GM5221 [STMICROELECTRONICS]

1280 X 1024 PIXELS DOT MAT LCD DSPL CTLR, PQFP208, PLASTIC, QFP-208;
GM5221
型号: GM5221
厂家: ST    ST
描述:

1280 X 1024 PIXELS DOT MAT LCD DSPL CTLR, PQFP208, PLASTIC, QFP-208

CD
文件: 总47页 (文件大小:1285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Genesis Microchip Publication  
PRELIMINARY DATA SHEET  
gm5221-LF-BC  
Integrated Multimedia LCD Controller  
GENESIS MICROCHIP CONFIDENTIAL  
Publication Number: C5221-DAT-04A  
Publication Date: March 2004  
Genesis Microchip Inc.  
www.genesis-microchip.com  
/ info@genesis-microchip.com.com  
The following are trademarks or registered trademarks of Genesis Microchip, Inc.:  
GenesisTM, Genesis Display PerfectionTM, ESMTM, RealColorTM, Ultra-Reliable DVITM, Real RecoveryTM, SageTM, JagASMTM  
SureSyncTM, Adaptive Backlight Control™, FaroudjaTM, DCDiTM, TrueLifeTM, IntelliCombTM  
,
Other brand or product names are trademarks of their respective holders.  
© Copyright 2002, 2003, 2004 Genesis Microchip Inc. All Rights Reserved.  
Genesis Microchip Inc. reserves the right to change or modify the information contained herein without notice. It is  
the customer’s responsibility to obtain the most recent revision of the document. Genesis Microchip Inc. makes no  
warranty for the use of its products and bears no responsibility for any errors or omissions that may appear in this  
document.  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table Of Contents  
1
Overview........................................................................................................................................ 7  
1.1 gm5221 System Design Example ................................................................................................ 7  
1.2 gm5221 Features.......................................................................................................................... 8  
gm5221 Pinout............................................................................................................................... 9  
gm5221 Pin List........................................................................................................................... 10  
Functional Description................................................................................................................. 15  
4.1 Clock Generation ....................................................................................................................... 15  
4.1.1 Using the Internal Oscillator with External Crystal............................................................ 15  
4.1.2 Clock Synthesis................................................................................................................... 18  
4.2 Chip Initialization ...................................................................................................................... 19  
4.2.1 Hardware Reset................................................................................................................... 19  
4.2.2 Power Sequencing............................................................................................................... 21  
4.3 Analog to Digital Converter (ADC)........................................................................................... 21  
4.3.1 ADC Pin Connection .......................................................................................................... 21  
4.3.2 ADC Characteristics ........................................................................................................... 23  
4.3.3 Clock Recovery Circuit ...................................................................................................... 23  
4.3.4 Sampling Phase Adjustment ............................................................................................... 24  
4.3.5 SOG and CSYNC support .................................................................................................. 24  
4.4 Ultra-Reliable Digital Visual Interface Receiver (DVI Rx)....................................................... 25  
4.4.1 DVI Receiver Characteristics ............................................................................................. 25  
4.4.2 High-Bandwidth Digital Content Protection (HDCP) ........................................................ 26  
4.5 ITU656 Video Input Port........................................................................................................... 26  
4.6 Test Pattern Generator (TPG) .................................................................................................... 26  
4.7 Input Format Measurement........................................................................................................ 27  
4.7.1 HSYNC / VSYNC Delay.................................................................................................... 27  
4.7.2 Horizontal and Vertical Measurement................................................................................ 28  
4.7.3 Format Change Detection ................................................................................................... 28  
4.7.4 Watchdog............................................................................................................................ 28  
4.7.5 Internal Odd/Even Field Detection (For Interlaced Inputs to ADC Only).......................... 28  
4.7.6 Input Pixel Measurement.................................................................................................... 29  
4.7.7 Image Phase Measurement ................................................................................................. 29  
4.7.8 Image Boundary Detection ................................................................................................. 29  
4.7.9 Image Auto Balance............................................................................................................ 29  
4.8 Intelligent Image Processing™ Zoom/Shrink/Sharpening Filter............................................... 29  
4.8.1 Variable Zoom Scaling ....................................................................................................... 29  
2
3
4
C5221-DAT-04A  
3
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4.8.2 Horizontal and Vertical Shrink........................................................................................... 30  
4.8.3 Programmable Sharpening Filter........................................................................................ 30  
4.9 Advanced Digital Color Controls .............................................................................................. 30  
4.9.1 Adaptive Contrast and Color (ACC)................................................................................... 30  
4.9.2 Active Color Management–II (ACM-II) ............................................................................ 31  
4.9.3 Gamma Look-Up-Table (LUT) .......................................................................................... 31  
4.9.4 Color Standardization and sRGB Support.......................................................................... 31  
4.9.5 Video Windowing............................................................................................................... 31  
4.10 Display Output Interface.......................................................................................................... 31  
4.10.1 Display Synchronization................................................................................................... 32  
4.10.2 Display Timing Programming .......................................................................................... 32  
4.10.3 Output Dithering............................................................................................................... 33  
4.10.4 Dual Four-Channel LVDS Transmitter ............................................................................ 33  
4.10.5 Single Pixel TTL Output................................................................................................... 34  
4.10.6 Panel Power Sequencing (PPWR, PBIAS)....................................................................... 34  
4.11 Energy Spectrum Management (ESM).................................................................................... 35  
4.12 On-Screen Display (OSD) ....................................................................................................... 35  
4.12.1 On-Chip OSD SRAM ....................................................................................................... 35  
4.12.2 Color Look-up Table (LUT)............................................................................................. 36  
4.13 On-Chip Microcontroller (OCM)............................................................................................. 36  
4.13.1 Compiling firmware.......................................................................................................... 37  
4.13.2 Embedded Bootstrap Function.......................................................................................... 37  
4.13.3 In-System-Programming (ISP) of External FLASH ROM............................................... 38  
4.13.4 UART Interface ................................................................................................................ 38  
4.13.5 DDC2Bi Interface............................................................................................................. 38  
4.13.6 JTAG Interface ................................................................................................................. 39  
4.13.7 General Purpose Inputs and Outputs (GPIO).................................................................... 39  
4.13.8 Low-Bandwidth ADC (LBADC)...................................................................................... 40  
4.13.9 Low Power State............................................................................................................... 40  
4.13.10 Pulse Width Modulation (PWM).................................................................................... 40  
4.14 Bootstrap Configuration Pins................................................................................................... 41  
4.15 Electrostatic Discharge (ESD) ................................................................................................. 41  
Electrical Specifications .............................................................................................................. 42  
5.1 Preliminary DC Characteristics ................................................................................................. 42  
5.2 Preliminary AC Characteristics ................................................................................................. 44  
Ordering Information................................................................................................................... 46  
Mechanical Specifications ........................................................................................................... 47  
5
6
7
C5221-DAT-04A  
4
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
List Of Tables  
Table 1. Analog Input Port................................................................................................................ 10  
Table 2. DVI Input Port .................................................................................................................... 10  
Table 3. RCLK PLL Pins.................................................................................................................. 11  
Table 4. Input Video Port.................................................................................................................. 11  
Table 5. System Interface.................................................................................................................. 12  
Table 6. LVDS Display Interface ..................................................................................................... 13  
Table 7. TTL Display Interface......................................................................................................... 13  
Table 8. RESET Time....................................................................................................................... 20  
Table 9. Requirement for RESETn due to Glitch in AVDD_3.3V................................................... 20  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Pin Connection for RGB Input with HSYNC/VSYNC .................................................. 22  
ADC Characteristics ....................................................................................................... 23  
DVI Receiver Characteristics ......................................................................................... 25  
Supported LVDS 24-bit Panel Data Mappings............................................................... 34  
Supported LVDS 18-bit Panel Data Mapping ................................................................ 34  
GPIO and Alternate Functions........................................................................................ 40  
Bootstrap Signals............................................................................................................ 41  
Absolute Maximum Ratings........................................................................................... 42  
DC Characteristics.......................................................................................................... 43  
Maximum Speed of Operation........................................................................................ 44  
Input Timing for ITU656 Video Port ............................................................................. 44  
OCM ROM Interface Timing ......................................................................................... 45  
C5221-DAT-04A  
5
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
List Of Figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
gm5221 System Design Example..................................................................................... 7  
gm5221 Pin Out Diagram................................................................................................. 9  
gm5221 Functional Block Diagram................................................................................ 15  
Using the Internal Oscillator with External Crystal........................................................ 16  
Internal Oscillator Output............................................................................................... 17  
Sources of Parasitic Capacitance .................................................................................... 17  
Internally Synthesized Clocks ........................................................................................ 18  
On-chip Clock Domains ................................................................................................. 19  
Reset Pulse vs. +3.3V_AVDD power line...................................................................... 20  
Figure 10. Glitch in 3.3V AVDD..................................................................................................... 20  
Figure 11. Correct Power Sequencing.............................................................................................. 21  
Figure 12. Example ADC Signal Terminations ............................................................................... 22  
Figure 13. gm5221 Clock Recovery ................................................................................................ 24  
Figure 14. Supported SOG and CSYNC signals.............................................................................. 25  
Figure 15. ITU-R BT656 Input Format............................................................................................ 26  
Figure 16. Some of gm5221 Built-in Test Patterns.......................................................................... 27  
Figure 17. Active Data Crosses HSYNC Boundary ........................................................................ 28  
Figure 18. ODD/EVEN Field Detection .......................................................................................... 29  
Figure 19. Digital Color Controls .................................................................................................... 30  
Figure 20. Display Windows and Timing ........................................................................................ 32  
Figure 21. Single Pixel Width Display Data.................................................................................... 34  
Figure 22. Panel Power Sequencing................................................................................................. 35  
Figure 23. OSD Cell Map ................................................................................................................ 36  
Figure 24. Programming the OCM .................................................................................................. 37  
Figure 25. Factory Calibration and Test Environment..................................................................... 39  
Figure 26. Timing Diagram for ITU656 Video Port........................................................................ 44  
Figure 27. OCM ROM Interface Timing Diagram .......................................................................... 45  
Figure 28. gm5221 208-pin PQFP Mechanical Drawing................................................................. 47  
C5221-DAT-04A  
6
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
1 Overview  
The gm5200 family devices are an all-in-one LCD monitor controllers supporting resolutions up to  
SXGA (1280x1024). The gm5221 leverages Genesis patented advanced image-processing technology as  
well as a proven integrated ADC/PLL and an Ultra-Reliable DVI™ compliant digital receiver to provide  
excellent image quality. gm5221 also integrates a microcontroller, an OSD controller, and dual LVDS  
transmitters.  
1.1 gm5221 System Design Example  
Figure 1 below shows a typical dual interface LCD monitor system based on the gm5221. Designs based  
on the gm5221 have reduced system cost, simplified hardware and firmware design and increased  
reliability because only a minimal number of components are required in the system.  
Analog  
LCD  
RGB  
LVDS  
Panel  
Module  
gm5221  
DVI  
Backlight  
Inverter  
Video  
NTSC/  
Decoder  
PAL  
(optional)  
PROM  
EEPROM  
Keypad  
Figure 1.  
gm5221 System Design Example  
C5221-DAT-04A  
7
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
1.2 gm5221 Features  
Intelligent Image Processing™  
Embedded X86 On-chip Microcontroller  
Fully programmable zoom ratios  
High-performance X86 MCU with on-chip RAM and ROM  
External parallel ROM or serial SPI ROM interface  
Unified memory architecture simplifies chip programming  
23 general-purpose inputs/outputs (GPIOs) available  
2-wire serial bus master to control NVRAM, video decoder  
Two DDC2Bi ports with DMA buffer to internal RAM  
Four PWM outputs for analog backlight control, audio, etc.  
General-purpose ADC’s for keypad and temperature sensing  
Integrated reset circuit  
High-quality shrink capability from UXGA resolution  
Programmable coefficients for variable sharpness control  
RealRecovery™ provides full color recovery image for  
refresh rates higher than those supported by the LCD panel  
Analog RGB Input Port  
Supports up to 162 MHz (SXGA 75Hz / UXGA 60Hz)  
On-chip high-performance PLLs (single reference crystal  
required)  
Slow clock mode for 50mW sleep mode power consumption  
JTAG debug / ICE support for firmware debugging  
Composite-sync and Sync-on-Green (SOG) support  
Input format detection  
Phase and image positioning  
Built-in Test Pattern Generator  
Simplifies manufacturing / test  
Ultra-Reliable DVI-Compliant Input Port  
Energy Spectrum Management (ESM™)  
Operating up to 165 MHz (up to UXGA 60Hz)  
Digital clock spectrum management  
Eliminates EMI suppression components and shielding  
Direct connect to all DVI 1.0-compliant transmitters  
High-bandwidth Digital Content Protection (HDCP)  
Note: HDCP function is available H version only.  
Built-in LVDS Transmitters  
CCIR-656 8-bit Video Input Port  
Four channel 6/8-bit LVDS transmitter  
Supporting NTSC / PAL interlaced and progressive  
Direct connect to commercially available video decoders  
Spatial de-interlacing  
Support for 8 or 6-bit panels with high-quality dithering  
Single / double wide up to SXGA 75Hz output  
Pin swap, odd / even swap and red / blue group swap of RGB  
outputs for flexibility in board layout  
Advanced Color Management  
Highly integrated System-on-a-Chip  
Programmable gamma correction (CLUT)  
All system clocks synthesized from a single external crystal  
50mW power saving mode  
TV color controls including hue and saturation controls  
Full color matrix allows end-users to experience the same  
colors as viewed on CRTs and other displays (e.g. sRGB  
compliance)  
5-Volt tolerant inputs  
Two Layer PCB support  
On-chip reset feature to eliminate external reset component  
Integrated Schmitt trigger for HSYNC and VSYNC  
Advanced Active Color Management ™ (ACM-II) provide  
flesh-tone compensation and image enhancement  
Adaptive Contrast and Color™ (ACC) ensures full dynamic  
range is used in video content  
PACKAGE  
On-chip Versatile OSD Controller  
208-pin PQFP  
3.3V IO and 1.8V core power supplies  
On-chip RAM for high-quality programmable menus  
1, 2 and 4-bit per pixel character cells  
Horizontal and vertical stretch of OSD menus  
Blinking, transparency and blending  
Supports two independent OSD menu rectangles  
Proportional fonts  
C5221-DAT-04A  
8
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
2 gm5221 Pinout  
The gm5221 devices are packaged in a 208-pin Plastic Quad Flat Pack (PQFP).  
AGND_ADC  
RESERVED  
AVDD_ADC_3.3  
AGND_RED  
RED-  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
ROM_DATA3  
ROM_DATA2  
ROM_DATA1  
ROM_DATA0  
ROM_OEn  
1
2
3
4
5
RED+  
ROM_WEn  
6
AVDD_RED_3.3  
AGND_GREEN  
GREEN-  
ROM_CSn  
7
CRVSS  
8
CVDD_1.8  
9
GREEN+  
RESERVED  
AVDD_LV_E_3.3  
AVSS_LV_E  
CH3P_LV_E/ER0  
CH3N_LV_E/ER1  
CLKP_LV_E/ER2  
CLKN_LV_E/ER3  
CH2P_LV_E/ER4  
CH2N_LV_E/ER5  
CH1P_LV_E/ER6  
CH1N_LV_E/ER7  
CH0P_LV_E/EG0  
CH0N_LV_E/EG1  
AVSS_LV_E  
AVDD_LV_E_3..3  
AVSS_LV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
SOG_MCSS  
AVDD_GREEN_3.3  
AGND_BLUE  
BLUE-  
BLUE+  
AVDD_BLUE_3.3  
CRVSS  
CVDD_1.8  
RESERVED  
VDD_RXPLL_1.8  
GND_RXPLL  
RESERVED  
AVDD_RXC_3.3  
RXC-  
RXC+  
AGND_RXC  
AVDD_RX0_3.3  
RX0-  
AVDD_LV_3.3  
AVDD_LV_O_3.3  
AVSS_LV_O  
CH3P_LV_O/EG2  
CH3N_LV_O/EG3  
CLKP_LV_O/EG4  
CLKN_LV_O/EG5  
CH2P_LV_O/EG6  
CH2N_LV_O/EG7  
CH1P_LV_O/EB0  
CH1N_LV_O/EB1  
CH0P_LV_O/EB2  
CH0N_LV_O/EB3  
AVSS_LV_O  
AVDD_LV_O_3..3  
CVDD_1..8  
RX0+  
AGND_RX0  
VDD_RX0_1.8  
AVDD_RX1_3.3  
RX1-  
RX1+  
AGND_RX1  
VDD_RX1_1.8  
AVDD_RX2_3.3  
RX2-  
RX2+  
AGND_RX2  
VDD_RX2_1.8  
AGND_IMB  
REXT  
CVSS  
EB4  
AVDD_IMB_3.3  
VCLK  
EB5  
EB6  
GPIO23/VDATA0  
GPIO22/VDATA1  
GPIO21/VDATA2  
GPIO20/VDATA3  
GPIO19/VDATA4  
GPIO18/VDATA5  
N/C  
EB7  
DEN  
DHS  
DVS  
RVDD_3.3  
CRVSS  
N/C  
Figure 2.  
gm5221 Pin Out Diagram  
C5221-DAT-04A  
9
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
3 gm5221 Pin List  
I/O Legend: A = Analog, I = Input, O = Output, P = Power, G = Ground, N/C = No connect inside chip.  
Table 1.  
Analog Input Port  
Pin Name  
AVDD_BLUE_3.3  
No I/O Description  
141  
AP  
Analog power (3.3V) for the blue channel. Must be bypassed with capacitor to AGND_BLUE  
pin on system board.  
BLUE+  
BLUE-  
AGND_BLUE  
142  
143  
144  
AI  
AI  
AG  
Positive analog input for Blue channel.  
Negative analog input for Blue channel.  
Analog ground for the blue channel. Must be directly connected to the analog system ground  
plane.  
AVDD_GREEN_3.3  
SOG_MCSS  
145  
146  
AP  
I
Analog power (3.3V) for the green channel. Must be bypassed with capacitor to  
AGND_GREEN pin on system board.  
Dedicated Sync-on-Green pin.  
NOTE: This pin requires the same AC-couple capacitor (if applicable) like the regular RGB  
input pins. See 4.3.5  
GREEN+  
GREEN-  
147  
148  
AI  
AI  
Positive analog input for Green channel.  
Negative analog input for Green channel.  
NOTE: For SOG support this pin should be pulled down to GND through a 1Mresistor. See  
4.3.5  
AGND_GREEN  
AVDD_RED_3.3  
149  
150  
AG  
AP  
Analog ground for the green channel. Must be directly connected to the analog system  
ground plane.  
Analog power (3.3V) for the red channel. Must be bypassed with capacitor to AGND_RED  
pin on system board.  
RED+  
RED-  
AGND_RED  
151  
152  
153  
AI  
AI  
AG  
Positive analog input for Red channel.  
Negative analog input for Red channel.  
Analog ground for the red channel. Must be directly connected to the analog system ground  
plane.  
AVDD_ADC_3.3  
154  
AG  
Analog power (3.3V) for ADC analog blocks that are shared by all three channels. Includes  
bandgap reference, master biasing and full scale adjust. Must be bypassed with capacitor to  
AGND_ADC pin on system board.  
AGND_ADC  
156  
AG  
Analog ground for ADC analog blocks that are shared by all three channels. Includes  
bandgap reference, master biasing and full scale adjust. Must be directly connected to  
analog system ground plane.  
GND1_ADC  
VDD1_ADC_1.8  
HSYNC/CSYNC  
VSYNC  
163  
164  
181  
182  
AG  
Digital GND for ADC clocking circuit. Must be directly connected to the digital system ground  
plane  
AP  
Digital power (1.8V) for ADC encoding logic. Must be bypassed with capacitor to  
GND1_ADC pin on system board.  
I
I
ADC input horizontal sync or composite sync input.  
[Input, Schmitt trigger with 1V hysteresis and 1.65V threshold, 5V-tolerant]  
ADC input vertical sync.  
[Input, Schmitt trigger with 1V hysteresis and 1.65V threshold, 5V-tolerant]  
Table 2.  
No I/O Description  
DVI Input Port  
Pin Name  
AVDD_IMB_3.3  
113  
AP  
Analog VDD (3.3V) for internal biasing circuits. Must be bypassed with capacitors  
REXT  
114  
AI  
External termination resistor.  
A 1% 250resistor should be connected from this pin to AVDD_IMB.  
Analog GND for internal biasing circuits. Must be connected directly to the ground plane.  
VDD (1.8V) for TMDS input pair 2.  
AGND_IMB  
VDD_RX2_1.8  
115  
116  
AG  
AP  
Must be bypassed with external capacitor to GND_RX2.  
Analog GND for TMDS input pair 2. Must be connected directly to the analog ground plane.  
TMDS input pair 2  
AGND_RX2  
RX2+  
RX2-  
AVDD_RX2_3.3  
VDD_RX1_1.8  
AGND_RX1  
RX1+  
117  
118  
119  
120  
121  
122  
123  
AG  
AI  
AI  
AP  
AP  
AG  
AI  
TMDS input pair 2  
Analog VDD (3.3V) for TMDS input pair 2. Must be bypassed with capacitor to AGND_RX2.  
VDD (1.8V) for TMDS input pair 2. Must be bypassed with external capacitor to GND_RX1.  
Analog GND for TMDS input pair 1. Must be connected directly to the analog ground plane.  
TMDS input pair 1  
C5221-DAT-04A  
10  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Pin Name  
RX1-  
AVDD_RX1_3.3  
VDD_RX0_1.8  
AGND_RX0  
RX0+  
RX0-  
AVDD_RX0_3.3  
AGND_RXC  
No I/O Description  
124  
125  
126  
127  
128  
129  
130  
131  
AI  
AP  
AP  
AG  
AI  
AI  
AP  
AG  
TMDS input pair 1  
Analog VDD (3.3V) for TMDS input pair 2. Must be bypassed with to AGND_RX1.  
VDD (1.8V) for TMDS input pair 2. Must be bypassed with external capacitor to GND_RX0.  
Analog GND for TMDS input pair 0. Must be connected directly to the analog ground plane.  
TMDS input pair 0  
TMDS input pair 0  
Analog VDD (3.3V) for TMDS input pair 2. Must be bypassed with capacitor to AGND_RX0.  
Analog GND for TMDS input clock pair. Must be connected directly to the analog ground  
plane.  
RXC+  
RXC-  
AVDD_RXC_3.3  
132  
133  
134  
AI  
AI  
AP  
TMDS input clock pair  
TMDS input clock pair  
Analog VDD (3.3V) for TMDS input clock pair.  
Must be bypassed with 100pF capacitor to AGND_RXC.  
Analog GND for the TMDS receiver internal PLL.  
Must be connected directly to the analog ground plane.  
Analog VDD (1.8V) for the TMDS receiver internal PLL.  
Must be bypassed with a capacitor to AGND_RXPLL.  
Reserved. Leave unconnected.  
GND_RXPLL  
VDD_RXPLL_1.8  
CLK_OUT  
136  
137  
138  
AG  
AP  
AO  
Table 3.  
No I/O Description  
RCLK PLL Pins  
Pin Name  
GND_RPLL  
165  
AG  
Digital GND for ADC clocking circuit. Must be directly connected to the digital system ground  
plane.  
VDD_RPLL_1.8  
AGND_RPLL  
166  
168  
AP  
AG  
Digital power (1.8V) for ADC digital logic. Must be bypassed with capacitor to GND1_ADC.  
Analog ground for the Reference DDS PLL. Must be directly connected to the analog system  
ground plane.  
XTAL  
TCLK  
AVDD_RPLL_3.3  
169  
170  
171  
AO  
AI  
AP  
Crystal oscillator output.  
Reference clock (TCLK) from the 14.3MHz crystal oscillator.  
Analog VDD (3.3V)  
Table 4.  
No I/O Description  
Input Video Port  
Pin Name  
VCLK  
112  
I
Video port data clock input. Up to 75Mhz  
[Input, 5V-tolerant]  
GPIO23/VDATA0  
GPIO22/VDATA1  
GPIO21/VDATA2  
GPIO20/VDATA3  
GPIO19/VDATA4  
GPIO18/VDATA5  
GPIO17/VDATA6  
GPIO16/VDATA7  
111  
110  
109  
108  
107  
106  
103  
102  
IO  
Input YUV data in 8-bit BT656 or GPIO23:16 if VPORT is disabled.  
[Bi-Directional, 5V-tolerant]  
C5221-DAT-04A  
11  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 5.  
No I/O Description  
System Interface  
Pin Name  
GPIO0  
81  
82  
83  
84  
85  
88  
89  
90  
91  
92  
93  
98  
99  
100  
101  
69  
77  
78  
IO  
General-purpose input/output signals  
GPIO1  
[Bi-directional, Schmitt trigger, 5V-tolerant]  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7/IRQin  
GPIO8/IRQout  
GPIO9/SCL  
GPIO10/SDA  
GPIO11/PWM0  
GPIO12/PWM1  
GPIO13/PWM2  
GPIO14/PWM3  
GPIO15  
DDC_SCL_VGA  
DDC_SDA_VGA  
DDC_SCL_DVI  
DDC_SDA_DVI  
RESETn  
General-purpose input/output signal [Bi-directional, Schmitt trigger, 5V-tolerant] or OCM  
interrupt and chip status.  
IO  
IO  
General-purpose input/output signals [Bi-directional, Schmitt trigger, 5V-tolerant] or master  
device on serial interface bus.  
General-purpose input/output signal or PWM signals.  
[Bi-directional, Schmitt trigger, 5V-tolerant]  
IO  
IO  
General-purpose input/output signal [Bi-directional, Schmitt trigger, 5V-tolerant]  
DDC2Bi clock for VGA Port  
DDC2Bi data for VGA Port [internal 10Kpull-up resistor]  
DDC2Bi and HDCP clock for DVI Port  
DDC2Bi and HDCP data for DVI Port [internal 10Kpull-up resistor]  
79  
80  
178  
IO  
IO  
Hardware Reset (active low) [Schmitt trigger, 5v-tolerant]  
Connect to ground with 0.01uF (or larger) capacitor. See section, Chip Initialization, for  
detail  
LBADC_VDD_3.3  
LBADC_IN1  
LBADC_IN2  
LBADC_IN3  
LBADC_RETURN  
LBADC_GND  
172  
173  
174  
175  
176  
177  
71  
AP  
AI  
AI  
Analog 3.3V power supply for general-purpose ADC  
LBADC channel 1  
LBADC channel 2  
LBADC channel 3  
Analog Ground (signal return path) for LBADC channels 1, 2 and 3  
Ground  
Host input clock or 186 UART Data In or JTAG clock signal.  
[Input, Schmitt trigger, 5V-tolerant]  
Host input data or 186 UART Data Out or JTAG mode signal.  
[Bi-directional, Schmitt trigger, slew rate limited, 5V-tolerant]  
JTAG data input signal.  
JTAG data output signal.  
JTAG reset signal.  
AI  
AG  
AG  
IO  
HOST_SCL/UART_DI  
HOST_SDA/UART_DO  
72  
IO  
JTAG_TDI  
JTAG_TDO  
JTAG_RESET  
66  
64  
56  
IO  
IO  
IO  
C5221-DAT-04A  
12  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 6.  
LVDS Display Interface  
Pin Name  
No I/O Description  
AVDD_LV_E_3.3  
AVSS_LV_E  
CH3P_LV_E  
CH3N_LV_E  
CLKP_LV_E  
CLKN_LV_E  
CH2P_LV_E  
CH2N_LV_E  
CH1P_LV_E  
CH1N_LV_E  
CH0P_LV_E  
CH0N_LV_E  
AVSS_LV_E  
AVDD_LV_E_3.3  
AVSS_LV  
AVDD_LV_3.3  
AVDD_LV_O_3.3  
AVSS_LV_O  
CH3P_LV_O  
CH3N_LV_O  
CLKP_LV_O  
CLKN_LV_O  
CH2P_LV_O  
CH2N_LV_O  
CH1P_LV_O  
CH1N_LV_O  
CH0P_LV_O  
CH0N_LV_O  
AVSS_LV_O  
AVDD_LV_O_3.3  
PPWR  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
67  
68  
43  
44  
45  
46  
47  
48  
49  
AP  
AG  
O
O
O
O
O
O
O
O
O
O
AG  
AP  
AG  
AP  
AP  
AG  
O
O
O
O
O
O
O
O
O
Digital Power for LVDS outputs. Connect to digital 3.3V supply.  
Ground for LVDS outputs.  
Ground for LVDS outputs.  
Digital Power for LVDS outputs. Connect to digital 3.3V supply.  
Ground for LVDS outputs.  
Analog Power for LVDS outputs. Connect to analog 3.3V supply.  
Digital Power for LVDS outputs. Connect to digital 3.3V supply.  
Ground for LVDS outputs.  
O
AG  
AP  
O
O
O
O
O
O
O
Ground for LVDS outputs.  
Digital Power for LVDS outputs. Connect to digital 3.3V supply.  
Panel Power Control [Tri-state output, 5V- tolerant]  
Panel Bias Control (backlight enable) [Tri-state output, 5V- tolerant]  
Reserved. Leave unconnected.  
Reserved. Leave unconnected.  
Reserved. Leave unconnected.  
PBIAS  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reserved. Leave unconnected.  
Reserved. Leave unconnected. (Display Enable for TTL interface)  
Reserved. Leave unconnected. (Display Horizontal Sync for TTL interface)  
Reserved. Leave unconnected. (Display Vertical Sync for TTL interface)  
O
O
Table 7.  
No I/O Description  
For 8-bit panels  
TTL Display Interface  
Pin Name  
For 6-bit panels  
AVDD_LV_E_3.3  
AVSS_LV_E  
ER0  
ER1  
ER2  
ER3  
ER4  
ER5  
ER6  
ER7  
EG0  
EG1  
AVSS_LV_E  
AVDD_LV_E_3.3  
AVSS_LV  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AP  
AG  
O
O
O
O
O
O
O
O
O
O
AG  
AP  
AG  
Analog Power for TTL outputs. Connect to analog 3.3V supply.  
Ground  
Red channel bit 0  
Red channel bit 1  
Red channel bit 2  
Red channel bit 3  
Red channel bit 4  
Red channel bit 5  
Red channel bit 6  
Red channel bit 7  
Green channel bit 0  
Green channel bit 1  
Ground for TTL outputs.  
Not used.  
Not used.  
Red channel bit 0  
Red channel bit 1  
Red channel bit 2  
Red channel bit 3  
Red channel bit 4  
Red channel bit 5  
Not used.  
Not used.  
Digital Power for TTL outputs. Connect to digital 3.3V supply.  
Ground for TTL outputs.  
C5221-DAT-04A  
13  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Pin Name  
No I/O Description  
For 8-bit panels  
For 6-bit panels  
AVDD_LV_3.3  
AVDD_LV_O_3.3  
AVSS_LV_O  
EG2  
EG3  
EG4  
EG5  
EG6  
EG7  
EB0  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
43  
44  
45  
46  
47  
48  
49  
55  
67  
68  
AP  
AP  
AG  
O
O
O
O
O
O
O
O
O
O
AG  
AP  
O
O
O
Digital Power for TTL outputs. Connect to digital 3.3V supply.  
Digital Power for TTL outputs. Connect to digital 3.3V supply.  
Ground for TTL outputs.  
Green channel bit 2  
Green channel bit 3  
Green channel bit 4  
Green channel bit 5  
Green channel bit 6  
Green channel bit 7  
Blue channel bit 0  
Blue channel bit 1  
Blue channel bit 2  
Blue channel bit 3  
Ground  
Green channel bit 0  
Green channel bit 1  
Green channel bit 2  
Green channel bit 3  
Green channel bit 4  
Green channel bit 5  
Not used.  
Not used.  
Blue channel bit 0  
Blue channel bit 1  
EB1  
EB2  
EB3  
AVSS_LV_O  
AVDD_LV_O_3.3  
EB4  
EB5  
EB6  
EB7  
DEN  
DHS  
DVS  
Digital Power for TTL outputs. Connect to digital 3.3V supply.  
Blue channel bit 4  
Blue channel bit 5  
Blue channel bit 6  
Blue channel bit 7  
Display Enable.  
Blue channel bit 2  
Blue channel bit 3  
Blue channel bit 4  
Blue channel bit 5  
O
O
O
O
O
O
O
Display Horizontal Sync.  
Display Vertical Sync.  
Display Pixel Clock  
Panel Power Control [Tri-state output, 5V- tolerant]  
Panel Bias Control (backlight enable) [Tri-state output, 5V- tolerant]  
DCLK  
PPWR  
PBIAS  
Note: TTL bus is single pixel per clock only.  
C5221-DAT-04A  
14  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4 Functional Description  
A functional block diagram is illustrated below. Each of the functional units shown is described in the  
following sections.  
EEPROM  
Serial I/F  
Keypad Sensing  
Temp Sensor  
Parallel  
ROM IF  
GPIO  
XTAL  
Digital PLL  
Clock  
3X General-  
4 X  
X86-style  
External  
ROM I/F  
Back-light  
Audio  
Purpose ADC  
PWM  
Micro-controller  
Generation  
Reset  
Host  
On-chip  
OSD  
Circuit  
Interface  
RAM / ROM  
Controller  
Triple  
ADC &  
PLL  
Analog  
RGB  
Histogram  
ACC™  
Luma  
Ultra-  
Reliable  
DVI Rx  
Y
Shaping  
DVI  
LVDS  
Tx  
Display  
Control  
LVDS  
Panel I/F  
HDCP  
ACM-II™  
Chroma  
Adjust  
ITU656  
uv  
Test  
Pattern  
High Light Window  
Generator  
Figure 3.  
gm5221 Functional Block Diagram  
4.1 Clock Generation  
The gm5221 features three clock inputs. All additional clocks are internal clocks derived from one or  
more of these:  
1. Crystal Input Clock (TCLK and XTAL). This is the input pair to an internal crystal oscillator and  
corresponding logic. A 14.3 MHz TV crystal is recommended. Other crystal frequencies may be used,  
but require custom programming. This is illustrated in Figure 4 below.  
2. DVI Differential Input Clock (RC+ and RC-)  
3. Video Clock (VCLK)  
4.1.1 Using the Internal Oscillator with External Crystal  
An external crystal is used with an internal clock oscillator to provide a clock reference for the device. 14,  
20, and 24 MHz crystals are supported.  
C5221-DAT-04A  
15  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
The oscillator circuit is designed to provide a very low jitter and very low harmonic clock to the internal  
circuitry of the chip. An Automatic Gain Control (AGC) is used to insure startup and operation over a  
wide range of conditions. The oscillator circuit also minimizes the overdrive of the crystal, which reduces  
the aging of the crystal.  
The state of the ROM_ADDR13 pin is sampled at reset (see section 4.14). If the pin is left unconnected  
(internal pull-down) then internal oscillator is enabled. In this mode a crystal resonator is connected  
between TCLK and the XTAL with the appropriately sized loading capacitors CL1 and CL2. The size of  
C
L1 and CL2 are determined from the crystal manufacturer’s specification and by compensating for the  
parasitic capacitance of the device and the printed circuit board traces. The loading capacitors are  
terminated to the analog VDD power supply. This connection increases the power supply rejection ratio  
when compared to terminating the loading capacitors to ground.  
gm5221  
Vdda  
CL1  
152  
Vdd  
TCLK  
151  
Vdda  
OSC_OUT  
XTAL  
100 K  
TCLK Distribution  
CL2  
180 uA  
10  
N/C  
Reset State Logic  
ROM_ADDR13  
Internal Oscillator Enable  
Internal Pull Down  
Resistor  
~ 60K  
Figure 4.  
Using the Internal Oscillator with External Crystal  
The TCLK oscillator uses a Pierce Oscillator circuit. The output of the oscillator circuit, measured at the  
TCLK pin, is an approximate sine wave with a bias of about 2 volts above ground (see Figure 5). The  
peak-to-peak voltage of the output can range from 250 mV to 1000 mV depending on the specific  
characteristics of the crystal and variation in the oscillator characteristics. The output of the oscillator is  
connected to a comparator that converts the sine wave to a square wave. The comparator requires a  
minimum signal level of about 50-mV peak to peak to function correctly. The output of the comparator is  
buffered and then distributed to the internal circuits.  
C5221-DAT-04A  
16  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
3.3 Volts  
~ 2 Volts  
250 mV peak to peak  
to  
1000 mV peak to peak  
time  
Figure 5.  
Internal Oscillator Output  
One of the design parameters that must be given some consideration is the value of the loading capacitors  
used with the crystal as shown in Figure 6. The loading capacitance (Cload) on the crystal is the  
combination of CL1 and CL2 and is calculated by Cload = ((CL1 * CL2) / (CL1 + CL2)) + Cshunt. The shunt  
capacitance Cshunt is the effective capacitance between the XTAL and TCLK pins. For the gm5221 this is  
approximately 9 pF. CL1 and CL2 are a parallel combination of the external loading capacitors (Cex), the  
PCB board capacitance (Cpcb), the pin capacitance (Cpin), the pad capacitance (Cpad), and the ESD  
protection capacitance (Cesd). The capacitances are symmetrical so that CL1 = CL2 = Cex + CPCB + Cpin  
+
Cpad + CESD. The correct value of Cex must be calculated based on the values of the load capacitances.  
Approximate values are provided in Figure 6.  
CL1 = Cex1 + Cpcb + Cpin + Cpad + Cesd  
Vdda  
Cex1  
Cpcb  
Cpin  
Cpad  
Cesd  
Cesd  
141  
Internal Oscillator  
TCLK  
gm5221  
Cshunt  
142  
Vdda  
XTAL  
Cex2  
Cpcb  
Cpin  
Cpad  
Approximate values:  
CPCB ~ 2 pF to 10 pF (layout dependent)  
Cpin ~ 1.1 pF  
Cpad ~ 1 pF  
CL2 = Cex1 + Cpcb + Cpin + Cpad + Cesd  
Cesd ~ 5.3 pF  
Cshunt ~ 9 pF  
Figure 6.  
Sources of Parasitic Capacitance  
Some attention must be given to the details of the oscillator circuit when used with a crystal resonator.  
The PCB traces should be as short as possible. The value of Cload that is specified by the manufacturer  
C5221-DAT-04A  
17  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
should not be exceeded because of potential start up problems with the oscillator. Additionally, the crystal  
should be a parallel resonate-cut and the value of the equivalent series resistance must be less then 90 .  
4.1.2 Clock Synthesis  
The gm5221 synthesizes additional clocks using PLLs as follows:  
1) T_CLK - Main Timing Clock is the output of the chip internal crystal oscillator. T_CLK is derived  
from the TCLK/XTAL pad input.  
2) R_CLK - Reference Clock synthesized by RCLK PLL using T_CLK or EXTCLK as the reference.  
RCLK PLL output port is not to exceed 4 standard loads.  
3) DVI_CLK - DVI Output Clock synthesized by DVI receiver PLL using RC+/RC-as the reference.  
4) S_CLK - Input Source Clock synthesized by SDDS PLL using input HS as the reference. The SDDS  
also uses the R_CLK to drive internal digital logic.  
5) D_CLK - Display Clock synthesized by DDDS PLL using IP_CLK as the reference. The DDDS also  
uses the R_CLK to drive internal digital logic.  
6) F_CLK - Fixed Frequency Clock synthesized by FDDS. Used as OCM_CLK domain driver.  
7) ADC_DEL_ACLK - ADC Output Clock is a delayed A_CLK. The analog ADC performs the delay  
adjustment.  
S_CLK  
D_CLK  
INT_HS  
XTAL  
SDDS  
IP_CLK  
DDDS  
T_CLK  
TCLK  
REF1  
REF2  
RCLK  
PLL  
FDDS  
F_CLK  
R_CLK  
EXTCLK  
RC+  
RC-  
DVI_CLK  
DVI RX  
Figure 7.  
Internally Synthesized Clocks  
The on-chip clock domains are selected from the synthesized clocks as shown in Figure 8 below. These  
include:  
1) IP_CLK - Input Clock Domain  
2) OCM_CLK - Host Interface and On-chip Micro-controller Clock  
3) DP_CLK – Scaling Filter and Display Pixel Clock  
C5221-DAT-04A  
18  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4) IFM_CLK - Source Timing Measurement Domain  
5) A_CLK - ADC Clock Domain  
The clock selection for each domain as shown in the figure below is controlled using the  
CLOCK_CONFIG register.  
DVI_CLK  
F_CLK  
A_CLK  
IP_CLK  
OCM_CLK  
A_CLK  
T_CLK  
ADC_DEL_ACLK  
VCLK  
DDDS_CLK  
IP_CLK  
TCLK  
IFM_CLK  
SDDS_CLK  
DP_CLK  
Figure 8.  
On-chip Clock Domains  
4.2 Chip Initialization  
4.2.1 Hardware Reset  
The gm5221 device integrated a Reset Pulse generator, so that a Reset IC is not required externally.  
Hardware Reset is performed by an internal Reset Pulse generator, or by holding the RESETn pin low for  
a minimum of 150ms. The Reset Pulse is around 150ms in duration, a low-true output on pin RESETn. A  
TCLK input (see Clock Options above) must be applied during and after the reset. When the reset period  
is complete and RESETn is de-asserted, the power-up sequence is as follows:  
1. Reset all registers of all types to their default state (this is 00h unless otherwise specified in the  
gm5221 Register Listing).  
2. Force each clock domain into reset. This continues for 64 local clock domain cycles following the  
de-assertion of RESETn.  
3. Operate the OCM_CLK domain at the TCLK frequency.  
4. Preset the RCLK PLL to output ~200MHz clock (assumes 14.3MHz TCLK crystal frequency).  
Figure 9 below shows the relationship between RESETn and 3.3V AVDD power rail (AVDD_3.3): Tr is  
the reset active period, and Tp is the hold time of push button that grounds RESETn pin.  
C5221-DAT-04A  
19  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
AVDD_3.3  
3.3V  
2.5V  
t
Push reset  
button  
Reset button  
released  
RESETn  
3.3V  
t
Tp  
Tr  
Tr  
Push Button hold time  
Figure 9.  
Reset Pulse vs. +3.3V_AVDD power line  
Where  
Table 8.  
RESET Time  
RESETn active period (Tr) specification  
Min  
Max  
160  
Tr  
100  
The reset threshold for the 3.3V AVDD power rail is 2.5V, and a glitch filter in the reset circuitry will  
ignore the AVDD_3.3 glitch if the glitch duration is less than 100 ns. However, if AVDD_3.3 voltage  
drops below 2.5V and the glitch duration is more than 100ns, the RESETn will be asserted to reset the  
chip. Figure 10 below illustrates the AVDD_3.3V glitch that will cause RESETn to be asserted.  
Td  
AVDD_3.3  
AVDD  
2.5  
Vg  
t
0
Td = Duration of AVDD_3.3 glitch  
Vg = Voltage level of AVDD_3.3 glitch  
Figure 10.  
Glitch in 3.3V AVDD  
Table 9.  
Requirement for RESETn due to Glitch in AVDD_3.3V  
Requirement for RESETn due to AVDD_3.3V glitch  
Min  
Max  
Td  
Vg  
100ns  
2.5V  
C5221-DAT-04A  
20  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Note: The RESETn pin should be connected to ground with a 0.01uF capacitor to avoid spontaneous reset  
conditions.  
4.2.2 Power Sequencing  
At any time during the power-up sequence the actual voltage of the 3.3V RVDD power supply should  
always be equal to or higher than the actual voltage of the 1.8V CVDD power supply. In mathematical  
terms, VRVDD >= VCVDD at all times. This is illustrated in 0.  
In addition, the system designer must ensure that the 1.8V core VDD supply must be active for at least  
1ms before the rising edge of the chip RESETn signal during the chip power-up sequence. The rising  
edge of RESETn signal is used to latch the bootstrap configurations, so its correct timing relationship to  
the core VDD is critical for correct chip operation.  
Parameter  
VRVDD-CVDD(for all t>0)  
TCVDD->RESETn  
Min  
0V  
150ms  
Typ  
Max  
Voltage  
RVDD (3.3V)  
CVDD (1.8V)  
VRVDD-CVDD(t)  
TCVDD->RESETn  
Time  
t
Voltage  
RESETn  
0V  
Time  
Figure 11.  
Correct Power Sequencing  
4.3 Analog to Digital Converter (ADC)  
4.3.1 ADC Pin Connection  
The analog RGB signals are connected to the gm5221 as described below:  
C5221-DAT-04A  
21  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 10. Pin Connection for RGB Input with HSYNC/VSYNC  
Pin Name  
ADC Signal Name  
Red+  
Red-  
Red  
Terminate as illustrated in Figure 12.  
SOG_MCS  
Green+  
Green-  
Blue+  
Blue-  
HSYNC  
Dedicated Sync-on-Green pin  
Green  
Terminate as illustrated in Figure 12.  
Blue  
Terminate as illustrated in Figure 12.  
Horizontal Sync. Terminate as illustrated in Figure 12.  
Vertical Sync. Terminate as with HSYNC illustrated in Figure 12.  
VSYNC  
20Ω  
RED +  
0.01uF  
75Ω  
57.6Ω  
RED -  
RED  
Pin #1  
0.01uF  
gm5221  
20Ω  
470Ω  
GREEN  
Pin #2  
SOG_MCSS  
0.01uF  
GREEN +  
DB15  
75Ω  
BLUE  
Pin #3  
0.01uF  
57.6Ω  
HSYNC  
Pin #13  
GREEN -  
0.01uF  
VSYNC  
Pin #14  
20Ω  
BLUE +  
GND  
Pin  
#5,6,7,8  
0.01uF  
75Ω  
57.6Ω  
BLUE -  
0.01uF  
HSYNC  
HS  
VS  
VSYNC  
Figure 12.  
Example ADC Signal Terminations  
Note that if Sync-On-Green (SoG) or Sync-On-Y (SoY) is not required then SOG_MCSS pin should be  
left unconnected.  
Note that it is important to follow the recommended layout guidelines (see the system layout guidelines).  
C5221-DAT-04A  
22  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Also note that the ADC can be used to sample analog signals in the YPbPr color space. In this case the  
digital color controls are used to convert these signals to the RGB color domain for display on the LCD  
panel.  
4.3.2 ADC Characteristics  
The table below summarizes the characteristics of the ADC:  
Table 11. ADC Characteristics  
MIN  
TYP  
MAX NOTE  
290 MHz Guaranteed by design. Note that the Track &  
Hold Amp Bandwidth is programmable. 290  
MHz is the maximum setting.  
Track & Hold Amp Bandwidth  
Full Scale Adjust Range at RGB Inputs  
Full Scale Adjust Sensitivity  
0.55 V  
0.90 V  
+/- 1 LSB  
+/- 1 LSB  
+/-0.5 LSB  
Measured at ADC Output.  
Independent of full scale RGB input.  
Measured at ADC Output.  
162.5 MHz  
+/-0.9 LSB Fs = 135 MHz  
Guaranteed by test.  
Fs =135 MHz  
Zero Scale Adjust Sensitivity  
Sampling Frequency (Fs)  
Differential Non-Linearity (DNL)  
No Missing Codes  
Integral Non-Linearity (INL)  
Channel to Channel Matching  
10 MHz  
+/- 1.5 LSB  
+/- 0.5 LSB  
Note that input formats with resolutions or refresh rates higher than that supported by the LCD panel are  
supported as recovery modes only. This is called RealRecovery™. For example, it may be necessary to  
shrink the image. This may introduce image artifacts. However, the image is clear enough to allow the  
user to change the display properties.  
The ADC has a built in clamp circuit for AC-coupled inputs. By inserting series capacitors (about 10 nF),  
the DC offset of an external video source can be removed. The clamp pulse position and width are  
programmable.  
4.3.3 Clock Recovery Circuit  
The SDDS (Source Direct Digital Synthesis) clock recovery circuit generates the clock used to sample  
analog RGB data (ACLK or source clock). This circuit is locked to HSYNC of the incoming video signal.  
Patented digital clock synthesis technology makes the clock circuits resistant to temperature/voltage drift.  
Using DDS (Direct Digital Synthesis) technology, the clock recovery circuit can generate any ACLK  
clock frequency within the range of 10MHz to 165MHz.  
C5221-DAT-04A  
23  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
BLUE  
GREEN  
B
G
RED  
R
ACLK  
SCLK  
HS  
input HS  
SDDS  
SCLK  
ACLK  
Input Analog  
Video  
Phase Delay  
Input HSync  
SCLK  
ACLK  
Phase  
Delay  
Figure 13.  
gm5221 Clock Recovery  
4.3.4 Sampling Phase Adjustment  
The programmable ADC sampling phase is adjusted by delaying the (input HSYNC aligned) SCLK to  
produce the ADC clock (ACLK) inside the SDDS. The phase delay is programmable in 64 steps as a  
fraction of the ACLK period. The accuracy of the sampling phase is checked and the result read from a  
register. This feature enables accurate auto-adjustment of the ADC sampling phase.  
4.3.5 SOG and CSYNC support  
The gm5221 has the capability to support the following types of SOG and CSYNC inputs without having  
to use external components. The signals below show the Negative types of SOG and CSYNC signals. The  
gm5221 can also support the Positive types.  
C5221-DAT-04A  
24  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
XOR - CSYNC  
NOR – CSYNC: OFF SERRATION: OFF  
SERRATED (1.0H)  
SERRATED (0.5 H)  
Figure 14.  
Supported SOG and CSYNC signals  
4.4 Ultra-Reliable Digital Visual Interface Receiver (DVI Rx)  
The Ultra-Reliable DVITM receiver block of the gm5221 is compliant with DVI 1.0 single link  
specifications. Digital Visual Interface (DVI) is a standard. This block supports an input clock frequency  
ranging from 20 MHz to 165 MHz.  
4.4.1 DVI Receiver Characteristics  
Please note that it is very important to follow the recommended layout guidelines for these signals.  
Table 12. DVI Receiver Characteristics  
MIN  
TYP  
MAX  
NOTE  
DC Characteristics  
Differential Input Voltage  
150mV  
AVDD  
–300m V  
AVDD  
-10mV  
1200mV  
Input Common Mode Voltage  
AVDD  
-37mV  
AVDD  
+10mV  
Behavior when Transmitter Disable  
AC Characteristics  
Input clock frequency  
20 MHz  
150mV  
165 MHz  
Input differential sensitivity (Peak-to-peak)  
Max differential input (peak-to-peak)  
Allowable Intra-Pair skew at Receiver  
Allowable Inter-Pair skew at Receiver  
1560 mV  
250 ps  
4.0 ns  
Input clock = 160 MHz  
Through register programming, the receiver unit may be placed in one of three states:  
Active: The receiver block is fully on and running.  
Standby: RC (clock) channel and the data channel carrying syncs remain active. Data and other control signals  
are not decoded.  
C5221-DAT-04A  
25  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Off: The receiver block is powered down.  
4.4.2 High-Bandwidth Digital Content Protection (HDCP)  
NOTE: This section applies to the HDCP enabled version gm5221H only. HDCP is disabled in the non-  
HDCP enabled version gm5221.  
The HDCP system allows authentication of a video receiver by a video transmitter, decryption of  
transmitter-encoded video data by the receiver, and periodic renew-ability of authentication during  
transmission. The gm5221 implements circuitry to allow full support of the HDCP 1.0 protocol for DVI  
inputs.  
For enhanced security, Genesis provides a means of storing and accessing the secret key given to  
individual monitor units in an encrypted format.  
Further details of the protocol and theory of the system can be found in the High-bandwidth Digital  
Content Protection System specification (see www.digital-cp.com).  
4.5 ITU656 Video Input Port  
The ITU656 video input port connects to commercially available NTSC or PAL video decoders. ITU-BT-  
656 video format consists of pixel clock and 8 bits of data. No separate HSYNC, VSYNC signals are  
required. The internal 656 decoder extracts these from the embedded timing data.  
VCLK  
YUV(7:0)  
Blanking  
FF  
00  
00 SAV Cb  
Y
1
Cr  
2
Y
3
Cb  
4
Y
5
Cr  
Y
Cb  
FF  
00  
00 EAV Blanking  
(Input)  
1710 1711 1712 1713 1714 1715  
Preamble  
0
1437 1438 1439 1440 1441 1442 1443 1444  
Preamble  
Active Video  
Timing Reference word  
Timing Reference word  
SAV (Start of Active Video)  
EAV (End of Active Video)  
Figure 15.  
ITU-R BT656 Input Format  
YCbCr input to the gm5221 is always automatically clamped to restrict the input data to ITU-R BT601  
levels:  
Y Bottom clamping:  
Y Top clamping:  
CbCr Bottom clamping:  
CbCr Top clamping:  
Y data < 16 is clamped to 16.  
Y data > 235 is clamped to 235.  
CbCr data < 16 is clamped to 16.  
CbCr data > 240 is clamped to 240.  
4.6 Test Pattern Generator (TPG)  
gm5221 contains a number of preset test patterns, some of which are shown in Figure 16. There are also  
parameter based test patterns for generating ramps and grids. Once programmed, the gm5221 test pattern  
generator can replace a video source (e.g. a PC) during factory calibration and test. This simplifies the test  
C5221-DAT-04A  
26  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
procedure and eliminates the possibility of image noise being injected into the system from the source.  
The foreground and background colors are programmable. In addition, the gm5221 OSD controller can be  
used to produce other patterns.  
Figure 16.  
Some of gm5221 Built-in Test Patterns  
4.7 Input Format Measurement  
The gm5221 has an Input Format Measurement block (the IFM) providing the capability of measuring the  
horizontal and vertical timing parameters of the input video source. This information may be used to  
determine the video format and to detect a change in the input format. It is also capable of detecting the  
field type of interlaced formats.  
The IFM features a programmable reset, separate from the regular gm5221 soft reset. This reset disables  
the IFM, reducing power consumption. The IFM is capable of operating while gm5221 is running in  
power down mode.  
Horizontal measurements are measured in terms of the selected IFM_CLK (either TCLK or RCLK/4),  
while vertical measurements are measured in terms of HSYNC pulses.  
4.7.1 HSYNC / VSYNC Delay  
The active input region captured by the gm5221 is specified with respect to internal HSYNC and  
VSYNC. By default, internal syncs are equivalent to the HSYNC and VSYNC at the input pins and thus  
force the captured region to be bounded by external HSYNC and VSYNC timing. However, the gm5221  
provides an internal HSYNC and VSYNC delay feature that removes this limitation.  
This HSYNC and VSYNC delay is used for image positioning of ADC input data. HSYNC is delayed by  
a programmed number of selected input clocks.  
C5221-DAT-04A  
27  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
active data crosses HS boundary  
delayed HS placed safely within blanking  
Data  
HS (system)  
Internal Delayed HS  
Figure 17.  
Active Data Crosses HSYNC Boundary  
4.7.2 Horizontal and Vertical Measurement  
The IFM is able to measure the horizontal period and active high pulse width of the HSYNC signal, in  
terms of the selected clock period (either TCLK or RCLK/4.). Horizontal measurements are performed on  
only a single line per frame (or field). The line used is programmable. It is able to measure the vertical  
period and VSYNC pulse width in terms of rising edges of HSYNC.  
Once enabled, measurement begins on the rising VSYNC and is completed on the following rising  
VSYNC. Measurements are made on every field / frame until disabled.  
4.7.3 Format Change Detection  
The IFM is able to detect changes in the input format relative to the last measurement and then alert both  
the system and the on-chip microcontroller. The microcontroller sets a measurement difference threshold  
separately for horizontal and vertical timing. If the current field / frame timing is different from the  
previously captured measurement by an amount exceeding this threshold, a status bit is set. An interrupt  
can also be programmed to occur.  
4.7.4 Watchdog  
The watchdog monitors input VSYNC / HSYNC. When any HSYNC period exceeds the programmed  
timing threshold (in terms of the selected IFM_CLK), a register bit is set. When any VSYNC period  
exceeds the programmed timing threshold (in terms of HSYNC pulses), a second register bit is set. An  
interrupt can also be programmed to occur.  
4.7.5 Internal Odd/Even Field Detection (For Interlaced Inputs to ADC Only)  
The IFM has the ability to perform field decoding of interlaced inputs to the ADC. The user specifies start  
and end values to outline a “window” relative to HSYNC. If the VSYNC leading edge occurs within this  
window, the IFM signals the start of an ODD field. If the VSYNC leading edge occurs outside this  
window, an EVEN field is indicated (the interpretation of odd and even can be reversed). The window  
start and end points are selected from a predefined set of values.  
C5221-DAT-04A  
28  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
HS  
window  
Window  
Start  
Window End  
VS - even  
VS - odd  
Figure 18.  
ODD/EVEN Field Detection  
4.7.6 Input Pixel Measurement  
The gm5221 provides a number of pixel measurement functions intended to assist in configuring system  
parameters such as pixel clock, SDDS sample clocks per line and phase setting, centering the image, or  
adjusting the contrast and brightness.  
4.7.7 Image Phase Measurement  
This function measures the sampling phase quality over a selected active window region. This feature  
may be used when programming the source DDS to select the proper phase setting.  
4.7.8 Image Boundary Detection  
The gm5221 performs measurements to determine the image boundary. This information is used when  
programming the Active Window and centering the image.  
4.7.9 Image Auto Balance  
The gm5221performs MIN and MAX pixel value measurements on the input data that is used to adjust  
brightness and contrast.  
4.8 Intelligent Image Processing™ Zoom/Shrink/Sharpening Filter  
4.8.1 Variable Zoom Scaling  
The scaling engine uses an advanced third generation multi-tap, non-linear scaling engine, which uses  
FIR filter technique and can accept nearly any input resolution and can scale it to any output resolution, in  
a range from one-half reduction to a 256-fold expansion. Scaling is highly configurable, with options to  
scale in both horizontal and vertical directions with different methods. The scalar must scale nearly any  
signal input to accommodate nearly any panel input. Moreover, it provides high quality scaling of real  
time video and graphics images. An input field/frame is scalable in both the vertical and horizontal  
dimensions.  
C5221-DAT-04A  
29  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Interlaced fields may be spatially de-interlaced by vertically scaling and repositioning the input fields to  
align with the output display’s pixel map.  
4.8.2 Horizontal and Vertical Shrink  
A shrink function may be performed on the input data. This is an arbitrary horizontal/vertical reduction to  
between (50% + 1 pixel/line) to 100% of the input. For example, this allows UXGA 1600x1200 pixels to  
be displayed as SXGA 1280x1024. For example, this is useful to allow the user to use Windows Display  
Properties to reduce the screen resolution if it is higher than that of the display.  
4.8.3 Programmable Sharpening Filter  
The coefficients used in the scaling engine are programmable and can be used to perform sharpening. For  
example, font edges can be enhanced in text or spreadsheet applications, or motion video images can be  
sharpened. This is available at any scale factor, or when scaling is not required (i.e. 1:1 mode).  
4.9 Advanced Digital Color Controls  
The digital color controls consist of the components shown in Figure 19.  
A C C  
8
8
8
8
Adaptive  
C ontrast  
R /Y  
G /U  
B /V  
R
G
Y U V  
to  
R G B  
to  
8
8
A C M -II  
yc lin k  
R G B  
(3x3)  
Y U V  
B
Adaptive  
Color  
Figure 19.  
4.9.1 Adaptive Contrast and Color (ACC)  
Digital Color Controls  
Most video content is tailored for display on CRTs or in movie theatres. However, CRT monitors have a  
wider dynamic range than LCD monitors. Therefore, it is desirable to enhance the dynamic range when  
video is displayed using LCD monitors.  
ACC enhances the contrast of the image to account for this. This makes dark colors darker, and bright  
colors brighter. In addition, the contrast enhancement is adaptive. That is, dark scenes are transformed in  
a way that preserves color resolution of darker colors and bright scenes are transformed in a way that  
preserves the color resolution of brighter colors. This is done by calculating a running average of the  
luminance content of the image, divided up into three ranges. This histogram is then used to select the  
weighting coefficients between three different luminance transfer functions. The running average may be  
applied over a programmable number of frames.  
C5221-DAT-04A  
30  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
ACC can be applied within a highlight window or over the full display area.  
4.9.2 Active Color Management–II (ACM-II)  
Active Color Management provides TV style control of global color parameters like hue, saturation and  
contrast, and local color changes such as skin tone adjustment, green enhance, or blue stretch. It can be  
applied within a highlight window or over the full display area.  
4.9.3 Gamma Look-Up-Table (LUT)  
An 8 to 10-bit look-up table (LUT) for each input color channel is intended for Gamma correction and to  
compensate for a non-linear response of the LCD panel. A 10-bit output results in an improved color  
depth control. The 10-bit output is then dithered down to 8 bits (or 6 bits) per channel at the display. The  
LUT is user-programmable to provide an arbitrary transfer function. Gamma correction occurs after the  
zoom / shrink scaling block. If bypassed, the LUT does not require programming.  
4.9.4 Color Standardization and sRGB Support  
Internet shoppers may be very picky about what color they experience on the display. gm5221  
RealColorTM digital color controls can be used to make the color response of an LCD monitor compliant  
with standard color definitions, such as sRGB. sRGB is a standard for color exchange proposed by  
Microsoft and HP (see www.srgb.com). gm5221 RealColor controls can be used to make LCD monitors  
sRGB compliant, even if the native response of the LCD panel itself is not. For more information on  
sRGB compliance using Genesis devices please refer to the sRGB application brief C5115-APB-02A.  
4.9.5 Video Windowing  
Often video content (e.g. movie from DVD) is displayed in a portion of the display while the operating  
system’s desktop appears in the remainder. In this case it is desirable to have different color controls in  
the various regions of the display. For example, the user may desire that the desktop is sRGB compliant  
while performing hue or saturation adjustments in the region containing the video content. To perform  
such adjustments the 3x3 color controls and the gamma tables may be separately controlled inside and  
outside a defined rectangle. The coordinates of the rectangle may be provided by the operating system  
(and communicated using DDC2Bi) or selected by the user (using the OSD).  
4.10 Display Output Interface  
The Display Output Port provides data and control signals that permit the gm5221 to connect to a variety  
of flat panel devices using an LVDS interface. The output interface is configurable for single or dual  
wide LVDS in 18 or 24-bit RGB pixels format. All display data and timing signals are synchronous with  
the DCLK display clock. The integrated LVDS transmitter is programmable to allow the data and control  
signals to be mapped into any sequence depending on the specified receiver format. DC balanced  
operation is supported as described in the Open LDI standard.  
C5221-DAT-04A  
31  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4.10.1 Display Synchronization  
The gm5221 supports the following display synchronization modes:  
Frame Sync Mode: The display frame rate is synchronized to the input frame or field rate. This mode  
is used for standard operation.  
Free Run Mode: No synchronization. This mode is used when there is no valid input timing (i.e. to  
display OSD messages or a splash screen) or for testing purposes. In free-run mode, the display  
timing is determined only by the values programmed into the display window and timing registers.  
4.10.2 Display Timing Programming  
Horizontal values are programmed in single-pixel increments relative to the leading edge of the horizontal  
sync signal. Vertical values are programmed in line increments relative to the leading edge of the vertical  
sync signal.  
DH_BKGND_START  
DH_BKGND_END  
DV_VS_END  
VSYNC Region  
Vertical Blanking (Back Porch)  
DV_BKGND_START  
DV_ACTIVE_START  
Display Background Window  
Display Active Window  
DV_ACTIVE_LENGTH  
DV_BKGND_END  
Vertical Blanking (Front Porch)  
DH_TOTAL  
DHS  
DEN **  
DH_HS_END  
** DEN is not asserted during vertical blanking  
DH_ACTIVE_WIDTH  
DH_ACTIVE_START  
Figure 20.  
Display Windows and Timing  
C5221-DAT-04A  
32  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4.10.3 Output Dithering  
The Gamma LUT outputs a 10-bit value for each color channel. This value is dithered down to either 8-  
bits for 24-bit per pixel panels, or 6-bits for 18-bit per pixel panels. In this way it is possible to display  
16.7 million colors on a LCD panel with 6-bit column drivers.  
The benefit of dithering is that the eye tends to average neighboring pixels and a smooth image free of  
contours is perceived. Dithering works by spreading the quantization error over neighboring pixels both  
spatially and temporally. Two dithering algorithms are available: random or ordered dithering. Ordered  
dithering is recommended when driving a 6-bit panel.  
All gray scales are available on the panel output whether using 8-bit panel (dithering from 10 to 8 bits per  
pixel) or using 6-bit panel (dithering from 10 down to 6 bits per pixel).  
4.10.4 Dual Four-Channel LVDS Transmitter  
gm5221 implements the industry standard flexible four channel dual LVDS transmitter. The LVDS  
transmitter can support the following:  
Single pixel mode  
24-bit panel mapping to the LVDS channels  
18-bit panel mapping to the LVDS channels  
Programmable channel swapping (the clocks are fixed)  
Programmable channel polarity swapping  
Supports up to SXGA 75Hz output  
C5221-DAT-04A  
33  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 13. Supported LVDS 24-bit Panel Data Mappings  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
R0, R1, R2, R3, R4, R5, G0  
G1, G2, G3, G4, G5, B0, B1  
B2, B3, B4, B5, PHS, PVS, PDE  
R6, R7, G6, G7, B6, B7, RES  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
R2, R3, R4, R5, R6, R7, G2  
G3, G4, G5, G6, G7, B2, B3  
B4, B5, B6, B7, PHS, PVS, PDE  
R0, R1, G0, G1, B0, B1, RES  
Table 14. Supported LVDS 18-bit Panel Data Mapping  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
R0, R1, R2, R3, R4, R5, G0  
G1, G2, G3, G4, G5, B0, B1  
B2, B3, B4, B5, PHS, PVS, PDE  
Disabled for this mode  
4.10.5 Single Pixel TTL Output  
DCLK (Output)  
DEN (Output)  
ER/EG/EB  
(Output)  
XXX  
rgb0  
rgb1  
rgb2  
rgb3  
rgb4  
Figure 21.  
Single Pixel Width Display Data  
4.10.6 Panel Power Sequencing (PPWR, PBIAS)  
The gm5221 has two dedicated outputs PPWR and PBIAS to control LCD power sequencing once data  
and control signals are stable. The timing of these signals is fully programmable.  
C5221-DAT-04A  
34  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
TMG1  
TMG2  
TMG3  
TMG4  
PPWR Output  
Panel Data and Control Signals  
PBIAS Output  
<State0>  
<State1>  
<State2>  
<State3>  
<State2>  
<State1> <State0>  
POWER_SEQ_EN = 1  
POWER_SEQ_EN = 0  
Figure 22.  
Panel Power Sequencing  
4.11 Energy Spectrum Management (ESM)  
High spikes in the EMI power spectrum may cause LCD monitor products to violate emissions standards.  
The gm5221 has many features that can be used to reduce electromagnetic interference (EMI). These  
include drive strength control and clock spectrum modulation. These features help to eliminate the costs  
associated with EMI reducing components and shielding.  
4.12 On-Screen Display (OSD)  
The gm5221 has a fully programmable, high-quality OSD controller. The graphics are divided into “cells”  
of programable size. The cells are stored in an on-chip static RAM (16K bytes) and can be stored as 1-bit  
per pixel data, 2-bit per pixel data or 4-bit per pixel data.  
Some general features of the gm5221 OSD controller include:  
Two OSD Rectangles – The OSD can appear in two separately defined rectangular regions.  
