BLUENRG-355MT [STMICROELECTRONICS]

Programmable Bluetooth® Low Energy wireless SoC;
BLUENRG-355MT
型号: BLUENRG-355MT
厂家: ST    ST
描述:

Programmable Bluetooth® Low Energy wireless SoC

文件: 总72页 (文件大小:4328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BlueNRG-LP  
Datasheet  
Programmable Bluetooth® Low Energy wireless SoC  
Features  
Bluetooth Low Energy system-on-chip supporting Bluetooth 5.2 specifications  
2 Mbps data rate  
Long range (Coded PHY)  
Advertising extensions  
Channel selection algorithm #2  
GATT caching  
Radio  
RX sensitivity level: -97 dBm @ 1 Mbps, -104 dBm @ 125 kbps (long  
range)  
Programmable output power up to +8 dBm (at antenna connector)  
Data rate supported: 2 Mbps, 1 Mbps, 500 kbps and 125 kbps  
128 physical connections  
Integrated balun  
Support for external PA  
BlueNRG core coprocessor (DMA based) for Bluetooth Low Energy timing  
critical operation  
2.4 GHz proprietary radio driver  
Suitable for systems requiring compliance with the following radio  
frequency regulations: ETSI EN 300 328, EN 300 440, FCC CFR47 part 15,  
ARIB STD-T66  
Ultra-low power radio performance  
Product status link  
10 nA in SHUTDOWN mode (1.8 V)  
BlueNRG-LP  
0.6 uA in DEEPSTOP mode (with external LSE and BLE wake-up sources,  
1.8 V)  
Product summary  
0.9 uA in DEEPSTOP mode (with internal LSI and BLE wake-up sources,  
1.8 V)  
Order code  
BlueNRG-3x5yz  
4.3 mA peak current in TX (@ 0 dBm, 3.3 V)  
3.4 mA peak current in RX (@ sensitivity level, 3.3V)  
High performance and ultra-low power Cortex-M0+ 32-bit, running up to 64 MHz  
Dynamic current consumption: 18 µA/MHz  
Operating supply voltage: from 1.7 to 3.6 V  
-40 ºC to 105 ºC temperature range  
Supply and reset management  
High efficiency embedded SMPS step-down converter with intelligent  
bypass mode  
Ultra-low power power-on-reset (POR) and power-down-reset (PDR)  
Programmable voltage detector (PVD)  
Clock sources  
Fail safe 32 MHz crystal oscillator with integrated trimming capacitors  
32 kHz crystal oscillator  
Internal low-power 32 kHz RO  
On-chip non-volatile Flash memory of 256 kB  
On-chip RAM of 64 kB or 32 kB  
DS13282 - Rev 2 - September 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
BlueNRG-LP  
One-time-programmable (OTP) memory area of 1 kB  
Embedded UART bootloader  
Ultra-low power modes with or without timer and RAM retention  
Quadrature decoder  
Enhanced security mechanisms such as:  
Flash read/write protection  
SWD disabling  
Secure bootloader  
Security features  
True random number generator (RNG)  
Hardware encryption AES maximum 128-bit security co-processor  
HW public key accelerator (PKA)  
CRC calculation unit  
48-bit unique ID  
System peripherals  
1x DMA controller with 8 channels supporting ADC, SPI, I2C, USART and  
LPUART  
1x SPI  
2x SPI/I2S  
2x I2C (SMBus/PMBus)  
1x PDM (digital microphone interface)  
1x LPUART  
1x USART (ISO 7816 smartcard mode, IrDA, SPI Master and Modbus)  
1x independent WDG  
1x real time clock (RTC)  
1x independent SysTick  
1x 16-bit, 6 channel advanced timer  
Up to 32 fast I/Os  
28 of them with wake-up capability  
31 of them 5 V tolerant  
Analog peripherals  
12-bit ADC with 8 input channels, up to 16 bits with a decimation filter  
Battery monitoring  
Analog watchdog  
Analog Mic I/F with PGA  
Development support  
Serial wire debug (SWD)  
4 breakpoints and 2 watchpoints  
All packages are ECOPACK2 compliant  
Applications  
Industrial  
Home and industrial automation  
Smart lighting  
Fitness,wellness and sports  
Healthcare, consumer medical  
Security/proximity  
Remote control  
Assisted living  
DS13282 - Rev 2  
page 2/72  
BlueNRG-LP  
Mobile phone peripherals  
PC peripherals  
Description  
The BlueNRG-LP is an ultra-low power programmable Bluetooth® Low Energy  
wireless SoC solution. It embeds STMicroelectronics’s state-of-art 2.4 GHz RF radio  
IPs combining unparalleled performance with extremely long-battery lifetime. It is  
compliant with Bluetooth® Low Energy SIG core specification version 5.2 addressing  
point-to-point connectivity and Bluetooth Mesh networking and allows large-scale  
device networks to be established in a reliable way. The BlueNRG-LP is also suitable  
for 2.4 GHz proprietary radio wireless communication to address ultra-low latency  
applications.  
The BlueNRG-LP embeds a Cortex®-M0+ microcontroller that can operate up to 64  
MHz and also the BlueNRG core coprocessor (DMA based) for Bluetooth Low  
Energy timing critical operations.  
The main Bluetooth® Low Energy 5.2 specification supported features are:  
2 Mbps data rate, long range (Coded PHY), advertising extensions, channel selection  
algorithm #2, GATT caching, hardware support for simultaneous connection, master/  
slave and multiple roles simultaneously, extended packet length support.  
In addition, the BlueNRG-LP provides enhanced security hardware support by  
dedicated hardware functions:  
True random number generator (RNG), encryption AES maximum 128-bit security  
co-processor, public key accelerator (PKA), CRC calculation unit, 48-bit unique ID,  
Flash memory read and write protection.  
The BlueNRG-LP can be configured to support standalone or network processor  
applications. In the first configuration, the BlueNRG-LP operates as single device in  
the application for managing both the application code and the Bluetooth Low Energy  
stack.  
The BlueNRG-LP embeds high-speed and flexible memory types:  
Flash memory of 256 kB, RAM memory of 64 kB, one-time-programmable (OTP)  
memory area of 1 kB, ROM memory of 7 kB.  
Direct data transfer between memory and peripherals and from memory-to-memory  
is supported by eight DMA channels with a full flexible channel mapping by the  
DMAMUX peripheral.  
The BlueNRG-LP embeds a 12-bit ADC, allowing measurements of up to eight  
external sources and up to three internal sources, including battery monitoring and a  
temperature sensor.  
The BlueNRG-LP has a low-power RTC and one advanced 16-bit timer.  
The BlueNRG-LP features standard and advanced communication interfaces:  
1x SPI, 2x SPI/I2S, 1x LPUART, 1x USART supporting ISO 7816 (smartcard mode),  
IrDA and Modbus mode, 2x I2C supporting SMBus/PMBus, 1x channel PDM.  
The BlueNRG-LP operates in the -40 to +105 °C temperature range from a 1.7 V to  
3.6 V power supply. A comprehensive set of power-saving modes enables the design  
of low-power applications.  
The BlueNRG-LP integrates a high efficiency SMPS step-down converter and an  
integrated PDR circuitry with a fixed threshold that generates a device reset when the  
VDD drops under 1.65 V.  
The BlueNRG-LP comes in different package versions supporting up to:  
32 I/Os for the QFN48 package, 20 I/Os for the QFN32 package, 30 I/Os for the  
WCSP49 package.  
DS13282 - Rev 2  
page 3/72  
BlueNRG-LP  
Figure 1. The BlueNRG-LP block diagram  
256 kB Flash  
NVIC  
SRAM0  
Cortex-M0+  
SRAM1  
SRAM2  
DMA (8 ch)  
SRAM3  
DMAMUX  
PKA + RAM  
RNG  
PWRC  
MR_BLE  
RCC  
GPIO0  
GPIO1  
CRC  
LSE  
32 kHz  
LSI  
32 kHz  
SYSCFG  
ADC  
APB  
HSE  
I2C1  
I2C2  
32 MHz  
RTC  
SPI1  
IWDG  
SPI2/I2S2  
RC64MPLL  
USART  
LPUART  
TIM1  
SPI3/I2S3  
Power supply/POR/  
PDR/PVD  
DS13282 - Rev 2  
page 4/72  
 
BlueNRG-LP  
Functional overview  
1
Functional overview  
1.1  
System architecture  
The main system consists of 32-bit multilayer AHB bus matrix that interconnects:  
Three masters:  
CPU (Cortex®-M0+) core S-bus  
DMA1  
Radio system  
Nine slaves:  
Internal Flash memory on CPU (Cortex®-M0+) S bus  
Internal SRAM0 (16 kB)  
Internal SRAM1 (16 kB)  
Internal SRAM2 (16 kB)  
Internal SRAM3 (16 kB)  
APB0 peripherals (through an AHB to APB bridge)  
APB1 peripherals (through an AHB to APB bridge)  
AHB0 peripherals  
AHBRF including AHB to APB bridge and radio peripherals (connected to APB2)  
The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even  
when several high-speed peripherals work simultaneously.  
DS13282 - Rev 2  
page 5/72  
 
 
BlueNRG-LP  
ARM Cortex–M0+ core with MPU  
Figure 2. Bus matrix  
1.2  
ARM Cortex–M0+ core with MPU  
The BlueNRG-LP contains an ARM Cortex-M0+ microcontroller core. The Cortex-M0+ was developed to provide  
a low-cost platform that meets the needs of CPU implementation, with a reduced pin count and low-power  
consumption, while delivering outstanding computational performance and an advanced response to interrupts.  
The Cortex-M0+ can run from 1 MHz up to 64 MHz.  
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage  
pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but  
powerful instruction set and extensively optimized design, providing high-end processing hardware including a  
single-cycle multiplier.  
The interrupts are handled by the Cortex-M0+ Nested Vector Interrupt Controller (NVIC). The NVIC controls  
specific Cortex-M0+ interrupts as well as the BlueNRG-LP peripheral interrupts. With its embedded ARM core, the  
BlueNRG-LP family is compatible with all ARM tools and software.  
1.3  
Memories  
1.3.1  
Embedded Flash memory  
The Flash controller implements the erase and program Flash memory operation. The flash controller also  
implements the read and write protection.  
The Flash memory features are:  
Memory organization:  
1 bank of 256 kB  
Page size: 2 kB  
Page number 128  
32-bit wide data read/write  
DS13282 - Rev 2  
page 6/72  
 
 
 
 
BlueNRG-LP  
Security and safety  
Page erase and mass erase  
The Flash controller features are:  
Flash memory read operations  
Flash memory write operations: single data write or 4x32-bits burst write  
Flash memory erase operations  
Page write protect mechanism  
1.3.2  
Embedded SRAM  
The BlueNRG-LP has a total of 64 kB of embedded SRAM, split into four banks as shown in the following table:  
Table 1. SRAM overview  
SRAM bank  
SRAM0  
Size  
16 kB  
16 kB  
16 kB  
16 kB  
Address  
Retained in DEEPSTOP  
Always  
0x2000 0000  
0x2000 4000  
0x2000 8000  
0x2000 C000  
SRAM1  
Programmable by the user  
Programmable by the user  
Programmable by the user  
SRAM2  
SRAM3  
1.3.3  
1.3.4  
Embedded ROM  
The BlueNRG-LP has a total of 7 kB of embedded ROM. This area is ST reserved and contains:  
The UART bootloader from which the CPU boots after each reset (first 6 kB of ROM memory)  
Some ST reserved values including the ADC trimming values (the last 1 kB of ROM memory)  
Embedded OTP  
The one-time-programmable (OTP) is a memory of 1 kB dedicated for user data. The OTP data cannot be  
erased.  
The user can protect the OTP data area by writing the last word at address 0x1000 1BFC and by performing a  
system reset. This operation freezes the OTP memory from further unwanted write operations.  
1.3.5  
Memory protection unit (MPU)  
The MPU is used to manage accesses to memory to prevent one task from accidentally corrupting the memory or  
resources used by any other active task. This memory area is organized into up to 8 protected areas. The  
protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be protected against the  
misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program  
accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS  
environment, the kernel can dynamically update the MPU area settings, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
1.4  
Security and safety  
The BlueNRG-LP contains many security blocks for the BLE and the host application.  
It includes:  
Flash read/write protections  
As protection against potential hacker attacks, the SWD access can be disabled  
Secure bootloader (refer to the dedicated BlueNRG-LP UART bootloader protocol application note AN5471)  
Customer storage of the BLE keys  
True random number generator (RNG)  
DS13282 - Rev 2  
page 7/72  
 
 
 
 
 
 
BlueNRG-LP  
RF subsystem  
Private key accelerator (PKA) including:  
Elliptic curve Diffie-Hellman (ECDH) public-private key pair calculation accelerator  
Based on the Montgomery method for fast modular multiplications  
Built-in Montgomery domain inward and outward transformations  
AMBA AHB lite slave interface with a reduced command set  
Cyclic redundancy check calculation unit (CRC)  
1.5  
RF subsystem  
The BlueNRG-LP embeds an ultra-low power radio, compliant with Bluetooth® Low Energy (BLE) specification.  
The BLE features 1 Mbps and 2 Mbps transfer rates as well as long range options (125 kbps, 500 kbps), supports  
multiple roles simultaneously acting at the same time as Bluetooth® Low Energy sensor and hub device.  
The BLE protocol stack is implemented by an efficient system partitioned as follows:  
Hardware part: BlueCore handling time critical and time consuming BLE protocol parts  
Firmware part: Arm® Cortex®-M0+ core handling non time critical BLE protocol parts  
1.5.1  
RF front-end block diagram  
The RF front-end is based on a direct modulation of the carrier in TX, and uses a low IF architecture in RX mode.  
Thanks to an internal transformer with RF pins, the circuit directly interfaces the antenna (single ended  
connection, impedance close to 50 Ω). The natural band pass behavior of the internal transformer simplifies  
outside circuitry aimed at harmonic filtering and out of band interferer rejection.  
In transmit mode, the maximum output power is user selectable through the programmable LDO voltage of the  
power amplifier. A linearized, smoothed analog control offers a clean power ramp-up.  
In receive mode, the automatic gain control (AGC) can reduce the chain gain at both RF and IF locations, for  
optimized interferer rejections. Thanks to the use of complex filtering and highly accurate I/Q architecture, high  
sensitivity and excellent linearity can be achieved.  
DS13282 - Rev 2  
page 8/72  
 
 
BlueNRG-LP  
Power supply management  
Figure 3. BlueNRG-LP RF block diagram  
Timer and Power  
control  
AGC  
control  
AGC  
TX_SEQUENCE  
RX_SEQUENCE  
RF control  
ADC  
G
BP  
filter  
LNA  
Interrupt  
Wakeup  
BLE  
modulator  
ADC  
G
BLE  
RF1  
AHB  
APB  
controller  
BLE  
demodulator  
PLL  
See  
notes  
PA  
Adjust  
HSE  
Adjust  
Max PA  
level  
Trimmed  
bias  
SMPS  
LDO  
LDO  
LDO  
VDDSD  
VSSSD VLXSD  
VFBSD  
VDDRF  
Notes: QFN42 and QFN48: VSS through exposed pad,  
and VSSRF pins must be connected to ground plane CSP49: VSSRF pins must be connected to ground plane.  
1.6  
Power supply management  
1.6.1  
SMPS step-down regulator  
The device integrates a step-down converter to improve low power performance when the VDD voltage is high  
enough. The SMPS output voltage can be programmed from 1.2 V to 1.90 V. It is internally clocked at 4 MHz or 8  
MHz.  
The device can be operated without the SMPS by just wiring its output to VDD. This is the case for applications  
where the voltage is low, or where the power consumption is not critical.  
Except for the configuration SMPS OFF, an L/C BOM must be present on the board and connected to the VFBSD  
pad.  
DS13282 - Rev 2  
page 9/72  
 
