E-UC2842BD1013TR [STMICROELECTRONICS]

Current Mode PWM;
E-UC2842BD1013TR
型号: E-UC2842BD1013TR
厂家: ST    ST
描述:

Current Mode PWM

开关 光电二极管
文件: 总15页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC2842B/3B/4B/5B  
UC3842B/3B/4B/5B  
®
HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER  
TRIMMED OSCILLATOR FOR PRECISE FRE-  
QUENCY CONTROL  
OSCILLATOR FREQUENCY GUARANTEED  
AT 250kHz  
CURRENT MODE OPERATION TO 500kHz  
AUTOMATIC FEED FORWARD COMPENSA-  
TION  
.
.
.
.
Minidip  
SO8  
LATCHING PWM FOR CYCLE-BY-CYCLE  
CURRENT LIMITING  
.
.
INTERNALLY TRIMMED REFERENCE WITH  
UNDERVOLTAGE LOCKOUT  
HIGH CURRENT TOTEM POLE OUTPUT  
UNDERVOLTAGE LOCKOUT WITH HYSTER-  
ESIS  
comparatorwhich also providescurrentlimitcontrol,  
and a totem pole output stage designed to source  
or sink high peak current. The output stage, suitable  
for driving N-Channel MOSFETs, is low in the off-  
state.  
.
.
LOW START-UP AND OPERATING CURRENT  
.
Differences between members of this family are the  
under-voltage lockout thresholds and maximum duty  
cycle ranges. The UC3842B and UC3844B have  
UVLO thresholds of 16V (on) and 10V (off), ideally  
suited off-line applications The corresponding thresh-  
olds for the UC3843Band UC3845B are 8.5 Vand7.9  
V. The UC3842B and UC3843B can operate to duty  
cycles approaching 100%. A range of the zero to <  
50 % is obtained by the UC3844B and UC3845B by  
the addition of an internal toggle flip flop which blanks  
the output off every other clock cycle.  
DESCRIPTION  
The UC384xBfamilyofcontrol ICsprovidesthenec-  
essary features to implement off-line or DC to DC  
fixed frequency current mode control schemes with  
a minimal external parts count. Internally imple-  
mented circuits include a trimmed oscillator for pre-  
cise DUTY CYCLE CONTROL under voltage lock-  
outfeaturing start-up current less than 0.5mA, a pre-  
cision reference trimmed for accuracy at the error  
amp input, logic to insure latched operation, a PWM  
BLOCK DIAGRAM (toggle flip flop used only in UC3844B and UC3845B)  
7
Vi  
UVLO  
34V  
8
6
5V  
REF  
VREF  
5V 50mA  
5
S/R  
GROUND  
INTERNAL  
BIAS  
2.50V  
VREF GOOD  
LOGIC  
OUTPUT  
4
RT/CT  
OSC  
ERROR AMP.  
T
2R  
+
-
S
2
1
3
VFB  
R
PWM  
LATCH  
R
1V  
COMP  
CURRENT  
SENSE  
UC3842B  
CURRENT  
SENSE  
COMPARATOR  
D95IN331  
March 1999  
1/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Supply Voltage (low impedance source)  
Supply Voltage (Ii < 30mA)  
Value  
30  
Unit  
Vi  
Vi  
V
Self Limiting  
IO  
Output Current  
A
±
1
EO  
Output Energy (capacitive load)  
Analog Inputs (pins 2, 3)  
5
µ
J
– 0.3 to 5.5  
10  
V
Error Amplifier Output Sink Current  
Power Dissipation at Tamb 25 °C (Minidip)  
Power Dissipation at Tamb 25 °C (SO8)  
Storage Temperature Range  
mA  
W
Ptot  
Ptot  
Tstg  
TJ  
1.25  
800  
mW  
– 65 to 150  
– 40 to 150  
300  
°C  
°C  
°C  
Junction Operating Temperature  
Lead Temperature (soldering 10s)  
TL  
*
All voltages are with respect to pin 5, all currents are positive into the specified terminal.  