OSD Position – The OSD menu can be positioned anywhere on the display region. The  
reference point is Horizontal and Vertical Display Background Start (DH_BKGND_START and  
DV_BKGND_START).  
OSD Stretch – The OSD image can be stretched horizontally and/or vertically by a factor of two.  
Pixel and line replication is used to stretch the image.  
OSD Blending – Sixteen levels of blending are supported for selected colors in the character-  
mapped.  
4.12.1 On-Chip OSD SRAM  
The on-chip static RAM (16K bytes) stores the cell map, cell definitions, and attribute map. The OSD  
SRAM is shared by the on-chip microcontroller as part of its normal addressable memory space.  
C5221-DAT-04A  
35  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
In memory, the cell map is organized as an array of words, each defining the attributes of one visible  
character on the screen starting from upper left of the visible character array. These attributes specify  
which character to display, whether it is stored as 1, 2 or 4 bits per pixel, the foreground and background  
colors, blinking, etc.  
Registers are used to define the visible area of the OSD image. For example, Figure 23 shows an example  
of a cell map.  
Address 1:  
Address 25:  
Attributes for  
Cell Attributes for  
upper-left hand cell  
upper-right hand cell  
OSD_R_WIDTH  
Address26:  
Cell attributes for  
1st cell, 2nd row  
Brightness  
Contrast  
OSD_R_HEIGHT  
Figure 23.  
OSD Cell Map  
Cell definitions are stored as bit map data. On-chip registers point to the start of 1-bit per pixel  
definitions, 2-bit per pixel definitions and 4-bit per pixel definitions respectively.  
Note that the cell map and the cell definitions share the same on-chip RAM. Thus, the size of the cell map  
can be traded off against the number of different cell definitions. In particular, the size of the OSD image  
and the number of cell definitions must fit in RA<.  
4.12.2 Color Look-up Table (LUT)  
Each pixel of a displayed cell is resolved to an 8-bit color code. This selected color code is then  
transformed to a 24-bit value using a 256 x 24-bit look up table.  
4.13 On-Chip Microcontroller (OCM)  
The OCM executes a firmware program running from external ROM. A parallel port with separate  
address and data busses is available for this purpose. Alternatively, a serial peripheral interface (SPI) may  
be used with a serial FLASH ROM and a cache controller inside gm5221. This port connects directly to  
standard, commercially available ROM or programmable FLASH ROM devices. Normally 64KB or  
128KB of ROM is required.  
C5221-DAT-04A  
36  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4.13.1 Compiling firmware  
To program the gm5221 the content of the external ROM is generated using Genesis software  
development tools G-Wizard and OSD-Workbench. G-Wizard is a GUI-based tool for capturing system  
information such as panel timing, support modes, system configuration, etc. OSD-Workbench is a GUI  
based tool for defining OSD menus and functionality.  
G-Wizard  
OSD Workbench  
gm5221 Driver  
gm5221 Driver  
Firmware source files (*.c *.h)  
Compiler  
External ROM  
Image File (.hex)  
Controller  
Board  
gm5220/21  
ROM  
OCM  
Figure 24.  
Programming the OCM  
Genesis recommends using Paradigm compiler (http://www.devtools.com) to compile the firmware  
source code into a hex file. This hex file is then downloaded into the external ROM using In-System-  
Programming (Genesis debug software G-Probe communicates with the OCM which in turn programs a  
FLASH ROM in the system using the ROM_WEn signal) or using commercially available ROM  
programmers.  
4.13.2 Embedded Bootstrap Function  
gm5221 is equipped with an embedded ROM bootstrap function from which to boot when external ROM  
is not present or it does not contain data. It is always recommended to boot from embedded ROM (see  
description of ROM_ADDR16 in Table 16).  
C5221-DAT-04A  
37  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
The bootstrap function works in the following way. The embedded ROM firmware first looks for a  
‘signature’ in external ROM (either parallel ROM or serial ROM depending on the programming of  
ROM_ADDR15 – see Table 16). The ‘signature’ is the ASCII values for the character string “xROM”  
starting at address 0x800F0. If this signature is found then it performs a CRC check. If CRC is valid then  
it jumps to external ROM address 0x80100.  
If the signature is not present (or bootstrap value of ROM_ADDR7 is one) then the embedded firmware  
does not jump to external ROM. In this case it runs in its own loop that supports debugging commands  
(using G-Probe debugging software available from Genesis) over either the UART port (see section  
4.13.6) or the DDC2Bi port (see section 4.13.5).  
Note that the bootstrap values of ROM_ADDR7 and ROM_ADDR8 (see Table 16) can be used to  
override the signature checking. In addition, a DDC2Bi command (as configured using bootstrap value of  
ROM_ADDR12 – see Table 16) can be used to override the signature checking.  
4.13.3 In-System-Programming (ISP) of External FLASH ROM  
The gm5221 has hardware to program FLASH ROM devices. In particular, the ROM_WEn pin can be  
connected to the write enable of the FLASH ROM. The embedded boot firmware (see section 4.13.2  
above) performs the writes.  
4.13.4 UART Interface  
The gm5221 OCM has an integrated Universal Asynchronous Remote Terminal (UART) port that can be  
used as a factory debug port. In particular, the UART can be used to 1) read / write chip registers, 2) read  
/ write to NVRAM, and 3) read / write to FLASH ROM (In-System-Programming).  
4.13.5 DDC2Bi Interface  
Hardware support is provided for DDC2Bi communication over the DDC channel of either the analog or  
DVI input ports. The specification for the DDC2Bi standard can be obtained from VESA  
(www.vesa.org). The DDC2Bi port can be used as a factory debug port or for field programming. In  
particular, the DDC2Bi port can be used to 1) read / write chip registers, 2) read / write to NVRAM, and  
3) read / write to FLASH ROM (In-System-Programming).  
The factory programming or test station connects to the gm5221 through the Direct Data Channel (DDC)  
of the DSUB15 or DVI connectors. For example, the PC can make gm5221 display test patterns (see  
section 4.5). A camera can be used to automate the calibration of the LCD panel.  
C5221-DAT-04A  
38  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
DDC  
Factory Station  
Device-Under-Test  
Camera  
Figure 25.  
Factory Calibration and Test Environment  
Two pairs of pins are available for DDC2Bi communication. For DDC2Bi communication over the  
analog VGA connector pins DDC_SCL_VGA and DDC_SDA_VGA should be connected to the DDC  
clock and data pins of the analog DSUB15 VGA connector. For DDC2Bi communication over the DVI  
connector pins DDC_SCL_DVI and DDC_SDA_DVI should be connected to the DDC clock and data  
pins of the DVI connector. The gm5221 contains serial to parallel conversion hardware that is then  
accessed by firmware for interpretation and execution of the DDC2Bi command set.  
Note that DDC2Bi can only be activated on only one of the inputs at a time. The port activated by default  
is specified using the bootstrap value of ROM_ADDR12 (see Table 16). Firmware may change this  
default setting using an on-chip register.  
4.13.6 JTAG Interface  
A JTAG interface is provided to allow in-circuit firmware debugging. This is done using a JTAG port.  
This port is available on the following signals:  
JTAG_RESET  
JTAG_TDO  
JTAG_TDI  
HOST_SCL (JTAG_CLK)  
HOST_SDA (JTAG_MODE)  
Also, a 2-wire to JTAG bridge circuit is provided to allow JTAG commands to be issued using only two  
pins HOST_SCL and HOST_SDA.  
4.13.7 General Purpose Inputs and Outputs (GPIO)  
The gm5221 has 23 potential general-purpose input/output (GPIO) pins. Not all may be available  
depending on shared functionality of particular pins. These are used by the OCM to communicate with  
other devices in the system such as keypad buttons, NVRAM, LED’s, audio DAC, etc. Each GPIO has  
independent direction control and open drain enable for reading and writing. Note that the GPIO pins  
have alternate functionality as described in Table 15.  
C5221-DAT-04A  
39  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 15. GPIO and Alternate Functions  
Pin Name  
Pin Number Alternate function  
GPIO0  
81  
82  
No alternative functions.  
GPIO1  
GPIO2  
83  
GPIO3  
84  
GPIO4  
85  
GPIO5  
88  
GPIO6  
89  
GPIO7/IRQin  
GPIO8/IRQout  
GPIO9/SCL  
90  
Can be used to trigger an OCM interrupt.  
Level reflects an on-chip status change.  
91  
92  
Data and clock lines for master 2-wire serial interface to NVRAM, or other devices such as video  
decoder or audio amplifier.  
GPIO10/SDA  
GPIO11/PWM0  
GPIO12/PWM1  
GPIO13/PWM2  
GPIO14/PWM3  
GPIO16/VDATA7  
GPIO17/VDATA6  
GPIO18/VDATA5  
GPIO19/VDATA4  
GPIO20/VDATA3  
GPIO21/VDATA2  
GPIO22/VDATA1  
GPIO23/VDATA0  
93  
98  
General purpose PWM outputs (back light intensity control, etc.)  
NTSC/PAL Video input port.  
99  
100  
101  
102  
103  
106  
107  
108  
109  
110  
111  
4.13.8 Low-Bandwidth ADC (LBADC)  
A general-purpose ADC is integrated to allow for functions such as keypad scanning or for monitoring  
system temperature or voltage sensors. The ADC has 8 bits of resolution, and can perform a conversion  
in 13 TCLK periods (approximately 1 µsec). An analog multiplexer selects one of three analog input pins  
as the input to the ADC.  
4.13.9 Low Power State  
The gm5221 provides a low power state in which the clocks to selected parts of the chip may be disabled. In  
addition, the OCM_CLK may be reduced (by a factor of up to 510) so that the OCM itself consumes less  
power.  
4.13.10 Pulse Width Modulation (PWM)  
Many of today’s LCD back light inverters require both a PWM input and variable DC voltage to  
minimize flickering (due to the interference between panel timing and inverter’s AC timing), and adjust  
brightness.  
There are four pins available for PWM outputs: PWM0 (GPIO11), PWM1 (GPIO12), PWM2 (GPIO13)  
and PWM3 (GPIO14). The duty cycle of these signals is programmable. They may be connected to an  
external RC integrator to generate a variable DC voltage for a LCD back light inverter. Panel HSYNC is  
used as the clock for a counter generating this output signal.  
PWM0 has an additional option for 10-bit duty cycle control.  
C5221-DAT-04A  
40  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
4.14 Bootstrap Configuration Pins  
During hardware reset, the external ROM address pins ROM_ADDR[17:0] are configured as inputs. On  
the negating edge of RESETn, the value on these pins is latched and stored. This value is readable by the  
on-chip microcontroller (or an external microcontroller via the host interface). Install a 10K pull-up  
resistor to indicate a ‘1’, otherwise a ‘0’ is indicated because ROM_ADDR[17:0] have a 50Kinternal  
pull-down resistor.  
Table 16. Bootstrap Signals  
Bootstrap  
DEV_ADDR(6:0}  
FORCEIROM  
FORCEXROM  
Pin Name  
ROM_ADDR6:0  
ROM_ADDR8  
ROM_ADDR7  
Description  
These pins specify the device address for serial host interface.  
Forces execution from external or internal ROM (see section 4.13.2):  
00 = Check for signature in external ROM and if present jump to external ROM.  
01 = Jump to external ROM regardless of whether signature or CRC are present.  
10 = Jump to internal ROM regardless of whether signature or CRC are present.  
11 = Check for signature and CRC and if present jump to external ROM (recommended).  
Forces OCM (when executing from embedded boot firmware) to operate using TCLK (see Figure 8):  
0 = OCM_CLK = FCLK (see Figure 7). UART baud rate is 115200 baud.  
1 = OCM_CLK = TCLK. UART baud rate is 19200 baud.  
OCM_USES_TCLK  
ROM_ADDR9  
TCLKSEL1  
TCLKSEL0  
ROM_ADDR11  
ROM_ADDR10  
Used by the embedded boot firmware to specify the TCLK frequency:  
00 = for TCLK = 14.3 MHz  
01 = for TCLK = 20 MHz  
10 = for TCLK = 24 MHz  
11 = for TCLK = 14.3 MHz  
Note: The embedded firmware uses these bootstraps to program RCLK to 200MHz (or as close as  
possible in multiples of TCLK) and FCLK to 100MHz.  
DDCHANSEL  
ROM_ADDR12  
Specifies the default DDC2Bi channel when executing from embedded boot firmware:  
0 = Use DDC_SCL_DVI/DDC_SDA_DVI pin pair.  
1 = Use DDC_SCL_VGA/DDC_SDA_VGA pin pair.  
Operating Mode: Selects external register access method.  
00 = UART (normal operation)  
OP_MODE1  
OP_MODE0  
ROM_ADDR14  
ROM_ADDR13  
01 = 2-wire to JTAG Bridge  
10 = 5-wire JTAG port  
11 = Reserved  
SPI_EN  
ROM_ADDR15  
ROM_ADDR16  
ROM_ADDR17  
SPI serial ROM interface enable  
0 = Parallel ROM Interface  
1 = SPI serial ROM and cache controller  
Selects the initial state of internal OCM ROM  
0 = Internal ROM on at top of 1M in X86 address space (normal operation)  
1 = Internal ROM off (debug mode – illegal when SPI_EN bootstrap value on ROM_ADDR15 = 1)  
Selection of TCLK source. Program to 0 when using external crystal connected to TCLK and XTAL.  
OCM_ROM  
OSC_SEL  
Note: There is an internal pull-down resistor of 50Kto ground for each signal.  
4.15 Electrostatic Discharge (ESD)  
The gm5221 integrates ESD diodes to protect the device during handling. However, external on-board  
ESD diodes are required on the analog RGB inputs, DVI inputs, and DDC inputs for protection against  
electrical overstress (EOS).  
C5221-DAT-04A  
41  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
5 Electrical Specifications  
The following targeted specifications have been derived by simulation.  
5.1 Preliminary DC Characteristics  
Table 17. Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
VVDD_3.3  
VVDD_1.8  
VIN5Vtol  
VIN  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
TYP  
MAX  
3.6  
1.98  
5.5  
UNITS  
3.3V Supply Voltages (1,2)  
1.8V Supply Voltages (1.2)  
Input Voltage (5V tolerant inputs) (1,2)  
Input Voltage (non 5V tolerant inputs) (1,2)  
Electrostatic Discharge  
V
V
V
V
kV  
3.6  
VESD  
ILA  
TA  
TSTG  
±2.0  
±100  
70  
150  
125  
Latch-up  
Ambient Operating Temperature  
Storage Temperature  
mA  
0
-40  
0
°C  
°C  
°C  
Operating Junction Temp.  
TJ  
Thermal Resistance (Junction to Air) Natural Convection  
gm5221 on 4-layer PCB  
34.6  
θ
°C/W  
JA_4L  
Thermal Resistance (Junction to Case) Convection (3)  
gm5221  
θ
JC  
17.0  
TBD  
TBD  
°C/W  
°C  
°C  
Soldering Temperature (30 sec.)  
Vapor Phase Soldering (30 sec.)  
TSOL  
TVAP  
NOTE (1): All voltages are measured with respect to GND.  
NOTE (2): Absolute maximum voltage ranges are for transient voltage excursions.  
NOTE (3): Based on the figures for the Operating Junction Temperature, θJC and Power Consumption in Table 18, the maximum allowed case  
temperature is calculated as TC(MAX) = TJ(MAX) - P(MAX) x θJC. For SXGA operation this is 125-1.1x17=106°C.  
C5221-DAT-04A  
42  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Table 18. DC Characteristics  
PARAMETER  
SYMBOL  
POWER  
MIN  
TYP  
MAX  
UNITS  
Power Consumption @ 135 MHz  
Power Consumption @ Low Power Mode (1)  
3.3V Supply Voltages (AVDD and RVDD)  
1.8V Supply Voltages (VDD and CVDD)  
Supply Current @ CLK =135MHz (gm5221)  
1.8V digital supply (2)  
PSXGA  
PLP  
VVDD_3.3  
VVDD_1.8  
I
IVDD_1.8  
IAVDD_1.8  
IVDD_3.3  
IAVDD_3.3  
1.1  
50  
3.3  
1.8  
600  
W
mW  
V
V
mA  
3.15  
3.45  
300  
60  
40  
200  
1.8V analog supply (3)  
3.3V digital supply (4)  
3.3V analog supply (5)  
Supply Current @ Low Power Mode*  
ILP  
50  
mA  
INPUTS  
High Voltage  
VIH  
2.0  
GND  
2.4  
GND  
-25  
VDD  
0.8  
VDD  
0.4  
25  
25  
8
V
V
Low Voltage  
VIL  
Clock High Voltage  
Clock Low Voltage  
High Current (VIN = 5.0 V)  
Low Current (VIN = 0.8 V)  
Capacitance (VIN = 2.4 V)  
VIHC  
VILC  
IIH  
IIL  
CIN  
V
V
µA  
µA  
pF  
-25  
OUTPUTS  
High Voltage (IOH = 7 mA)  
Low Voltage (IOL = -7 mA)  
Tri-State Leakage Current  
VOH  
VOL  
IOZ  
2.4  
GND  
-25  
VDD  
0.4  
25  
V
V
µA  
NOTE (1): Low power figures result from setting the ADC, DVI, and clock power down bits so that only the micro-controller is running.  
NOTE (2): Includes all CVDD_1.8 pins.  
NOTE (3): Includes VDD_RX0_1.8, VDD_RX1_1.8, VDD_RX2_1.8, VDD_RXPLL_1.8, VDD_RPLL_1.8 and VDD1_ADC_1.8 pins.  
NOTE (4): Includes all RVDD_3.3, AVDD _LV_E_3.3 and AVDD _LV_O_3.3 pins.  
NOTE (5): Includes pins AVDD_RED_3.3, AVDD_GREEN_3.3, AVDD_BLUE_3.3, AVDD_IMB_3.3, AVDD_RX0_3.3,  
AVDD_RX1_3.3, AVDD_RX2_3.3, AVDD_RXC_3.3, AVDD_RPLL_3.3, AVDD_ADC_3.3, AVDD_LV_3.3 and LBADC_VDD_3.3.  
NOTE (6): Maximum current figures are provided for the purposes of selecting a power supply circuit.  
C5221-DAT-04A  
43  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
5.2 Preliminary AC Characteristics  
All timing is measured to a 1.5V logic-switching threshold. The minimum and maximum operating  
conditions used were: TDIE = 0 to 125° C, Vdd = 2.35 to 2.65V, Process = best to worst, CL = 16pF for all outputs.  
Table 19. Maximum Speed of Operation  
Clock Domain  
Max Speed of Operation  
25 MHz (14.3MHz recommended)  
165 MHz  
Main Input Clock (T_CLK)  
DVI Differential Input Clock (DVI_CLK)  
ADC Clock (S_CLK)  
165 MHz  
Input Clock (IP_CLK)  
165 MHz  
220MHz (200MHz recommended)  
100 MHz  
Reference Clock (R_CLK)  
On-Chip Microcontroller Clock (OCM_CLK)  
Display Clock (D_CLK)  
165 MHz  
TsVCLK PL  
TsVCLK PH  
VCLK  
TVP SU  
TVP HD  
VDATA  
Figure 26.  
Timing Diagram for ITU656 Video Port  
Table 20. Input Timing for ITU656 Video Port  
Symbol  
Parameter  
Min  
Max Units  
TVP_SU  
Setup time for data signals valid before VCLK edge. VCLK edge is  
2
nsec.  
programmable to be either rising or falling.  
TVP_HD  
Hold time for data/control signals to remain valid after VCLK edge.  
VCLK high pulse width period  
VCLK low pulse width period  
VCLK maximum operating frequency.  
1
3
3
nsec  
nsec  
nsec  
TVCLK_PH  
TVCLK_PL  
FVCLK  
28  
Mhz  
C5221-DAT-04A  
44  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
Read Cycle  
Write Cycle  
ROM_ADDR (17:0)  
ROM_OEn  
TRAS  
TRLPW  
TRAH  
TWAH  
TWAS  
TWLPW  
ROM_WEn  
ROM_CSn  
TWHZ  
TWDH  
TWLZ  
TRDH  
TWDS  
TRDD  
ROM_DATA (7:0)  
FROM EXTERNAL DEVICE  
TO EXTERNAL DEVICE  
Figure 27.  
OCM ROM Interface Timing Diagram  
Table 21. OCM ROM Interface Timing  
Symbol Parameter  
Min  
Max  
Units  
TOCMCLK  
On chip OCM clock period.  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
TOCM_WAS  
TOCM_WAH  
TOCM_WLPW  
TOCM_WDS  
TOCM_WDH  
TOCM_WLZ  
TOCM_WHZ  
TOCM_RAS  
TOCM_RAH  
TOCM_RLPW  
TOCM_RDD  
TOCM_RDH  
Address setup time provided to falling edge of OCM_WR.  
Address hold time provided from rising edge of OCM_WR.  
OCM_WR active low pulse width  
OCM_DATA valid time to OCM_WR rising edge (data set-up time provided)  
OCM_DATA held valid from OCM_WR rising edge. (data hold time provided)  
OCM_DATA Low-Z after OCM_WEn falling edge.  
OCM_DATA Hi-Z after OCM_WEn rising edge.  
Address setup time provided to falling edge of OCM_RD.  
Address hold time provided from rising edge of OCM_RD.  
OCM_RD low pulse width  
Read data valid before OCM_RD rising edge.  
Read data hold after OCM_RD rising edge.  
K1(TOCMCLK) – 3  
TOCMCLK – 3  
K2 (TOCMCLK  
)
K2(TOCMCLK) – 3  
TOCMCLK – 3  
3
-2  
TOCMCLK – 3  
0
TOCMCLK + 3  
TOCMCLK – 3  
K3 (TOCMCLK  
)
10  
0
NOTE: Conditions: For ROMC the CLOAD = 16 pF. For ROM_ADDR[17:0] and ROM_DATA[7:0] the CLOAD = 32 pF.  
NOTE: K1, K2 and K3 are programmable in units of OCM_CLK.  
C5221-DAT-04A  
45  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
6 Ordering Information  
Order Code  
Application  
Package Temperature  
Range  
2
2
gm5221-LF-BC  
gm5221H-LF-BC (1)  
SXGA  
SXGA  
0-70°C  
208-pin  
PQFP  
Note (1): gm5221H is sold to HDCP licensed customers only.  
C5221-DAT-04A  
46  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 
gm5221-LF-BC Multimedia LCD Controller Preliminary Data Sheet  
7 Mechanical Specifications  
Figure 28.  
gm5221 208-pin PQFP Mechanical Drawing  
C5221-DAT-04A  
47  
March 2004  
G e n e s i s M i c r o c h i p C o n f i d e n t i a l  
http://www.genesis-microchip.com  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY