AIS1120SXTR [STMICROELECTRONICS]

Embedded self-test;
AIS1120SXTR
型号: AIS1120SXTR
厂家: ST    ST
描述:

Embedded self-test

文件: 总58页 (文件大小:1653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AIS1120SX  
AIS2120SX  
MEMS automotive acceleration sensor:  
single/dual-axis with SPI interface  
Datasheet - production data  
Description  
The AIS1120SX / AIS2120SX is a central  
acceleration sensor with a single or dual axis  
sensing element and an IC interface able to  
provide acceleration information to a master  
control unit via an SPI protocol.  
The sensing element, capable of detecting the  
acceleration, is manufactured using a dedicated  
process developed by ST to produce inertial  
sensors and actuators in silicon.  
SOIC8  
The IC interface is manufactured using a BCD  
process that allows a high level of integration. The  
device is factory trimmed to better tune the  
characteristics of the sensing element with the  
acceleration information to be supplied.  
Features  
AEC-Q100 qualified  
3.3 V single supply operation  
14-bit data output  
The AIS1120SX / AIS2120SX has a full scale of  
120 g. The acquisition chain consists of a C/V  
converter, a full-differential charge amplifier, a 2  
nd  
order analog-to-digital converter and a digital  
core, which includes filtering, compensation and  
interpolation, control logic and SPI protocol  
generation.  
120 g full scale  
Slow and fast offset cancellation  
Embedded self-test  
The differential capacitance of the sensor is  
proportional to the proof mass displacement;  
thus, by sensing the differential capacitance, the  
position of the sensor is determined. Then, since  
Selectable low-pass filter  
SPI interface  
®
ECOPACK compliant  
the mass position is known, and the position is  
related to the input acceleration, the input  
acceleration can be easily deduced.  
Extended temperature range -40 °C to +105 °C  
Applications  
The device is available in a plastic SOIC8  
package and is guaranteed to operate over a  
temperature range extending from -40 °C to  
+105 °C.  
Airbag systems  
Vibrations, impact monitoring  
Table 1. Device summary  
Sensitivity Operating temperature  
Order code  
g-range  
Package  
Packing  
axes  
range [C]  
120 g  
120 g  
x
-40 to +105  
-40 to +105  
SOIC8N  
SOIC8N  
Tape and reel  
Tape and reel  
AIS1120SXTR  
AIS2120SXTR  
xy  
January 2017  
DocID028312 Rev 3  
1/58  
This is information on a product in full production.  
www.st.com  
 
Contents  
AIS1120SX / AIS2120SX  
Contents  
1
Block diagrams and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1  
Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
1.1.6  
1.1.7  
1.1.8  
1.1.9  
Mechanical element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Sigma-Delta converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Filter architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Decimation filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signal compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Signal delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Offset cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.1.10 State machine and on-chip-oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.1.11 Power domain block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.2  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2
Customer accessible data arrays (registers) . . . . . . . . . . . . . . . . . . . . 17  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
REG_CTRL_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REG_CTRL_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
REG_CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REG_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REG_CHID_REVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHX_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHY_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REG_ACC_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.10 REG_OSC_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.11 REG_ID_SENSOR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.12 REG_ID_VEH_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.13 REG_ID_SENSOR_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.14 REG_ID_LOT_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.15 REG_ID_LOT_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.16 REG_ID_LOT_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Contents  
2.17 REG_ID_LOT_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.18 REG_ID_WAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.19 REG_ID_COOR_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.20 REG_ID_COOR_Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.21 REG_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.22 OFF_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.23 OFF_CHX_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.24 OFF_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.25 OFF_CHY_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.26 Other addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3
Power-on phase and initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Initialization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Phase1 (T1): Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Phase2 (T2): configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Phase 3 (T3): fast offset cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Phase 4 (T4): test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Phase 5 (T5): normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 36  
4.1  
4.2  
4.3  
4.4  
4.5  
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5
Interface description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.1  
32-bit communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.1.1  
5.1.2  
5.1.3  
Acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Non-acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SPI CRC polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.2  
5.3  
5.4  
32-bit SPI bit information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
DocID028312 Rev 3  
3/58  
58  
Contents  
AIS1120SX / AIS2120SX  
Recommendations for operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6
7
7.1  
SOIC8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
4/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
REG_CTRL_0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REG_CTRL_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
REG_CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REG_STATUS_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REG_STATUS_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REG_STATUS_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
REG_CHID_REVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHX_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REG_ACC_CHY_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REG_ACC_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REG_OSC_COUNTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REG_ID_SENSOR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REG_ID_VEH_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REG_ID_SENSOR_MANUF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REG_ID_LOT_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REG_ID_LOT_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
REG_ID_LOT_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
REG_ID_LOT_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
REG_ID_WAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
REG_ID_COOR_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
REG_ID_COOR_Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
REG_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
OFF_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
OFF_CHX_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
OFF_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
OFF_CHY_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timing delay by block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Temperature sensor data example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Digital range and levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
400 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
800 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
1600 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Acceleration data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Acceleration commands function of SDI bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Acceleration commands function of SDO bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
SDO bit examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Non-acceleration command function of SDI bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Non-acceleration commands function of SDO bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
32-bit SPI command: bits from 31 to 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
32-bit SPI command: bits from 15 to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Bit decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
DocID028312 Rev 3  
5/58  
58  
List of tables  
AIS1120SX / AIS2120SX  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
SPI timing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Error flags and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
SOIC8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
AIS1120SX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
AIS2120SX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Differential capacitive system (dual axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2nd order sigma-delta modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Filter architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
FIR vs. 4th and 6th order Bessel filter for amplitude frequency response . . . . . . . . . . . . . 11  
FIR vs. 3rd and 4th order Bessel filter for group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
8-to-1 interpolation timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Signal delay of reading-chain blocks with 400 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 10. Signal delay of reading-chain blocks with 800 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Signal delay of reading-chain blocks with 1600 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12. Offset cancellation block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 13. Offset cancellation flag monitoring flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 14. Power domain block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 15. Detectable accelerations and pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 16. Accessible registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 17. Power-up flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19. Phase 2 state flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20. Cap-loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 21. Phase 3 state flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 22. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 23. SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 24. Acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 25. Non-acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 26. SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 27. Additional SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 28. SOIC8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 29. SOIC8 package marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 30. SOIC8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DocID028312 Rev 3  
7/58  
58  
Block diagrams and pin description  
AIS1120SX / AIS2120SX  
1
Block diagrams and pin description  
1.1  
Block diagrams  
Figure 1. AIS1120SX block diagram  
Figure 2. AIS2120SX block diagram  
8/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Block diagrams and pin description  
1.1.1  
Mechanical element  
A proprietary process is used to create a surface micromachined accelerometer. This  
technology allows processing suspended silicon structures which are attached to the  
substrate in few points called anchors and are free to move in the direction of the sensed  
acceleration thanks to flexible springs. In order to be compatible with standard packaging  
techniques, a cap is placed at wafer level on the top of the sensing element.  
From an electrical point of view, the sensor can be represented as a differential capacitive  
system (see below for a dual-axis element). When the acceleration is applied to the sensor,  
the proof mass displaces from its nominal position, causing an unbalance in the capacitive  
half-bridge. This unbalance is measured using charge integration in response to a voltage  
pulse applied to the sense capacitor:  
Figure 3. Differential capacitive system (dual axis)  
The differential capacitive change towards acceleration can be expressed, in small  
displacements approximation, as:  
Where C is the at-rest capacitance, m is the inertial mass, a the acceleration, k stiffness of  
0
the springs and g the distance between capacitor electrodes.  
1.1.2  
Sigma-Delta converter  
nd  
A 2 order sigma-delta modulator is used to convert the differential voltage that comes from  
the charge-to-voltage converter to a pulse-density modulated (PDM) data stream. The data  
stream will be further processed through on-chip digital filters.  
nd  
Figure 4. 2 order sigma-delta modulator  
,QWHJUDWRU  
,QWHJUDWRU  
&RPSDUDWRU  
±ꢀ  
±ꢀ  
\
]
±
]
[
$ꢀ  
گ
$ꢁ  
گ
±ꢀ  
± ]±ꢀ  
]  
%ꢁ  
%ꢀ  
'$&  
DocID028312 Rev 3  
9/58  
58  
Block diagrams and pin description  
AIS1120SX / AIS2120SX  
1.1.3  
Filter architecture  
Figure 5. Filter architecture diagram  
The architecture of the digital filters allows selecting 3 different cut-off frequencies based on  
2 bits in the register map: FIR_BW_SEL[1:0].  
The cut-off frequencies are 400 Hz, 800 Hz, and 1600 Hz. For the 1600 Hz filter, the noise  
level is higher and the ENOB is 10/11 bits, and not 12 bits.  
The cut-off frequency has to be selected for each axis during the initialization phase. Once  
the initialization phase is finished and the end of the initialization bit is set, the cut-off  
frequency is locked and any attempt to change it during normal mode will generate an SPI  
error.  
The cut-off frequencies can be selected as described below:  
FIR_BW_SEL[1:0]:  
= "00" FIR with F3DB = 400 Hz is selected (default);  
= "01" FIR with F3DB = 800 Hz is selected;  
= "10" FIR with F3DB = 1600 Hz is selected (ENOB is 10/11bits in this mode);  
= "11" FIR with F3DB = 400 Hz is selected.  
1.1.4  
Decimation filter  
Differential delay: D=1  
Number of sections: N=3  
Decimation factor:  
M = 32 if FIR_BW_SEL[1:0] = "00" (400 Hz)  
M = 16 if FIR_BW_SEL[1:0] = "01" (800 Hz)  
M = 8 if FIR_BW_SEL[1:0] = "10" (1600 Hz)  
10/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Block diagrams and pin description  
1.1.5  
Low-pass filter  
H_LPF (Z) is a FIR digital filter with 26 coefficients (K = 25):  
Figure 6 and Figure 7 shows the comparison between the FIR filter and an analog Bessel  
filter when the cut-off frequency is 400 Hz.  
th  
th  
Figure 6. FIR vs. 4 and 6 order Bessel filter for amplitude frequency response  
rd  
th  
Figure 7. FIR vs. 3 and 4 order Bessel filter for group delay  
DocID028312 Rev 3  
11/58  
58  
 