 
 
BlueNRG-LP  
Power supply management  
Figure 4. Power supply configuration  
DS13282 - Rev 2  
page 10/72  
 
BlueNRG-LP  
Power supply management  
1.6.2  
Power supply schemes  
The BlueNRG-LP embeds three power domains:  
VDD33 (VDDIO or VDD):  
the voltage range is between 1.7 V and 3.6 V  
it supplies a part of the I/O ring, the embedded regulators and the system analog IPs as power  
management block and embedded oscillators  
VDD12o:  
always-on digital power domain  
this domain is generally supplied at 1.2 V during active phase of the device  
this domain is supplied at 1.0 V during low power mode (DEEPSTOP)  
VDD12i:  
interruptible digital power domain  
this domain is generally supplied at 1.2 V during active phase of the device  
this domain is shut down during low power mode (DEEPSTOP)  
Figure 5. Power supply domain overview  
VDDIO  
VFBSD  
SMPS  
MLDO  
VREG PAD  
CMDNO  
CMDNI  
VGATEP  
VGATEN  
LP-Reg  
RFLDOs  
VRF  
VDD12O  
VDD12I  
AlwaysOn  
Domain  
(VDD12O)  
HSI  
Interruptible domain  
(VDD12I)  
V33 Domain  
(VDDIO)  
Analog  
RF  
CPU  
RF_FSM  
BLE  
Peripherals  
RCCi  
HSE, LSI, LSE  
PDR, POR, PVD  
PWRC33,  
BLE_wakeup,  
RTC, WDOG,  
PWRCo,  
RCC33  
RCCo  
1.6.3  
Linear voltage regulators  
The digital power supplies are provided by different regulators:  
The main LDO (MLDO):  
it provides 1.2 V from a 1.4-3.3 V input voltage  
it supplies both VDD12i and VDD12o when the device is active  
it is disabled during the low power mode (DEEPSTOP)  
Low power LDO (LPREG):  
it stays enabled during both active and low power phases  
it provides 1.0 V voltage  
it is not connected to the digital domain when the device is active  
it is connected to the VDD12o domain during low power mode (DEEPSTOP)  
A dedicated LDO (RFLDO) to provide a 1.2 V to the analog RF block  
An embedded SMPS step-down converter is available (inserted between the external power and the LDOs).  
DS13282 - Rev 2  
page 11/72  
 
 
 
BlueNRG-LP  
Operating modes  
1.6.4  
Power supply supervisor  
The BlueNRG-LP device embeds several power voltage monitoring:  
Power-on-reset (POR): during the power-on, the device remains in reset mode if VDDIO is below a VPOR  
threshold (typically 1.65 V)  
Power-down-reset (PDR): during power-down, the PDR puts the device under reset when the supply voltage  
(VDD) drops below the VPDR threshold (around 20 mV below VPOR). The PDR feature is always enabled  
Power voltage detector (PVD): can be used to monitor the VDDIO (against a programmed threshold) or an  
external analog input signal. When the feature is enabled and the PVD measures a voltage below the  
comparator, an interrupt is generated (if unmasked)  
1.7  
Operating modes  
Several operating modes are defined for the BlueNRG-LP:  
RUN mode  
DEEPSTOP mode  
SHUTDOWN mode  
Table 2. Relationship between the low power modes and functional blocks  
Mode  
CPU  
SHUTDOWN  
OFF  
DEEPSTOP  
IDLE  
RUN  
OFF  
OFF  
ON  
Flash  
OFF  
OFF  
ON  
ON/OFF  
ON/OFF  
ON ( DC-DC ON/OFF)  
ON  
ON  
RAM  
OFF  
ON/OFF granularity 16 kB  
ON/OFF  
Radio  
OFF  
OFF  
OFF  
ON/OFF  
Supply system  
Register retention  
HS clock  
OFF  
ON ( DC-DC ON/OFF)  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
LS clock  
OFF  
ON/OFF  
OFF  
ON  
ON  
Peripherals  
Wake-on RTC  
Wake-on GPIOs  
Wake-on reset pin  
OFF  
ON/OFF  
ON/OFF  
ON/OFF  
ON  
ON/OFF  
NA  
OFF  
ON/OFF  
ON/OFF  
ON  
OFF  
NA  
ON  
NA  
1.7.1  
RUN mode  
In RUN mode the BlueNRG-LP is fully operational:  
All interfaces are active  
The internal power supplies are active  
The system clock and the bus clock are running  
The CPU core and the radio can be used  
The power consumption may be reduced by gating the clock of the unused peripherals.  
1.7.2  
DEEPSTOP mode  
The DEEPSTOP is the only low power mode of the BlueNRG-LP allowing the restart from a saved context  
environment and the application at wake-up to go on running.  
The conditions to enter the DEEPSTOP mode are:  
The radio is sleeping (no radio activity)  
The CPU is sleeping (WFI with SLEEPDEEP bit activated)  
No unmasked wake-up sources are active  
The low power mode selection (LPMS) bit of the power controller unit is 0 (default)  
DS13282 - Rev 2  
page 12/72  
 
 
 
 
 
BlueNRG-LP  
Reset management  
In DEEPSTOP mode:  
The system and the bus clocks are stopped  
Only the essential digital power domain is ON and supplied at 1.0 V  
The bank RAM0 is kept in retention  
The other banks of RAM can be in retention or not, depending on the software configuration  
The low speed clock can be running or stopped, depending on the software configuration:  
ON or OFF  
Sourced by LSE or by LSI  
The RTC and the IWDG stay active, if enabled and the low speed clock is ON  
The radio wake-up block, including its timer, stay active (if enabled and the low speed clock is ON)  
Eight I/Os (PA4/ PA5/ PA6/ PA7/ PA8/ PA9/ PA10/ PA11) can be in output driving:  
A static low or high level  
The low speed clock  
The RTC output  
Possible wake-up sources are:  
The radio block is able to generate two events to wake up the system through its embedded wake-up timer  
running on low speed clock:  
Radio wake-up time is reached  
CPU host wake-up time is reached  
The RTC can generate a wake-up event  
The IWDG can generate a reset event  
Up to 28 GPIOs are able to wake up the system (PA0 to PA15 and PB0 to PB11)  
At the wake-up, all the hardware resources located in the digital power domain that are OFF during the  
DEEPSTOP mode, are reset. The CPU reboots. The wake-up reason is visible in the register of the power  
controller.  
1.7.3  
SHUTDOWN mode  
The SHUTDOWN mode is the least power consuming mode.  
The conditions to enter SHUTDOWN mode are the same conditions needed to enter DEEPSTOP mode except  
that the LPMS bit of the power controller unit is 1.  
In SHUTDOWN mode, the BlueNRG-LP is in ultra-low power consumption: all voltage regulators, clocks and the  
RF interface are not powered. The BlueNRG-LP can enter shutdown mode by internal software sequence. The  
only way to exit shutdown mode is by asserting and deasserting the RSTN pin.  
In SHUTDOWN mode:  
The system is powered down as both the regulators are OFF  
The VDDIO power domain is ON  
All the clocks are OFF, LSI and LSE are OFF  
The I/Os pull-up and pull-down can be controlled during SHUTDOWN mode, depending on the software  
configuration  
The only wake-up source is a low pulse on the RSTN pin  
The exit from SHUTDOWN is similar to a POR startup. The PDR feature can be enabled or disabled during  
SHUTDOWN.  
1.8  
Reset management  
The BlueNRG-LP offers two different resets:  
The PORESETn: this reset is provided by the low power management unit (LPMU) analog block and  
corresponds to a POR or PDR root cause. It is linked to power voltage ramp-up or ramp-down. This reset  
impacts all resources of the BlueNRG-LP. The exit from SHUTDOWN mode is equivalent to a POR and thus  
generates a PORESETn. The PORESETn signal is active when the power supply of the device is below a  
threshold value or when the regulator does not provide the target voltage.  
DS13282 - Rev 2  
page 13/72  
 
 
BlueNRG-LP  
Clock management  
The PADRESETn (system reset): this reset is built through several sources:  
PORESETn  
Reset due to the watchdog  
The BlueNRG-LP device embeds a watchdog timer, which may be used to recover from software  
crashes  
Reset due to CPU Lockup  
The Cortex-M0+ generates a lockup to indicate the core is in the lock-up state resulting from an  
unrecoverable exception. The lock-up reset is masked if a debugger is connected to the Cortex-M0+  
Software system reset  
The system reset request is generated by the debug circuitry of the Cortex®-M0+. The debugger sets  
the SYSRESETREQ bit of the application interrupt and reset control register (AIRCR). This system  
reset request through the AIRCR can also be done by the embedded software (into the hardfault  
handler for instance)  
Reset from the RSTN external pin  
The RSTN pin toggles to inform that a reset has occurred  
This PADRESETn resets all resources of the BlueNRG-LP, except:  
Debug features  
Flash controller key management  
RTC timer  
Power controller unit  
Part of the RCC registers  
The pulse generator guarantees a minimum reset pulse duration of 20 μs for each internal reset source. In case  
of reset from the RSTN external pad, the reset pulse is generated when the pad is asserted low.  
1.9  
Clock management  
Three different clock sources may be used to drive the system clock of the BlueNRG-LP:  
HSI: high speed internal 64 MHz RC oscillator  
PLL64M: 64 MHz PLL clock  
HSE: high speed 32 MHz external crystal  
The BlueNRG-LP has also a low speed clock tree used by some timers in the radio, RTC and IWDG.  
Four different clock sources can be used for this low speed clock tree:  
Low speed internal (LSI): low speed and low drift internal RC with a fixed frequency between 24 kHz and 49  
kHz depending on the sample  
Low speed external (LSE) from:  
An external crystal 32.768 kHz  
A single-ended 32.738 kHz input signal  
A 32 kHz clock (CLK_16 MHz/512 in Figure 6. Clock tree) obtained by dividing HSI or HSE. In this case, the  
slow clock is not available in DEEPSTOP low power mode  
LSI_LPMU: 32 kHz clock used by the low power management unit (LPMU) analog block.  
By default, after a system reset, all low speed sources are OFF.  
Both the activation and the selection of the slow clock are relevant during the DEEPSTOP mode and at wakeup  
as slow clock generates a clock for the timers involved in wake-up event generation.  
The HSI and the PLL64M clocks are provided by the same analog block called RC64MPLL. The 64 MHz clock  
output by this block can be:  
A non-accurate clock when no external XO provides an input clock to this block (HSI)  
An accurate clock when the external XO provides the 32 MHz and once its internal PLL is locked (PLL64M)  
This fast clock source is used to generate all the fast clock of the device through dividers. After reset, the  
CLK_SYS is divided by four to provide a 16 MHz to the whole system (CPU, DMA, memories and peripherals).  
This fast clock source is also used to generate several internal fast clocks in the system:  
Always 32 MHz requested by a few peripherals like the radio  
DS13282 - Rev 2  
page 14/72  
 
BlueNRG-LP  
Clock management  
Always 16 MHz requested by a few peripherals like serial interfaces (to maintain fixed the baud rate while  
system clock is switching from one frequency to another) or like the Flash controller and radio (to have a  
fixed reference clock to manage delays)  
Figure 6. Clock tree  
LSI RCO  
32kHz  
LSI_LPMU  
RCO 32kHz  
CLKSLOWSEL  
LCOSEL  
LCO  
CK_RTC,  
CK_WDG,  
CK_BLEWKUP  
CLK_16MHz/512  
OSC32k_OUT  
OSC32k_IN  
CLK_TIM1  
LSE OSC  
32kHz  
SYSCLKDIV  
SYSCLK PRE  
/1, /2, .. , /32  
CLK_SYS  
to CPU,  
AHB0,  
APB0,  
APB1,  
SRAM,  
PKA,  
CLK_SPI1  
OSC_OUT  
OSC_IN  
HSE OSC  
32MHz  
1
0
1
0
SYSCLK PRE  
/1, /2, .. , /64  
HSESEL  
HSI  
RCO+PLL  
64MHz  
HSESEL  
SYSCLKDIV  
/4  
/2  
1
0
CLKANA_ADC  
CLK_SMPS  
CLK_SMPS  
CLK_SYS  
HSE  
CLKANA_ADC,  
CLK_USART,  
CLK_I2C,  
CLK_BLE16,  
CLK_FLASH,  
CLK_PWR,  
SMPSDIV  
/2  
/4  
1
0
CLK_16MHz  
/1, /2, .. , /16  
MCO  
CLK_RNG  
CLK_LPUART  
HSI  
1
0
HSESEL  
CLKSYS_BLE  
CLK_16MHz/512  
MCOSEL  
BLECLKDIV  
1
0
CLK_32MHz  
CLK_BLE32,  
CLKDIG_ADC  
/2  
1
0
HSESEL  
CLK_SPI2/I2S2  
CLK_16MHz  
SP2CKSEL  
1
0
CLK_SPI3/I2S3  
SP3CKSEL  
It is possible to output some internal clocks on external pads:  
the low speed clocks can be output on the LCO I/O  
the high speed clocks can be output on the MCO I/O  
This is possible by programming the associated I/O in the correct alternate function.  
Most of the peripherals only use the system clock except:  
I2C, USART, LPUART: they always use a16 MHz clock to have a fixed reference clock for baud rate  
management. The goal is to allow the CPU to boost or slow down the system clock (depending on on-going  
activities) without impacting a potential on-going serial interface transfer on external I/Os  
DS13282 - Rev 2  
page 15/72  
 
BlueNRG-LP  
Boot mode  
SPI: when the I2S mode is used, the baud rate is always managed through the 16 MHz or 32 MHz clock.  
When modes other than the I2S run, the baud rate is managed by the system clock. This implies its baud  
rate is impacted by dynamic system clock frequency changes  
RNG: in parallel to the system clock, the RNG always uses 16 MHz clock to generate at a constant  
frequency the random number whatever the system clock frequency  
Flash controller: in parallel to the system clock, the Flash controller always uses 16 MHz clock to generate  
specific delays required by the Flash memory during programming and erase operations for example  
PKA: in parallel to the system clock, the PKA uses a clock at half of the system clock frequency  
Radio: it does not directly use the system clock for its APB/AHB interfaces, but the system clock with a  
potential divider (1 or 2 or 4). In parallel, the radio always uses 16 MHz and always 32 MHz for modulator,  
demodulator and to have a fixed reference clock to manage specific delays  
ADC: in parallel to the system clock, ADC uses a 64 MHz prescaled clock running at 16 MHz  
1.10  
1.11  
Boot mode  
Following CPU boot, the application software can modify the memory map at address 0x0000 0000. This  
modification is performed by programming the REMAP bit in the Flash controller.  
The following memory can be remapped:  
Main Flash memory  
SRAM0 memory  
Embedded UART bootloader  
The BlueNRG-LP has a pre-programmed bootloader supporting UART protocol with automatic baud rate  
detection. The main features of the embedded bootloader are:  
Auto baud rate detection up to 1 Mbps  
Flash mass erase, section erase  
Flash programming  
Flash readout protection enable/disable  
The pre-programmed bootloader is an application, which is stored in the BlueNRG-LP internal ROM at  
manufacturing time by STMicroelectronics. This application allows upgrading the device Flash with a user  
application using a serial communication channel (UART).  
Bootloader is activated by hardware by forcing PA10 high during hardware reset, otherwise, application residing in  
Flash is launched.  
Note:  
Bootloader protocol is described in a separate application note (the BlueNRG-LP UART bootloader protocol,  
AN5471)  
1.12  
General purpose inputs/outputs (GPIO)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without  
pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB0 bus.  
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid  
spurious writing to the I/Os registers.  
1.13  
Direct memory access (DMA)  
The DMA is used in order to provide high-speed data transfer between peripherals and memory as well as  
memory-to-memory. Data can be quickly moved by DMA without any CPU actions. In this manner, CPU resources  
are free for other operations.  
The DMA controller has eight channels in total. Each has an arbiter to handle the priority among DMA requests.  
DMA main features are:  
Eight independently configurable channels (requests)  
Each of the eight channels is connected to dedicated hardware DMA requests, software trigger is also  
supported on each channel. This configuration is done by software  
DS13282 - Rev 2  
page 16/72  
 