PIN CONNECTION (top view)  
Minidip/SO8  
COMP  
VFB  
1
8
7
6
5
VREF  
2
3
4
Vi  
ISENSE  
RT/CT  
OUTPUT  
GROUND  
D95IN332  
PIN FUNCTIONS  
No  
Function  
Description  
This pin is the Error Amplifier output and is made available for loop compensation.  
1
COMP  
2
3
4
VFB  
This is the inverting input of the Error Amplifier. It is normally connected to the switching  
power supply output through a resistor divider.  
ISENSE  
RT/CT  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
The oscillator frequency and maximum Output duty cycle are programmed by connecting  
resistor RT to Vref and cpacitor CT to ground. Operation to 500kHz is possible.  
5
6
GROUND This pin is the combined control circuitry and power ground.  
OUTPUT This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced  
and sunk by this pin.  
7
8
VCC  
Vref  
This pin is the positive supply of the control IC.  
This is the reference output. It provides charging current for capacitor CT through resistor RT.  
ORDERING NUMBERS  
SO8  
Minidip  
UC2842BD1; UC3842BD1  
UC2843BD1; UC3843BD1  
UC2844BD1; UC3844BD1  
UC2845BD1; UC3845BD1  
UC2842BN; UC3842BN  
UC2843BN; UC3843BN  
UC2844BN; UC3844BN  
UC2845BN; UC3845BN  
2/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
THERMAL DATA  
Symbol  
Description  
Minidip  
SO8  
Unit  
Rth j-amb  
Thermal Resistance Junction-ambient.  
max.  
100  
150  
°C/W  
ELECTRICAL CHARACTERISTICS ( [note 1] Unless otherwise stated, these specifications apply for  
-25 < Tamb < 85°C for UC284XB; 0 < Tamb < 70°C for UC384XB; Vi = 15V (note 5); RT = 10K; CT = 3.3nF)  
UC284XB  
UC384XB  
Symbol  
Parameter  
Test Conditions  
Unit  
Min. Typ. Max. Min. Typ. Max.  
REFERENCE SECTION  
VREF  
VREF  
Output Voltage  
4.95 5.00 5.05 4.90 5.00 5.10  
V
mV  
mV  
mV/°C  
V
Tj = 25°C Io = 1mA  
12V Vi 25V  
1 Io 20mA  
Line Regulation  
2
3
20  
25  
2
3
20  
25  
Load Regulation  
VREF  
Temperature Stability  
Total Output Variation  
Output Noise Voltage  
(Note 2)  
0.2  
0.2  
VREF/T  
Line, Load, Temperature  
4.9  
5.1 4.82  
5.18  
eN  
50  
5
50  
5
10Hz f 10KHz Tj = 25°C  
(note 2)  
µV  
Long Term Stability  
25  
25  
mV  
Tamb  
=
125°C, 1000Hrs  
(note 2)  
ISC  
Output Short Circuit  
-30 -100 -180 -30 -100 -180 mA  
OSCILLATOR SECTION  
fOSC  
Frequency  
49  
48  
52  
55  
56  
49  
48  
52  
55  
56  
KHz  
KHz  
Tj = 25°C  
TA = Tlow to Thigh  
225 250 275 225 250 275 KHz  
TJ = 25°C (RT = 6.2k, CT = 1nF)  
Frequency Change with Volt. VCC = 12V to 25V  
Frequency Change with Temp. TA = Tlow to Thigh  
0.2  
1
1
0.2  
0.5  
1.6  
1
%
%
V
fOSC/V  
fOSC/T  
VOSC  
Oscillator Voltage Swing  
(peak to peak)  
1.6  
Idischg  
Discharge Current (VOSC =2V) TJ = 25°C  
7.8  
7.5  
8.3  
8.8  
8.8  
7.8  
7.6  
8.3  
8.8  
8.8  
mA  
mA  
TA = Tlow to Thigh  
ERROR AMP SECTION  
V2  
Ib  
Input Voltage  
VPIN1 = 2.5V  
VFB = 5V  
2.45 2.50 2.55 2.42 2.50 2.58  
V
µA  
dB  
Input Bias Current  
AVOL  
-0.1  
90  
1
-1  
-0.1  
90  
1
-2  
65  
0.7  
60  
2
65  
0.7  
60  
2
2V Vo 4V  
BW  
PSRR  
Io  
Unity Gain Bandwidth  
Power Supply Rejec. Ratio  
Output Sink Current  
Output Source Current  
VOUT High  
TJ = 25°C  
MHz  
dB  
70  
12  
-1  
70  
12  
-1  
12V Vi 25V  
VPIN2 = 2.7V VPIN1 = 1.1V  
VPIN2 = 2.3V VPIN1 = 5V  
mA  
mA  
V
Io  
-0.5  
5
-0.5  
5
VPIN2 = 2.3V;  
6.2  
6.2  
RL = 15Kto Ground  
VOUT Low  
VPIN2 = 2.7V;  
0.8 1.1  
0.8  
1.1  
V
RL = 15Kto Pin 8  
CURRENT SENSE SECTION  
GV  
V3  
Gain  
(note 3 & 4)  
2.85  
0.9  
3
1
3.15 2.85  
3
1
3.15 V/V  
Maximum Input Signal  
Supply Voltage Rejection  
Input Bias Current  
Delay to Output  
VPIN1 = 5V (note 3)  
12 Vi 25V (note 3)  
1.1  
0.9  
1.1  
V
SVR  
Ib  
70  
-2  
70  
-2  
dB  
µA  
ns  
-10  
-10  
150 300  
150 300  
3/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
ELECTRICAL CHARACTERISTICS (continued)  
UC284XB  
UC384XB  
Symbol  
Parameter  
Test Conditions  
Unit  
Min. Typ. Max. Min. Typ. Max.  
OUTPUT SECTION  
VOL  
Output Low Level  
ISINK = 20mA  
SINK = 200mA  
ISOURCE = 20mA  
SOURCE = 200mA  
0.1 0.4  
1.6 2.2  
0.1  
1.6  
0.4  
2.2  
V
V
I
VOH  
Output High Level  
13 13.5  
12 13.5  
0.1 1.1  
13 13.5  
12 13.5  
0.1  
V
I
V
VOLS  
UVLO Saturation  
Rise Time  
VCC = 6V; ISINK = 1mA  
Tj = 25°C CL = 1nF (2)  
Tj = 25°C CL = 1nF (2)  
1.1  
150  
150  
V
tr  
tf  
50 150  
50 150  
50  
ns  
ns  
Fall Time  
50  
UNDER-VOLTAGE LOCKOUT SECTION  
Start Threshold  
X842B/4B  
X843B/5B  
X842B/4B  
X843B/5B  
15  
7.8  
9
16  
8.4 9.0  
10 11  
17 14.5 16 17.5  
7.8 8.4 9.0  
8.5 10 11.5  
7.0 7.6  
V
V
V
V
Min Operating Voltage  
After Turn-on  
7.0  
7.6 8.2  
8.2  
PWM SECTION  
Maximum Duty Cycle  
X842B/3B  
X844B/5B  
94  
47  
96 100  
94  
47  
96  
48  
100  
50  
0
%
%
%
48  
50  
0
Minimum Duty Cycle  
TOTAL STANDBY CURRENT  
Ist  
Start-up Current  
Vi = 6.5V for UCX843B/45B  
Vi = 14V for UCX842B/44B  
VPIN2 = VPIN3 = 0V  
0.3 0.5  
0.3 0.5  
0.3  
0.3  
12  
0.5  
0.5  
17  
mA  
mA  
mA  
V
Ii  
Operating Supply Current  
Zener Voltage  
12  
36  
17  
Viz  
Ii = 25mA  
30  
30  
36  
Notes : 1. Max package power dissipation limits must be respected; low duty cycle pulse techniques are used during test maintain Tj as  
close to Tamb as possible.  
2. These parameters, although guaranteed, are not 100% tested in production.  
3. Parameter measured at trip point of latch with VPIN2 = 0.  
4. Gain defined as :  
VPIN1  
A =  
; 0 VPIN3 0.8 V  
VPIN3  
5. Adjust Vi above the start threshold before setting at 15 V.  
4/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 1: Open Loop Test Circuit.  
VREF  
4.7K  
RT  
2N2222  
A
Vi  
VREF  
0.1µF  
100KΩ  
COMP  
VFB  
8
1
7
Vi  
ERROR AMP.  
ADJUST  
2
3
4
1W  
1KΩ  
1KΩ  
0.1µF  
UC2842B  
ISENSE  
RT/CT  
ISENSE  
4.7KΩ  
OUTPUT  
GROUND  
ADJUST  
5KΩ  
6
OUTPUT  
GROUND  
5
CT  
D95IN343  
High peak currents associated with capacitive loads  
necessitate careful grounding techniques. Timing  
and bypass capacitors should be connected close  
to pin 5 in a single point ground. The transistor and  
5Kpotentiometerareusedtosampletheoscillator  
waveform and apply an adjustable ramp to pin 3.  
Figure 2: Timing Resistor vs. Oscillator Fre-  
Figure 3: Output Dead-Time vs. Oscillator Fre-  
quency  
quency  
D95IN334  
D95IN333  
RT  
(K)  
%
C
50  
T
=200pF  
50  
C
T
=100pF  
C =2nF  
T
C
T
30  
20  
=500pF  
C =5nF  
T
20  
C
=5nF  
C
T
T
=1nF  
C =1nF  
T
C =10nF  
T
10  
5
C
=500pF  
T
10  
5
C
T
=200pF  
C
=2nF  
T
C =100pF  
T
C
=10nF  
T
3
2
2
V =15V  
i
V =15V  
T
=25˚C  
i
A
1
T
=25˚C  
A
0.8  
10K  
1
20K  
30K  
50K  
100K  
200K 300K  
500K  
f
(KHz)  
OSC  
10K  
20K  
30K  
50K  
100K  
200K 300K  
500K fOSC(KHz)  
5/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 4: Oscillator Discharge Current vs. Tem-  
Figure 5: Maximum Output Duty Cycle vs. Tim-  
perature.  
ing Resistor.  
D95IN336  
I
D95IN335  
dischg  
D
(%)  
max  
(mA)  
V =15V  
i
90  
V =2V  
OSC  
I
=7.5mA  
dischg  
8.5  
8.0  
7.5  
7.0  
80  
70  
60  
50  
40  
I
=8.8mA  
dischg  
V =15V  
i
C =3.3nF  
T
T =25˚C  
A
0.8  
1
2
3
5
R (K)  
T
-55 -25  
0
25  
50  
75 100 T (˚C)  
A
Figure 6: Error Amp Open-Loop Gain and  
Figure 7: Current Sense Input Threshold vs. Er-  
Phase vs. Frequency.  
ror Amp Output Voltage.  
D95IN337  
D95IN338  
V
(V)  
th  
(dB)  
φ
V =15V  
i
V =15V  
i
V =2V to 4V  
R =100K  
O
80  
60  
40  
20  
0
30  
1.0  
L
Gain  
T =25˚C  
A
T =25˚C  
A
60  
0.8  
0.6  
0.4  
0.2  
0.0  
T =125˚C  
A
90  
Phase  
120  
150  
180  
T =-40˚C  
A
-20  
0
2
4
6
V (V)  
O
10  
100  
1K  
10K 100K 1M f(Hz)  
Figure 8: Reference Voltage Change vs.  
Figure 9: Reference Short Circuit Current vs.  
Source Current.  
Temperature.  