 
Block diagrams and pin description  
AIS1120SX / AIS2120SX  
1.1.6  
1.1.7  
Signal compensation  
On-chip EEPROM bits are used to compensate sensitivity error and offset error.  
Linear interpolation  
The device features an L-to-1 linear data interpolation computed from the present and the  
previous samples. L depends on the cut-off frequency selected:  
Interpolation factor:  
L = 16 if FIR_BW_SEL[1:0] = "00" or “11”  
L = 8 if FIR_BW_SEL[1:0] = "01"  
L = 4 if FIR_BW_SEL[1:0] = "10"  
The data interpolation helps reduce sample jitter. The digital result will have a latency of one  
sample time before being sent to the SPI bus.  
The maximum jitter will be 62.5 s/16 = 3.9 s.  
Figure 8 shows an interpolation example.  
Figure 8. 8-to-1 interpolation timing  
12/58  
DocID028312 Rev 3  
 
AIS1120SX / AIS2120SX  
Block diagrams and pin description  
1.1.8  
Signal delays  
Figure 9. Signal delay of reading-chain blocks with 400 Hz filter  
Figure 10. Signal delay of reading-chain blocks with 800 Hz filter  
Figure 11. Signal delay of reading-chain blocks with 1600 Hz filter  
1.1.9  
Offset cancellation  
The offset cancellation is performed in the last step of the digital signal processing and  
includes two modes:  
1. Slow offset cancellation  
2. Fast offset cancellation  
The digital low-pass filter with selectable bandwidth (fast, slow cancellation) is controlled by  
a state machine. Fast offset cancellation is used after power-on. Slow offset cancellation, for  
continuously running offset cancellation, operates in normal mode.  
Offset cancellation uses a moving average filter with a fixed update limit. Fast offset  
cancellation occurs after power up while EOI = 0. Slow offset cancellation occurs after EOI  
is set to 1.  
The Offset Cancellation Error Flag is set when the offset is outside the offset correction  
range (±1020 LSB) during slow offset cancellation. A hardware error is indicated based on  
this flag being set for the affected axis. The flow chart for the offset cancellation block is  
shown in the following figure.  
DocID028312 Rev 3  
13/58  
58  
Block diagrams and pin description  
AIS1120SX / AIS2120SX  
Figure 12. Offset cancellation block diagram  
Figure 13. Offset cancellation flag monitoring flow  
325  
<ꢄ)DVW  
2IIVHW  
&DQFHOODWLRQ  
; )DVW  
2IIVHW  
&DQFHOODWLRQ  
<(6  
<(6  
12  
12  
(2,  
(2,  
<(6  
<(6  
<ꢄ6ORZ  
2IIVHW  
&DQFHOODWLRQ  
; 6ORZ  
2IIVHW  
&DQFHOODWLRQ  
<(6  
<(6  
12  
12  
12  
6325ꢄRUꢄ  
&<&/(  
32:(5  
6(7ꢄ67ꢀB<ꢄ6 7ꢆB<ꢄ ꢄꢀꢀ  
6(7ꢄ2))B&$1&B&+<B(55 ꢀ  
6(7ꢄ6)B< ꢆꢀꢀꢆ  
6(7ꢄ67ꢀB;ꢅꢄ67ꢆB;ꢄ ꢄꢀꢀ  
6(7ꢄ2))B&$1&B&+;B(55 ꢀ  
6(7ꢄ6)B; ꢆꢀꢀꢆ  
6325ꢄRUꢄ  
&<&/(  
32:(5  
5HFRYHU"  
<ꢄ)/$*  
0$;  
;ꢄ)/$*  
0$;  
5HFRYHU"  
<(6  
<(6  
12  
12  
1.1.10  
1.1.11  
State machine and on-chip-oscillator  
There is an on-chip oscillator implemented. The clock frequency is trimmed to 16.384 MHz  
at room temp. This clock is used for the digital core. One 1024 KHz clock divided from this  
main clock is used for the sigma-delta convertor and digital signal processing module  
(DSP).  
Power domain block diagram  
Figure 14 shows the power domain of the device. A pre-regulator is implemented to improve  
power supply sensitivity and PSRR of the device. The pre-regulator provides power to an  
on-chip bandgap reference and the EEPROM.  
14/58  
DocID028312 Rev 3  
 
AIS1120SX / AIS2120SX  
Block diagrams and pin description  
Figure 14. Power domain block diagram  
Key blocks of the power section are:  
1. Pre-regulator: based on a self-biased supply-thermal independent structure, which is  
able to produce an internal stable voltage of 2.8 V ±15%, with a maximum output  
current of 3 mA. The architecture is based on a bandgap cell, which produces a  
thermal-independent reference, which is used in turn to produce the voltage pre-  
regulator output; the pre-regulator is powered by VDD, and is designed to supply only  
some internal low-power blocks.  
2. Regulator: an on-chip 2.8 V regulator supplies internal power for the device; it should  
not be used to power other devices via the VREG terminal. A bypass capacitor is  
required on the VREG pin to keep the regulator stable.  
3. Bandgap reference: the voltage bandgap is powered by the voltage pre-regulator and  
is used as voltage reference for all other circuits including the front-end, supervision  
circuits and A/D converter.  
4. Charge-to-voltage converter: the C/V converter consists of a fully differential charge  
integrator with a continuous time ICMFB (Input Common Mode Feedback) control loop,  
discrete time ICMFB, and a Switched Capacitor OCMFB (Output Common Mode  
Feedback) control loop. Furthermore the C/V converter has one 9-bit DAC in order to  
trim the offset of the measurement chain and mechanical element.  
5. Self-test charge pump: the self-test charge pump internally generates a voltage  
higher than the 2.8 V regulated supply voltage. The charge pump is activated when the  
self-test mode is enabled and provides an excitation voltage of 6.6 V. During the self-  
test the voltage is applied and disconnected to the sensor according to a duty cycle  
which allows simulating a well-known force on the sensor.  
DocID028312 Rev 3  
15/58  
58  
Block diagrams and pin description  
AIS1120SX / AIS2120SX  
1.2  
Pin description  
Figure 15. Detectable accelerations and pinout  
C1 = 1 μF ± 10%, 10 V (ceramic, VREG capacitor)  
C2 = 0.1 μF ± 10%, 10 V (ceramic, power supply decoupling capacitor)  
Note:  
An acceleration of the device in the "+X" or “+Y” directions results in a positive output  
change, a deceleration in this direction (or acceleration to the opposite side) results in a  
negative output signal.  
Table 2. Pin description  
Pin#  
Name  
Function  
1
2
3
4
5
SCL  
SDI  
SPI clock  
SPI data in  
SPI data out  
SPI chip select  
SDO  
CS  
GND  
Power supply return pin (ground level)  
Voltage regulator output. A ceramic capacitor of 1.0 μF ± 10%  
10 V must be connected to this pin, which should not be used to  
power other devices.  
6
VREG  
This pin provides power to the device. A ceramic capacitor of  
0.1 μF ± 10% 10 V must be connected to this pin.  
7
8
VDD  
MP  
Connect to GND  
16/58  
DocID028312 Rev 3  
2
Customer accessible data arrays (registers)  
Figure 16. Accessible registers  
$GGUHVV  
ϬdžϬϬ  
ϬdžϬϭ  
ϬdžϬϮ  
ϬdžϬϯ  
ϬdžϬϰ  
ϬdžϬϱ  
ϬdžϬϲ  
ϬdžϬϳ  
ϬdžϬϴ  
ϬdžϬϵ  
ϬdžϬꢃ  
ϬdžϬꢄ  
ϬdžϬꢁ  
ϬdžϬꢂ  
ϬdžϬꢀ  
ϬdžϬ&  
ϬdžϭϬ  
Ϭdžϭϭ  
ϬdžϭϮ  
Ϭdžϭϯ  
Ϭdžϭϰ  
Ϭdžϭϱ  
Ϭdžϭϲ  
Ϭdžϭϳ  
Ϭdžϭϴ  
Ϭdžϭϵ  
1DPH  
E>ꢇ@  
Ϭ
Ϭ
E>ꢈ@  
Ϭ
Ϭ
E>ꢉ@  
Ϭ
Ϭ
E>ꢊ@  
Ϭ
Ϭ
E>ꢋ@  
Ϭ
Ϭ
E>ꢁ@  
Ϭ
E>ꢀ@  
Ϭ
E>ꢆ@  
ꢀEꢂͺK&ͺ/E/d  
Zꢀ'ͺꢁdZ>ͺϬ  
Zꢀ'ͺꢁdZ>ͺϭ  
Zꢀ'ͺꢁKE&/'  
Zꢀ'ͺ^dꢃd h^ͺϬ  
Zꢀ'ͺ^dꢃd h^ͺϭ  
Zꢀ'ͺ^dꢃd h^ͺϮ  
^ꢀ>&ͺdꢀ^dͺꢁDꢂ΀Ϯ͗Ϭ΁  
ꢂ/^ͺK&&ͺDKEͺꢁ,z  
ꢂ/^ͺK&&ͺDKEͺꢁ,y  
>K^^ꢁꢃWͺꢀZZͺ>ꢃdꢁ,  
K&&ͺꢁꢃEꢁͺꢁ,yͺꢀZZ  
sZꢀ'ͺ,/',ͺꢀZZ  
ꢂ/^ͺK&&ͺꢁꢃEꢁͺꢁ,z  
ꢀEꢂͺK&ͺWtZhWͺ>ꢃdꢁ,  
Zꢀ'ͺꢁKE&/'ͺtZͺꢀZZͺ>ꢃdꢁ,  
sꢂꢂͺ>KtͺꢀZZ  
ꢂ/^ͺK&&ͺꢁꢃEꢁͺꢁ,y  
Z^dͺꢃꢁd/sꢀͺ>ꢃdꢁ,  
Zꢀ'ͺꢁdZ>ͺϭͺtZͺꢀZZͺ>ꢃdꢁ,  
sꢂꢂͺ,/',ͺꢀZZ  
&/Zͺꢄtͺ^ꢀ>ͺꢁ,z΀ϭ͗Ϭ΁  
^dꢃd h^΀ϭ͗Ϭ΁  
&/Zͺꢄtͺ^ꢀ>ͺꢁ,y΀ϭ͗Ϭ΁  
dꢀ^dDKꢂꢀͺꢀEꢃꢄ>ꢀꢂ  
Zꢀ'ͺꢁdZ>ͺϬͺtZͺꢀZZͺ>ꢃdꢁ,  
Ϭ
^W/ͺꢀZZ  
ꢃϮꢂͺ^ꢃdͺꢁ,zͺꢀZZ  
Ϭ
ꢀꢀWZKDͺꢀZZͺ>ꢃdꢁ,  
ꢃϮꢂͺ^ꢃdͺꢁ,yͺꢀZZ  
Ϭ
Ϭ
Ϭ
Ϭ
K&&ͺꢁꢃEꢁͺꢁ,zͺꢀZZ  
sZꢀ'ͺ>KtͺꢀZZ  
Ϭ
ꢁ,ꢃZ'ꢀͺWhDWͺꢀZZͺ>ꢃdꢁ,  
Zꢀs/ꢂ΀Ϯ͗Ϭ΁  
Zꢀ'ͺꢁ,/ꢂͺZꢀs/ꢂ  
Zꢀ'ͺꢃꢁꢁͺꢁ,yͺ>Kt  
Zꢀ'ͺꢃꢁꢁͺꢁ,yͺ,/',  
Zꢀ'ͺꢃꢁꢁͺꢁ,zͺ>Kt  
Zꢀ'ͺꢃꢁꢁͺꢁ,zͺ,/',  
Zꢀ'ͺK^ꢁͺꢁKhEdꢀZ  
Zꢀ'ͺ/ꢂͺ^ꢀE^KZͺdzWꢀ  
Zꢀ'ͺ/ꢂͺsꢀ,ͺDꢃEh&  
Zꢀ'ͺ/ꢂͺ^ꢀE^KZͺDꢃEh&  
Zꢀ'ͺ/ꢂͺ>KdͺϬ  
ꢁ,zͺꢃꢁd/sꢀ  
ꢁ,yͺꢃꢁd/sꢀ  
Zꢀ'ͺꢃꢁꢁͺꢁ,y΀ϳ͗Ϭ΁  
Zꢀ'ͺꢃꢁꢁͺꢁ,y΀ϭϯ͗ϴ΁  
Zꢀ'ͺꢃꢁꢁͺꢁ,z΀ϭϯ͗ϴ΁  
$FFHO'DWD;/DWFK  
$FFHO'DWD</DWFK  
Ϭ
Ϭ
Zꢀ'ͺꢃꢁꢁͺꢁ,z΀ϳ͗Ϭ΁  
K^ꢁͺꢁKhEdꢀZ΀ϳ͗Ϭ΁  
/ꢂͺ^ꢀE^KZͺdzWꢀ΀ϳ͗Ϭ΁  
/ꢂͺsꢀ,ͺDꢃEh&΀ϯ͗Ϭ΁  
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
/ꢂͺ^ꢀE^KZͺDꢃEh&΀ϳ͗Ϭ΁  
/ꢂͺ>Kd΀ϳ͗Ϭ΁  
/ꢂͺ>Kd΀ϭϱ͗ϴ΁  
/ꢂͺ>Kd΀Ϯϯ͗ϭϲ΁  
Zꢀ'ͺ/ꢂͺ>Kdͺϭ  
Zꢀ'ͺ/ꢂͺ>KdͺϮ  
Zꢀ'ͺ/ꢂͺ>Kdͺϯ  
Zꢀ'ͺ/ꢂͺtꢃ&ꢀZ  
/ꢂͺ>Kd΀Ϯϵ͗Ϯϰ΁  
Ϭ
Ϭ
Ϭ
Ϭ
/ꢂͺtꢃ&ꢀZ΀ϰ͗Ϭ΁  
/ꢂͺꢁKKZͺy΀ϳ͗Ϭ΁  
/ꢂͺꢁKKZͺz΀ϳ͗Ϭ΁  
Zꢀ'ͺ/ꢂͺꢁKKZͺy  
Zꢀ'ͺ/ꢂͺꢁKKZͺz  
Zꢀ'ͺZꢀ^ꢀd  
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
^K&dͺZ^d΀ϭ͗Ϭ΁  
K&&ͺꢁ,y΀ϭϬ͗ϯ΁  
K&&ͺꢁ,z΀ϭϬ͗ϯ΁  
K&&ͺꢁ,yͺ,/',  
K&&ͺꢁ,yͺ>Kt  
K&&ͺꢁ,zͺ,/',  
K&&ͺꢁ,zͺ>Kt  
EŽƚꢅƵƐĞĚ  
EŽƚꢅƵƐĞĚ  
EŽƚꢅƵƐĞĚ  
ZĞƐĞƌǀĞĚ  
ZĞƐĞƌǀĞĚ  
K&&ͺꢁ,y΀Ϯ͗Ϭ΁  
K&&ͺꢁ,z΀Ϯ͗Ϭ΁  
KĨĨꢂĂƚĂy>ĂƚĐŚ  
Ϭdžϭꢃ  
Ϭdžϭꢄ  
Ϭdžϭꢁ  
Ϭdžϭꢂ  
Ϭdžϭꢀ  
KĨĨꢂĂƚĂz>ĂƚĐŚ  
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ϭ
Ͳ
Ͳ
Ϭdžϭ&  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.1  
REG_CTRL_0  
Table 3. REG_CTRL_0  
REG_CTRL_0 (address: 0x00)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
0
[7:1]  
R
0
End of initialization: Initialization  
is the time interval from reset to  
Self-test end:  
=”0” then device is in  
Initialization Phase  
= “1” then the device is in end of  
initialization phase (device is in  
normal mode)  
Rules :  
-When END_OF_BIT="1" then  
writing operations of  
REG_CTRL_1 and  
END_OF_INIT  
0
R/W  
0
REG_CONFIG bits do not have  
effect and generate error flags  
CTRL_REG_1_WR_ERR="1"/C  
ONFIG_REG_WR_ERR="1".  
-Cannot write EOI='1' if there is  
EE or HE error.  
-Cannot write EOI='1' if device is  
in +ve or -ve self-test (either  
CHX or CHY).  
Doing so, RE error (and  
CONFIG_REG_0_WR_ERR='1')  
will be produced  
18/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
2.2  
REG_CTRL_1  
Table 4. REG_CTRL_1  
REG_CTRL_1 (address: 0x01)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
0
[7:3]  
R
0
Self-test commands:  
= "000" then device is in 0 g self-test if EOI='0';  
= "001" then device starts self-test on channel X  
with positive voltage;  
= "010" then device starts self-test on channel X  
with negative voltage;  
= "011" then device is in 0 g self-test if EOI='0'  
= "100" then device is in 0 g self-test if EOI='0'  
= "101" then device starts self-test on channel Y  
with positive voltage;  
= "110" then device starts self-test on channel Y  
with negative voltage;  
= "111" then device is in 0 g self-test if EOI='0'  
Rules :  
-Cannot write if EOI='1'  
-Cannot start a self-test on CHX/CHY if the  
channel is not enabled  
SELF_TEST_CMD  
[2:0]  
R/W  
0
-Cannot switch from non-0g(-ve/+ve) self_test to  
another non-0g self_test(-ve/+ve) without going to  
0g self-test  
Note:  
When starting channel X self-test:  
Channel X acceleration command will read  
channel X self-test value  
Channel Y acceleration command will read  
temperature sensor value for self-test temperature  
compensation algorithm.  
When starting channel Y self-test:  
Channel X acceleration command will read  
temperature sensor value for self-test temperature  
compensation algorithm.  
Channel Y acceleration command will read  
channel Y self-test value  
DocID028312 Rev 3  
19/58  
58  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.3  
REG_CONFIG  
Table 5. REG_CONFIG  
REG_CONFIG (address: 0x02)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Channel Y FIR bandwidth selection bits:  
if = "00" FIR with F3DB = 400 Hz is selected;  
if = "01" FIR with F3DB = 800 Hz is selected;  
if = "10" FIR with F3DB = 1600 Hz is selected  
(resolution is 10/11bits in this mode);  
if = "11" FIR with F3DB = 400 Hz is selected.  
FIR_BW_SEL_CHY[1:0]  
[7:6]  
R/W  
00  
FIR_BW_SEL_CHY[1:0] is writable if  
END_OF_INIT="0".  
Writing FIR_BW_SEL_CHY[1:0] when  
END_OF_INIT="1" or when Channel Y self-test is  
activated, does not have effect and generates an  
error:  
CONFIG_REG_WR_ERR="1".  
Channel X FIR bandwith selection bits:  
if = "00" FIR with F3DB = 400 Hz is selected;  
if = "01" FIR with F3DB = 800 Hz is selected;  
if = "10" FIR with F3DB = 1600 Hz is selected  
(resolution is 10/11bits in this mode);  
if = "11" FIR with F3DB = 400 Hz is selected.  
FIR_BW_SEL_CHX[1:0]  
[5:4]  
R/W  
00  
FIR_BW_SEL_CHX[1:0] is writable if  
END_OF_INIT="0".  
Writing FIR_BW_SEL_CHX[1:0] when  
END_OF_INIT="1" or when Channel X self-test is  
activated does not have effect and generates an  
error:  
CONFIG_REG_WR_ERR="1".  
Offset monitor channel Y disable bit.  
if = "0" then channel Y offset monitor is on;  
if = "1" then channel Y offset monitor is off.  
DIS_OFF_MON_CHY is writable if  
END_OF_INIT="0".  
DIS_OFF_MON_CHY  
3
R/W  
0
Writing DIS_OFF_MON_CHY when  
END_OF_INIT="1" does not have effect and  
generates an error:  
CONFIG_REG_WR_ERR="1"  
20/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
Table 5. REG_CONFIG (continued)  
REG_CONFIG (address: 0x02)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Offset monitor channel X disable bit.  
= "0" then channel X offset monitor is on;  
= "1" then channel X offset monitor is off.  
DIS_OFF_MON_CHX is writable if  
END_OF_INIT="0".  
DIS_OFF_MON_CHX  
2
R/W  
0
Writing DIS_OFF_MON_CHX when  
END_OF_INIT="1" does not have effect and  
generates an error: CONFIG_REG_WR_ERR="1"  
Offset cancellation channel Y disable bit.  
= "0" then channel Y offset cancellation circuit is  
on;  
= "1" then channel Y offset cancellation circuit is  
off.  
DIS_OFF_CANC_CHY  
1
R/W  
0
DIS_OFF_CANC_CHY is writable if  
END_OF_INIT="0".  
Writing DIS_OFF_CANC_CHY when  
END_OF_INIT="1" does not have effect and  
generates an error: CONFIG_REG_WR_ERR="1"  
Offset cancellation channel X disable bit.  
= "0" then channel X offset cancellation circuit is  
on;  
= "1" then channel X offset cancellation circuit is  
off.  
DIS_OFF_CANC_CHX  
0
R/W  
0
DIS_OFF_CANC_CHX is writable if  
END_OF_INIT="0".  
Writing DIS_OFF_CANC_CHX when  
END_OF_INIT="1" does not have effect and  
generates an error: CONFIG_REG_WR_ERR="1"  
DocID028312 Rev 3  
21/58  
58  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.4  
REG_STATUS  
Table 6. REG_STATUS_0  
REG_STATUS_0 (address: 0x03)  
Reset  
state  
Name  
Bit#  
[7:6]  
5
R/W  
Description  
Status Error bits:  
if = "00" device is in initialization phase (power-up,  
configuration, fast offset cancellation);  
if = "01" device is in normal mode (EOI = 1);  
STATUS [1:0]  
R
00  
if = "10" device is test phase (0 g test or active self  
test); EOI = 0;  
if = "11" device is in initialization phase or normal  
mode and some errors are detected: acceleration  
data are disregarded due to errors in device.  
“0”: normal mode;  
“1”: test mode  
TESTMODE_ENABLED  
R
0
Will be set to '1' if write EOI = '1' attempt is made  
with the device in +ve or -ve self-test (either CHX  
or CHY).  
REG_CTRL_0_WR_ERR(1)  
Not used  
4
3
R
R
0
0
“0” always  
Loss of capacitor:  
if = "0" then loss of capacitor is not detected  
(correct behavior);  
if = "1" then loss of capacitor is detected (wrong  
behavior).  
Note:  
LOSS_CAP  
2
R
0
1.LOSS_CAP check is done during the power-up  
stage (~400 μs after POR) only.  
2.Recommended VDD ramp rate >1 V/ms  
3.It is recommended that LOSS_CAP flag (and all  
other hardware flags) be reconfirmed with soft  
POR after power up (END_OF_PWRUP='1').  
="1": end of power-up sequence; ready for self-  
test.  
END_OF_PWRUP  
RST_ACTIVE  
1
0
R
R
0
0
Reset Active bit:  
if = "0" then device is out of reset;  
if = "1" then device has undergone a soft reset  
sequence. Cleared by a read.  
1. Bit not latched (cleared by any read command).  
22/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
Table 7. REG_STATUS_1  
REG_STATUS_1 (address: 0x04)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
SPI error:  
if = "0" then SPI format data is compliant with  
specifications (correct behavior);  
SPI_ERR(1)  
7
R
R
0
0
if = "1" then SPI format data is not complaint with  
specifications (wrong behavior).  
EEPROM Error: CRC error reading EEPROM.  
if = "0" EEPROM reading is correct.  
if = "1" EEPROM reading is wrong.  
EEPROM_ERR  
6
The bit can be cleared by a READ if NVM bit  
ErrFlgCfg='1'. If ErrFlgCfg='0', then this bit can't  
be cleared.  
Not used  
5:4  
3
R
R
0
0
"0" always  
The sensor sets this flag when the offset is outside  
the offset monitoring threshold (±1020 LSB)  
during slow offset cancellation for channel Y; this  
also creates hardware failure. When the offset is  
within the threshold, the flag will be '0' (not  
latched)  
OFF_CANC_CHY_ERR  
The sensor sets this flag when the offset is outside  
the offset monitoring threshold (±1020 LSB)  
during slow offset cancellation for channel X; this  
also creates hardware failure. When the offset is  
within the threshold, the flag will be '0' (not  
latched)  
OFF_CANC_CHX_ERR  
2
1
R
R
0
0
Configuration register writing operation error:  
if = "0" then a writing operation is not addressed  
by the SPI on REG_CONFIG register when  
END_OF_INIT=1 (correct behavior);  
REG_CONFIG_WR_ERR(1)  
if = "1" then a writing operation is addressed by  
the SPI on REG_CONFIG register when  
END_OF_INIT=1 (wrong behavior).  
Control register 1 writing operation error:  
if = "0" then a writing operation is not addressed  
by the SPI on REG_CNTR_1 register when  
END_OF_INIT=1 (correct behavior);  
REG_CTRL_1_WR_ERR(1)  
0
R
0
if = "1" then a writing operation is addressed by  
the SPI on REG_CNTR_1 register when  
END_OF_INIT=1 (wrong behavior).  
1. Bit not latched (cleared by any read command).  
DocID028312 Rev 3  
23/58  
58  
 
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
Table 8. REG_STATUS_2  
REG_STATUS_2 (address: 0x05)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
if = "1" then CHY ADC saturation detected (wrong  
behavior).  
A2D_SAT_CHY  
7
R
0
if = "1" then CHY ADC saturation detected (wrong  
behavior).  
A2D_SAT_CHX  
Not used  
6
5
R
R
0
0
Charge pump error:  
if = "0" then charge pump error is not detected  
(correct behavior);  
CHARGE_PUMP_ERR  
4
R
0
if = "1" charge pump error is detected (wrong  
behavior).  
VREG low-voltage detection:  
if = "0" then regulated voltage VREG is over the  
minimum supply voltage (correct behavior);  
VREG_LOW_VOLT_DET  
3
R
0
= "1" then regulated voltage VREG is under the  
minimum supply voltage (wrong behavior).  
This also creates hardware failure (not latched).  
VREG high-voltage detection:  
if = "0" then regulated voltage VREG is under the  
maximum supply voltage (correct behavior);  
VREG_HIGH_VOLT_DET  
VDD_LOW_VOLT_DET  
VDD_HIGH_VOLT_DET  
2
1
0
R
R
R
0
0
0
if = "1" then regulated voltage VREG is over the  
maximum supply voltage (wrong behavior).  
This also creates hardware failure (not latched).  
VDD low-voltage detection:  
if = "0" then supply voltage VDD is over the  
minimum supply voltage (correct behavior);  
if = "1" then supply voltage VDD is under the  
minimum supply voltage (wrong behavior).  
This also creates hardware failure (not latched).  
VDD high-voltage detection:  
if = "0" then supply voltage VDD is under the  
maximum supply voltage (correct behavior);  
if = "1" then supply voltage VDD is over the  
maximum supply voltage (wrong behavior).  
This also creates hardware failure (not latched).  
24/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
2.5  
REG_CHID_REVID  
Table 9. REG_CHID_REVID  
REG_CHID_REVID (address: 0x06)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Not used  
Not used  
7
6
R
R
0
0
= “1”: CHY reading chain enabled (copied NVM  
bit)  
CHY_ACTIVE  
5
R
0
= “1”: CHX reading chain enabled (copied NVM  
bit)  
CHX_ACTIVE  
Not used  
4
3
R
R
0
0
Copied NVM bits 0x7C: bit 7 to bit 5  
011 for A3  
REVID  
[2:0]  
R
0
100 for A4  
2.6  
2.7  
REG_ACC_CHX_LOW  
Table 10. REG_ACC_CHX_LOW  
REG_ACC_CHX_LOW (address: 0x07)  
Reset  
state  
Name  
Bit#  
[7:0]  
R/W  
Description  
REG_ACC_CHX  
R
0x00  
Channel X acceleration data LSBs register  
REG_ACC_CHX_HIGH  
Table 11. REG_ACC_CHX_HIGH  
REG_ACC_CHX_HIGH (address: 0x08)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Reading REG_ACC_CHX_LOW register sets the  
bit to '1' and REG_ACC_CHX_HIGH is locked to  
its corresponding LOW byte i.e  
AccelDataXLatch  
7
R
0
REG_ACC_CHX_LOW;  
Cleared when it is read.  
Not used  
6
R
R
0
0
REG_ACC_CHX  
[5:0]  
Channel X acceleration data MSBs register  
DocID028312 Rev 3  
25/58  
58  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.8  
REG_ACC_CHY_LOW  
Table 12. REG_ACC_CHY_LOW  
REG_ACC_CHY_LOW (address: 0x09)  
Reset  
state  
Name  
Bit#  
[7:0]  
R/W  
Description  
Channel Y acceleration data LSBs register  
REG_ACC_CHY  
R
0x00  
2.9  
REG_ACC_CHY_HIGH  
Table 13. REG_ACC_CHY_HIGH  
REG_ACC_CHY_HIGH (address: 0x0A)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Reading REG_ACC_CHY_LOW register sets the  
bit to '1' and REG_ACC_CHY_HIGH is locked to  
its corresponding LOW byte, i.e.  
AccelDataYLatch  
7
R
0
REG_ACC_CHY_LOW;  
Cleared when it is read.  
Not used  
6
R
R
0
0
REG_ACC_CHY  
[5:0]  
Channel Y acceleration data MSBs register  
2.10  
REG_OSC_COUNTER  
Table 14. REG_OSC_COUNTER  
REG_OSC_COUNTER (address: 0x0B)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Free run oscillator counter to verify oscillator is  
running. The counter is updated every 8 kHz.  
OSC_COUNTER  
[7:0]  
R
0x00  
To verify oscillator frequency, the ECU can  
compare the oscillator counter by reading the  
ECU clock.  
26/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
2.11  
REG_ID_SENSOR_TYPE  
Table 15. REG_ID_SENSOR_TYPE  
REG_ID_SENSOR_TYPE (address: 0x0C)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
0x1A for single axis sensor;  
0x2A for dual axis sensor.  
ID_SENSOR_TYPE  
[7:0]  
R
0x00  
2.12  
REG_ID_VEH_MANUF  
Table 16. REG_ID_VEH_MANUF  
REG_ID_VEH_MANUF (address: 0x0D)  
Reset  
state  
Name  
Bit#  
R/W  
Description  
Not used  
[7:4]  
[3:0]  
R
R
0
ID_VEH_MANUF  
0x00  
Vehicle manufacturer ID number “0x00”  
2.13  
REG_ID_SENSOR_MANUF  
Table 17. REG_ID_SENSOR_MANUF  
REG_ID_SENSOR_MANUF (address: 0x0E)  
Reset  
state  
Name  
ID_SENSOR_MANUF  
Bit#  
R/W  
Description  
[7:0]  
R
0x00  
Sensor manufacturer ID number LSBs (“0x00”)  
2.14  
REG_ID_LOT_0  
Table 18. REG_ID_LOT_0  
REG_ID_LOT_0 (address: 0x0F)  
Name  
ID_LOT[7:0]  
Bit#  
R/W  
Reset state  
Description  
[7:0]  
R
0
ASIC lot ID number [7:0]  
DocID028312 Rev 3  
27/58  
58  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.15  
REG_ID_LOT_1  
Table 19. REG_ID_LOT_1  
REG_ID_LOT_1 (address: 0x10)  
Name  
ID_LOT[15:8]  
Bit#  
R/W  
Reset state  
Description  
[7:0]  
R
0
ASIC lot ID number [15:8]  
2.16  
REG_ID_LOT_2  
Table 20. REG_ID_LOT_2  
REG_ID_LOT_2 (address: 0x11)  
Name  
ID_LOT[23:16]  
Bit#  
R/W  
Reset state  
Description  
[7:0]  
R
0
ASIC lot ID number [23:16]  
2.17  
REG_ID_LOT_3  
Table 21. REG_ID_LOT_3  
REG_ID_LOT_3 (address: 0x12)  
Name  
Not used  
ID_LOT[29:24]  
Bit#  
R/W  
Reset state  
Description  
[7:6]  
[5:0]  
R
R
0
0
ASIC lot ID number [29:24]  
2.18  
REG_ID_WAFER  
Table 22. REG_ID_WAFER  
REG_ID_WAFER (address: 0x13)  
Name  
Bit#  
R/W  
Reset state  
Description  
Not used  
[7:5]  
R
0
0
ASIC wafer ID  
number  
ID_WAFER  
[4:0]  
R
28/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Customer accessible data arrays (registers)  
2.19  
REG_ID_COOR_X  
Table 23. REG_ID_COOR_X  
REG_ID_COOR_X (address: 0x14)  
Name  
ID_COOR_X  
Bit#  
R/W  
Reset state  
0x00  
Description  
[7:0]  
R
Die coordinate X  
2.20  
REG_ID_COOR_Y  
Table 24. REG_ID_COOR_Y  
REG_ID_COOR_Y (address: 0x15)  
Name  
ID_COOR_Y  
Bit#  
R/W  
Reset state  
0x00  
Description  
[7:0]  
R
Die coordinate Y  
2.21  
REG_RESET  
Table 25. REG_RESET  
REG_RESET (address: 0x16)  
Name  
Bit#  
R/W  
Reset state  
Description  
Not used  
[7:3]  
R
0
Software reset: device is caused to go under reset if  
3 consecutive SPI write operations are executed in  
the following sequence:  
SOFT_RST  
[1:0]  
R/W  
00  
1. SOFT_RST[1:0]=10;  
2. SOFT_RST[1:0]=01;  
3. SOFT_RST[1:0]=10.  
2.22  
OFF_CHX_HIGH  
Table 26. OFF_CHX_HIGH  
OFF_CHX_HIGH (address: 0x17)  
Name  
OFF_CHX[10:3]  
Bit#  
R/W  
Reset state  
Description  
Channel X offset correction  
data MSB register  
[7:0]  
R
0x00  
DocID028312 Rev 3  
29/58  
58  
Customer accessible data arrays (registers)  
AIS1120SX / AIS2120SX  
2.23  
OFF_CHX_LOW  
Table 27. OFF_CHX_LOW  
OFF_CHX_LOW (address: 0x18)  
Name  
Bit#  
R/W  
Reset state  
Description  
Reading OFF_CHX_HIGH register sets the bit  
to “1” and OFF_CHX_LOW is locked to its  
corresponding HIGH byte i.e. OFF_CHX_HIGH;  
OFFDataXLatch  
7
R
0
Cleared when it is read.  
Not used  
[6:3]  
[2:0]  
R
R
0
0
OFF_CHX[2:0]  
Channel X offset correction data LSB register  
2.24  
OFF_CHY_HIGH  
Table 28. OFF_CHY_HIGH  
OFF_CHY_HIGH (address: 0x19)  
Name  
OFF_CHY[10:3]  
Bit#  
R/W  
Reset state  
Description  
[7:0]  
R
0x00  
Channel Y offset correction data MSB register  
2.25  
OFF_CHY_LOW  
Table 29. OFF_CHY_LOW  
OFF_CHY_LOW (address: 0x1A)  
Name  
Bit#  
R/W  
Reset state  
Description  
Reading OFF_CHY_HIGH register sets the bit  
to “1” and OFF_CHY_LOW is locked to its  
corresponding HIGH byte i.e.  
OFFDataYLatch  
7
R
0
OFF_CHY_HIGH;  
Cleared when it is read.  
Not used  
[6:3]  
[2:0]  
R
R
0
0
OFF_CHY[2:0]  
Channel Y offset correction data LSB register  
2.26  
Other addresses  
0x1B: not used  
0x1C: not used  
0x1D: not used  
0x1E: Reserved  
0x1F: Reserved  
30/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Power-on phase and initialization  
3
Power-on phase and initialization  
3.1  
Initialization procedure  
Figure 17. Power-up flowchart  
9''ꢄ3RZHUꢄXS  
935(ꢄ6WDUWꢄXS  
325B935(ꢄDVVHUWHG  
%$1'*$3ꢄ5HDG\  
95(*ꢄ6WDUWꢄXS  
7ꢀ  
3RZHUꢁ8Sꢁ7LPH  
325QꢄDVVHUWHGꢄꢌORZꢄUHVHWꢍ  
26&ꢄVWDUW  
'LJLWDOꢄ&RUHꢄVWDUW  
,QLWLDOL]Hꢄ5HJLVWHUVꢄWRꢄ'HIDXOW  
95(* ꢁSꢈ9ꢄUHDFKHG  
((3520ꢄGRZQORDGLQJ  
%$1'*$3ꢎ95(*ꢄDGMXVW  
63,ꢄIXQFWLRQꢄVWDUW  
26&ꢄ$GMXVW  
6XSHUYLVRU\ꢄ&LUFXLWꢄ(QDEOHG  
7ꢂ  
&RQILJXUDWLRQ  
7ꢃ  
)DVWꢄ2IIVHWꢄ&DQFHOODWLRQꢄ(QDEOHG  
9HULI\ꢄ2IIVHWꢄꢌꢆJꢄWHVWꢍ  
)DVWꢁ2IIVHWꢁ  
&DQHOODWLRQ  
9HULI\ꢄ3RVLWLYHꢄ6HOIꢄ7HVWꢄ  
ꢌꢁꢊ JꢄWHVWꢍ  
9HULI\ꢄ2IIVHWꢄꢌꢆJꢄWHVWꢍ  
7ꢄ  
7HVWꢁ3KDVHꢁꢅꢀꢆ  
9HULI\ꢄ1HJDWLYHꢄ6HOIꢄ7HVWꢄ  
ꢌꢃꢁꢊ JꢄWHVWꢍ  
9HULI\ꢄ2IIVHWꢄꢌꢆJꢄWHVWꢍ  
6HWꢄ(QGꢃRIꢃ,QLWLDOL]HꢄELW  
6ORZꢃRIIVHWꢄ&DQFHOODWLRQꢄ(QDEOHG  
1RUPDOꢄ2SHUDWLRQ  
7ꢇ  
1RUPDOꢁ2SHUDWLRQ  
1. User initiated  
DocID028312 Rev 3  
31/58  
58  
Power-on phase and initialization  
AIS1120SX / AIS2120SX  
3.2  
Phase1 (T1): Power-up timing  
The power domain block diagram is shown in section 1.1.11. Power-up timing and sequence  
are shown in Figure 18. Once VDD has ramped up, VPRE follows that. After VPRE reaches  
a threshold value, internal signal nPOR_VPRE is asserted. The signal resets the EEPROM  
registers. Therefore, EEPROM settings are ready for bandgap and regulator output  
(VREG). Then, another POR circuit will monitor the output VREG. If it reaches a target  
threshold, nPOR will be asserted. nPOR is used to reset all the registers of the main digital  
core.  
The device waits for regulator and bandgap to be at appropriate levels (regulator >2.6 V,  
bandgap >1.1 V) before it starts executing its state machine (starting with EEPROM  
download). The device starts its state machine approximately 5 μs (deglitch time) after the  
bandgap and regulator reach their threshold levels.  
Figure 18. Power-up timing  
Table 30 shows the typical timing delay for each block:  
Table 30. Timing delay by block  
Timing  
Condition (VDD rising time of 100µs)  
Delay [μs]  
tpre  
VPRE settles down to 90%  
VREF settles down to 90%  
90  
tBG  
250  
190  
250  
450  
195  
tPOR  
tREG  
tEEPROM  
tOSC  
VREG settles down to 90%  
32/58  
DocID028312 Rev 3  
 
 
AIS1120SX / AIS2120SX  
Power-on phase and initialization  
3.3  
Phase2 (T2): configuration  
Once nPOR is asserted, the device will initialize the registers to the default settings and  
start ASIC diagnostic procedure. If an error is detected, the corresponding error bit will be  
set in DEVSTAT register. This phase is characterized by (ST1:ST0 = "00").  
Figure 19. Phase 2 state flow  
The diagnostic procedure in this stage includes cap-loss detection, charge pump check for  
self-test, and VREG/VCC low-voltage monitoring. Cap-loss mode is initiated after EEPROM  
download where the regulator is disabled 1 μs. Without a load cap the regulator voltage  
would fall below the UV threshold and the device latches it as cap-loss flag.  
Figure 20. Cap-loss detection  
DocID028312 Rev 3  
33/58  
58  
Power-on phase and initialization  
AIS1120SX / AIS2120SX  
3.4  
Phase 3 (T3): fast offset cancellation  
After the configuration/initialization phase (t2), the device will start fast offset cancellation  
which takes max. 345 ms. Also there is 6 ms window for self-test calibration. During phase 3  
(t3), sensor data is still available through the SPI but the ND flag (see Section 5.1.1:  
Acceleration commands) will be used and ST1:ST0 is still kept "00" if no error occurs until  
phase T4.  
Figure 21. Phase 3 state flow  
3.5  
Phase 4 (T4): test phase  
After phase 3 the device is still in the programming phase. Offset is close to 0. This phase is  
characterized by (ST1:ST0 = "10"). The device can be programmed to execute the active  
self-test. The actuation of transducer will be controlled through SPI command.  
The active self-test applies an electrostatic force to the mechanical sensor. When the self-  
test mode is activated, the voltage between the rotor and stator is changed. This generates  
an attractive electrostatic force and causes the rotor to move towards the stator. The  
displacement of the rotor will be measured at the output of the ADC.  
Note:  
For the 2-axis version the self-test has to be executed sequentially.  
When starting channel X self-test:  
a) Channel X acceleration command will read channel X self-test value  
b) Channel Y acceleration command will read temperature sensor value for self-test  
temperature compensation algorithm.  
When starting channel Y self-test:  
a) Channel X acceleration command will read temperature sensor value for self-test  
temperature compensation algorithm.  
b) Channel Y acceleration command will read channel Y self-test value  
The acceleration data is given in 14-bit format (bit 25-12 of SDO data frame). Its MSB (D13)  
represents the sign bit and the negative value is in two's complementary format.  
34/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Power-on phase and initialization  
When configured/read as a temperature sensor value, the 14-bit output is unsigned data. Its  
value could be estimated as:  
ADC_out = -16 x (Temp - 25) + 7280  
The following table shows a few examples of temperature sensor data.  
Table 31. Temperature sensor data example  
Temp. (°C)  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
-40  
25  
1
0
0
0
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
0
1
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
105  
Temperature compensation is only enabled during the active self-test phase.  
3.6  
Phase 5 (T5): normal operation  
After the programming phase the ECU will set the End-of-Initialization (EOI) bit and the  
device will start normal operation. ST1:ST0 is switched to "01".  
DocID028312 Rev 3  
35/58  
58  
Mechanical and electrical specifications  
AIS1120SX / AIS2120SX  
4
Mechanical and electrical specifications  
4.1  
Mechanical characteristics  
3.13 V V 3.47 V, -40°C T 105°C, acceleration = 0 g, over lifetime, unless  
DD  
OP  
otherwise noted.  
Table 32. Mechanical characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
FS  
S0  
Full-scale range(1)  
Sensitivity  
Offset cancellation ON  
±114  
±120  
68  
g
LSB/g  
VDD = 3.3 V  
T = 25°C  
SE  
Sensitivity Error  
Frequency = 0 Hz  
At time t = 0  
-5  
-1  
+5  
+1  
%
Including ratiometric error  
VDD = 3.6 V to PD  
threshold  
SRE  
Sensitivity ratiometricity error  
%
Sensitivity change vs  
temperature  
TCSo  
-40°C TOP 105°C  
±0.02  
LSB/g/°C  
SO_drift Sensitivity drift  
Over lifetime  
1
4
%
DNL  
Differential non linearity  
LSB  
Including ratiometric  
error, excluding noise  
effects, offset cxl disabled  
Off_Raw1 Zero-g level offset(2)  
-680  
-2  
680  
2
LSB  
LSB  
Including ratiometric  
error, excluding noise  
effects, offset cxl enabled  
Off_Cxl1 Zero-g level offset  
Off_Mon_  
Offset monitor threshold  
Th  
Signed value  
-1020  
-400  
1020  
400  
LSB  
LSB  
Off_Mon_  
Offset monitor Headroom  
HdD  
NL  
Non linearity of sensitivity(1)  
Cross axis(1)  
Best fit straight line  
+2  
% FS  
%
CrAx  
Package alignment error  
-5  
13.7  
10.25  
951  
+5  
Cut_Off MEMS cutoff frequency (-3 dB)  
15.86  
11.34  
1108  
18.94  
12.45  
1231  
+105  
kHz  
kHz  
g
F0  
Gclip  
Top  
MEMS resonant frequency  
g-cell clipping  
Operating temperature range  
-40  
°C  
1. Guaranteed by design, verified at characterization level  
2. 14-bit data, equivalent to ±170 LSB on 12 bits  
36/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Mechanical and electrical specifications  
4.2  
Electrical characteristics  
3.13 V V 3.47 V, -40°C T 105°C, acceleration = 0 g, over lifetime, unless  
DD  
OP  
otherwise noted.  
Table 33. Electrical characteristics  
Test conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VDD  
Vreg  
ISS  
Supply voltage  
-5%  
-5%  
3
3.3  
2.8  
+5%  
+5%  
6
V
V
Supply current  
Supply current  
Single axis  
mA  
mA  
ISD  
Dual axis  
4
8
Offset cancellation(1)  
AVG  
Averaging period  
-5%  
-1  
1024  
334  
+5%  
+1  
ms  
Offset correction value per  
update  
Off_CVU  
LSb  
Default startup phase enable  
time  
Time to guarantee the  
internal offset is removed  
Off_DSPE  
317  
351(2)  
ms  
Off_Fast Fast offset cancellation  
Off_Slow Slow offset cancellation  
-5%  
0.8  
8000  
1
+5%  
1.2  
LSb/s  
LSb/s  
Self-test  
VDD = 3.30 V, T = 25°C,  
Frequency = 0 Hz  
ST  
Self-test output change  
1632  
LSb  
%
ST_TOL Self-test tolerance  
Across temp, over life time  
-15  
15  
2
ST_TON_  
Specification reached for a  
400 Hz 3-pole filter  
Self-test turn-on/off time  
TOFF  
ms  
Noise  
RMS  
Nois_RMS Output noise  
Nois_P2P Output noise  
+4  
LSb  
LSb  
peak-to-peak  
+16  
Angular acceleration sensitivity(3)  
AAS  
LOAD  
Fosc  
Angular acceleration sensitivity  
5*10-6 g*s2/ rad  
SDO pin load(4)  
Oscillator frequency  
Capacitive load drive  
Oscillator frequency  
60  
pF  
-5%  
16.384  
+5%  
MHz  
Power supply rejection ratio  
1*Fsw, 2*Fsw, 3*Fsw,  
4*Fsw, 5*Fsw, 6*Fsw  
PSRR  
Power supply RR  
0.5  
LSb/mV  
DocID028312 Rev 3  
37/58  
58  
 
Mechanical and electrical specifications  
AIS1120SX / AIS2120SX  
Table 33. Electrical characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Clipping  
Min.  
Typ.  
Max.  
Unit  
Dig_Clip Digital output  
-5%  
370  
120  
400  
+5%  
430  
g
Low-pass filter  
Cut_off Cut-off frequency (400 Hz filter)  
Hz  
1. Offset cancellation can vary with oscillator frequency  
2. Internal offset is removed in max. 345 ms; another 6 ms are needed for self-test calibration. During this phase, SPI will  
report ND flag if acceleration command being sent.  
3. Based on simulation and characterization  
4. Guaranteed by design  
38/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Mechanical and electrical specifications  
4.3  
Digital blocks  
Table 34. Digital range and levels  
Symbol  
Bit  
ACC_RNG Range for acceleration data  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
14 bit  
+8191 LSb  
ADC resolution  
-8192  
Out_Hi  
Out_Low  
In_Hi  
Logic output high (SDO pin)  
Logic output low (SDO pin)  
Logic input high (all inputs)  
Logic input low (all inputs)  
Max static current = 2 mA VDD-0.6  
VDD  
0.6  
VDD  
1
V
V
V
V
Max static current = 2 mA  
0.0  
2
In_Low  
0.0  
Input capacitance at high impedence  
(SDO pin)  
CIN1  
2
pF  
CIN2  
Input capacitance at CS/SDI/SCK pin  
10  
50  
pF  
μA  
μA  
V
I_Pull_D  
I_Pull_U  
Internal pull-down current (SDI, SCK) Vin = Vcc to 0 V  
10  
10  
27  
27  
Internal pull-up current (CS)  
Vin = Vcc to 0 V  
50  
UVT_VDD Undervoltage threshold (VDD  
)
2.7  
2.1  
2.9  
2.3  
3.1  
2.5  
UVT_VREG Undervoltage threshold (VREG)  
UV_DET1 Under/overvoltage detection time  
Hard_Res Hard reset threshold (VREG)  
V
VDD below threshold  
VREG below threshold  
6
25  
5
40  
μs  
μs  
1.5  
10.5  
1.8  
1.5  
2.1  
2.2  
2
V
Res_t  
Rec_t  
Reset activation time  
Reset recovery time  
After SPI command  
μs  
Reset to first SPI  
access  
1
ms  
DocID028312 Rev 3  
39/58  
58  
Mechanical and electrical specifications  
AIS1120SX / AIS2120SX  
Table 35. 400 Hz digital filter  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Signal delay(1)  
Overall signal delay  
Interpolation output  
0.84  
0.976  
1.0  
ms  
Sampling rate(1)  
256  
kHz  
1. Based on simulations  
Table 36. 800 Hz digital filter  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Signal delay(1)  
Overall signal delay  
Interpolation output  
0.4  
0.507  
0.6  
ms  
Sampling rate(1)  
256  
kHz  
1. Based on simulations  
Table 37. 1600 Hz digital filter  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Signal delay(1)  
Overall signal delay  
Interpolation output  
0.19 0.273 0.32  
256  
ms  
Sampling rate(1)  
kHz  
1. Based on simulations  
40/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Mechanical and electrical specifications  
4.4  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 38. Absolute maximum ratings  
Symbol  
Ratings  
Value  
Unit  
VDD  
VREG  
SCK,SDI  
AUNP  
Supply voltage  
-0.3 to 7.0(1)  
-03. to 3.0  
-0.3 to VDD  
2000  
V
V
V
Mechanical shock with device unpowered  
Drop shock survivability (concrete floor)  
g
hDROP  
1.2  
m
kV  
V
ESD protection HBM (low-voltage pins)  
CDM  
2
ESD  
750  
TSTG  
Tj  
Storage temperature range  
Operating temperature range  
-55 to +150  
-40 to +105  
°C  
°C  
1. Not for continued operation  
This device is sensitive to mechanical shock, improper handling can cause  
permanent damage to the part.  
This device is sensitive to electrostatic discharge (ESD), improper handling can  
cause permanent damage to the part.  
4.5  
Factory calibration  
The IC interface is factory calibrated for sensitivity (S ) and Zero-g level (Off_Raw).  
0
The trimming values are stored inside the device in a non-volatile structure. When the  
device is turned on, the trimming parameters are downloaded into the registers to be  
employed during normal operation which allows the device to be used without further cali-  
bration.  
DocID028312 Rev 3  
41/58  
58  
Interface description  
AIS1120SX / AIS2120SX  
5
Interface description  
The AIS1120SX / AIS2120SX provides a bi-directional 3.3 V SPI interface for  
communication with the MCU at a 32-bit data word size. Each transfer consists of two  
frames of 32 clocks per frame.  
The sensor always operates in slave mode whereas the MCU provides the master function.  
The interface consists of 4 ports as shown below.  
Figure 22. SPI  
Serial clock (SCK): input for master clock signal. This clock determines the speed of data  
transfer and all receiving and sending is done synchronous to this clock.  
Chip Select (CS): CS activates the SPI interface. As long as CS is high, the IC does not  
accept the clock signal or data and the output SDO is in high impedance. Whenever CS is in  
a low logic state, data can be transferred from and to the microcontroller.  
Serial Input (SDI): accelerometer data in is latched by the rising edge of SCL (see  
Figure 23: SPI timings).  
Serial Output (SDO): accelerometer data out is set by the falling edge of SCL (see  
Figure 23: SPI timings).  
5.1  
32-bit communication protocol  
The communication between slave and master is transmitted by 32-bit data word, MSB first.  
An off-frame protocol is used meaning that each transfer is completed through a sequence  
of 2 phases.  
The answer of a given request is sent within the very next frame.  
The acceleration data for the x-axis, y-axis channel will be frozen at the rising edge of CS of  
the Request and submitted during the Response (see Figure 23).  
42/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Interface description  
Figure 23. SPI timings  
CS is the Chip Select and it is controlled by the SPI master. It goes low at the start of the  
transmission and goes back high at the end of a phase. SCL is the Serial port Clock and it is  
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI is  
Serial Data Input and SDO is Serial Data Output. SDI is captured at the rising edge of SCL  
and SDO is driven at the falling edge of SCL.  
The SPI instructions used can be subdivided into two classes, acceleration and non-  
acceleration commands.  
5.1.1  
Acceleration commands  
These commands are used to request sensor data for channel X or Y. The acceleration data  
is given in 14-bit format (bit 25-12 of SDO data frame). The MSB (D13) represents the sign  
bit and the negative value is in two's complementary format.  
The following table shows a few examples of full range and 0 g offset:  
Table 39. Acceleration data example  
Accel  
[g]  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
120.4  
-120.5  
0.015  
-0.015  
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
Each 32-bit frame can request one of two channels (X or Y), see definition of bits CH1:CH0.  
00 x data  
01 y data  
DocID028312 Rev 3  
43/58  
58  
Interface description  
AIS1120SX / AIS2120SX  
The format of the acceleration commands is shown below.  
Figure 24. Acceleration commands  
The function of the individual bits of SDI and SDO is shown in Table 40 and Table 41.  
Table 40. Acceleration commands function of SDI bits  
Name  
Bit position  
Description  
Definition  
Sensor channel source for data:  
00: X-data (CH1)  
01: Y -data (CH2)  
10: CH3  
CH1:CH0  
[31:30]  
Channel select  
11: CH4  
Identifies sensor data request:  
1: sensor data  
SEN  
29  
SEN bit  
0: non-sensor data  
P
28  
Parity bit  
N/A  
Odd parity bit, cover bit 31-8  
Always 0  
Not used  
C7:C0  
[27:8]  
[7:0]  
CRC  
CRC bits for SDI  
Table 41. Acceleration commands function of SDO bits  
Name  
Bit position  
Description  
Definition  
Identifies sensor data request:  
1: sensor data  
SEN  
31  
SEN bit  
0: non-sensor data  
Sensor channel source for data:  
00: X-data (CH1)  
01: Y -data (CH2)  
10: CH3  
CH1-CH0  
P
[30:29]  
28  
Channel select  
Parity bit  
11: CH4  
Odd parity bit, cover bit 31-8  
44/58  
DocID028312 Rev 3  
 
 
AIS1120SX / AIS2120SX  
Interface description  
Table 41. Acceleration commands function of SDO bits (continued)  
Name  
Bit position  
Description  
Definition  
Type of data:  
00: Initialization  
01: Normal mode  
10: Self-test mode  
11: Error data  
ST1:ST0  
[27:26]  
[25:12]  
Status  
D13:D0  
SF3-SF0  
C7:C0  
Data  
Sensor data / self-test data (14 bit)  
0000: No error  
0001: EEPROM Error (EE)  
0010: SPI Error (SE)  
0011: Request Error (RE)  
0100: Condition Not Correct (CNC)  
0101: No Data available (ND)  
0110: Hardware Error (HE)  
1000: ADC saturation error (AS)  
1111: In test mode (TE)  
[11:8]  
[7:0]  
Status flag bits  
CRC  
CRC error bits for SDO  
Error codes are to be interpreted as follows:  
EEPROM Error (EE): any error related to internal EEPROM e.g. mismatch of internal CRC.  
SPI Error (SE): any violation of SPI format e.g. incorrect number of clocks during the frame,  
or parity mismatch of SDI, or CRC mismatch of SDI.  
Request Error (RE): set when unexpected or invalid command is received by sensor,  
locked registers are read or written during any undefined state of sensor.  
Condition Not Correct (CNC): set when data for undefined channel (for single axis  
sensor), CH3 or CH4 are requested.  
No Data available (ND): set when data is requested during power-up sequence (cap-  
loss/charge pump/fast offset cancel).  
X channel Hardware Error (X_HE): Set when there is cap-loss error, charge pump error,  
VDD_low, VREG_low or X offset cancel saturate (after EOI) occurs.  
Y channel Hardware Error (Y_HE): Set when there is cap loss error, charge pump error,  
VDD_low, VREG_low or Y offset cancel saturate (after EOI) occurs.  
Test mode (TE): Set when the part is in test mode.  
Priority of error codes: EE (Highest) -> SE -> RE -> CNC -> ND -> HE -> TE (lowest)  
Table 42. Error codes  
ST1:ST0  
SF flags  
11  
11  
11  
EE = 0001 NVM CRC error  
SE = 0010 frame CRC error  
RE = 0011 request error (register 03, bit4 shows this error also)  
DocID028312 Rev 3  
45/58  
58  
Interface description  
AIS1120SX / AIS2120SX  
Table 42. Error codes (continued)  
CNC = 0100 condition not correct error  
ND = 0101 no data error  
11  
11  
11  
HE = 0110 (cap loss error + charge pump error + VDD undervoltage +  
VREG undervoltage + VDD overvoltage + VREG overvoltage + SLOW  
offset max)  
00  
AS = 1000 (ADC internal > 160G)  
Table 43 provides some examples of SDO bit sequence interpretation.  
Table 43. SDO bit examples  
31  
30  
29  
28 27  
26  
[25:12]  
[11:8]  
[7:0]  
Definition  
SEN CH1 CH0  
P
ST1 ST2 D11:D2/error  
SF3:SF0  
0101  
CRC Device status  
CRC INIT, self test off  
CRC INIT, self test off  
CRC Normal mode  
CRC Normal mode  
CRC Self-test mode  
CRC Self-test mode  
CRC Error response  
CRC Error response  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
X, Init no ST  
Y, Init no ST  
X data  
0101  
0000  
Y data  
0000  
X data  
0000  
Y data  
0000  
X data  
Status flag  
Status flag  
Y data  
Notes:  
1.Once the device finishes fast offset cancellation (and self-test calibration), it automatically  
enters into the programming phase (ST1:ST0 status "10") until the EOI command has been  
sent. During this phase, if there is not any self-test initialization command from SPI, 0 g in  
self-test phase on both channels could be read from the acceleration commands.  
2.When starting channel X self-test:  
a.Channel X acceleration command will read channel X self-test value  
b.Channel Y acceleration command will read temperature sensor value for self-test  
temperature compensation algorithm.  
3.When starting channel Y self-test:  
c.Channel X acceleration command will read temperature sensor value for self-test  
temperature compensation algorithm.  
d.Channel Y acceleration command will read channel Y self-test value  
46/58  
DocID028312 Rev 3  
 
AIS1120SX / AIS2120SX  
Interface description  
5.1.2  
Non-acceleration commands  
These commands are used to write/read control and status registers.  
Figure 25. Non-acceleration commands  
The function of the individual bits of SDI and SDO are shown in Table 44 and Table 45.  
Table 44. Non-acceleration command function of SDI bits  
Name  
Bit position  
Description  
Definition  
Operation type:  
00: N/A  
OP1:OP0  
[31:30]  
Opcode  
01: Write  
10: N/A  
11: Read  
Sensor data request type:  
1: sensor data  
SEN  
29  
SEN bit  
0: non-sensor data  
P
28  
Parity bit  
N/A  
Odd parity bit, cover bit 31-8  
Always 0  
Not used  
A4:A0  
D7:D0  
Not used  
C7:C0  
[27:26]  
[25:21]  
[20:13]  
[12:8]  
[7:0]  
Address  
Data  
Register address for R/W operations  
Data for write  
N/A  
Always 0  
CRC  
CRC bits for SDI  
DocID028312 Rev 3  
47/58  
58  
 
Interface description  
AIS1120SX / AIS2120SX  
Table 45. Non-acceleration commands function of SDO bits  
Name  
Bit position  
Description  
Definition  
Sensor data request type:  
1: sensor data  
SEN  
31  
SEN bit  
0: non-sensor data  
Copied from SDI request if accepted  
00: N/A  
01: Write  
10: N/A  
11: Read  
OP1:OP0  
[30:29]  
Opcode  
P
28  
Parity bit  
N/A  
Odd parity bit, cover bit 31-8  
Always 0  
Not used  
A4:A0  
D7:D0  
Not used  
[27:26]  
25:21  
20:13  
12  
Address  
Data  
Register address for R/W operations  
Read data / error code  
Always 0  
N/A  
0000: No error  
0001: EEPROM Error (EE)  
0010: SPI Error (SE)  
0011: Request Error (RE)  
1111: In test mode (TE)  
SF3:SF0  
C7:C0  
[11:8]  
[7:0]  
Status flag bits  
CRC  
CRC bits for SDO  
Error codes are to be interpreted as follows:  
EEPROM Error (EE): any error related to internal EEPROM e.g. mismatch of internal CRC.  
SPI Error (SE): any violation of SPI format e.g. incorrect number of clocks during the frame,  
parity mismatch of SDI, or CRC mismatch of SDI.  
Request Error (RE): set when unexpected or invalid command is received by sensor,  
locked registers are read or written during any undefined state of sensor.  
Test mode (TE): set when the part is in test mode  
Priority of error codes: EE (Highest) -> SE -> RE -> TE (lowest)  
5.1.3  
SPI CRC polynomial  
To check the integrity of the sensor signals (SO) and commands (SI) to the sensor, an 8-bit  
CRC (Cyclic Redundancy Check, Baicheva C2) is used.  
8
5
3
2
The applied polynomial is: X +X +X +X +X+1 = 0x97  
with:  
HD = 4 for 32-bit data  
Initial value = 0000 0000b  
Target value = 0x00  
48/58  
DocID028312 Rev 3  
 
AIS1120SX / AIS2120SX  
Interface description  
5.2  
32-bit SPI bit information  
Table 46. 32-bit SPI command: bits from 31 to 16  
Acceleration  
BIT  
31  
30  
29 28 27  
26  
0
25  
0
24  
0
23 22 21 20 19 18 17 16  
SDI CH1 CH0 SEN  
SDO SEN CH1 CH0  
P
P
0
0
0
0
0
0
0
0
0
D1  
1
ST1 ST0 D13 D12  
D10 D9 D8 D7 D6 D5 D4  
Non-acceleration  
BIT  
31  
30  
29 28 27  
26  
0
25  
A4  
A4  
24  
23 22 21 20 19 18 17 16  
SDI OP1 OP0 SEN  
SDO SEN OP1 OP0  
P
P
0
0
A3 A2 A1 A0 D7 D6 D5 D4 D3  
A3 A2 A1 A0 D7 D6 D5 D4 D3  
0
Table 47. 32-bit SPI command: bits from 15 to 0  
Acceleration  
BIT  
SDI  
15 14 13  
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
0
0
0
C7 C6 C5 C4 C3 C2 C1 C0  
SDO D3 D2 D1  
D0 SF3 SF2 SF1 SF0 C7 C6 C5 C4 C3 C2 C1 C0  
Non-acceleration  
BIT  
15 14 13  
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
SDI D2 D1 D0  
SDO D2 D1 D0  
C7 C6 C5 C4 C3 C2 C1 C0  
0
SF3 SF2 SF1 SF0 C7 C6 C5 C4 C3 C2 C1 C0  
Table 48. Bit decoding  
CH[1:0]  
000 X Data  
OP[1:0]  
N/A  
SEN  
ST[1:0]  
SF[3:0]  
Non-sensor  
Sensor  
Initialization  
Normal mode  
Selt-test mode  
Error data  
No error  
001 Y Data  
010 N/A  
011 N/A  
100  
Write  
N/A  
EEPROM error  
SPI error (SE)  
Read  
Request error (RE)  
Condition not correct (CNC)  
No data (ND)  
101  
110  
Hardware error (HE)  
ADC saturation (AS)  
In test mode (TE)  
1000  
1111  
DocID028312 Rev 3  
49/58  
58  
Interface description  
AIS1120SX / AIS2120SX  
5.3  
Timing parameters  
Figure 26. SPI timing parameters  
Figure 27. Additional SPI timing parameters  
50/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Interface description  
Table 49. SPI timing table  
No.  
Parameter  
SPI operating frequency  
Symbol  
fOP  
tWSCKh  
tWSCKl  
tSCK  
tf  
Min.  
-
Max.  
Unit  
MHz  
ns  
-
5
A
B
C
D
E
F
G
H
I
Clock (SCK) high time  
49  
95  
200  
5.5  
5.5  
10  
10  
-
-
Clock (SCK) low time  
-
-
ns  
SCK period  
ns  
Clock (SCK) and CS fall time  
Clock (SCK) and CS rise time  
Data input (MOSI) setup time  
Data input (MOSI) hold time  
Data output (MISO) access time  
Data output (MISO) valid after SCK  
Data output (MISO) disable time  
Enable (SS) lead time  
50  
50  
-
ns  
tr  
ns  
tsu  
ns  
thi  
-
ns  
ta  
60  
60  
100  
-
ns  
tv  
-
ns  
K
L
tdis  
-
ns  
tlead  
tlag  
10  
25  
1.9  
10  
10  
ns  
M
N
P
Q
Enable (SS) lag time  
-
ns  
Sequential transfer delay  
Clock enable time  
ttd  
-
μs  
ns  
tCLE  
tCLD  
-
Clock disable time  
-
ns  
Timing reference: 0.2 Vs - 0.8 Vs (Vs = V  
-D  
)
VDDD GND  
Explanation:  
c) Q: SCK stable (low or high) before CS falling  
d) P: SCK stable (low or high) after CS rising  
DocID028312 Rev 3  
51/58  
58  
 
Interface description  
AIS1120SX / AIS2120SX  
5.4  
Error management  
The device replies with an error response if one of the following errors has occurred:  
Table 50. Error flags and description  
Description  
Flags  
REG_CTRL_0_WR_ERR  
LOSSCAP  
‘1’: when there is a request error writing the REG_CTRL_0(Address=0x00) register  
‘1’: when there a loss of cap on VREG PAD (set only during power-up)  
‘1’: when power-up sequencer has finished initialization (completed charge pump test,  
cap-loss test, fast offset cancel);  
END_OF_PWRUP  
RST_ACTIVE  
‘1’: when soft reset is issued  
SPI_ERR  
‘1’: when SPI error occurs  
EEPROM_ERR  
‘1’: when EEPROM error (e.g mismatch in CRC) occurs during power-up  
‘1’: when offset cancellation error for CHY occur  
‘1’: when offset cancellation error for CHX occurs  
‘1’:when there is a request error writing the REG_CONFIG (Address=0x012) register  
‘1’: when there is a request error writing the REG_CTRL_1 (Address=0x01) register  
‘1’: when A2D saturates for CHY  
OFF_CANC_CHY_ERR  
OFF_CANC_CHX_ERR  
REG_CONFIG_WR_ERR  
REG_CTRL_1_WR_ERR  
A2D_SAT_CHY  
A2D_SAT_CHX  
‘1’: when A2D saturates for CHX  
CHARGE_PUMP_ERR  
VREG_LOW_ERR  
VREG_HIGH_ERR  
VDD_LOW_ERR  
‘1’: when charge pump test fails at power-up  
‘1’: when VREG falls below its LOW threshold  
‘1’: when VREG goes above its HIGH threshold  
‘1’: when VDD falls below its LOW threshold  
VDD_HIGH_ERR  
‘1’: when VDD goes above its HIGH threshold  
52/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Recommendations for operation  
6
Recommendations for operation  
1. It's recommended to power up VDD first, then provide SPI logic signals. This is  
recommended to avoid the potential of powering the device via the SPI pins when VDD  
is not in the specified operating range.  
2. Recommended VDD ramp rate > 1 V/ms  
3. It is recommended that all flags be reconfirmed with soft POR after power-up.  
DocID028312 Rev 3  
53/58  
58  
Package information  
AIS1120SX / AIS2120SX  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
SOIC8 package information  
Figure 28. SOIC8 package outline  
ꢆꢆꢀꢈꢆꢁꢋBꢏ  
54/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Package information  
Table 51. SOIC8 package mechanical data  
Databook (mm)  
Ref.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.10  
1.25  
0.31  
0.10  
4.80  
5.80  
3.80  
0.51  
0.25  
5.00  
6.20  
4.00  
c
D
4.90  
6.00  
3.90  
1.27  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
L
L1  
L2  
k
1.04  
0.25  
0
8°  
ccc  
0.10  
Figure 29. SOIC8 package marking  
DocID028312 Rev 3  
55/58  
58  
Package information  
AIS1120SX / AIS2120SX  
Figure 30. SOIC8 recommended footprint  
ꢆꢆꢀꢈꢆꢁꢋBꢏ  
56/58  
DocID028312 Rev 3  
AIS1120SX / AIS2120SX  
Revision history  
8
Revision history  
Table 52. Revision history  
Date  
Revision  
Changes  
18-Sep-2015  
19-Aug-2016  
1
2
Initial release  
Updated Section 5.1.3: SPI CRC polynomial  
Document status promoted to production data  
20-Jan-2017  
3
Updated SDO pin load in Table 33: Electrical characteristics  
Updated tSCK and tv in Table 49: SPI timing table  
DocID028312 Rev 3  
57/58  
58  
AIS1120SX / AIS2120SX  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics – All rights reserved  
58/58  
DocID028312 Rev 3  

相关型号:

AIS1200DS

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, PLASTIC, SOP-16
STMICROELECTR

AIS1200DSTR

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, PLASTIC, SOP-16
STMICROELECTR

AIS12F02AD024-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F02AN024-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F02AN024-Q65

AIS08F1.5AP024-2M
ALTECH

AIS12F02AP024-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F02AP024-Q65

AIS08F1.5AP024-2M
ALTECH

AIS12F02AW220-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F02RD024-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F04AN024-2M

AIS08F1.5AP024-2M
ALTECH

AIS12F04AN024-Q65

AIS08F1.5AP024-2M
ALTECH

AIS12F04AP024-2M

AIS08F1.5AP024-2M
ALTECH