 
 
 
BlueNRG-LP  
Nested vectored interrupt controller (NVIC)  
Priorities among requests from channels of DMA are software programmable (four levels consisting of very  
high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, and so on)  
Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking.  
Source/destination addresses must be aligned on the data size  
Support for circular buffer management  
Three event flags (DMA half transfer, DMA transfer complete and DMA transfer error) logically ORed  
together in a single interrupt request for each channel  
Memory-to-memory transfer (RAM only)  
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers  
Access to SRAMs and APB1 peripherals as source and destination  
Programmable number of data to be transferred: up to 65536  
1.14  
Nested vectored interrupt controller (NVIC)  
The interrupts are handled by the Cortex®-M0+ nested vector interrupt controller (NVIC). NVIC controls specific  
Cortex®-M0+ interrupts as well as the BlueNRG-LP peripheral interrupts.  
The NVIC benefits are the following:  
Nested vectored interrupt controller that is an integral part of the ARM® Cortex®-M0+  
Tightly coupled interrupt controller provides low interrupt latency  
Control system exceptions and peripheral interrupts  
NVIC supports 32 vectored interrupts  
Four programmable interrupt priority levels with hardware priority level masking  
Software interrupt generation using the ARM® exceptions SVCall and PendSV  
Support for NMI  
ARM® Cortex® M0+ vector table offset register VTOR implemented  
NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.  
1.15  
Analog digital converter (ADC)  
The BlueNRG-LP embeds a 12-bit ADC. The ADC consists of a 12-bit successive approximation analog-to-digital  
converter (SAR) with 2 x 8 multiplexed channels allowing measurements of up to eight external sources and up to  
two internal sources.  
It embeds a PDM interface integrating a digital filter for processing PDM stream coming from a digital microphone.  
It also embeds a dedicated ECM microphone feature with which it is possible to connect an analog microphone  
directly to the ADC port of the BlueNRG-LP.  
The ADC main features are:  
Conversion frequency is up to 1 Msps  
Three input voltage ranges are supported (0 - 1.2 V, 0 - 2.4 V, 0 - 3.6 V)  
Up to eight analog single-ended channels or four analog differential inputs or a mix of both  
One analog microphone supported through two GPIOs configured in analog mode (an input for the analog  
microphone and a Vbias output for the analog microphone)  
Temperature sensor conversion  
Battery level conversion up to 3.6 V  
Continuous or single acquisition  
Digital decimation filter to process a digital audio PDM stream provided by 2 GPIOs and for ADC post-  
processing, especially for analog audio stream  
Five modes of conversion are possible:  
ADC continuous or single mode  
Analog continuous audio mode  
Occasional conversions  
Digital continuous audio mode  
Full mode  
DS13282 - Rev 2  
page 17/72  
 
 
BlueNRG-LP  
True random number generator (RNG)  
ADC down-sampler for multi-purpose applications to improve analog performance while off-loading the CPU  
(ratio adjustable from 1 to 128)  
A watchdog feature to inform when data is outside thresholds (available for all modes except the digital  
audio mode)  
DMA capability  
Interrupt sources with flags  
1.15.1  
Digital microphone MEMS interface  
The digital microphone MEMS interface aims to interconnect with an external digital MEMS microphone. The  
BlueNRG-LP can configure two GPIOs as PDM interface. The PDM_CLK provides the clock output signal,  
programmable in frequency, to the microphone, while the PDM_DATA receives the PDM output data from the  
microphone. The decimation filter and the digital control resources are used to handle the PDM data stream.  
1.15.2  
1.15.3  
Analog microphone interface  
The analog microphone interface is dedicated to the analog microphone signal. The input audio signal is amplified  
with a programmable gain amplifier (PGA) from 0 dB to 30 dB, then the data stream is sampled by ADC and  
processed through the decimation filter.  
Temperature sensor  
The temperature sensor (TS) generates a voltage that varies linearly with temperature. The temperature sensor is  
internally connected to the ADC input channel, which is used to convert the sensor output voltage into a digital  
value.  
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by  
ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in  
read-only mode.  
1.16  
True random number generator (RNG)  
RNG is a random number generator based on a continuous analog noise that provides a 16-bit value to the host  
when read. The minimum period is 1.25 us, corresponding to 20 RNG clock cycles between two consecutive  
random number.  
1.17  
Timers and watchdog  
The BlueNRG-LP includes one advanced 16-bit timer, one watchdog timer and a SysTick timer.  
1.17.1  
Advanced control timer (TIM1)  
The advanced-control timer can be considered as a three-phase PWM multiplexed on six channels. The six  
channels have complementary PWM outputs with programmable inserted dead-times.  
They can also be used as general-purpose timers for:  
Input capture (except channels 5 and 6)  
Output compare  
PWM generation (edge and center-aligned mode)  
One-pulse mode output  
1.17.2  
1.17.3  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from the LS clock  
and it can operate in DEEPSTOP mode. It can also be used as a watchdog to reset the device when a problem  
occurs.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It  
features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
DS13282 - Rev 2  
page 18/72  
 
 
 
 
 
 
 
 
BlueNRG-LP  
Real-time clock (RTC)  
1.18  
Real-time clock (RTC)  
The RTC is an independent BCD timer/counter. The RTC provides a time of day/clock/calendar with  
programmable alarm interrupt. RTC includes also a periodic programmable wake-up flag with interrupt capability.  
The RTC provides an automatic wake-up to manage all low power modes.  
Two 32-bit registers contain seconds, minutes, hours (12- or 24-hour format), day (day of week), date (day of  
month), month, and year, expressed in binary coded decimal format (BCD). The sub-second value is also  
available in binary format. Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed  
automatically. Daylight saving time compensation can also be performed. Additional 32-bit registers contain the  
programmable alarm sub seconds, seconds, minutes, hours, day, and date.  
A digital calibration circuit with 0.95 ppm resolution is available to compensate for quartz crystal inaccuracy. After  
power-on reset, all RTC registers are protected against possible parasitic write accesses. As long as the supply  
voltage remains in the operating range, the RTC never stops, regardless of the device status (RUN mode, low  
power mode or under system reset). The RTC counter does not freeze when CPU is halted by a debugger.  
2
1.19  
Inter-integrated circuit interface (I C)  
The BlueNRG-LP embeds two I2Cs. The I2C bus interface handles communications between the microcontroller  
and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C bus specification and user manual rev. 5 compatibilities:  
Slave and master modes  
Multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (fm+), with a bitrate up to 1 Mbit/s and 20 mA output driver I/Os  
7-bit and 10-bit addressing mode  
Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask)  
All 7-bit address acknowledge mode  
General call  
Programmable setup and hold times  
Easy to use event management  
Optional clock stretching  
Software reset  
System management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK control  
Address resolution protocol (ARP) support  
Host and device support  
SMBus alert  
Timeouts and idle condition detection  
Power system management protocol (PMBusTM) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C communication speed to be  
independent from the PCLK reprogramming  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
1.20  
Universal synchronous/asynchronous receiver transmitter (USART)  
USART offers flexible full-duplex data exchange with external equipment requiring an industry standard NRZ  
asynchronous serial data format. USART is able to communicate with a speed up to 2 Mbit/s. Furthermore,  
USART is able to detect and automatically set its own baud rate, based on the reception of a single character.  
The USART peripheral supports:  
Synchronous one-way communication  
DS13282 - Rev 2  
page 19/72  
 
 
 
BlueNRG-LP  
LPUART  
Half-duplex single wire communication  
Local interconnection network (LIN) master/slave capability  
Smart card mode, ISO 7816 compliant protocol  
IrDA (infrared data association) SIR ENDEC specifications  
Modem operations (CTS/RTS)  
RS485 driver enable  
Multiprocessor communications  
SPI-like communication capability  
High speed data communication is possible by using DMA (direct memory access) for multibuffer configuration.  
1.21  
1.22  
LPUART  
LPUART is a UART which allows bidirectional UART communications. It supports half-duplex single wire  
communications and modem operations (CTS/RTS). It also supports multiprocessor communications. DMA (direct  
memory access) can be used for data transmission/reception.  
Serial peripheral interface (SPI)  
The BlueNRG-LP has three SPI interfaces (SPI1, SPI2, SPI3) allowing communication up to 32 Mbit/s in both  
master and slave modes. The SPI peripheral supports:  
Master or slave operation  
Multimaster support  
Full-duplex synchronous transfers on three lines  
Half-duplex synchronous transfer on two lines (with bidirectional data line)  
Simplex synchronous transfers on two lines (with unidirectional data line)  
Serial communication with external devices  
NSS management by hardware or software for both master and slave: dynamic change of master/slave  
operations  
SPI Motorola support  
SPI TI mode support  
Hardware CRC feature for reliable communication  
All SPI interfaces can be served by the DMA controller.  
1.23  
Inter-IC sound (I2S)  
The BlueNRG-LP SPI interfaces: SPI2 and SPI3 support the I2S protocol. The I2S interface can operate in slave  
or master mode with full duplex and half-duplex communication. It can address four different audio standards:  
Philips I2S standard  
MSB-justified standards (left-justified)  
LSB-justified standards (right-justified)  
PCM standard.  
The I2S interfaces DMA capability for transmission and reception.  
1.24  
1.25  
Serial wire debug port  
The BlueNRG-LP embeds an ARM SWD interface that allows interactive debugging and programming of the  
device. The interface is composed of only two pins: SWDIO and SWCLK. The enhanced debugging features for  
developers allow up to 4 breakpoints and up to 2 watchpoints.  
TX and RX event alert  
The BlueNRG-LP is provided with the TX_SEQUENCE and RX_SEQUENCE signals which alert, respectively,  
transmission and reception activities.  
A signal can be enabled for TX and RX on two pins, through alternate functions:  
DS13282 - Rev 2  
page 20/72  
 
 
 
 
 
BlueNRG-LP  
TX and RX event alert  
TX_SEQUENCE is available on PA10 (AF2) or PB15 (AF1).  
RX_SEQUENCE is available on PA8 (AF2) or PA11 (AF2).  
The signal is high when radio is in TX (or RX), low otherwise.  
The signals can be used to control external antenna switching and support coexistence with other wireless  
technologies.  
DS13282 - Rev 2  
page 21/72  
BlueNRG-LP  
Pinouts and pin description  
2
Pinouts and pin description  
The BlueNRG-LP comes in three package versions: QFN48 offering 32 GPIOs, WCSP49 offering 30 GPIOs and  
QFN32 offering 20 GPIOs.  
Figure 7. Pinout top view (QFN48 package)  
PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 VDDA VDD1 RSTN VDD3  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
PB3  
PB2  
VDDSD  
VLXSD  
VSS  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PB1  
3
PB0  
NC  
4
PA15  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
VFBSD  
VCAP  
5
6
GND  
pad  
PB12/XTAL0  
PB13/XTAL1  
PB14  
7
8
9
PB15  
10  
11  
12  
VDD4  
PA8  
OSCIN  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 VDD2  
DS13282 - Rev 2  
page 22/72  
 
 
BlueNRG-LP  
Pinouts and pin description  
Figure 8. Pinout top view (QFN32 package)  
VDD1 PB4 PB5 PB6 PB7 VCAP RSTN VDDSD  
32  
31  
30  
29  
28  
27  
26  
25  
PB3  
PB2  
PB1  
PB0  
PA11  
PA10  
PA9  
VLXSD  
VSS  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VFBSD  
PB12/XTAL0  
PB13/XTAL1  
PB14  
GND  
pad  
PB15  
PA8  
OSCIN  
9
10  
11  
12  
13  
14  
15  
16  
PA0 PA1 PA2 PA3  
VDD2  
DS13282 - Rev 2  
page 23/72  
 
BlueNRG-LP  
Pinouts and pin description  
Figure 9. Pinout top view (WLCSP49 package)  
1
2
3
4
5
6
7
5
A
B
VDDSD VLXSD  
VSSIO  
VDD3  
RSTN  
VDDA  
VSSA  
VSSSD  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
C
D
E
VFBSD  
VCAP  
PB12  
PB13  
PB9  
PA11  
PA4  
PB1  
PB8  
PA3  
PB0  
PA13  
PA2  
PA15  
PA12  
PA10  
PA14  
PA9  
PA8  
OSCOUT PB14  
VSS  
IFADC  
F
OSCIN  
PB15  
VSSRF  
PA5  
PA7  
PA0  
PA1  
VSSIO  
VDD2  
VSSRFT  
RX  
G
VSSSX VDDRF  
RF1  
Table 3. Pin description  
Pin number  
Pin name  
(function  
after reset)  
Pin  
type  
I/O  
structure  
Alternate functions  
Additional functions  
QFN48  
QFN32 WLCSP49  
USART_CTS,  
LPUART_TX, TIM1_CH4  
1
1
2
3
B6  
B7  
C4  
PB3  
I/O  
I/O  
I/O  
FT_a  
FT_a  
FT_a  
ADC_VINP0, wakeup  
USART_RTS_DE,  
PDM_DATA, TIM1_CH3  
2
3
PB2  
PB1  
ADC_VINM0, wakeup  
ADC_VINP1, wakeup  
SPI1_NSS, PDM_CLK,  
TIM1_ETR  
USART_RX,  
LPUART_RTS_DE,  
TIM1_CH2N  
4
4
C5  
PB0  
I/O  
FT_a  
ADC_VINM1, wakeup  
I2C2_SMBA, SPI1_MOSI,  
TIM1_BKIN2  
5
6
-
-
C6  
C7  
PA15  
PA14  
I/O  
I/O  
FT_a  
FT_a  
ADC_VINP2, wakeup  
ADC_VINM2, wakeup  
I2C2_SDA, SPI1_MISO,  
TIM1_BKIN  
I2C2_SCL, SPI1_SCK,  
SPI2_MISO, TIM1_ETR,  
I2S2_MISO  
7
8
-
-
D5  
D6  
PA13  
PA12  
I/O  
I/O  
FT_a  
FT_a  
ADC_VINP3, wakeup  
ADC_VINM3, wakeup  
I2C1_SMBA, SPI1_NSS,  
SPI2_MOSI,TIM1_CH1,  
I2S2_SD  
DS13282 - Rev 2  
page 24/72  
 
 
BlueNRG-LP  
Pinouts and pin description  
Pin number  
Pin name  
(function  
after reset)  
Pin  
type  
I/O  
structure  
Alternate functions  
Additional functions  
QFN48  
QFN32 WLCSP49  
MCO, SPI1_NSS,  
RX_SEQUENCE,  
SPI3_MOSI, TIM1_CH6,  
I2S3_SD  
Wakeup, GPIO in  
DEEPSTOP, RTC_OUT  
9
5
D3  
PA11  
I/O  
FT  
LCO, SPI1_MISO,  
TX_SEQUENCE,  
SPI3_MCK, TIM1_CH5,  
I2S3_MCK  
BOOT, wakeup, GPIO  
in DEEPSTOP, LCO  
10  
11  
12  
6
7
8
E6  
D7  
E7  
PA10  
PA9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
USART_TX, SPI1_SCK,  
RTC_OUT, SPI3_NSS,  
TIM1_CH4, I2S3_WS  
Wakeup, GPIO in  
DEEPSTOP, LCO  
USART_RX, SPI1_MOSI,  
RX_SEQUENCE,  
SPI3_MISO, TIM1_CH3,  
I2S3_MISO  
Wakeup, GPIO in  
DEEPSTOP, RTC_OUT  
PA8  
I2C1_SCL, USART_CTS,  
SPI2_MCK, TIM1_CH3,  
I2S2_MCK  
13  
14  
15  
16  
17  
18  
9
10  
11  
12  
-
F6  
G6  
E5  
E4  
E3  
F5  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT_f  
FT_f  
FT  
Wakeup  
Wakeup  
Wakeup  
Wakeup  
I2C1_SDA, SPI2_MISO,  
USART_TX, TIM1_CH4,  
I2S2_MISO  
SWDIO, USART_CK,  
TIM_BKIN, SPI3_MCK,  
TIM1_CH5, I2S3_MCK  
SWCLK, USART_RTS_DE,  
TIM_BKIN2, SPI3_SCK,  
TIM1_CH6, I2S3_SCK  
FT  
LCO, SPI2_NSS,  
LPUART_TX, TIM1_CH1,  
I2S2_WS  
Wakeup, GPIO in  
DEEPSTOP, LCO  
FT  
MCO, SPI2_SCK,  
LPUART_RX, TIM1_CH2,  
I2S2_SCK  
Wakeup, GPIO in  
DEEPSTOP, LCO  
-
FT  
LPUART_CTS,  
SPI2_MOSI, SPI2_NSS,  
TIM1_CH1, I2S2_SD,  
I2S2_WS  
Wakeup, GPIO in  
DEEPSTOP, LCO  
19  
20  
-
-
-
PA6  
PA7  
I/O  
I/O  
FT  
FT  
LPUART_RTS_DE,  
SPI2_MISO, SPI2_SCK,  
TIM1_CH2, I2S2_MISO,  
I2S2_SCK  
Wakeup, GPIO in  
DEEPSTOP, RTC_OUT  
G5  
1.7-3.6 battery voltage  
input  
21  
22  
23  
13  
14  
15  
G7  
G4  
G2  
VDD2  
RF1  
S
I/O  
S
-
RF  
-
--  
-
RF input/output.  
Impedance 50 Ω  
1.7-3.6 battery voltage  
input  
VDDRF  
-
24  
25  
16  
17  
E1  
F1  
OSCOUT  
OSCIN  
I/O  
I/O  
RF  
RF  
-
-
32 MHz crystal  
32 MHz crystal  
1.7-3.6 battery voltage  
input  
26  
-
-
VDD4  
S
-
-
DS13282 - Rev 2  
page 25/72  
BlueNRG-LP  
Pinouts and pin description  
Pin number  
Pin name  
(function  
after reset)  
Pin  
type  
I/O  
structure  
Alternate functions  
Additional functions  
QFN48  
QFN32 WLCSP49  
I2C1_SMBA,  
TX_SEQUENCE, MCO,  
TIM1_CH4N, TIM1_CH6,  
USART_TX  
27  
18  
F2  
PB15  
I/O  
FT  
-
SPI1_MOSI, I2C2_SDA,  
TIM1_ETR, TIM1_CH3N,  
TIM1_CH5, USART_RX  
28  
29  
30  
19  
20  
21  
E2  
D2  
C2  
PB14  
PB13  
PB12  
I/O  
I/O  
I/O  
FT_a  
FT  
VIN_PVD  
SXTAL1  
SXTAL0  
SPI1_MISO, I2C2_SCL,  
PDM_CLK, TIM1_BKIN2,  
TIM1_CH4  
SPI1_SCK, LCO,  
PDM_DATA, TIM1_BKIN,  
TIM1_CH3  
FT  
31  
32  
33  
34  
35  
27  
22  
D1  
C1  
VCAP  
VFBSD  
NC  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
1.2 Vdigital core  
SMPS output  
-
23  
24  
B1  
A2  
VSSSD  
VLXSD  
SMPS Ground  
SMPS input/output  
1.7-3.6 battery voltage  
input  
36  
25  
A1  
VDDSD  
S
-
-
1.7-3.6 battery voltage  
input  
37  
38  
39  
40  
-
A4  
A5  
-
VDD3  
RSTN  
VDD1  
VDDA  
S
I/O  
S
-
-
-
-
-
26  
32  
-
RST  
Reset pin  
1.7-3.6 battery voltage  
input  
-
-
A6  
S
1.2 V analog ADC core  
SPI1_SCK, SPI2_NSS,  
I2C1_SCL, TIM1_CH1,  
TIM1_CH4N, I2S2_WS  
41  
42  
-
-
-
-
PB11  
PB10  
I/O  
I/O  
FT  
FT  
Wakeup  
SPI1_NSS, SPI2_SCK,  
I2C1_SDA, TIM1_CH2,  
TIM1_CH3N, I2S2_SCK  
Wakeup  
Wakeup  
USART_TX,  
LPUART_CTS, SPI2_MCK,  
TIM1_CH1N, TIM1_CH2N,  
I2S2_MCK  
43  
-
C3  
PB9  
I/O  
FT  
USART_CK, LPUART_RX,  
TIM1_CH4, TIM1_CH1N  
44  
45  
-
D4  
B2  
PB8  
PB7  
I/O  
I/O  
FT  
Wakeup  
Wakeup  
I2C2_SDA, SPI2_SCK,  
LPUART_RX, TIM1_CH2,  
I2S2_SCK  
28  
FT_f  
I2C2_SCL, SPI2_NSS,  
LPUART_TX, TIM1_CH1,  
I2S2_WS  
46  
29  
B3  
PB6  
I/O  
FT_f  
Wakeup  
PGA_VBIAS_MIC(1)  
wakeup  
,
LPUART_RX, SPI2_MOSI,  
PDM_CLK, I2S2_SD  
47  
48  
-
30  
31  
-
B4  
B5  
A7  
PB5  
PB4  
I/O  
I/O  
S
TT  
FT  
-
LPUART_TX, SPI2_MISO,  
PDM_DATA, I2S2_MISO  
PGA_VIN, wakeup  
Ground analog ADC  
core  
VSSA  
-
DS13282 - Rev 2  
page 26/72  
BlueNRG-LP  
Pinouts and pin description  
Pin number  
Pin name  
(function  
after reset)  
Pin  
type  
I/O  
structure  
Alternate functions  
Additional functions  
QFN48  
QFN32 WLCSP49  
-
-
-
-
-
-
-
-
-
-
-
-
A3  
F7  
F4  
G1  
G3  
F3  
VSSIO  
VSSIO  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
Ground I/O  
Ground I/O  
VSSIFADC  
VSSSX  
Ground analog RF  
Ground analog RF  
Ground analog RF  
Ground analog RF  
VSSRFTRX  
VSSRF  
Exposed Exposed  
pad pad  
-
GND  
S
-
-
Ground  
1. This pin is not 5 V tolerant.  
Table 4. Legend/abbreviations used in the pinout table  
Abbreviation  
Name  
Definition  
Unless otherwise specified in brackets below, the pin name and the pin function during  
and after reset are the same as the actual pin name  
Pin name  
S
Supply pin  
Pin type  
I
Input only pin  
I/O  
Input / output pin  
FT  
5 V tolerant I/O  
TT  
3.6 V tolerant I/O  
RF  
RST  
RF I/O  
Bidirectional reset pin with weak pull-up resistor  
I/O structure  
Options for TT or FT I/Os  
_f(1)  
.
I/O, Fm+ capable  
I/O, with analog switch function supplied by IO  
BOOSTER(3)  
_a(2)  
.
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after  
reset  
Notes  
Alternate functions Functions selected through GPIOx_AFR registers  
Pin functions  
Additional functions Functions directly selected/enabled through peripheral registers  
1. The related I/O structures in Table 3. Pin description are: FT_f  
2. The related I/O structures in Table 3. Pin description are: FT_a  
3. IO BOOSTER block allows the good behavior of those switches to be guaranteed when the VBAT goes below 2.7 V. Refer  
to the BlueNRG-LP reference Manual (RM0479) for more details.  
Table 5. Alternate function port A  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
-
AF7  
SPI1/  
SPI2/RTC  
USART/  
I2C1/I2C2/  
SYS_AF  
LPUART/ USART  
SPI1/SPI2/  
SYS_AF/  
USART/I2S2  
SPI2/ SPI3  
LPUART/  
I2S2/ I2S3  
Port  
TIM1  
SYS_AF  
SYS_AF  
TIM/ I2S2  
SPI2_MCK/  
I2S2_MCK  
Port  
A
PA0  
I2C1_SCL  
USART_CTS  
-
TIM1_CH3  
-
-
-
DS13282 - Rev 2  
page 27/72  
 
 
 
 
 
 
BlueNRG-LP  
Pinouts and pin description  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
-
AF7  
SPI1/  
SPI2/RTC  
USART/  
I2C1/I2C2/  
SYS_AF  
LPUART/ USART  
SPI1/SPI2/  
SYS_AF/  
USART/I2S2  
SPI2/ SPI3  
LPUART/  
I2S2/ I2S3  
Port  
TIM1  
SYS_AF  
SYS_AF  
TIM/ I2S2  
SPI2_MISO/  
I2S2_MISO  
PA1  
I2C1_SDA  
TMS_SWDIO  
TCK_SWCLK  
LCO  
USART_TX  
-
TIM1_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI3_MCK/  
I2S3_MCK  
PA2  
PA3  
PA4  
PA5  
PA6  
USART_CK  
TIM_BKIN  
TIM1_CH5 TMS_SWDIO  
TIM1_CH6 TCK_SWCLK  
TMS_SWDIO  
SPI3_SCK/  
I2S3_SCK  
USART_RTS_DE TIM_BKIN2  
TCK_SWCLK  
SPI2_NSS/  
-
LPUART_TX TIM1_CH1  
LPUART_RX TIM1_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2S2_WS  
SPI2_SCK/  
-
MCO  
I2S2_SCK  
SPI2_MOSI/  
I2S2_SD  
SPI2_NSS/  
TIM1_CH1  
I2S2_WS  
LPUART_CTS  
-
SPI2_MISO/  
-
SPI2_SCK/  
TIM1_CH2  
I2S2_SCK  
PA7 LPUART_RTS_DE  
I2S2_MISO  
Port  
A
SPI3_MISO/  
TIM1_CH3  
I2S3_MISO  
PA8  
PA9  
USART_RX  
USART_TX  
LCO  
SPI1_MOSI  
SPI1_SCK  
-
SPI3_NSS/  
TIM1_CH4  
I2S3_WS  
RTC_OUT  
SPI3_MCK/  
TIM1_CH5  
I2S3_MCK  
PA10  
PA11  
PA12  
PA13  
SPI1_MISO  
SPI1_NSS  
-
SPI3_MOSI/  
TIM1_CH6  
I2S3_SD  
MCO  
-
SPI2_MOSI/  
TIM1_CH1  
I2S2_SD  
I2C1_SMBA  
I2C2_SCL  
TMS_SWDIO  
TCK_SWCLK  
SPI1_NSS  
SPI1_SCK  
SPI2_MISO/  
TIM1_ETR  
I2S2_MISO  
PA14  
PA15  
I2C2_SDA  
-
-
SPI1_MISO  
SPI1_MOSI  
TIM1_BKIN  
-
-
-
-
-
-
I2C2_SMBA  
-
TIM1_BKIN2  
DS13282 - Rev 2  
page 28/72  
BlueNRG-LP  
Pinouts and pin description  
Table 6. Alternate function port B  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
SPI2/  
I2C1/PDM  
TIM1/  
SYS_AF/  
I2S2  
Port  
SPI1/I2C2  
USART/LPUART LPUART/SPI2/I2S2  
PDM/SYS_AF/I2C2  
TIM1/PDM  
LPUART  
TIM1  
-
-
USART  
PB0  
PB1  
USART_RX  
SPI1_NSS  
LPUART_RTS_DE  
PDM_CLK  
-
-
-
-
TIM1_CH2N  
TIM1_ETR  
TIM1_CH3  
TIM1_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB2 USART_RTS_DE  
PDM_DATA  
PB3  
PB4  
USART_CTS  
LPUART_TX  
LPUART_TX  
SPI2_MISO/  
I2S2_MISO  
-
-
-
PDM_DATA  
PDM_CLK  
-
-
-
-
-
-
-
-
-
-
-
SPI2_MOSI/  
I2S2_SD  
PB5  
PB6  
LPUART_RX  
I2C2_SCL  
SPI2_NSS/  
I2S2_WS  
LPUART_TX TIM1_CH1  
SPI2_SCK/  
IS2S_SCK  
PB7  
PB8  
PB9  
I2C2_SDA  
USART_CK  
USART_TX  
-
-
LPUART_RX TIM1_CH2  
TIM1_CH4 TIM1_CH1N  
TIM1_CH1N TIM1_CH2N  
-
-
-
-
-
-
-
-
-
Port  
B
LPUART_RX  
SPI2_MCK/  
I2S2_MCK  
LPUART_CTS  
SPI2_SCK/  
I2S2_SCKK  
PB10  
PB11  
SPI1_NSS  
SPI1_SCK  
I2C1_SDA  
I2C1_SCL  
TIM1_CH2 TIM1_CH3N  
TIM1_CH1 TIM1_CH4N  
-
-
-
-
-
-
SPI2_NSS/  
I2S2_WS  
PB12  
PB13  
PB14  
PB15  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
I2C1_SMBA  
LCO  
PDM_DATA  
PDM_CLK  
TIM1_ETR  
MCO  
TIM1_BKIN  
TIM1_CH3  
-
-
-
-
-
-
-
-
-
I2C2_SCL  
TIM1_BKIN2 TIM1_CH4  
TIM1_CH3N TIM1_CH5  
TIM1_CH4N TIM1_CH6  
-
I2C2_SDA  
USART_RX  
USART_TX  
TX_SEQUENCE  
DS13282 - Rev 2  
page 29/72  
 
BlueNRG-LP  
Memory mapping  
3
Memory mapping  
Program memory, data memory and registers are organized within the same linear 4-Gbyte address space. The  
detailed memory map and the peripheral mapping of the BlueNRG-LP can be found in the reference manual  
(RM0479).  
Figure 10. Memory map  
0xFFFF FFFF  
Reserved  
0x8FFF FFFF  
Reserved  
0x6002 0000  
0xE00F FFFF  
CortexTM M0+  
Internal  
APB2 (RF)  
0x6000 0000  
Reserved  
Peripherals  
0xE000 0000  
AHB0  
0x4800 0000  
Reserved  
0x4100 2000  
Reserved  
APB1  
0x4100 0000  
Reserved  
0x4002 0000  
APB0  
0x8FFF FFFF  
0x4000 0000  
0x2FFF FFFF  
Reserved  
0x2000 FFFF  
SRAM3 (16 kB)  
Peripherals  
0x2000 C000  
0x2000 8000  
SRAM2 (16 kB)  
SRAM1 (16 kB)  
SRAM0 (16 kB)  
0x2000 4000  
0x2000 0000  
0x4000 0000  
Reserved  
0x2FFF FFFF  
0x2000 0000  
Reserved  
0x1007 FFFF  
0x1004 0000  
SRAM  
Main FLASH (256 kB)  
Reserved  
0x1007 FFFF  
0x0000 0000  
Reserved  
Reserved  
0x1000 0000  
0x0000 3FFF  
CODE  
CortexTM M0+  
Flash or SRAM0,  
depending on REMAP  
configuration  
0x0000 0000  
DS13282 - Rev 2  
page 30/72  
 
 
BlueNRG-LP  
Application circuits  
4
Application circuits  
The schematics below are purely indicative.  
Figure 11. Application circuit: DC-DC converter, QFN48 package  
1.7 V to 3.6 V Power Supply  
C1  
C4  
C2  
C3  
C5  
XTAL_LS  
C7  
C6  
Q1  
Q2  
L1  
C8  
XTAL_HS  
24  
23  
22  
21  
20 PA7  
19 PA6  
18 PA5  
17 PA4  
16 PA3  
15 PA2  
14 PA1  
13 PA0  
C9  
37  
C10  
VDD3  
OSCOUT  
VDDRF  
C11  
L2  
C15  
L3  
RSTN 38  
RSTN  
VDD1  
VDDA  
PB11  
PB10  
PB9  
PB8  
PB7  
PB6  
PB5  
39  
40  
41  
RF1  
VDD2  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
C16  
C12  
PB11  
PB10 42  
C14  
C13  
PB9  
PB8  
PB7  
PB6  
PB5  
PB4  
43  
44  
45  
46  
47  
48  
BlueNRG-LP  
PB4  
49  
GND  
U1  
DS13282 - Rev 2  
page 31/72  
 
 
BlueNRG-LP  
Application circuits  
Figure 12. Application circuit: DC-DC converter, WCSP49 package  
C13  
C10 C14  
C9 C8  
1.7 V to 3.6 V Power Supply  
C5  
RSTN  
C1  
U1  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA7  
PA8  
PA9  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
F6  
G6  
E5  
E4  
E3  
F5  
G5  
E7  
D7  
E6  
D3  
D6  
D5  
C7  
C6  
C5  
C4  
B7  
B6  
B5  
B4  
B3  
B2  
D4  
C3  
C2  
D2  
E2  
F2  
L1  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA7  
PA8  
A2  
VLXSD  
VFBSD  
C1  
C6  
PA9  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PB12  
PB13  
PB14  
PB15  
C11  
L2  
L3  
G4  
RF1  
BlueNRG-LP  
C15  
C16  
C12  
Q2  
C3  
PB7  
PB8  
PB9  
F1  
E1  
OSCIN  
OSCOUT  
XTAL_HS  
Q1  
PB14  
PB15  
XTAL_LS  
C2  
Figure 13. Application circuit: DC-DC converter, QFN32 package  
1.7 V to 3.6 V Power Supply  
C1  
C20  
C19  
XTAL_LS  
C7  
C23  
Q1  
Q2  
L4  
C8  
XTAL_HS  
25  
16  
15  
14  
13  
VDDSD  
RSTN  
VCAP  
PB7  
PB6  
PB5  
OSCOUT  
VDDRF  
RF1  
VDD2  
PA3  
PA2  
PA1  
PA0  
C11  
L2  
L3  
RSTN 26  
27  
C5  
PB7  
PB6  
PB5  
PB4  
28  
29  
30  
31  
32  
BlueNRG-LP  
PA3  
12  
C15  
PA2  
11  
C16  
C12  
PA1  
10  
PB4  
VDD1  
PA0  
9
C10  
C14  
33  
GND  
U1  
DS13282 - Rev 2  
page 32/72  
 
 
BlueNRG-LP  
Application circuits  
Table 7. Application circuit external components  
Component  
C1  
Description  
Decoupling capacitor  
C2  
32 kHz crystal loading capacitor  
32 kHz crystal loading capacitor  
Decoupling capacitor  
C3  
C4  
C5  
Decoupling capacitor for digital regulator  
DC – DC converter output capacitor  
Decoupling capacitor  
C6  
C7  
C8  
Decoupling capacitor  
C9  
DC-DC converter output inductor  
Decoupling capacitor  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
L1  
Decoupling capacitor  
RF matching capacitor  
Decoupling capacitor  
Decoupling capacitor  
RF matching capacitor  
RF matching capacitor  
DC-DC converter output inductor  
RF matching inductor  
L2  
L3  
RF matching capacitor  
Low speed crystal  
Q1  
Q2  
High speed crystal  
U1  
BlueNRG-LP  
U2  
Low/band pass filter  
Note:  
In order to make the board DC–DC OFF, the inductance L1 must be removed and the supply voltage must be  
applied to the VFBSD pin.  
DS13282 - Rev 2  
page 33/72  
 
BlueNRG-LP  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to ground (GND).  
5.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the following standard  
conditions:  
Ambient temperature is TA = 25 °C  
Supply voltage is VDD: 3.3 V  
System clock frequency is 32 MHz (clock source HSI)  
SMPS clock frequency is 4 MHz  
Data based on characterization results, design simulation and/or technology characteristics are indicated in the  
table footnotes and are not tested in production. Based on characterization, the minimum and maximum values  
refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ).  
5.1.2  
Typical values  
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V. They are given only as design  
guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion  
lot over the full temperature range, where 95% of the devices have an error less than or equal to the value  
indicated (mean ± 2σ).  
5.1.3  
5.1.4  
Typical curves  
Unless otherwise specified, all typical curves are only given as design guidelines and are not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in the figure below.  
Figure 14. Pin loading conditions  
5.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in the figure below.  
DS13282 - Rev 2  
page 34/72  
 
 
 
 
 
 
 
 
BlueNRG-LP  
Parameter conditions  
Figure 15. Pin input voltage  
DS13282 - Rev 2  
page 35/72  
 
BlueNRG-LP  
Absolute maximum ratings  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in the tables below, may cause permanent damage to the  
device. These are stress ratings only and functional operation of the device at these conditions is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
Table 8. Voltage characteristics  
Symbol  
VDD1, VDD2, VDD3, VDD4, VDDRF, VDDSD  
VCAP, VDDA  
Ratings  
Min. Max. Unit  
-0.3 +3.9  
DC-DC converter supply voltage input and output  
DC voltage on linear voltage regulator  
DC voltage on digital input/output pins  
DC voltage on analog pins  
-0.3 +1.32  
PA0 to PA15, PB0 to PB4, PB6 to PB15  
VLXSD, VFBSD  
V
-0.3 +3.9  
XTAL0/PB12, XTAL1/PB13, OSCIN, OSCOUT, PB5 DC voltage on XTAL pins and PGA_VBIAS_MIC  
+3.6  
-0.3  
RF1  
DC voltage on RF pin  
+1.4  
Variations between different V  
DDX  
|ΔV  
|
50  
mV  
DD  
power pins of the same domain  
Note:  
All the main power and ground pins must always be connected to the external power supply, in the permitted  
range.  
Table 9. Current characteristics  
Symbol  
Ratings  
Max.  
130  
130  
100  
Unit  
ΣIV  
Total current into sum of all VDD power lines (source)  
Total current out of sum of all ground lines (sink)  
Maximum current into each VDD power pin (source)  
DD  
ΣIV  
GND  
IV  
DD(PIN)  
IV  
Maximum current out of each ground pin (sink)  
Output current sunk by any I/O and control pin  
100  
20  
GND(PIN)  
mA  
I
IO(PIN)  
Output current sourced by any I/O and control pin  
20  
Total output current sunk by sum of all I/Os and control pins  
Total output current sourced by sum of all I/Os and control pins  
100  
100  
ΣI  
IO(PIN)  
Table 10. Thermal characteristics  
Symbol  
Ratings  
Value  
-40 to -125  
125  
Unit  
T
Storage temperature range  
Maximum junction temperature  
STG  
°C  
T
J
DS13282 - Rev 2  
page 36/72  
 
 
 
 
BlueNRG-LP  
Operating conditions  
5.3  
Operating conditions  
5.3.1  
Summary of main performance  
Table 11. Main performance SMPS ON  
Typ.  
Test conditions  
Typ.  
Symbol  
Parameter  
Unit  
VDD = 1.8 V  
VDD = 3.3 V  
SHUTDOWN  
8
19  
nA  
DEEPSTOP, no  
timer, wake-up  
GPIO, RAM0  
retained  
0.44  
0.46  
DEEPSTOP, no  
timer, wakeup  
GPIO, all RAM  
retained  
0.62  
0.64  
DEEPSTOP (32  
kHz LSI), RAM0  
retained  
0.94  
1.12  
0.64  
0.83  
1.06  
1.24  
0.75  
0.94  
2719  
2188  
µA  
DEEPSTOP (32  
kHz LSI), all RAMs  
retained  
DEEPSTOP (32  
kHz LSE), RAM0  
retained  
Core current  
consumption  
I
CORE  
DEEPSTOP (32  
kHz LSE), all RAM  
retained  
CPU in RUN (64  
MHz). Dhrystone,  
clock source PLL64  
CPU in RUN (32  
MHz). Dhrystone,  
clock source PLL64  
CPU in WFI (64  
MHz), all  
peripherals off,  
clock source PLL64  
uA  
1708  
Radio RX at  
sensitivity level  
3350  
4300  
Radio TX 0 dBm  
output power  
Computed value:  
(CPU 64 MHz  
Dhrystone - CPU  
32 MHz  
I
Dynamic current  
18  
µA/MHz  
DYNAMIC  
Dhrystone) / 32  
DS13282 - Rev 2  
page 37/72  
 
 
 
BlueNRG-LP  
Operating conditions  
Table 12. Main performance SMPS bypassed  
Typ.  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
VDD = 1.8 V  
VDD = 3.3 V  
SHUTDOWN  
8
19  
nA  
DEEPSTOP, no  
timer, wake-up  
GPIO, RAM0  
retained  
0.44  
0.62  
0.46  
0.64  
DEEPSTOP, no  
timer, wake-up  
GPIO, all RAM  
retained  
DEEPSTOP (32  
kHz LSI), RAM0  
retained  
0.94  
1.12  
0.64  
0.83  
1.06  
1.24  
0.75  
0.94  
4482  
DEEPSTOP (32  
kHz LSI), all RAMs  
retained  
Core current  
consumption  
DEEPSTOP (32  
kHz LSE ), RAM0  
retained  
I
CORE  
µA  
DEEPSTOP (32  
kHz LSE), all RAM  
retained  
CPU in RUN (64  
MHz). Dhrystone,  
clock source PLL64  
CPU in WFI (64  
MHz), all  
peripherals off,  
clock source PLL64  
2230  
Radio RX at  
sensitivity level  
6700  
8900  
Radio TX 0 dBm  
output power  
Table 13. Peripheral current consumption at VDD = 3.3 V, sysclk at 32 MHz, SMPS on  
Parameter  
ADC  
Test conditions  
Typ.  
80  
39  
2
Unit  
DMA  
GPIOA  
GPIOB  
I2C1  
2
40  
39  
46  
47  
11  
52  
50  
I2C2  
µA  
I2S2  
Peripheral clock at 32 MHz  
Peripheral clock at 32 MHz  
I2S3  
IWDG  
LPUART  
PKA  
DS13282 - Rev 2  
page 38/72  
 
 
BlueNRG-LP  
Operating conditions  
Parameter  
RNG  
Test conditions  
Typ.  
Unit  
64  
14  
35  
40  
42  
8
RTC  
SPI1  
SPI2  
Peripheral clock at 16 MHz  
Peripheral clock at 16 MHz  
SPI3  
µA  
Systick  
TIM1  
248  
81  
33  
301  
9
USART  
SYSCFG  
THSENS  
CRC  
5.3.2  
General operating conditions  
Table 14. General operating conditions  
Conditions  
Symbol  
Parameter  
Min.  
1
Max.  
64  
Unit  
f
Internal AHB clock frequency  
HCLK  
f
Internal APB0 clock  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
SMPS feedback voltage  
Minimum RF voltage  
1
64  
PCLK0  
MHz  
f
1
64  
PCLK1  
f
16  
1.7  
1.4  
1.7  
-0.3  
32  
PCLK2  
V
DD  
3.6  
V
3.6  
FBSMPS  
V
V
3.6  
DDRF  
V
I/O input voltage  
VDD+0.3  
IN  
QFN48 package  
QFN32 package  
Power dissipation at T =105 °C(1)  
P
30  
mW  
°C  
D
A
T
A
Ambient temperature  
Maximum power dissipation  
-40  
-40  
105  
105  
T
Junction temperature range  
J
1.  
T cannot exceed the T max.  
A J  
5.3.3  
RF general characteristics  
All performance data are referred to a 50 Ω antenna connector, via reference design.  
Table 15. Bluetooth Low Energy RF general characteristics  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Frequency range(1)  
F
2400  
2402  
2483.5  
2480  
RANGE  
MHz  
MHz  
RF channel center frequency(1)  
RF channel spacing(1)  
RF  
CH  
PLL  
2
RES  
DS13282 - Rev 2  
page 39/72  
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
Symbol  
ΔF  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Frequency deviation(1)  
250  
kHz  
kHz  
Frequency deviation average(1)  
Δf1  
450  
550  
During the packet and including  
both initial frequency offset and drift  
Center frequency deviation(1)  
C
Fdev  
±150  
kHz  
Frequency deviation Δf2 (average) / Δf1  
(average)(1)  
Δfa  
0.80  
1
On-air data rate(1)  
Symbol time accuracy(1)  
Modulation scheme  
R
gfsk  
2
Mbps  
ppm  
STacc  
MOD  
BT  
±50  
GFSK  
0.5  
Bandwidth-bit period product  
Modulation index(1)  
Mindex  
0.45 0.5  
+8  
0.55  
At antenna connector, VSMPS =  
1.9 V, LDO code  
PMAX  
PMIN  
Maximum output  
Minimum output  
dBm  
dBm  
At antenna connector  
@ 27 °C  
-20  
±1.5  
±2.5  
PRFC  
RF power accuracy  
dB  
All temperatures  
1. Tested according to Bluetooth SIG radio frequency physical layer (RF PHY) test suite (not tested in production).  
5.3.4  
RF transmitter characteristics  
All performance data are referred to a 50 Ω antenna connector, via reference design.  
Table 16. Bluetooth Low Energy RF transmitter characteristics at 1 Mbps not coded  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
6 dB bandwidth for modulated  
carrier  
P
Using resolution bandwidth of 100 kHz  
500  
kHz  
dBm  
dBm  
dBm  
kHz  
kHz  
kHz  
BW1M  
Using resolution bandwidth of 100 kHz and  
average detector  
In-band emission at ±2 MHz(1)  
P
P
, 1 Ms/s  
-20  
-30  
-41  
RF1  
RF2  
In-band emission at ±[3+n]MHz,  
where n=0,1,2..(1)  
Using resolution bandwidth of 100 kHz and  
average detector  
, 1 Ms/s  
Harmonics included. Using resolution  
bandwidth of 1 MHz and average detector  
PS  
Spurious emission  
Frequency drift(1)  
PUR  
Integration interval #n – integration interval  
#0, where n=2,3,4..k  
Freq  
-50  
-23  
-20  
-20  
+50  
+23  
+20  
+20  
drift  
Integration interval #1 – integration interval  
#0  
Initial carrier frequency drift(1)  
IFreq  
drift  
Intermediate carrier frequency  
drift(1)  
Integration interval #n – integration interval  
#(n-5), where n=6,7,8..k  
Int  
Freqdrift  
Between any two 10-bit groups separated by  
50 µs  
kHz/50  
µs  
Maximum drift rate(1)  
Drift Rate max  
Optimum RF load  
Z
@ 2440 MHz  
40  
RF1  
(impedance at RF1 pin)  
1. Tested according to Bluetooth SIG radio frequency physical layer (RF PHY) test suite (not tested in production).  
DS13282 - Rev 2  
page 40/72  
 
 
 
 
BlueNRG-LP  
Operating conditions  
Table 17. Bluetooth Low Energy RF transmitter characteristics at 2 Mbps not coded  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
6 dB bandwidth for modulated  
carrier  
P
Using resolution bandwidth of 100 kHz  
670  
kHz  
BW1M  
Using resolution bandwidth of 100 kHz and  
average detector  
In-band emission at ±4 MHz(1)  
In-band emission at±5 MHz(1)  
P
P
P
, 2 Ms/s  
-20  
-20  
-30  
-41  
dBm  
dBm  
dBm  
dBm  
RF1  
Using resolution bandwidth of 100 kHz and  
average detector  
, 2 Ms/s  
RF2  
In-band emission at ±[6+n]MHz,  
where n=0,1,2..(1)  
Using resolution bandwidth of 100 kHz and  
average detector  
, 2 Ms/s  
RF3  
Harmonics included. Using resolution  
bandwidth of 1 MHz and average detector  
P
Spurious emission  
SPUR  
Integration interval #n – integration interval  
#0, where n=2,3,4..k  
Frequency drift(1)  
Freq  
-50  
+50  
+23  
+20  
kHz  
kHz  
kHz  
drift  
Initial carrier frequency drift(1)  
IFreq  
Integration interval #1 – integration interval #0 -23  
drift  
Intermediate carrier frequency  
drift(1)  
Integration interval #n – integration interval  
IntFreq  
-20  
drift  
#(n-5), where n=6,7,8..k  
Between any two 20-bit groups separated by  
Maximum drift rate(1)  
DriftRate  
-20  
+20 kHz/50µs  
max  
50 µs  
Optimum RF load  
Z
@ 2440 MHz  
40  
RF1  
(impedance at RF1 pin)  
1. Tested according to Bluetooth SIG radio frequency physical layer (RF PHY) test suite (not tested in production).  
Table 18. Bluetooth Low Energy RF transmitter characteristics at 1 Mbps LE coded (S=8)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Unit  
6 dB bandwidth for modulated  
carrier  
P
Using resolution bandwidth of 100 kHz  
500  
kHz  
BW  
Using resolution bandwidth of 100 kHz and  
average detector  
In-band emission at ±2 MHz(1)  
P
P
coded  
-20  
-30  
-41  
dBm  
dBm  
dBm  
kHz  
kHz  
kHz  
RF1, LE  
In-band emission at ±[3+n]  
MHz, where n=0,1,2..(1)  
Using resolution bandwidth of 100 kHz and  
average detector  
coded  
RF2, LE  
Harmonics included. Using resolution  
bandwidth of 1 MHz and average detector  
PS  
Spurious emission  
Frequency drift(1)  
PUR  
Integration interval #n – integration interval  
#0, where n=1,2,3..k  
Freq  
-50  
+50  
drift  
Integration interval #3 – integration interval  
#0  
Initial carrier frequency drift(1)  
IFreq  
-19.2  
-19.2  
-19.2  
+19.2  
+19.2  
+19.2  
drift  
Intermediate carrier frequency  
drift(1)  
Integration interval #n – integration interval  
#(n-3), where n=7,8,9..k  
IntFreq  
drift  
Between any two 16-bit groups separated  
by 48 µs  
kHz/48  
µs  
Maximum drift rate(1)  
DriftRate  
max  
Optimum RF load  
Z
@ 2440 MHz  
40  
RF1  
(Impedance at RF1 pin)  
1. Tested according to Bluetooth SIG radio frequency physical layer (RF PHY) test suite (not tested in production).  
5.3.5  
RF receiver characteristics  
All performance data are referred to a 50 Ω antenna connector, via reference design.  
DS13282 - Rev 2  
page 41/72  
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
Table 19. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s uncoded  
Symbol  
Parameter  
Sensitivity  
Saturation  
Test conditions  
PER < 30.8%  
PER < 30.8%  
Min. Typ. Max. Unit  
RX  
-
-97  
8
dBm  
dBm  
SENS  
P
SAT  
Optimum RF source  
Z
@ 2440 MHz  
40  
Ω
RF1  
(impedance at RF1 pin)  
RF selectivity with BLE equal modulation on interfering signal  
Co-channel interference  
= f  
C/I  
Wanted signal = -67 dBm, PER < 30.8%  
Wanted signal = -67 dBm, PER < 30.8%  
Wanted signal = -67 dBm, PER < 30.8%  
8
dBc  
dBc  
dBc  
CO-channel  
f
RX  
interference  
Adjacent interference  
= f ± 1 MHz  
C/I  
-1  
1 MHz  
f
f
interference  
RX  
Adjacent Interference  
= f ± 2 MHz  
C/I  
-35  
2 MHz  
interference  
RX  
Adjacent interference  
= f ± (3+n) MHz  
C/I  
f
interference  
Wanted signal = -67 dBm, PER < 30.8%  
-47  
dBc  
3 MHz  
RX  
[n = 0,1,2…]  
Image frequency interference  
= f  
C/I  
Wanted signal = -67 dBm, PER < 30.8%  
Wanted signal= -67 dBm, PER < 30.8%  
-25  
-25  
dBc  
dBc  
Image  
f
interference  
image  
Adjacent channel-to-image frequency  
= f ± 1 MHz  
C/I  
Image±1 MHz  
f
interference  
image  
Out of band blocking (interfering signal CW)  
Interfering signal frequency 30 MHz –  
2000 MHz  
Wanted signal = -67 dBm, PER < 30.8%,  
measurement resolution 10 MHz  
C/I  
5
dBm  
dBm  
dBm  
dBm  
Block  
Interfering signal frequency 2003 MHz – Wanted signal = -67 dBm, PER < 30.8%,  
2399 MHz measurement resolution 3 MHz  
C/I  
-5  
-5  
10  
Block  
Interfering signal frequency 2484 MHz – Wanted signal = -67 dBm, PER < 30.8%,  
2997 MHz measurement resolution 3 MHz  
C/I  
Block  
Interfering signal frequency 3000 MHz – Wanted signal = -67 dBm, PER < 30.8%,  
12.75 GHz measurement resolution 25 MHz  
C/I  
Block  
Intermodulation characteristics (CW signal at f , BLE interfering signal at f )  
1
2
Input power of IM interferer at 3 and 6  
MHz distance from wanted signal  
P_IM(3)  
Wanted signal = -64 dBm, PER < 30.8%  
Wanted signal = -64 dBm, PER < 30.8%  
Wanted signal= -64 dBm, PER < 30.8%  
Wanted signal = -64 dBm, PER < 30.8%  
-27  
-40  
-32  
-32  
dBm  
dBm  
dBm  
dBm  
Input power of IM interferer at -3 and -6  
MHz distance from wanted signal  
P_IM(-3)  
P_IM(4)  
P_IM(5)  
Input power of IM interferer at ±4 and ±8  
MHz distance from wanted signal  
Input power of IM interferer at ±5 and ±10  
MHz distance from wanted signal  
Table 20. Bluetooth Low Energy RF receiver characteristics at 2 Msym/s uncoded  
Symbol  
Parameter  
Sensitivity  
Saturation  
Test conditions  
PER < 30.8%  
PER < 30.8%  
Min. Typ. Max. Unit  
RX  
-94  
8
dBm  
dBm  
SENS  
P
SAT  
DS13282 - Rev 2  
page 42/72  
 
 
BlueNRG-LP  
Operating conditions  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Optimum RF source  
Z
RF1  
@ 2440 MHz  
40  
Ω
(impedance at RF1 pin)  
RF selectivity with BLE equal modulation on interfering signal  
Co-channel interference  
= f  
C/I  
Wanted signal= -67 dBm, PER < 30.8%  
8
dBc  
dBc  
dBc  
CO-channel  
f
RX  
interference  
Adjacent interference  
= f ± 2 MHz  
Wanted signal = -67 dBm, PER <  
30.8%  
C/I  
-14  
-41  
2 MHz  
f
f
interference  
RX  
Adjacent interference  
= f ± 4 MHz  
Wanted signal = -67 dBm, PER <  
30.8%  
C/I  
4 MHz  
interference  
RX  
Adjacent interference  
= f ± (6+2n) MHz  
Wanted signal = -67 dBm, PER <  
30.8%  
C/I  
f
interference  
-45  
dBc  
6 MHz  
RX  
[n = 0,1,2…]  
Image frequency interference  
= f  
Wanted signal = -67 dBm, PER <  
30.8%  
C/I  
-25  
-14  
dBc  
dBc  
Image  
f
interference  
image-2M  
Adjacent channel-to-image frequency  
= f ± 2 MHz  
C/I  
Wanted signal= -67 dBm, PER < 30.8%  
Image±1 MHz  
f
interference  
image-2M  
Out of band blocking (interfering signal CW)  
Wanted signal= -67 dBm, PER <  
30.8%, measurement resolution 10  
MHz  
Interfering signal frequency 30 MHz –  
2000 MHz  
C/I  
5
dBm  
Block  
Interfering signal frequency 2003 MHz –  
2399 MHz  
Wanted signal= -67 dBm, PER <  
30.8%, measurement resolution 3 MHz  
C/I  
-5  
-5  
dBm  
dBm  
Block  
Interfering signal frequency 2484 MHz –  
2997 MHz  
Wanted signal= -67 dBm, PER <  
30.8%, measurement resolution 3 MHz  
C/I  
Block  
Wanted signal= -67 dBm, PER <  
30.8%, measurement resolution 25  
MHz  
Interfering signal frequency 3000 MHz –  
12.75 GHz  
C/I  
10  
dBm  
Block  
Intermodulation characteristics (CW signal at f , BLE interfering signal at f )  
1
2
Input power of IM interferer at 6 and 12  
MHz distance from wanted signal  
P_IM(6)  
Wanted signal= -64 dBm, PER < 30.8%  
Wanted signal= -64 dBm, PER < 30.8%  
Wanted signal= -64 dBm, PER < 30.8%  
Wanted signal= -64 dBm, PER < 30.8%  
-27  
-30  
-30  
-28  
dBm  
dBm  
dBm  
dBm  
Input power of IM interferer at -6 and -12  
MHz distance from wanted signal  
P_IM(-6)  
P_IM(8)  
P_IM(10)  
Input power of IM interferer at ±8 and ±16  
MHz distance from wanted signal  
Input power of IM interferer at ±10 and  
±20 MHz distance from wanted signal  
Table 21. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s LE coded (S=2)  
Symbol  
Parameter  
Sensitivity  
Saturation  
Test conditions  
PER < 30.8%  
PER < 30.8%  
Min. Typ. Max. Unit  
RX  
-100  
8
dBm  
dBm  
SENS  
P
SAT  
-
Optimum RF source  
Z
@ 2440 MHz  
40  
Ω
RF1  
(impedance at RF1 pin)  
DS13282 - Rev 2  
page 43/72  
 
BlueNRG-LP  
Operating conditions  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
RF selectivity with BLE equal modulation on interfering signal  
Co-channel interference  
C/I -channel  
Wanted signal = -79 dBm, PER < 30.8%  
2
dBc  
dBc  
dBc  
CO  
f
RX  
= f  
interference  
Adjacent interference  
= f ± 1 MHz  
C/I  
Wanted signal = -79 dBm, PER < 30.8%  
Wanted signal = -79 dBm, PER < 30.8%  
-5  
1 MHz  
f
f
interference  
RX  
Adjacent interference  
= f ± 2 MHz  
C/I  
-38  
2 MHz  
interference  
RX  
Adjacent interference  
= f ± (3+n) MHz  
C/I  
f
interference  
Wanted signal = -79 dBm, PER < 30.8%  
-50  
dBc  
3 MHz  
RX  
[n = 0,1,2…]  
Image frequency interference  
= f  
C/I  
Wanted signal = -79 dBm, PER < 30.8%  
Wanted signal = -79 dBm, PER < 30.8%  
-30  
-34  
dBc  
dBc  
Image  
f
interference  
image  
Adjacent channel-to-image frequency  
= f ± 1 MHz  
C/I  
MHz  
Image±1  
f
interference  
image  
Table 22. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s LE coded (S=8)  
Symbol  
Parameter  
Sensitivity  
Saturation  
Test conditions  
PER < 30.8%  
PER < 30.8%  
Min. Typ. Max. Unit  
RX  
-104  
8
dBm  
dBm  
SENS  
P
SAT  
-
Optimum RF source  
Z
@ 2440 MHz  
40  
Ω
RF1  
(impedance at RF1 pin)  
RF selectivity with BLE equal modulation on interfering signal  
Co-channel interference  
C/I  
Wanted signal = -79 dBm, PER < 30.8%  
1
dBc  
dBc  
dBc  
CO-channel  
f
= f  
interference  
RX  
Adjacent interference  
= f ± 1 MHz  
C/I  
Wanted signal = -79 dBm, PER < 30.8%  
Wanted signal = -79 dBm, PER < 30.8%  
-4  
1 MHz  
f
f
interference  
RX  
Adjacent interference  
= f ± 2 MHz  
C/I  
-39  
2 MHz  
interference  
RX  
Adjacent interference  
= f ± (3+n) MHz  
C/I  
f
interference  
Wanted signal = -79 dBm, PER < 30.8%  
-53  
dBc  
3 MHz  
RX  
[n = 0,1,2…]  
Image frequency interference  
= f  
C/I  
Wanted signal = -79 dBm, PER < 30.8%  
Wanted signal = -79 dBm, PER < 30.8%  
-33  
-32  
dBc  
dBc  
Image  
f
interference  
image  
Adjacent channel-to-image frequency  
= f ± 1 MHz  
C/I  
± 1 MHz  
Image  
f
interference  
image  
DS13282 - Rev 2  
page 44/72  
 
BlueNRG-LP  
Operating conditions  
5.3.6  
Embedded reset and power control block characteristics  
Table 23. Embedded reset and power control block characteristics  
Symbol  
TRSTTEMPO  
VPDR  
Parameter  
Reset temporization after PDR is detected  
Power-down reset threshold  
PVD threshold 0  
Test conditions  
Min. Typ. Max. Unit  
500 us  
VDD rising  
1.63  
2.02  
2.17  
2.33  
2.49  
2.61  
2.78  
2.87  
VPVD0  
Falling edge  
Falling edge  
Falling edge  
Falling edge  
Falling edge  
Falling edge  
Falling edge  
VPVD1  
PVD threshold 1  
VPVD2  
PVD threshold 2  
V
VPVD3  
PVD threshold 3  
VPVD4  
PVD threshold 4  
VPVD5  
PVD threshold 5  
VPVD6  
PVD threshold 6  
5.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as: the operating voltage, ambient  
temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program  
location in memory and executed binary code.  
The MCU is put under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number  
When the peripherals are enabled fPCLK = fHCLK  
Table 24. Current consumption  
Typ.  
Symbol  
Parameter  
Conditions  
= 64 MHz  
Unit  
25 °C 85 °C 105 °C  
f
HCLK  
2.40  
1.98  
1.62  
2.49  
2.03  
1.67  
2.54  
2.08  
1.71  
All peripherals disabled  
= 32 MHz  
f
HCLK  
I
(RUN)  
DD  
Supply current in RUN mode  
mA  
All peripherals disabled  
= 16 MHz  
f
HCLK  
All peripherals disabled  
Timer OFF  
0.65  
1.25  
6.73  
7.41  
15.73  
16.46  
Timer source LSI  
Timer source LSI  
RTC ON  
1.30  
1.27  
7.56  
7.47  
16.70  
16.55  
Supply current in DEEPSTOP(1)  
I
(DEEPSTOP)  
µA  
DD  
Timer source LSI  
IWDG ON  
Timer source LSI  
RTC and IWDG ON  
1.33  
1.00  
7.61  
7.16  
16.79  
16.22  
Timer source LSE  
DS13282 - Rev 2  
page 45/72  
 
 
 
 
BlueNRG-LP  
Operating conditions  
Typ.  
Unit  
25 °C 85 °C 105 °C  
Symbol  
Parameter  
Conditions  
Timer source LSE  
RTC ON  
1.06  
1.02  
1.07  
7.31  
7.22  
7.36  
16.45  
16.30  
16.54  
Timer source LSE  
IWDG ON  
Supply current in DEEPSTOP(1)  
I
(DEEPSTOP)  
DD  
µA  
Timer source LSE  
RTC and IWDG ON  
I
(SHUTDOWN)  
Supply current in SHUTDOWN  
Current under reset condition  
0.02  
1.34  
0.46  
1.45  
1.36  
1.55  
DD  
I
(RST)  
DD  
mA  
1. The current consumption in DEEPSTOP is measured considering the entire SRAM retained.  
5.3.8  
Wake-up time from low power modes  
The wake-up times reported are the latency between the event and the execution of the instruction. The device  
goes to low-power mode after WFI (wait for interrupt) instructions.  
Table 25. Low power mode wake-up timing  
Symbol  
Parameter  
Conditions  
Typ. Unit  
Wake-up time from DEEPSTOP mode to RUN  
mode  
T
Wake-up from GPIO VDD = 3.3 V Flash memory 110 µs  
WUDEEPSTOP  
5.3.9  
High speed crystal requirements  
The high speed external oscillator must be supplied with an external 32 MHz crystal that is specified for a 6 to 8  
pF loading capacitor. The BlueNRG-LP includes internal programmable capacitances that can be used to tune the  
crystal frequency in order to compensate the PCB parasitic one. These internal load capacitors are made by a  
fixed one, in parallel with a 6-bit binary weighted capacitor bank. Thanks to low CL step size (LSB is typically 0.07  
pF), very fine crystal tuning is possible. With a typical XTAL sensitivity of -14 ppm/pF, it is possible to trim a 32  
MHz crystal, with a resolution of 1 ppm.  
The requirements for the external 32 MHz crystal are reported in the table below.  
Table 26. HSE crystal requirements  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
f
Oscillator frequency  
32  
MHz  
NOM  
Includes initial accuracy, stability over temperature,  
aging and frequency pulling due to incorrect load  
capacitance  
f
Frequency tolerance  
±50 ppm  
TOL  
ESR  
Equivalent series resistance  
Drive level  
100  
P
D
100 µW  
27 °C, typical corner  
GMCONF = 3  
5 (1) 7(2) 9.2(3)  
CL  
HSE crystal load capacitance  
pF  
pF  
27 °C,  
HSE crystal load capacitance LSB  
value  
CLstep  
GMCONF = 3  
0.07  
XOTUNE code between 32 and 33  
1. XOTUNE programed at minimum code = 0  
2. XOTUNE programed at center code = 32  
3. XOTUNE programed at maximum code = 63  
DS13282 - Rev 2  
page 46/72  
 
 
 
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
5.3.10  
Low speed crystal requirements  
Low speed clock can be supplied with an external 32.768 kHz crystal oscillator. Requirements for the external  
32.768 kHz crystal are reported in the table below.  
Table 27. LSE crystal requirements  
Symbol  
Parameter  
Nominal frequency  
Equivalent series resistance  
Drive level  
Conditions  
Min.  
Typ.  
Max.  
Unit  
kHz  
kΩ  
f
32.768  
NOM  
ESR  
90  
P
0.1  
µW  
D
5.3.11  
High speed ring oscillator characteristics  
Table 28. HSI oscillator characteristics  
Symbol  
Parameter  
Nominal frequency  
Conditions  
Min.  
Typ.  
64  
Max.  
Unit  
f
MHz  
NOM  
5.3.12  
Low speed ring oscillator characteristics  
Table 29. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
33  
Max.  
Unit  
kHz  
f
Nominal frequency  
NOM  
ΔF  
/F  
Frequency spread vs. temperature  
Standard deviation  
140  
ppm/ºC  
RO_ΔT RO  
5.3.13  
PLL characteristics  
Characteristics measured over recommended operating conditions unless otherwise specified.  
Table 30. PLL characteristics  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
At ±1 MHz offset from carrier  
(measured at 2.4 GHz)  
-110  
dBc/Hz  
At 2.4 GHz ±3 MHz offset from carrier  
(measured at 2.4 GHz)  
-114  
-128  
dBc/Hz  
dBc/Hz  
PN  
RF carrier phase noise  
SYNTH  
At 2.4 GHz±6 MHz offset from carrier  
(measured at 2.4 GHz)  
At ±25 MHz offset from carrier  
With calibration @2.5 ppm  
With calibration @2.5 ppm  
Without calibration @2.5 ppm  
Without calibration @2.5 ppm  
-135  
150  
110  
47  
dBc/Hz  
µs  
LOCK  
PLL lock time to TX  
PLL lock time to RX  
TIMETX  
LOCK  
LOCK  
µs  
TIMERX  
PLL lock time RX to TX  
PLL lock time TX to RX  
µs  
TIMERXTX  
TIMETXRX  
LOCK  
32  
µs  
DS13282 - Rev 2  
page 47/72  
 
 
 
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
5.3.14  
Flash memory characteristics  
The characteristics below are guaranteed by design.  
Table 31. Flash memory characteristics  
Symbol  
Parameter  
Test conditions  
Typ.  
20  
Max.  
40  
Unit  
t
32-bit programming time  
4x32-bit burst programming time  
Page (2 kbyte) erase time  
Mass erase time  
prog  
µs  
t
20  
40  
prog_burst  
t
20  
40  
ERASE  
ms  
t
20  
3
40  
ME  
Write mode  
Erase mode  
Mass erase  
I
Average consumption from VDD  
3
mA  
DD  
5
Table 32. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Test conditions  
Min.  
10  
Unit  
N
END  
T
= -40 to +105 ºC  
kcycles  
Years  
A
t
T = 105 ºC  
A
Data retention  
10  
RET  
5.3.15  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each  
sample according to each pin combination. The sample size depends on the number of supply pins in the device  
(3 parts x (n + 1) supply pins). This test conforms to the ANSI/JEDEC standard.  
Table 33. ESD absolute maximum ratings  
Max.(1)  
Symbol  
Parameter  
Conditions  
Class  
Unit  
Electrostatic discharge voltage (human body  
model)  
V
Conforming to ANSI/ESDA/JEDEC JS-001  
2
2000  
ESD(HBM)  
ESD(CBM)  
V
Electrostatic discharge voltage (charge  
device model)  
Conforming to ANSI/ESDA/STM5.3.1  
JS-002  
V
C2a  
500  
1. Guaranteed by design.  
5.3.16  
I/O port characteristics  
Unless otherwise specified, the parameters given in the tables below are derived from tests performed under the  
conditions summarized in Section 5.3.2 General operating conditions. All I/Os are designed as CMOS-compliant.  
The characteristics below are guaranteed by characterization.  
Table 34. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
V
I/O input low level voltage  
I/O input high level voltage  
0.3 x VDD  
IL  
1.62 V < VDD < 3.6 V  
V
V
0.7 x VDD  
IH  
0 <= VIN <= Max(VDDx)(1)  
Max(VDDx)(1) <= VIN <= Max(VDDx)(1) +1 V  
Max(VDDx)(1) + 1 V < VIN <= 5.5 V  
+/-100  
650  
I
Input leakage current  
nA  
lkg  
200  
DS13282 - Rev 2  
page 48/72  
 
 
 
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
Symbol  
Parameter  
Conditions  
VIN = GND  
VIN = VDD  
Min.  
25  
Typ.  
40  
40  
5
Max.  
55  
Unit  
kΩ  
R
PU  
Pull-up resistor  
R
PD  
Pull-down resistor  
I/O pin capacitance  
25  
55  
C
IO  
pF  
1. Max(VDDx) is the maximum value among all the I/O supplies.  
All I/Os are CMOS-compliant (no software configuration required).  
GPIOs (general purpose input/outputs) can sink or source up to ±8 mA and sink or source up to ± 20 mA (with a  
relaxed VOL / VOH).  
In the user application, the number of I/O pins that can drive current must be limited to respect the absolute  
maximum rating specified.  
The sum of currents sourced by all I/Os on VDD, plus the maximum consumption of MCU sourced on VDD,  
cannot exceed the absolute maximum rating ΣIVDD  
The sum of currents sunk by all I/Os on VSS, plus the maximum consumption of the MCU sunk on GND,  
cannot exceed the absolute maximum rating ΣIVGND  
The characteristics below are guaranteed by characterization.  
Table 35. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Max. Unit  
V
Output low level voltage for I/O pin  
Output high level voltage for I/O pin  
Output low level voltage for I/O pin  
Output high level voltage for I/O pin  
Output low level voltage for I/O pin  
Output high level voltage for I/O pin  
0.4  
OL  
CMOS port(1) |IIO| = 8 mA VDD ≥ 2.7 V  
V
VDD -0.4  
VDD -1.3  
VDD-0.45  
OH  
V
OL  
1.3  
V
|IIO| = 20 mA VDD ≥ 2.7 V  
|IIO| = 4 mA VDD ≥ 1.62 V  
V
OH  
V
0.4  
OL  
V
OH  
1. CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
5.3.17  
RSTN pin characteristics  
The RSTN pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU.  
Unless otherwise specified, the parameters given in the table below are derived from tests performed under the  
ambient temperature and supply voltage conditions summarized in Section 5.3.2 General operating conditions.  
The characteristics below are guaranteed by design.  
Table 36. RSTN pin characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
0.7 x VDD  
25  
Typ.  
Max.  
Unit.  
V
RSTN input low level voltage  
RSTN input high level voltage  
RSTN Schmitt trigger voltage hysteresis  
Weak pull-up equivalent resistor  
0.3 x VDD  
IL(RSTN)  
V
V
IH(RSTN)  
V
200  
40  
mV  
kΩ  
hys(RSTN)  
RPU  
VIN=GND  
55  
DS13282 - Rev 2  
page 49/72  
 
 
 
 
 
BlueNRG-LP  
Operating conditions  
Figure 16. Recommended RSTN pin protection  
Note:  
The external reset circuit protects the device against parasitic resets.  
The user must ensure that the level on the RSTN pin can go below the VIL(RSTN) max. level specified in the  
table, otherwise the reset is not taken into account by the device. The external capacitor on RSTN must be  
placed as close as possible to the device.  
5.3.18  
ADC characteristics  
Table 37. ADC characteristics (HSI must be set to PLL mode)  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Units  
Number of channels for  
differential mode  
Ch_diff_num  
QFN48, WLCSP49  
4
Number of channels for single  
ended mode  
Ch_se_num  
QFN48, WLCSP49  
Biasing blocks turned on  
8
ADC biasing consumption at  
battery  
IBAT  
145  
mA  
mA  
ADCBIAS  
ADC active consumption at  
battery  
IBAT  
ADC activated in differential mode  
185  
ADCACTIVE  
VDDA  
Analog supply voltage  
Input impedance  
1.2  
1.32  
550  
V
R
AIN  
In DC  
250  
kΩ  
R
in  
Internal access resistance  
Input sampling capacitor  
Sampling period  
VBOOST is enabled for VDD < 2.7 V  
C
4
1
pF  
in  
T
µs  
s
T
Sampling time  
125  
200  
16  
5
ns  
k samples/s  
bits  
sw  
DR  
Output data rate  
FRMT  
Output data format  
Latency time  
output  
TL  
200 kSps  
µs  
T
Start-up time  
From ADC enable to conversion start  
1
µs  
STARTUP  
DNL  
Differential non-linearity  
±0.7  
LSB  
DS13282 - Rev 2  
page 50/72  
 
 
 
BlueNRG-LP  
Operating conditions  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max.  
Units  
INL  
Integral non-linearity  
±1  
72  
LSB  
Differential input  
@1 kHz, -1 dBFs  
SNR Diff  
STHD Diff  
ENOB Diff  
SNR SE  
Signal to noise ratio  
dB  
dB  
Differential input  
@1 kHz, -1 dBFs  
Signal to THD ratio (10  
harmonics)  
80  
11.5  
70  
Differential input  
@1 kHz, -1 dBFs  
Effective number of bits  
Signal-to-noise ratio  
bits  
dB  
Single ended  
@1 kHz, -1 dBFs  
Single ended  
Signal-to THD ratio (10  
harmonics)  
STHD SE  
ENOB SE  
75  
dB  
@1 kHz, -1 dBFs  
Single ended  
Effective number of bits  
11  
bits  
@1 kHz, -1 dBFs  
ADC_ERR_1V7  
ADC_ERR_2V4  
ADC_ERR_3V0  
ADC_ERR_3V6  
13  
0
Absolute error when used for battery  
measurements at 1.7 V, 2.4 V, 3.0 V, 3.6  
V
mV  
-9  
-22  
5.3.19  
Temperature sensor characteristics  
Table 38. Temperature sensor characteristics  
Symbol  
Parameter  
Min.  
Typ.  
±4  
Max.  
Unit  
°C  
T
rERR  
Error in temperature  
T
Average temperature coefficient  
Current consumption  
8
LSB/°C  
µA  
SLOPE  
T
415  
2533  
ICC  
T
Output code at 30 °C (+/-5 °C)  
LSB  
TS-OUT  
5.3.20  
Timer characteristics  
The characteristics below are guaranteed by design.  
Table 39. TIM1 characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
15.625  
16  
Max.  
Unit  
t
f
= 64 MHz  
Timer resolution time  
Timer resolution  
ns  
bit  
μs  
s
res(TIM)  
TIMxCLK  
R
esTIM  
t
f
= 64 MHz  
16-bit counter clock period  
Maximum possible count time  
0.015625  
1024  
COUNTER  
TIMxCLK  
t
f
= 64  
TIMxCLK  
67.10  
MAX_COUNT  
DS13282 - Rev 2  
page 51/72  
 
 
 
 
BlueNRG-LP  
Operating conditions  
Table 40. IWDG min./max. timeout period at 32 kHz (LSE)  
Prescaler divider  
PR[2:0] bits  
Min. timeout RL[11:0] = 0x000  
Max. timeout RL[11:0] = 0xFFF  
Unit  
/4  
/8  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
4096  
8192  
16384  
32768  
1
/16  
/32  
/64  
/128  
/256  
2
3
4
ms  
2.0  
5
4.0  
6 or 7  
8.0  
DS13282 - Rev 2  
page 52/72  
 
BlueNRG-LP  
Operating conditions  
2
5.3.21  
I C interface characteristics  
The I2C interface meets the timing requirements of the I2C-Bus specifications and user manual rev. 03 for:  
Standard-mode (Sm): bit rate up to 100 kbit/s  
Fast-mode (Fm): bit rate up to 400 kbit/s  
Fast-mode plus (Fm+): bit rate up to 1 Mbit/s  
SDA and SCL I/O requirements are met with the following restrictions: SDA and SCL I/O pins are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still  
present. The 20 mA output drive requirement in fast-mode plus is supported partially.  
This limits the maximum load Cload supported in fast-mode plus, given by these formulas:  
tr(SDA/SCL) = 0.8473 x Rp x Cload  
Rp(min.) = [VDD - VOL(max)] / IOL(max)  
where Rp is the I2C lines pull-up.  
All I2C SDA and SCL I/Os embed an analog filter.  
The characteristics below are guaranteed by design.  
Table 41. I2C analog filter characteristics  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tAF  
Maximum pulse width of spikes that are suppressed by the analog filter  
50  
110  
ns  
5.3.22  
SPI characteristics  
The parameters for SPI are derived from tests performed according to fPCLKx frequency and supply voltage  
conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x VDD  
The characteristics below are guaranteed by design.  
Table 42. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Slave mode  
Min.  
Typ.  
Max.  
Units  
32  
f
SPI clock frequency  
-
MHz  
SCK  
32(1)  
4 / f  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
-
-
-
-
-
-
PCLK  
2 / f  
1 / f  
PCLK  
- 1.5  
1 / f  
1 / f  
+1  
+1  
tw(SCKH)  
PCLK  
PCLK  
PCLK  
SCK high and low time  
Master mode  
1 / f  
- 1.5  
1 / f  
1 / f  
PCLK  
tw(SCKL)  
tsu(MI)  
tsu(SI)  
th(MI)  
PCLK  
PCLK  
Data input set-up time  
Data input set-up time  
Data input hold time  
Data input hold time  
Data output access time  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
1
1
3
1
5
-
-
-
-
-
-
-
-
ns  
th(SI)  
-
t
40  
a(SO)  
t
Data output disable time  
Slave mode  
Master mode  
Slave mode  
5
-
-
38  
8
dis(SO)  
t
2
v(MO)  
Data output valid time  
t
-
12  
39  
v(SO)  
DS13282 - Rev 2  
page 53/72  
 
 
 
 
BlueNRG-LP  
Operating conditions  
Symbol  
Parameter  
Conditions  
Master mode  
Slave mode  
Min.  
Typ.  
Max.  
Units  
t
2
4
h(MO)  
ns  
Data output hold time  
-
t
h(SO)  
1. The maximum frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit SCK low  
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while duty(SCK) = 50 %.  
Figure 17. SPI timing diagram - slave mode and CPHA = 0  
Figure 18. SPI timing diagram - slave mode and CPHA = 1  
DS13282 - Rev 2  
page 54/72  
 
 
 
BlueNRG-LP  
Operating conditions  
Figure 19. SPI timing diagram - master mode  
DS13282 - Rev 2  
page 55/72  
 
BlueNRG-LP  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
6.1  
QFN48 (6x6x0.9, pitch 0.4 mm) package information  
Figure 20. QFN48 (6x6x0.9, pitch 0.4 mm) package outline  
DS13282 - Rev 2  
page 56/72  
 
 
 
BlueNRG-LP  
QFN48 (6x6x0.9, pitch 0.4 mm) package information  
Table 43. QFN48 (6x6x0.9, pitch 0.4 mm) mechanical data  
mm  
Typ.  
0.95  
Symbol  
Min.  
0.90  
0.0  
Max.  
1.00  
0.05  
A
A1  
A3  
b
0.20 Ref  
0.20  
0.17  
5.95  
4.40  
0.25  
6.05  
4.60  
D
6.00  
D2  
e
4.50  
0.40 BSC  
6.00  
E
5.95  
4.40  
0.30  
6.05  
4.60  
0.50  
E2  
L
4.50  
0.40  
K
0.50  
Table 44. Tolerance of form and position  
Symbol  
aaa  
Databook  
0.10  
bbb  
0.10  
ccc  
0.008  
0.10  
ddd  
Figure 21. QFN48 (6x6x0.9, pitch 0.4 mm) detail A package information  
DS13282 - Rev 2  
page 57/72  
 
 
 
BlueNRG-LP  
QFN48 (6x6x0.9, pitch 0.4 mm) package information  
Figure 22. QFN48 (6x6x0.9, pitch 0.4 mm) recommended footprint  
DS13282 - Rev 2  
page 58/72  
 
BlueNRG-LP  
QFN32 (5x5x0.9, pitch 0.5 mm) package information  
6.2  
QFN32 (5x5x0.9, pitch 0.5 mm) package information  
Figure 23. QFN32 (5x5x0.9, pitch 0.5 mm) package outline  
DS13282 - Rev 2  
page 59/72  
 
 
BlueNRG-LP  
QFN32 (5x5x0.9, pitch 0.5 mm) package information  
Table 45. QFN32 (5x5x0.9, pitch 0.5 mm) package information mechanical data  
mm  
Typ.  
0.95  
Symbol  
Min.  
0.90  
0
Max.  
1.00  
0.05  
A
A1  
A3  
b
0.20  
0.25  
0.20  
4.90  
3.60  
0.30  
5.10  
3.80  
D
5.00  
D2  
c
3.70  
0.50 BSC  
5.00  
E
4.90  
3.60  
0.30  
5.10  
3.80  
0.50  
E2  
L
3.70  
0.40  
Note:  
D and E, package outline exclusive of any mold flashes dimensions and metal burrs.  
Table 46. Tolerance of form and position  
Symbol  
aaa  
Databook  
0.10  
0.10  
0.10  
0.05  
bbb  
ccc  
ddd  
Figure 24. Detail A  
DS13282 - Rev 2  
page 60/72  
 
 
 
BlueNRG-LP  
QFN32 (5x5x0.9, pitch 0.5 mm) package information  
Figure 25. QFN32 (5x5x0.9, pitch 0.5 mm) package information recommended footprint  
DS13282 - Rev 2  
page 61/72  
 
BlueNRG-LP  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package information  
6.3  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package information  
Figure 26. WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package outline (bumps view)  
DS13282 - Rev 2  
page 62/72  
 
 
BlueNRG-LP  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package information  
Table 47. WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) mechanical data  
Milimeters  
Typ.  
Symbol  
Min.  
0.380  
0.135  
0.212  
0.214  
3.120  
Max.  
0.420  
0.165  
0.238  
0.222  
3.160  
A
A1  
A2  
b
0.400  
0.150  
0.225  
0.218  
3.140  
2.400  
3.140  
2.400  
0.400  
0.416  
0.263  
0.477  
0.324  
0.025  
0.060  
D
D1  
E
3.120  
3.160  
E1  
e
fD  
fE  
fG  
fH  
$
0.022  
0.028  
ccc  
Figure 27. WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) recommended footprint  
DS13282 - Rev 2  
page 63/72  
 
 
BlueNRG-LP  
Thermal characteristics  
6.4  
Thermal characteristics  
The maximum chip junction temperature (TJmax.) must never exceed the values in general operating conditions.  
The maximum chip-junction temperature, TJ max., in degrees Celsius, can be calculated using the equation:  
T max . = T max. + PDmax × θJA  
(1)  
J
A
where:  
TA max. is the maximum ambient temperature in °C  
ΘJA is the package junction-to-ambient thermal resistance, in °C/W  
PD max. is the sum of PINT max. and PI/O max. (PD max. = PINT max. + PI/O max.)  
PINT max. is the product of IDD and VDD, expressed in Watt. This is the maximum chip internal power  
PI/O max represents the maximum power dissipation on output pins:  
PI/O max. = Σ (VOL × IOL) + Σ ((VDD – VOH) × IOH)  
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the applications.  
Note:  
Note:  
Note:  
When the SMPS is used, a portion of the power consumption is dissipated into the external inductor, therefore  
reducing the chip power dissipation. This portion depends mainly on the inductor ESR characteristics.  
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the chip power  
consumption.  
RF characteristics (such as: sensitivity, Tx power, consumption) are provided up to 85 °C.  
Table 48. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
QFN48 – 6 mm x 6 mm  
25.1  
Thermal resistance junction-ambient  
QFN32 - 5 mm x 5 mm  
ΘJA  
26.9  
-
ºC/W  
Thermal resistance junction-ambient  
WCSP49 – 0.4 mm pitch  
DS13282 - Rev 2  
page 64/72  
 
 
BlueNRG-LP  
Ordering information  
7
Ordering information  
Table 49. Ordering information  
Order code  
Package  
Packing  
BLUENRG-3x5yz  
QFN32, QFN48, WLCSP49  
Tape and reel  
Figure 28. Ordering information  
DS13282 - Rev 2  
page 65/72  
 
 
 
BlueNRG-LP  
Revision history  
Table 50. Document revision history  
Date  
Version  
Changes  
02-Jul-2020  
1
Initial release.  
Updated cover page.  
Updated Table 3. Pin description, Table 10. Thermal characteristics,  
Table 14. General operating conditions and Table 49. Ordering information.  
24-Sep-2020  
2
Updated Figure 6. Clock tree.  
Added Table 4. Legend/abbreviations used in the pinout table.  
DS13282 - Rev 2  
page 66/72  
 
 
BlueNRG-LP  
Contents  
Contents  
1
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.1  
1.2  
1.3  
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ARM Cortex–M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Embedded ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Embedded OTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.4  
1.5  
Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.5.1  
RF front-end block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.6  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
SMPS step-down regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Linear voltage regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power supply supervisor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.7  
Operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.7.1  
1.7.2  
1.7.3  
RUN mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DEEPSTOP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SHUTDOWN mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
1.8  
1.9  
Reset management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Clock management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.10 Boot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.11 Embedded UART bootloader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.12 General purpose inputs/outputs (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.13 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.14 Nested vectored interrupt controller (NVIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1.15 Analog digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1.15.1 Digital microphone MEMS interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DS13282 - Rev 2  
page 67/72  
BlueNRG-LP  
Contents  
1.15.2 Analog microphone interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.15.3 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.16 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
1.17 Timers and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
1.17.1 Advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.17.2 Independent watchdog (IWDG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.17.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.18 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2
1.19 Inter-integrated circuit interface (I C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
1.20 Universal synchronous/asynchronous receiver transmitter (USART). . . . . . . . . . . . . . . . . . . 19  
1.21 LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.22 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.23 Inter-IC sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.24 Serial wire debug port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.25 TX and RX event alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Pinouts and pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2
3
4
5
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
Minimum and maximum values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.2  
5.3  
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
Summary of main performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
RF general characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
RF transmitter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DS13282 - Rev 2  
page 68/72  
BlueNRG-LP  
Contents  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
RF receiver characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Embedded reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Wake-up time from low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
High speed crystal requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.3.10 Low speed crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.3.11 High speed ring oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.3.12 Low speed ring oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.3.13 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.3.14 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.15 Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.17 RSTN pin characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.3.18 ADC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
5.3.19 Temperature sensor characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
2
5.3.21 I C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
5.3.22 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6
7
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
6.1  
6.2  
6.3  
6.4  
QFN48 (6x6x0.9, pitch 0.4 mm) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
QFN32 (5x5x0.9, pitch 0.5 mm) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package information . . . . . . . . . . . . . . . . . . . . . . .62  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
DS13282 - Rev 2  
page 69/72  
BlueNRG-LP  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
SRAM overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Relationship between the low power modes and functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Alternate function port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Alternate function port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application circuit external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 10. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 11. Main performance SMPS ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 12. Main performance SMPS bypassed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 13. Peripheral current consumption at VDD = 3.3 V, sysclk at 32 MHz, SMPS on. . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 14. General operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 15. Bluetooth Low Energy RF general characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 16. Bluetooth Low Energy RF transmitter characteristics at 1 Mbps not coded. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 17. Bluetooth Low Energy RF transmitter characteristics at 2 Mbps not coded. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 18. Bluetooth Low Energy RF transmitter characteristics at 1 Mbps LE coded (S=8) . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 19. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s uncoded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 20. Bluetooth Low Energy RF receiver characteristics at 2 Msym/s uncoded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 21. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s LE coded (S=2). . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 22. Bluetooth Low Energy RF receiver characteristics at 1 Msym/s LE coded (S=8). . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 23. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 24. Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 25. Low power mode wake-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 27. LSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 28. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 29. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 30. PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 31. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 32. Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 33. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 34. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 35. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 36. RSTN pin characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 37. ADC characteristics (HSI must be set to PLL mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 38. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 39. TIM1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 40. IWDG min./max. timeout period at 32 kHz (LSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 41. I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 42. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 43. QFN48 (6x6x0.9, pitch 0.4 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 44. Tolerance of form and position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 45. QFN32 (5x5x0.9, pitch 0.5 mm) package information mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 46. Tolerance of form and position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 47. WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 48. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 49. Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 50. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
DS13282 - Rev 2  
page 70/72  
BlueNRG-LP  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
The BlueNRG-LP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
BlueNRG-LP RF block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power supply configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power supply domain overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pinout top view (QFN48 package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pinout top view (QFN32 package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pinout top view (WLCSP49 package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Application circuit: DC-DC converter, QFN48 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Application circuit: DC-DC converter, WCSP49 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Application circuit: DC-DC converter, QFN32 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Recommended RSTN pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
QFN48 (6x6x0.9, pitch 0.4 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
QFN48 (6x6x0.9, pitch 0.4 mm) detail A package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
QFN48 (6x6x0.9, pitch 0.4 mm) recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
QFN32 (5x5x0.9, pitch 0.5 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Detail A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
QFN32 (5x5x0.9, pitch 0.5 mm) package information recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . 61  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) package outline (bumps view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
WLCSP49 (3.14x3.14x0.4, pitch 0.4 mm) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
DS13282 - Rev 2  
page 71/72  
BlueNRG-LP  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13282 - Rev 2  
page 72/72  

相关型号:

BLUENRG-355VC

Programmable Bluetooth® Low Energy wireless SoC
STMICROELECTR

BLUENRG-355VT

Programmable Bluetooth® Low Energy wireless SoC
STMICROELECTR

BLUENRG-3X5YZ

Programmable Bluetooth® Low Energy wireless SoC
STMICROELECTR

BLUENRG-LP

Programmable Bluetooth® Low Energy wireless SoC
STMICROELECTR

BLUENRG-MS

Upgradable Bluetooth Low Energy network processor
STMICROELECTR

BLUENRG-MSCSP

Upgradable Bluetooth Low Energy network processor
STMICROELECTR

BLUENRG-MSQTR

Upgradable Bluetooth Low Energy network processor
STMICROELECTR

BLUEWS

Adustable Elastic Fabric(Standard Performance)
3M

BLUEWS121M

Adustable Elastic Fabric(Standard Performance)
3M

BLUEWS61M

Adustable Elastic Fabric(Standard Performance)
3M

BLV-L01D

BLV Series Low Voltage Pressure Sensors
ASC

BLV-L01DB1NS-N

Peizoresistive Sensor,
AMPHENOL