t limited by the maximum operating voltage of the device (38 V),  
because the output voltage is sensed only through the resistor divider. The external Power  
MOSFET maximum drain to source voltage, must be higher than output voltage; the  
maximum gate to source voltage must be higher than the input voltage (in Figure 34, if V is  
IN  
higher than 16 V, the gate must be protected through a Zener diode and resistor).  
36/44  
DocID023128 Rev 5  
 
A7985A  
Application ideas  
The current flowing through the internal Power MOSFET is transferred to the load only  
during the OFF time, so according to the maximum DC switch current (2.0 A), the maximum  
output current for the buck boost topology can be calculated from Equation 42.  
Equation 42  
IOUT  
ISW = ------------- 2 A  
1 D  
where I  
is the average current in the embedded Power MOSFET in the ON time.  
SW  
To chose the right value of the inductor and to manage transient output current, which, for  
a short time, can exceed the maximum output current calculated by Equation 42, also the  
peak current in the Power MOSFET must be calculated. The peak current, shown in  
Equation 43, must be lower than the minimum current limit (2.5 A).  
Equation 43  
IOUT  
r
2
ISW,PK = ------------- 1 + -- 3.7A  
1 D  
VOUT  
r = ------------------------------------  1 D2  
IOUT L FSW  
where r is defined as the ratio between the inductor current ripple and the inductor DC  
current.  
Therefore, in the buck boost topology the maximum output current depends on the  
application conditions (firstly input and output voltage, secondly switching frequency and  
inductor value).  
In Figure 35 the maximum output current for the above configuration is depicted, varying the  
input voltage from 4.5 V to 38 V.  
The dashed line considers a more accurate estimation of the duty cycles given Equation 44,  
where power losses across diodes, the external Power MOSFET, and the internal Power  
MOSFET are taken into account.  
DocID023128 Rev 5  
37/44  
44  
 
 
Application ideas  
A7985A  
Figure 35. Maximum output current according to max. DC switch current (2.0 A):  
V = 12 V  
O
Equation 44  
V
OUT + 2 VD  
D = -------------------------------------------------------------------------------------------  
IN VSW VSWE + VOUT + 2 VD  
V
where V is the voltage drop across the diodes, V  
and V  
across the internal and  
SWE  
D
SW  
external Power MOSFET.  
7.2  
Inverting buck-boost  
The A7985A device can implement the step-up/down converter with a negative output  
voltage.  
Figure 34 shows the schematic to regulate -5 V: no further external components are added  
to the standard buck topology.  
The relationship between input and output voltage is:  
Equation 45  
D
VOUT = –VIN -------------  
1 D  
so the duty cycle is:  
Equation 46  
VOUT  
D = -----------------------------  
V
OUT VIN  
As in the positive one, in the inverting buck-boost the current flowing through the Power  
MOSFET is transferred to the load only during the OFF time. So according to the maximum  
DC switch current (2.0 A), the maximum output current can be calculated from Equation 42,  
where the duty cycle is given by Equation 46.  
38/44  
DocID023128 Rev 5  
 
A7985A  
Application ideas  
Figure 36. Inverting buck-boost regulator  
The GND pin of the device is connected to the output voltage so, given the output voltage,  
the input voltage range is limited by the maximum voltage the device can withstand across  
VCC and GND (38 V). Therefore, if the output is -5 V, the input voltage can range from 4.5 V  
to 33 V.  
As in the positive buck-boost, the maximum output current according to application  
conditions is shown in Figure 37. The dashed line considers a more accurate estimation of  
the duty cycles given by Equation 47, where power losses across diodes and the internal  
Power MOSFET are taken into account.  
Equation 47  
V
OUT VD  
D = ----------------------------------------------------------------  
VIN VSW + VOUT VD  
Figure 37. Maximum output current according to switch max. peak current (2.0 A):  
V = -5 V  
O
DocID023128 Rev 5  
39/44  
44  
 
 
Package information  
A7985A  
8
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
Figure 38. HSOP8 package outline  
'ꢈ ꢄꢁꢈꢊꢃPPꢃ7\Sꢁ  
(ꢉ ꢉꢁꢉꢊꢃPPꢃ7\Sꢁ  
$0ꢈꢈꢆꢂꢀYꢈ  
40/44  
DocID023128 Rev 5  
 
 
A7985A  
Package information  
Table 10. HSOP8 package mechanical data  
Dimensions (mm)  
Symbol  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.70  
0.00  
1.25  
0.31  
0.17  
4.80  
5.80  
3.80  
0.150  
0.51  
0.25  
5.00  
6.20  
4.00  
c
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.00  
0.50  
1.27  
8.00  
0.10  
L
k
ccc  
DocID023128 Rev 5  
41/44  
44  
 
Ordering information  
A7985A  
9
Ordering information  
Table 11. Ordering information  
Package  
Order code  
Packaging  
A7985A  
HSOP8  
HSOP8  
Tube  
A7985ATR  
Tape and reel  
42/44  
DocID023128 Rev 5  
A7985A  
Revision history  
10  
Revision history  
Table 12. Document revision history  
Changes  
Date  
Revision  
19-Apr-2012  
1
Initial release.  
Document status promoted from preliminary data to production data.  
08-Oct-2012  
04-Jul-2013  
12-Aug-2013  
2
3
4
In Section 5.6 changed temperature value from 130 to 120 °C.  
Updated values for VFB parameter in Table 4: Electrical  
characteristics.  
Changed VFB parameter in Table 4: Electrical characteristics from  
0.594 to 0.588.  
Updated Figure 34: Positive buck-boost regulator on page 36  
(replaced by a new figure).  
Updated Section 8: Package information on page 40 (reversed order  
of Figure 38 and Table 10, minor modifications).  
17-Mar-2014  
6
Updated cross-references throughout document.  
Minor modifications throughout document.  
DocID023128 Rev 5  
43/44  
44  
A7985A  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
44/44  
DocID023128 Rev 5  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY