ETC5064_03 [STMICROELECTRONICS]

SERIAL INTERFACE CODEC/FILTER WITH RECEIVEPOWER AMPLIFIER; 串行接口编解码器/滤波器RECEIVEPOWER放大器
ETC5064_03
型号: ETC5064_03
厂家: ST    ST
描述:

SERIAL INTERFACE CODEC/FILTER WITH RECEIVEPOWER AMPLIFIER
串行接口编解码器/滤波器RECEIVEPOWER放大器

解码器 编解码器 放大器 功率放大器 LTE
文件: 总18页 (文件大小:1705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ETC5064/64-X  
ETC5067/67-X  
®
SERIAL INTERFACE CODEC/FILTER WITH RECEIVE  
POWER AMPLIFIER  
COMPLETE CODEC AND FILTERING SYS-  
TEM INCLUDING :  
.
Transmit high-pass and low-pass filtering.  
Receive low-pass filter with sin x/x correction.  
Active RC noise filter.  
-
-
-
µ
-law or A-law compatible CODER and DE-  
-
CODER.  
Internal precision voltage reference.  
Serial I/O interface.  
Internal auto-zero circuitry.  
Receive push-pull power amplifiers.  
-LAW ETC5064  
A-LAW ETC5067  
MEETS OR EXCEEDS ALL D3/D4 AND CCITT  
SPECIFICATIONS.  
DIP20  
(Plastic) N  
-
-
-
-
ORDERING NUMBERS:  
ETC5064N  
µ
.
.
.
ETC5064N-X  
ETC5067
ETC57N-X  
±
5 V OPERATION.  
.
.
.
LOW OPERATING POWER-TYPICALLY 70 mW  
POWER-DOWN STANDBY MODE-TYPICALLY  
3 mW  
AUTOMATIC POWER DOWN  
TTL OR CMOS COMPATIBLE DIGITAL INTER-  
FACES  
.
.
MAXIMIZES LINE INTERFACE CARD CIR-  
CUIT DENSITY  
.
PLCC20  
°
°
0 C TO 70 C OPERATION: ETC5064/67  
.
FN  
°
°
–40 C TO 85 C OPERATION: ETC5064-X/67-X  
.
ORDERING NUMBERS:  
ETC5064FN  
ETC5064FN-X  
ETC5067FN  
ETC5067FN-X  
DESCRIPTION  
µ
The ETC5064 ( -law), ETC5067 (A-law) are mono-  
lithic PCM CODEC/FILTERS utilizing the A/D and  
D/A coersion architecture shown in the Block Dia-  
grams and a serial PCM interface. The devices are  
fbricated using double-poly CMOS process.  
Similar to the ETC505X family, these devices fea-  
ture an additional Receive Power Amplifier to pro-  
vide push-pull balanced output drive capability. The  
receive gain can be adjusted by means of two ex-  
SO20  
D
ORDERING NUMBERS:  
ETC5064D  
±
ternal resistors for an output level of up to 6.6 V  
across a balanced 600 load.  
ETC5064D-X  
ETC5067D  
ETC5067D-X  
Also included is an Analog Loopback switch and  
TSX output.  
September 2003  
1/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
PIN CONNECTIONS (Top views)  
DIP20 &  
SO20  
PLCC20  
BLOCK DIAGRAM (ETC5064 - ETC5064-X - ETC5067 - ETC5067-X)  
2/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
PIN DESCRIPTION  
Name  
Pin  
Type (*)  
N
Description  
VPO+  
GNDA  
VPO-  
VPI  
O
GND  
O
1
2
3
4
The Non-inverting Output of the Receive Power Amplifier  
Analog Ground. All signals are referenced to this pin.  
The Inverting Output of the Receive Power Amplifier  
I
Inverting Input to the Receive Power Amplifier. Also powers down both  
amplifiers when connected to VBB  
.
VFRO  
VCC  
O
S
I
5
6
7
Analog Output of the Receive Filter.  
Positive Power Supply Pin. VCC = +5V ±5%  
FSR  
Receive Frame Sync Pulse which enable BCLKR to shift PCM data into  
DR. FSR is an 8KHz pulse train. See figures 1 and 2 for timing details.  
DR  
I
I
8
9
Receive Data Input. PCM data is shifted into DR following the FSR leading  
edge  
BCLKR/CLKSEL  
The bit Clock which shifts data into DR after the FSR leading edge. May  
vary from 64KHz to 2.048MHz.  
Alternatively, may be a logic input which selects either 1.536MHz/1.544MHz  
or 2.048MHz for master clock in synchronous mode and BCLKX is used  
for both transmit and receive directions (see table 1). This input has an  
internal pull-up.  
MCKLR/PDN  
I
10  
Receive Master Clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May  
be asynchronous with MCLKX, but should be synchronous with MCLKX for  
best performance. When MCLKR is connected continuously low, MCLKX is  
selected for all internal timing. When MCLKR is connected continuously  
high, the device is powered down.  
MCLKX  
BCLKX  
I
I
11  
12  
Transmit Master Clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May  
be asynchronous with MCLKR.  
The bit clock which shifts out the PCM data on DX. May vary from 64KHz  
to 2.048MHz, but must be synchronous with MCLKX.  
DX  
O
I
13  
14  
The TRI-STATE PCM data output which is enabled by FSX.  
FSX  
Transmit frame sync pulse input which enables BCLKX to shift out the  
PCM data on DX. FSX is an 8KHz pulse train. See figures 1 and 2 for  
timing details.  
TSX  
O
I
15  
16  
Open drain output which pulses low during the encoder time slot. Must to  
be grounded if not used.  
ANLB  
Analog Loopback Control Input. Must be set to logic ’0’ for normal  
operation. When pulled to logic ’1’, the transmit filter input is disconnected  
from the output of the transmit preamplifier and connected to the VPO+  
output of the receive power amplifier.  
GSX  
VFXI-  
VFXI+  
VBB  
O
I
17  
18  
19  
20  
Analog output of the transmit input amplifier. Used to set gain externally.  
Inverting input of the transmit input amplifier.  
I
Non-inverting input of the transmit input amplifier.  
Negative Power Supply Pin. VBB = -5V ±5%  
S
(*) I: Input, O: Output, S: Power Supply.  
TRI-STATE is a trademark of National Semiconductor Corp.  
3/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
FUNCTIONAL DESCRIPTION  
POWER-UP  
Each FSX pulse begins the encoding cycle and the  
PCM data from the previous encode cycle is shift out  
of the enabled DX output on the positive edge of  
BCLKX. After 8 bit clock periods, the TRISTATE DX  
output is returned to a high impedance state. With an  
FSR pulse, PCM data is latched via the DR input on  
the negative edge of BCLKX (or on BCKLR if running).  
FSX and FSR must be synchronous with MCLKX/R.  
When power is first applied, power-on reset circuitry  
initializes the device and places it into the power-  
down mode. All non-essential circuits are deacti-  
vated and the DX and VFRO outputs are put in high  
impedance states. To power-up the device, a logical  
low level or clock must be applied to the  
MCLKR/PDN pin and FSX and/or FSR pulses must  
be present. Thus 2 power-down control modes are  
available. The first is to pull the MCLKR/PDN pin  
high; the alternative is to hold both FSX and FSR in-  
puts continuously low. The device will power-down  
approximately 2 ms after the last FSX pulse. The  
TRI-STATE PCM data output, DX, will remain in the  
high impedance state until the second FSX pulse.  
ASYNCHRONOUS OPERATION  
For asynchronous operation, separate transmit and  
receive clocks may be applied. MCLKX and MCLKR  
must be 2.048 MHz for the ETC5067 or 1.536 MHz,  
1.544 MHz for the ETC5064, and need not be syn-  
chronous. For best transmission performance, how-  
ever, MCLKR should be synchronous with MCLKX,  
which is easily achieved by applying only static logic  
levels to theMCLKR/PDNpin. Thiswill automatically  
connectMCLKX to all internal MCLKR functions (see  
pin description). For 1.544 MHz operation, the de-  
vice automatically compensates for the 193rd clock  
pulse each frame. FSX starts each encoding cycle  
and must be synchronous with MCLKX and BCLKX.  
FSR starts each decoding cycle and must be syn-  
chronous with BCLKR. BCLKR must be a clock, the  
logic levels shown in Table 1 are not valid in asyn-  
chronous mode. BCLKX and BCLKR may operate  
from 64kHz to 2.048 MHz.  
SYNCHRONOUS OPERATION  
For synchronous operation, the same master clock  
and bit clock should be used for both the transmit  
and receive directions. In this mode, a clock must be  
applied to MCLKX and the MCLKR/PDN pin can be  
used as a power-down control. A low level on  
MCLKR/PDN powers up the device and a high level  
powers down the device. In either case, MCLKX will  
be selected as the master clock for both the transmit  
and receive circuits. A bit clock must also be applied  
to BCLKX and the BCLR/CLKSEL can be used to se-  
lect the proper internal divider for a master clock of  
1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544  
MHz operation, the device automatically compen-  
sates for the 193 rd clock pulse each frame.  
SHORT FRAME SYNC OPERATION  
The device can utilize either a short frame sync  
pulseora longframesyncpulse.Upon powerinitiali-  
zation, the device assumes a short frame mode. In  
this mode, both frame sync pulses. FSX and FSR,  
must be one bit clock period long, with timing rela-  
tionships specified in figure 2. With FSX high during  
a falling edge of BCLKR, the next rising edge of  
BCLKX enables the DX TRI-STATE output buffer,  
which will outputthesignbit. The followingsevenris-  
ing edges clock out the remaining seven bits, and  
the next falling edge disables the DX output. With  
FSR high during a falling edge of BCLKR (BCLKX in  
synchronous mode), the next falling edge of BCLKR  
latches in the sign bit. The following seven falling  
edges latch in the seven remaining bits. Both de-  
vices may utilize the short frame sync pulse in syn-  
chronous or asynchronous operating mode.  
With a fixed level on the BCLKR/CKSEL pin, BCLKX  
will be selected as the bit clock for both the transmit  
and receive directions. Table 1 indicates the fre-  
quencies of operation which can be selected, de-  
pending on the state ofBCLKR/CLKSEL. In this syn-  
chronous mode, the bit clock, BCLKX, may be from  
64 kHz to 2.048 MHz, but must be synchronous with  
MCLKX.  
Table 1: Selection of Master Clock Frequencies.  
Master Clock  
Frequency Selected  
BCLKR/CLKSEL  
ETC5067  
ETC5064  
ETC5067-X  
ETC5064-X  
Clocked  
2.048MHz  
1.536MHz or  
1.544MHz  
LONG FRAME SYNC OPERATION  
To use the long frame mode, both the frame sync  
pulses,FSX and FSR, mustbethree ormorebitclock  
periods long, with timing relationships specified in  
figure 3. Based on the transmit frame sync FSX, the  
device will sense whether short or long frame sync  
0
1.536MHz or  
1.544MHz  
2.048MHz  
1 (or open circuit)  
2.048MHz  
1.536MHz or  
1.544MHz  
4/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
pulses are being used. For 64 kHz operation, the  
frame sync pulses must be kept low for a minimum  
of 160 ns (see Fig 1). The DX TRI-STATE output  
buffer is enabled with the rising edge of FSX or the  
rising edge of BCLKX, whichever comes later, and  
the first bit clocked out is the sign bit. The following  
seven BCLKX rising edges clock out the remaining  
seven bits. The DX output is disabled by the falling  
BCLKX edge following the eighth rising edge, or by  
FSX going low, whichever comes later. A rising edge  
on the receive frame sync pulse, FSR, will cause the  
PCM data at DR to be latched in on the next eight  
falling edges of BCLKR (BCLKx in synchronous  
mode). Both devices may utilize the long frame sync  
pulse in synchronous or asynchronous mode.  
RECEIVE SECTION  
The receive section consist of an expanding DAC  
which drives a fifth order switched-capacitor low  
pass filter clocked at 256kHz. The decoder is A-law  
µ
(ETC5067 and ETC5067-X) or –law (ETC5064  
and ETC5064-X) and the 5 th order low pass filter  
corrects for the sin x/x attenuation due to the 8kHz  
sample and hold. The filter is then followed by a 2  
nd order RC active post-filter and power amplifier  
capable of driving a 600 load to a level of 7.2dBm.  
The receive section is unity-gain. Upon the oc-  
curence of FSR, the data at the DR input is clocked  
in on the falling edge of the next eight BCLKR  
(BCKLX) periods. Attheendofthedecodertimeslot,  
µ
the decoding cycle begins, and 10 s later the de-  
coder DAC output isupdated. The total decoder de-  
TRANSMIT SECTION  
µ
µ
lay is about10 s (decoder up-date) plus 110 s (fil-  
The transmit section input is an operational amplifier  
with provision forgain adjustmentusing two external  
resistors, see figure4. The low noise and wideband-  
width allow gains in excess of 20 dB across the  
audio passband to be realized. The op amp drives  
a unity gain filter consisting of RC active pre-filter,  
followed by an eighth order switched-capacitor  
bandpass filter directly drives the encoder sample-  
and-hold circuit. The A/D is of companding type ac-  
µ
ter delay) plus 62.5 s (1/2 frame), which gives ap-  
µ
proximately 180 s.  
RECEIVE POWER AMPLIFIERS  
Two inverting mode power amplifiers are provided  
for directly driving a matched line interface trans-  
former. The gain of the first power amplifier can be  
±
adjusted to boost the 2.5V peak output signal from  
±
the receive filter up 3.3V peak into an unbalanced  
µ
cording to A-law (ETC5067 and ETC5067-X) or -  
±
300 load, or 4.0V into an unbalanced 15k load.  
The second power amplifier is internally connected  
in unity-gain inverting mode to give 6dB of signal  
gain forbalanced loads. Maximum power transfer to  
a 600 subscriber line termination is obtained by  
differientially driving a balanced transformer with a  
law (ETC5064 and ETC5064-X) coding conven-  
tions. A precision voltage reference is trimmed in  
manufacturing to provide an input over load (tMAX  
)
of nominally 2.5V peak (see table of Transmission  
Characteristics). The FSX frame sync pulse controls  
the sampling of the filer output, and then the succes-  
sive-approximation encoding cyclebegins. The 8-bit  
code is then loaded into a buffer and shifted out  
through DX at the next FSX pulse. the total encoding  
2  
: 1 turns ratio, as shown in figure 4. A total peak  
power of 15.6dBm can be delivered to the load plus  
termination. Both power amplifier can be powered  
down independentlyfromthe PDNinputbyconnect-  
ing the VPI input to VBB saving approximately 12  
mW of power.  
µ
delay will be approximately 165 s (due to the trans-  
µ
mit filter) plus 125 s (due to encoding delay), which  
µ
totals 290 s. Any offset voltage due to the filters or  
comparator is cancelled by sign bit integration.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
VCC  
Parameter  
Value  
Unit  
V
VCC to GNDA  
VBB to GNDA  
7
VBB  
-7  
V
VIN, VOUT Voltage at any Analog Input or Output  
Voltage at any Digital Input or Output  
VCC +0.3 to VBB -0.3  
VCC +0.3 to GNDA -0.3  
V
V
Toper  
Operating Temperature Range: ETC5064/67  
ETC5064-X/67-X  
-25 to +125  
-40 to +125  
°C  
°C  
Tstg  
Storage Temperature Range  
-65 to +150  
300  
°C  
°C  
Lead Temperature (soldering, 10 seconds)  
5/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
ELECTRICAL OPERATING CHARACTERISTICS  
VCC = 5.0V ±5%, VBB = -5V ±5%, GNDA = 0V, TA = 0°C to 70°C (ETC5064-X/67-X: TA = –40°C to 85°), unless  
otherwise noted; typical characteristics specified at VCC = 5.0V, VBB =-5.0V, TA = 25°C; all signals are refer-  
enced to GNDA.  
DIGITAL INTERFACE (All devices)  
Symbol  
VIL  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
Input Low Voltage  
Input High Voltage  
0.6  
VIH  
2.2  
V
VOL  
Output Low Voltage  
IL = 3.2 mA  
DX  
TSX  
0.4  
0.4  
V
V
IL = 3.2 mA, Open Drain  
VOH  
IIL  
Output High Voltage  
IH = 3.2 mA  
DX  
2.4  
V
– 10  
10  
10  
Input Low Current (GNDA VIN VIL )all digital inputs  
Except BCLKR  
µA  
IIH  
– 10  
Input High Current (VIH VIN VCC) Except ANLB  
µA  
ANALOG INTERFACE WITH TRANSMIT INPUT AMPLIFIER (all devices)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
IIXA  
Input Leakage Current  
(– 2.5 V V + 2.5 V)  
VFxI + or VFxI –  
VFXI + or VFXI –  
– 200  
200  
nA  
RIXA  
Input Resistance  
(– 2.5 V V + 2.5 V)  
10  
10  
MΩ  
ROXA  
RLXA  
CLXA  
VOXA  
AVXA  
FUXA  
VOSXA  
Output Resistance (closed loop, unity gain)  
Load Resistance  
1
3
kΩ  
pF  
V
GSX  
GSX  
GSX  
Load Capacitance  
50  
– 2.8  
5000  
1
+2.8  
Output Dynamic Range (RL 10 k)  
Voltage Gain (VFXI + to GSX)  
Unity Gain Bandwidth  
V/V  
MHz  
mV  
V
2
Offset Voltage  
– 20  
– 2.5  
60  
20  
VCMXA  
Common-mode Voltage  
2.5  
CMRRXA  
PSRRXA  
Common-mode Rejection Ratio  
Power Supply Rejection Ratio  
dB  
dB  
60  
ANALOG INTERFACE WITH RECEIVE FILTER (all devices)  
Symbol  
RORF  
Parameter  
Min.  
10  
Typ.  
Max.  
Unit  
Output Resistance  
VFRO  
1
3
RLRF  
Load Resistance (VFRO = ± 2.5 V)  
Load Capacitance  
kΩ  
pF  
CLRF  
25  
VOSRO  
Output DC Offset Voltage  
– 200  
200  
mV  
6/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
ELECTRICAL OPERATING CHARACTERISTICS (Continued)  
ANALOG INTERFACE WITH POWER AMPLIFIERS (all devices)  
Symbol  
IPI  
Parameter  
Input Leakage Current (– 1.0 V VPI 1.0 V)  
Input Resistance (– 1.0 VPI 1.0 V)  
Input Offset Voltage  
Output Resistance (inverting unity–gain at VPO + or VPO )  
Unity–gain Bandwidth, Open Loop (VPO )  
Min.  
– 100  
10  
Typ.  
Max.  
Unit  
100  
nA  
RIPI  
VIOS  
ROP  
FC  
MΩ  
mV  
– 25  
25  
1
400  
kHz  
pF  
CLP  
Load Capacitance (VPO + or VPO to GNDA)  
100  
500  
1000  
RL 1500 Ω  
RL = 600 Ω  
RL = 300 Ω  
GAp +  
Gain VPO to VPO + to GNDA, Level at VPO = 1. 77 Vrms  
(+ 3 dBmO)  
– 1  
V/V  
dB  
PSRRp  
Power Supply Rejection of VCC or VBB  
(VPOconnected to VPI)  
0 kHz – 4 kHz  
60  
36  
0 kHz – 50 kHz  
POWER DISSIPATION (all devices)  
Symbol  
Parameter  
Power-down Current at ETC6064/67  
ETC5064-X/67-X  
Power-down Current at ETC6064/67  
ETC5064-X/67-X  
Active Current at ETC6064/67  
ETC5064-X/67-X  
Active Current at ETC6064/67  
ETC5064-X/67-X  
Min.  
Typ.  
Max.  
Unit  
ICC  
BB0  
CC1  
BB1  
0
0.5  
0.5  
1.5  
mA  
mA  
I
0.05  
0.05  
0.3  
0.4  
mA  
mA  
I
7.0  
7.0  
10.0  
12.0  
mA  
mA  
I
7.0  
7.0  
10.0  
12.0  
mA  
mA  
7/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
All TIMING SPECIFICATIONS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
1/tPM  
Frequency of master clocks  
MCLKX and MCLKR  
1.536  
2.048  
MHz  
Depends on the device used and the  
BCLKR/CLKSEL Pin  
1.544  
tWMH  
tWML  
tRM  
Width of Master Clock High  
Width of Master Clock Low  
MCLKX and MCLKR  
MCLKX and MCLKR  
MCLKX and MCLKR  
MCLKX and MCLKR  
160  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Rise Time of Master Clock  
50  
50  
tFM  
Fall Time of Master Clock  
tPB  
Period of Bit Clock  
485  
160  
160  
488  
15.725  
tWBH  
tWBL  
tRB  
Width of Bit Clock High (VIH = 2.2 V)  
Width of Bit Clock Low (VIL = 0.6 V)  
Rise Time of Bit Clock (tPB = 488 ns)  
Fall Time of Bit Clock (tPB = 488 ns)  
50  
50  
tFB  
tSBFM  
Set-up time from BCLKX high to MCLKX falling edge.  
(first bit clock after the leading edge of FSX)  
100  
0
tHBF  
Holding Time from Bit Clock Low to the Frame Sync  
(long frame only)  
ns  
tSFB  
Set-up Time from Frame Sync to Bit Clock (long frame only)  
80  
ns  
ns  
tHBFI  
Hold Time from 3rd Period of Bit Clock  
Low to Frame Sync (long frame only)  
FSX or FSR  
100  
tDZF  
Delay Time to valid data from FSX or BCLKX, whichever  
comes later and delay time from FSX to data output disabled  
(CL = 0 pF to 150 pF)  
20  
0
165  
ns  
ns  
tDBD  
Delay Time from BCLKX high to data valid  
(load = 150 pF plus 2 LSTTL loads)  
150  
165  
tDZC  
tSDB  
tHBD  
tHOLD  
tSF  
Delay Time from BCLKX low to data output disabled  
Set-up Time from DR valid to BCLKR/X low  
50  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
Hold Time from BCLKR/X low to DR invalid  
Holding Time from Bit Clock High to Frame Sync (short frame only)  
Set-up Time from FSX/R to BCLKX/R Low  
(short frame sync pulse) - Note 1  
80  
tHF  
Hold Time from BCLKX/R Low to FSX/R Low  
(short frame sync pulse) - Note 1  
100  
160  
ns  
tXDP  
tWFL  
Delay Time to TSX low (load = 150 pF plus 2 LSTTI loads)  
140  
ns  
ns  
Minimum Width of the Frame Sync Pulse (low level)  
(64 bit/s operating mode)  
Note : 1.For short frame sync timing. FSX and FSR must go high while their respective bit clocks are high.  
Figure 1 : 64 k bits/s TIMING DIAGRAM. (see next page for complete timing)  
8/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
Figure 2 : Short Frame Sync Timing.  
9/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
Figure 3 : Long Frame Sync Timing.  
10/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
TRANSMISSION CHARACTERISTICS  
(all devices) TA = 0°C to 70°C (ETC5064-X/67-X: TA = –40°C to 85°), VCC = 5V ± 5%, VBB = – 5V ± 5%,  
GNDA=0V, f= 1.02kHz, VIN = 0dBm0 transmitinputamplifierconnected forunity–gain non–inverting. (unless  
otherwise specified).  
AMPLITUDE RESPONSE  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
1.2276  
Vrms  
Absolute Levels - Nominal 0 dBm0 is 4 dBm (600).  
0 dBm0  
tMAX  
Max Overload Level  
3.14 dBm0  
ETC5067  
ETC5064  
2.492  
2.501  
VPK  
dB  
3.17 dBm0  
GXA  
-0.15  
0.15  
Transmit Gain, Absolute (TA = 25°C, VCC = 5V, VBB = -5V)  
Input at GSX = 0dBm0 at 1020Hz  
GXR  
Transmit Gain, Relative to GXA  
f = 16Hz  
f = 50Hz  
f = 60Hz  
f = 180Hz  
f = 200Hz  
f = 300Hz -3000Hz  
f = 3200Hz (ETC5064-X/67-X)  
f = 3300Hz  
-
-
-
-40  
-30  
-26  
-0.2  
-0.1  
0.15  
0.20  
0.05  
0
-2.8  
-1.8  
-0.15  
-0.35  
-0.35  
-0.7  
dB  
f = 3400Hz  
f = 4000Hz  
-14  
-32  
f = 4600Hz and up, measure response from oHz to 4000Hz  
GXAT  
Absolute Transmit Gain Variation with Temperature  
TA = 0°C to +70°C  
TA = –40°C to +85°C (ETC5064-X/67-X)  
dB  
dB  
-0.1  
-0.15  
0.1  
0.15  
GXAV  
GXRL  
Absolute Transmit Gain Variation with Supply Voltage  
(VCC = 5V ±5%, VBB = -5V ±5%)  
-0.05  
0.05  
Transmit Gain Variation with Level  
Sinusolidal Test Method Reference Level = -10dBm0  
VFXI+ = -40dBm0 to +3dBm0  
-0.2  
-0.4  
-1.2  
0.2  
0.4  
1.2  
dB  
dB  
VFXI+ = -50dBm0 to -40dBm0  
VFXI+ = -55dBm0 to -50dBm0  
GRA  
GRR  
-0.15  
0.15  
Receive Gain, Absolute (TA = 25°C, VCC = 5V, VBB = -5V)  
Input = Digital Code Sequence for 0dBm0 Signal at 1020Hz  
Receive Gain, Relative to GRA  
f = 0Hz to 3000Hz  
f = 3200Hz (ETC5064-X/67-X)  
f = 3300Hz  
-0.15  
-0.35  
-0.35  
-0.7  
0.15  
0.20  
0.05  
0
dB  
f = 3400Hz  
f = 4000Hz  
-14  
GRAT  
Absolute Receive Gain Variation with Temeperature  
TA = 0°C to +70°C  
-0.1  
-0.15  
0.1  
0.15  
dB  
dB  
TA = –40°C to +85°C (ETC5064-X/67-X)  
GRAV  
GRRL  
Absolute Receive Gain Variation with Supply Voltage  
(VCC = 5V ±5%, VBB = -5V ±5%)  
-0.05  
0.05  
Receive Gain Variation with Level  
Sinusoidal Test Method; Reference Input PCM code  
corresponds to an ideally encoded -10dBm0 signal  
PCM level = -40dBm0 to +3dBm0  
PCM level = -50dBm0 to -40dBm0  
PCM level = -55dBm0 to -50dBm0  
-0.2  
-0.4  
-1.2  
0.2  
0.4  
1.2  
dB  
V
VRO  
-2.5  
2.5  
Receive Filter Output at VFRO RL = 10KΩ  
11/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
TRANSMISSION CHARACTERISTICS (continued).  
ENVELOPE DELAY DISTORTION WITH FREQUENCY  
Symbol  
DXA  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Transmit Delay, Absolute (f = 1600 Hz)  
290  
315  
µs  
DXR  
Transmit Delay, Relative to DXA  
f = 500 Hz-600 Hz  
195  
120  
50  
20  
55  
220  
145  
75  
40  
75  
f = 600 Hz-800 Hz  
f = 800 Hz-1000 Hz  
f = 1000 Hz-1600 Hz  
f = 1600 Hz-2600Hz  
f = 2600 Hz-2800 Hz  
f = 2800 Hz-3000 Hz  
µs  
80  
130  
105  
155  
DRA  
DRR  
Receive Delay, Absolute (f = 1600 Hz)  
180  
200  
µs  
µs  
Receive Delay, Relative to DRA  
f = 500 Hz-1000 Hz  
f = 1000 Hz-1600 Hz  
f = 1600 Hz-2600 Hz  
f = 2600 Hz-2800 Hz  
f = 2800 Hz-3000 Hz  
– 40  
– 30  
– 25  
– 20  
70  
100  
145  
90  
125  
175  
NOISE  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
NXP  
Transmit Noise, P Message (A-LAW, VFXI + = 0 V) Weighted 1)  
ETC5064  
ETC5064-X  
– 74  
– 74  
– 69 dBm0p  
– 67 dBm0p  
NRP  
NXC  
Receive Noise, P Message Weighted  
(A-LAW, PCM Code Equals Positive Zero)  
– 82  
– 79 dBm0p  
Transmit Noise, C Message Weighted  
(µ-LAW, VFxI + = 0 V)  
ETC5064  
ETC5064-X  
12  
12  
15  
16  
dBrnC0  
dBrnC0  
NRC  
Receive Noise, C Message Weighted  
8
11  
dBrnC0  
dBm0  
(µ-LAW, PCM Code Equals Alternating Positive and Negative Zero)  
NRS  
Noise, Single Frequency  
– 53  
f = 0 kHz to 100 kHz, Loop around Measurement, VFXI + = 0 V  
PPSRX  
NPSRX  
PPSRR  
Positive Power Supply Rejection, Transmit (note 2)  
VCC = 5.0 VDC + 100 mVrms, f = 0 kHz-50 kHz  
40  
40  
dBp  
dBp  
Negative Power Supply Rejection, Transmit (note 2)  
VBB = 5.0 VDC + 100 mVrms, f = 0 kHz-50 kHz  
Positive Power Supply Rejection, Receive (PCM code equals  
positive zero, VCC = 5.0 VDC + 100 mVrms)  
f = 0 Hz-4000Hz  
A LAW  
µ LAW  
40  
40  
40  
36  
dBp  
dBc  
dB  
f = 4 kHz-25 kHz  
f = 25 kHz-50 kHz  
dB  
NPSRR  
Negative Power Supply Rejection, Receive (PCM code equals  
positive zero, VBB = – 5.0 VDC + 100 mVrms)  
f = 0 Hz-4000Hz  
A LAW  
µ LAW  
40  
40  
40  
36  
dBp  
dBc  
dB  
f = 4 kHz-25 kHz  
f = 25 kHz-50 kHz  
dB  
SOS  
Spurious out-of-band Signals at the Channel Output  
0 dBm0, 300 Hz-3400 Hz input PCM applied at DR  
4600 Hz-7600 Hz  
–32  
–40  
–32  
dB  
dB  
dB  
7600 Hz-8400 Hz  
8400 Hz-100,000 Hz  
12/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
TRANSMISSION CHARACTERISTICS (continued).  
DISTORTION  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
STDX  
or  
Signal to Total Distortion (sinusoidal test method)  
STDR  
Transmit or Receive Half-channel  
Level = 3.0 dBm0  
= 0 dBm0 to – 30 dBm0  
= – 40 dBm0  
dBp  
(ALAW)  
33  
36  
29  
30  
14  
15  
XMT  
RCV  
XMT  
RCV  
dBc  
(µLAW)  
= – 55 dBm0  
SFDX  
SFDR  
IMD  
– 46  
– 46  
– 41  
dB  
dB  
dB  
Single Frequency Distortion, Transmit (TA = 25°C)  
Single Frequency Distortion, Receive (TA = 25°C)  
Intermodulation Distortion  
Loop Around Measurement, VFXI + = – 4 dBm0 to  
– 21 dBm0, two Frequencies in the Range 300 Hz-3400 Hz  
CROSSTALK  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CTX-R  
Transmit to Receive Crosstalk, 0dBm0 Transmit  
f = 300 Hz-3400 Hz, DR = Steady PCM Code ETC5064/67  
ETC5064-X/67-X  
Receive to Transmit Crosstalk, 0dBm0 Receive Level (note 2)  
– 90  
– 75  
– 65  
dB  
dB  
CTR-X  
f = 300 Hz-3400 Hz, VFXI = 0 V  
ETC5064/67  
ETC5064-X/67-X  
– 90  
– 70  
– 65  
dB  
dB  
POWER AMPLIFIERS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VOL  
Vrms  
Maximum 0 dBm0 Level for Better than ± 0.1 dB Linearity Over  
the Range 10 dBm0 to + 3 dBm0  
(balanced load, RL connected between VPO + and VPO )  
RL = 600 Ω  
RL = 1200 Ω  
RL = 30 kΩ  
33  
3.5  
4.0  
S/DP  
50  
dB  
Signal/Distortion RL = 600 , 0 dBm0  
Notes : 1. Measured by extrapolation from the distortion test results.  
2. PPSRX, NPSRX, CTR–X measured with a –50dBm0 activating signal applied at VFXI+  
ENCODING FORMAT AT DX OUTPUT  
A-Law  
µLaw  
(Including even bit inversion)  
VIN (at GSX) = + Full-scale  
VIN (at GSX) = 0 V  
1 0 1 0 1 0 1 0  
1 0 0 0 0 0 0 0  
1 1 0 1 0 1 0 1  
0 1 0 1 0 1 0 1  
1 1 1 1 1 1 1 1  
0 1 1 1 1 1 1 1  
VIN (at GSX) = – Full-scale  
0 0 1 0 1 0 1 0  
0 0 0 0 0 0 0 0  
13/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
APPLICATION INFORMATION  
Figure 4 : Typical Asynchronous Application.  
POWER SUPPLIES  
While the pins at the ETC506X family are well pro-  
tected against electrical misure, it is recommended  
that the standard CMOS practice be followed, en-  
suring that ground is connected to the device before  
any other connections are made. In applications  
where the printed circuit board may be plugged into  
a "hot" socket with power and clocks already pre-  
sent, an extra long ground pin in the connector  
should be used.  
All ground connections to each device should meet  
ata common pointasclose aspossible to the GNDA  
pin. This minimizes the interaction of ground return  
currents flowing through a commonbusimpedance.  
µ
0.1 F supply decoupling capacitors should be con-  
nected from this common ground point to VCC and  
VBB as close to the device as possible.  
For best performance, the ground point of each  
CODEC/FILTER on a card should be connected to  
a common card ground in star formation, ratherthan  
via a ground bus. This common ground point should  
µ
be decoupled to VCC and VBB with 10 F capaci-  
tors.  
14/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
A1  
B
C
D
E
e
2.35  
0.1  
2.65 0.093  
0.3 0.004  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
0.33  
0.23  
12.6  
7.4  
0.51 0.013  
0.32 0.009  
13  
0.496  
0.291  
7.6  
1.27  
0.050  
H
h
10  
0.25  
0.4  
10.65 0.394  
0.75 0.010  
0.419  
0.030  
0.050  
L
1.27 0.016  
SO20  
K
0˚ (min.)8˚ (max.)  
L
h x 45˚  
A
B
A1  
C
e
K
H
D
20  
11  
E
1
01  
SO20MEC  
15/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
B
9.78  
8.89  
4.2  
10.03 0.385  
9.04 0.350  
4.57 0.165  
0.395  
0.356  
0.180  
D
d1  
d2  
E
2.54  
0.56  
0.100  
0.022  
7.37  
8.38 0.290  
0.330  
0.004  
e
1.27  
0.38  
0.050  
0.015  
F
G
0.101  
M
M1  
1.27  
1.14  
0.050  
0.045  
PLCC20  
B
M
M1  
3
2
1
20  
19  
4
5
6
7
8
18  
M
M1  
F
e
17  
16  
15  
14  
E
9
10 11 12  
13  
d2  
A
d1  
D
G (Seating Plane Coplanarity)  
PLCC20ME  
16/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.254  
1.39  
0.010  
1.65 0.055  
0.065  
1.000  
0.45  
0.25  
0.018  
0.010  
b1  
D
E
e
25.4  
8.5  
2.54  
22.86  
0.335  
0.100  
0.900  
e3  
F
7.1  
0.280  
0.155  
I
3.93  
L
3.3  
0.130  
DIP20  
Z
1.34  
0.053  
17/18  
ETC5064 - ETC5064-X - ETC5067 - ETC5067-X  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-  
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this  
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-  
croelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
18/18  

相关型号:

ETC5067

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067-X

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067D

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067D-X

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067FN

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067FN-X

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067J

A-Law CODEC
ETC

ETC5067N

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC5067N-X

POWER AMPLIFIER SERIAL INTERFACE CODEC/FILTERWITH RECEIVE
STMICROELECTR

ETC50DRAF

.100 [2.54mm] CONTACT CENTERS, 431 INSULATOR HEIGHT
ETC

ETC50DRAH

.100 [2.54mm] CONTACT CENTERS, 431 INSULATOR HEIGHT
ETC

ETC50DRAI

.100 [2.54mm] CONTACT CENTERS, 431 INSULATOR HEIGHT
ETC