D95IN340  
D95IN339  
I
SC  
60  
(mA)  
V =15V  
i
V =15V  
i
R 0.1Ω  
L
50  
40  
30  
20  
10  
0
100  
T =-40˚C  
A
90  
80  
70  
60  
50  
T =125˚C  
A
0
20  
40  
60  
80  
100 I (mA)  
-55 -25  
0
25  
50  
75 100 T (˚C)  
A
ref  
6/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 10: Output Saturation Voltagevs. Load  
Figure 11: Supply Current vs. Supply Voltage.  
Current.  
V
(V)  
D95IN342  
I
sat  
D95IN341  
i
(mA)  
Source Saturation  
(Load to Ground)  
V
i
-1  
-2  
T =25˚C  
A
T =-40˚C  
A
20  
15  
V =15V  
i
80µs Pulsed Load 120Hz Rate  
3
2
1
0
R =10K  
T
10  
5
C =3.3nF  
T
T =-40˚C  
A
V
=0V  
FB  
I
=0V  
Sense  
T =25˚C  
A
T =25˚C  
A
Sink Saturation  
(Load to V )  
GND  
i
0
0
10  
20  
30  
V (V)  
i
0
200  
400  
600  
I (mA)  
O
Figure 12: Output Waveform.  
Figure 13: Output Cross Conduction  
Vi =30V  
CL = 15pF  
TA = 25°C  
Vi =15V  
CL = 1.0nF  
TA = 25°C  
90%  
VO  
20V/DIV  
ICC  
10%  
100mA/DIV  
50ns/DIV  
100ns/DIV  
Figure 14: Oscillator and Output Waveforms.  
Vi  
7
CT  
8
5V REG  
OUTPUT  
PWM  
6
RT  
OUTPUT  
LARGE RT/SMALL CT  
CLOCK  
4
OSCILLATOR  
CT  
ID  
CT  
OUTPUT  
5
SMALL RT/LARGE CT  
GND  
D95IN344  
7/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 15 : Error Amp Configuration.  
2.5V  
1mA  
+
-
VFB  
2
1
Zi  
COMP  
Zf  
D95IN345  
Figure 16 : Under Voltage Lockout.  
7
ON/OFF COMMAND  
TO REST OF IC  
Vi  
ICC  
<17mA  
<0.5mA  
UC3842B UC3843B  
UC3844B UC3845B  
VON  
16V  
10V  
8.4V  
7.6V  
VCC  
VOFF VON  
VOFF  
During UVLO, the Output is low  
D95IN346  
Figure 17 : Current Sense Circuit .  
ERROR  
AMPL.  
2R  
R
IS  
1
3
1V  
COMP  
CURRENT  
SENSE  
COMPARATOR  
R
CURRENT  
SENSE  
RS  
C
5
GND  
D95IN347  
Peak current (is) is determined by the formula  
1.0 V  
IS max  
RS  
A small RC filter may be required to suppress switch transients.  
8/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 18 : Slope Compensation Techniques.  
VREG  
VREG  
8
8
RT  
RT  
RT/CT  
RT/CT  
IS  
4
3
IS  
4
3
UC3842B  
UC3842B  
RSLOPE  
R1  
CT  
ISENSE  
CT  
ISENSE  
RSLOPE  
R1  
5
5
RS  
RS  
GND  
GND  
D95IN348  
Figure 19 : Isolated MOSFET Drive and Current Transformer Sensing.  
VCC  
Vin  
7
+
-
ISOLATION  
BOUNDARY  
5.0V  
ref  
VGS Waveforms  
Q1  
+
0
+
0
+
-
6
-
-
50% DC  
25% DC  
S
R
Q
V
(pin 1) -1.4  
NS  
Ipk  
=
( )  
3RS  
NP  
-
+
R
COMP/LATCH  
3
RS  
NS  
NP  
C
D95IN349  
9/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 20 : Latched Shutdown.  
4
8
OSC  
BIAS  
R
R
+
1mA  
2R  
+
-
2
1
EA  
R
5
2N  
3905  
2N  
3903  
D95IN350  
SCR must be selected for a holding current of less than 0.5mA at T  
.
A(min)  
The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10K.  
Figure 21: Error Amplifier Compensation  
+
From VO  
Ri  
2.5V  
1mA  
2R  
+
-
2
1
EA  
R
Rd Cf  
Rf  
5
Error Amp compensation circuit for stabilizing any current-mode topology except  
for boost and flyback converters operating with continuous inductor current.  
+
From VO  
RP  
2.5V  
1mA  
2R  
+
-
Ri  
2
1
EA  
R
CP  
Rd  
Cf  
Rf  
5
D95IN351  
Error Amp compensation circuit for stabilizing current-mode boost and flyback  
topologies operating with continuous inductor current.  
10/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 22: External Clock Synchronization.  
VREF  
8
4
R
BIAS  
RT  
CT  
R
OSC  
+
EXTERNAL  
SYNC INPUT  
2R  
0.01µF  
+
-
2
1
EA  
47Ω  
R
5
D95IN352  
The diode clamp is required if the Sync amplitude is large enough to cause  
the bottom side of C to go more than 300mV below ground  
T
Figure 23: External Duty Cycle Clamp and Multi Unit Synchronization.  
VREF  
8
RA  
RB  
R
R
BIAS  
OSC  
8
4
5K  
5K  
5K  
6
5
+
-
3
7
4
R
S
+
Q
2R  
+
-
+
-
2
2
1
EA  
C
R
1
NE555  
5
TO ADDITIONAL  
UCX84XAs  
1.44  
(RA + 2RB)C  
RB  
RA + 2RB  
f =  
Dmax  
=
D95IN353  
11/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Figure 24: Soft-Start Circuit  
8
5Vref  
R
+
-
BIAS  
OSC  
R
4
+
1mA  
S
R
2R  
+
-
Q
2
1
+
-
1M  
EA  
R
1V  
C
5
D95IN354  
Figure 25: Soft-Start and Error Amplifier Output Duty Cycle Clamp.  
VCC Vin  
7
+
8
4
5Vref  
-
R
R
+
-
BIAS  
7
6
OSC  
2R  
Q1  
+
1mA  
VClamp  
S
Q
R
+
-
5
-
2
1
+
EA  
R
1V  
R2  
R1  
Comp/Latch  
5
RS  
C
BC109  
R1  
VCLAMP  
RS  
VCLAMP = ·  
where 0 <VCLAMP <1V  
Ipk(max)  
=
D95IN355  
R1 + R2  
12/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
a1  
a2  
a3  
b
1.75  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
0.1  
0.25 0.004  
1.65  
0.65  
0.35  
0.19  
0.25  
0.85 0.026  
0.48 0.014  
0.25 0.007  
b1  
C
0.5  
0.010  
c1  
D (1)  
E
45° (typ.)  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
e
1.27  
3.81  
0.050  
0.150  
e3  
F (1)  
L
3.8  
0.4  
4.0  
0.15  
0.157  
0.050  
0.024  
1.27 0.016  
0.6  
M
SO8  
S
8° (max.)  
(1) D and F do not include mold flash or protrusions. Mold flash or  
potrusions shall not exceed 0.15mm (.006inch).  
13/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
a1  
B
3.32  
0.131  
0.51  
1.15  
0.020  
1.65 0.045  
0.55 0.014  
0.304 0.008  
10.92  
0.065  
0.022  
0.012  
0.430  
0.384  
b
0.356  
0.204  
b1  
D
E
7.95  
9.75 0.313  
e
2.54  
7.62  
7.62  
0.100  
0.300  
0.300  
e3  
e4  
F
6.6  
0.260  
0.200  
0.150  
0.060  
I
5.08  
L
3.18  
3.81 0.125  
1.52  
Minidip  
Z
14/15  
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-  
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this  
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-  
croelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY