HVLED002TR [STMICROELECTRONICS]

High performance current mode LED controller;
HVLED002TR
型号: HVLED002TR
厂家: ST    ST
描述:

High performance current mode LED controller

文件: 总19页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HVLED002  
High performance current mode LED controller  
Datasheet - production data  
Description  
The HVLED002 control IC provides the necessary  
features to implement off-line or DC to DC fixed  
frequency current mode control schemes to  
implement LED drivers. Internally implemented  
circuits include a trimmed oscillator for the precise  
duty cycle control, undervoltage lockout,  
a precision reference trimmed for accuracy at the  
error amplifier input, a PWM comparator which  
also provides current limit control and a totem  
pole output stage designed to the source or sink  
high peak current. The output stage, suitable for  
driving N-channel MOSFETs, is low in the off-  
state.  
SO-8  
Features  
Trimmed oscillator for precise frequency  
control  
Oscillator frequency guaranteed at 250 kHz  
Current mode operation to 500 kHz  
Latching PWM for cycle-by-cycle current  
limiting  
Internally trimmed reference with undervoltage  
Table 1. Device summary  
lockout  
Order codes  
Package  
Packaging  
High current totem pole output  
HVLED002  
Tube  
Undervoltage lockout with hysteresis  
Low start-up and operating current  
SO8  
HVLED002TR  
Tape and reel  
Figure 1. Block diagram  
December 2015  
DocID028720 Rev 1  
1/19  
This is information on a product in full production.  
www.st.com  
 
Contents  
HVLED002  
Contents  
1
2
3
4
5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connection and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Supply voltage and undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Totem pole output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/19  
DocID028720 Rev 1  
HVLED002  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Open loop test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Timing resistor vs. oscillator frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Output deadtime vs. oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Oscillator discharge current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Maximum output duty cycle vs. timing resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Error amplifier open loop gain and phase vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Current sense input threshold vs. error amplifier output voltage . . . . . . . . . . . . . . . . . . . . . 9  
Figure 10. Reference voltage change vs. source current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 11. Reference short-circuit current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 12. Output saturation voltage vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 13. Supply current vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 14. Oscillator and output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 15. Error amplifier configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 20. Error amplifier compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 16. Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 17. Current sense circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 18. Soft-start circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 19. External clock synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 21. Leading edge blanking circuitries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 22. Shutdown circuitries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 23. Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 24. SO-8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DocID028720 Rev 1  
3/19  
19  
Absolute maximum ratings  
HVLED002  
1
Absolute maximum ratings  
(1)  
Table 2. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
Vi  
IO  
Supply voltage  
30  
V
A
Output current  
± 1  
EO  
Output energy (capacitive load)  
Analog inputs (pins 2, 3)  
Error amplifier output sink current  
5
- 0.3 to 5.5  
10  
µJ  
V
mA  
1. All voltages are with respect to the pin 5, all currents are positive into the specified terminal.  
4/19  
DocID028720 Rev 1  
HVLED002  
Pin connection and functions  
2
Pin connection and functions  
Figure 2. Pin connection (top view)  
Table 3. Pin functions  
Description  
No. Function  
1
2
COMP  
VFB  
This pin is the error amplifier output and is made available for loop compensation.  
This is the inverting input of the error amplifier. It is normally connected to the  
switching power supply output through a resistor divider.  
A voltage proportional to the inductor current is connected to this input. The PWM  
uses this information to terminate the output switch conduction.  
3
4
ISENSE  
The oscillator frequency and maximum output duty cycle are programmed by the  
connecting resistor RT to VREF and the capacitor CT to ground. An operation to  
500 kHz is possible.  
RT/CT  
5
6
7
8
GROUND This pin is the ground reference of the device.  
This output directly drives the gate of a power MOSFET. Peak currents up to 1 A  
are sourced and sunk by this pin.  
OUTPUT  
Vi  
This pin is the positive supply of the control IC.  
This is the reference output. It provides the charging current for the capacitor CT  
through the resistor RT.  
VREF  
3
Thermal data  
Table 4. Thermal data  
Description  
Symbol  
SO8  
Unit  
Rth j-amb  
Tstg  
Thermal resistance junction ambient  
Storage temperature range  
150  
°C/W  
°C  
-65 to 150  
-40 to 150  
300  
TJ  
Junction operating temperature  
Lead temperature (soldering 10 s)  
°C  
TL  
°C  
DocID028720 Rev 1  
5/19  
19  
Electrical characteristics  
HVLED002  
4
Electrical characteristics  
Unless otherwise stated, these specifications apply for 0 T  
85 °C; V = 15 V;  
amb  
i
(a)  
R = 10 K; C = 3.3 nF  
.
T
T
Table 5. Electrical characteristics  
Test conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
SUPPLY VOLTAGE  
Vi Max. operative volt.  
REFERENCE SECTION  
VREF Output voltage  
25  
V
TJ = 25 °C, Io = 1 mA  
4.95 5.00 5.05  
V
mV  
mV  
mV/°C  
V
VREF Line regulation  
VREF Load regulation  
VREF/T Temperature stability  
Total output variation  
12 V Vi 25 V  
2
3
20  
25  
1 Io 20 mA  
(1)  
0.2  
Line, load, temperature  
4.82  
-30  
5.18  
25  
eN  
Output noise voltage  
Long term stability  
Output short-circuit  
10 Hz f 10 KHz, Tj = 25 °C(1)  
50  
5
µV  
T
amb = 125 °C, 1000 hrs(1)  
mV  
mA  
ISC  
-100 -180  
OSCILLATOR SECTION  
TJ = 25 °C  
49  
48  
52  
-
55  
56  
fOSC  
Frequency  
TA = 0 to 85 °C  
KHz  
TJ = 25 °C (RT = 6.2 k, CT = 1 nF)  
225  
250  
275  
fOSC/V Frequency change with volt.  
VCC = 12 V to 25 V  
-
-
0.2  
0.5  
1.6  
8.3  
-
1
-
%
%
fOSC/T Frequency change with temp. Tamb = 0 °C to 85 °C  
VOSC Oscillator voltage swing Peak-to-peak  
Idischg Discharge current (VOSC = 2 V) TJ = 25 °C  
TA = 0°C to 85°C  
-
-
V
7.8  
7.6  
8.8  
8.8  
mA  
mA  
ERROR AMPLIFIER SECTION  
VREF,EA Input voltage  
V(COMP) = 2.5 V  
VFB = 5 V  
2.42 2.50 2.58  
V
µA  
Ib  
Input bias current  
AVOL  
-0.1  
90  
1
-2  
2 V Vo 4 V  
65  
0.7  
60  
2
dB  
BW  
Unity gain bandwidth  
TJ = 25 °C(1)  
MHz  
dB  
PSRR Power supply reject. ratio  
Io Output sink current  
12 V Vi 25 V  
V(VFB) = 2.7 V, V(COMP) = 1.1 V  
70  
12  
mA  
a. Max. package power dissipation limits must be respected; low duty cycle pulse techniques are used during the test  
maintaining TJ as close to Tamb as possible.  
6/19  
DocID028720 Rev 1  
HVLED002  
Electrical characteristics  
Table 5. Electrical characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Output source current  
VCOMP high  
V(VFB) = 2.3 V, V(COMP) = 5 V  
-0.5  
-1  
mA  
Io  
V(VFB) = 2.3 V; RL = 15 Kbetween  
5
6.2  
0.8  
V
V
COMP and ground  
V(VFB) = 2.7 V; RL = 15 Kbetween  
COMP and VREF  
VCOMP low  
1.1  
CURRENT SENSE SECTION  
GV Gain  
MAXCS Maximum input signal  
(2) (3)  
,
3
V/V  
mV  
dB  
µA  
ns  
V(COMP) = 5.6 V  
258  
267  
70  
276  
SVR  
Ib  
Supply voltage rejection  
Input bias current  
Delay to output  
12 Vi 25 V(1)  
-2  
-10  
150  
300  
OUTPUT SECTION  
Output low level  
ISINK = 20 mA  
0.1  
1.6  
13.5  
13.5  
0.1  
50  
0.4  
2.2  
V
V
VOL  
ISINK = 200 mA  
Output high level  
ISOURCE = 20 mA  
13  
12  
V
VOH  
ISOURCE = 200 mA  
VCC = 6 V; ISINK = 1 mA  
TJ = 25 °C; CL = 1 nF(1)  
TJ = 25 °C; CL = 1 nF(1)  
V
VOLS  
UVLO saturation  
Rise time  
1.1  
150  
150  
V
tr  
tf  
ns  
ns  
Fall time  
50  
UNDERVOLTAGE LOCKOUT SECTION  
VON  
Start threshold  
Increasing voltage  
Decreasing voltage  
7.8  
7.0  
8.4  
7.6  
9.0  
8.2  
V
V
Min. operating voltage after  
turn-on  
VOFF  
PWM SECTION  
Maximum duty cycle  
94  
96  
100  
0
%
%
Minimum duty cycle  
TOTAL STANDBY CURRENT  
Ist  
Ii  
Start-up current  
0.3  
12  
0.5  
17  
mA  
mA  
Operating supply current  
V(VFB) = V(COMP) = 0 V  
1. These parameters, although guaranteed, are not 100% tested in production.  
2. Parameter measured at the trip point of the latch with V(VFB) = 0.  
3. Gain defined as : A = V(COMP)/V(ISENSE) ; 0 V(ISENSE) 267 mV.  
DocID028720 Rev 1  
7/19  
19  
 
Electrical characteristics  
HVLED002  
Figure 3. Open loop test circuit  
VREF  
RT  
2N2222  
A
Vi  
VREF  
0.1 μF  
COMP  
VFB  
8
1
2
7
Vi  
ERROR AMP.  
ADJUST  
1W  
0.1 μF  
HVLED002  
ISENSE  
RT/CT  
ISENSE  
ADJUST  
3
OUTPUT  
GROUND  
6
OUTPUT  
4
5
CT  
GROUND  
AM039820  
High peak currents associated with capacitive loads necessitate careful grounding  
techniques. Timing and bypass capacitors should be connected close to the pin 5 in a single  
point ground. The transistor and 5 Kpotentiometer are used to sample the oscillator  
waveform and apply an adjustable ramp to the pin 3.  
Figure 4. Timing resistor vs. oscillator  
frequency  
Figure 5. Output deadtime vs. oscillator  
frequency  
8/19  
DocID028720 Rev 1  
 
HVLED002  
Electrical characteristics  
Figure 6. Oscillator discharge current  
Figure 7. Maximum output duty cycle vs. timing  
resistor  
vs. temperature  
Figure 8. Error amplifier open loop gain and  
phase vs. frequency  
Figure 9. Current sense input threshold  
vs. error amplifier output voltage  
DocID028720 Rev 1  
9/19  
19  
 
 
Electrical characteristics  
HVLED002  
Figure 10. Reference voltage change vs. source  
current  
Figure 11. Reference short-circuit current  
vs. temperature  
Figure 12. Output saturation voltage vs. load  
current  
Figure 13. Supply current vs. supply voltage  
Figure 14. Oscillator and output waveforms  
Figure 15. Error amplifier configuration  
10/19  
DocID028720 Rev 1  
 
 
HVLED002  
Electrical characteristics  
Figure 16. Undervoltage lockout  
Figure 17. Current sense circuit  
Figure 18. Soft-start circuit  
Figure 19. External clock synchronization  
Figure 20. Error amplifier compensation  
'SP ꢃ7  
7  
0
N"  
3
J
ꢄ3  
&"  
3
3
$
3
E
G
G
&SSPSBNQMJGJFSDPNQFOTBUJP ꢃDJSDVJUꢃGPSTUBCJMJ[JO ꢃBO DVSSFOUNPE UPQPMPH FYDFQU  
GPSCPPTUBO GMZCBD DPOWFSUFS PQFSBUJO ꢃXJU DPOUJOVPV JOEVDUPSDVSSFOUꢆ  
'SP ꢃ7  
7  
0
N"  
3
1
ꢄ3  
3
J
&"  
3
$
3
$
3
1
E
G
G
&SSPSBNQMJGJFSDPNQFOTBUJP ꢃDJSDVJUꢃGPSTUBCJMJ[JO ꢃDVSSFOUNPE CPPTUBO GMZCBDL  
UPQPMPHJF ꢃPQFSBUJO ꢃXJU ꢃDPOUJOVPV JOEVDUPSDVSSFOUꢆ  
"
.ꢇ  
DocID028720 Rev 1  
11/19  
19  
 
 
 
Application information  
HVLED002  
5
Application information  
5.1  
Supply voltage and undervoltage lockout  
The HVLED002 device is able to operate with a very wide range of supply voltage between  
8.4 V and 30 V. The UVLO circuit insures that VCC is adequate to make the HVLED002 fully  
operational before enabling the output stage. Figure 16 shows that the UVLO turn-on and  
turn-off thresholds are fixed internally at 8.4 V and 7.6 V respectively. The hysteresis  
prevents V oscillations during power sequencing and the start-up current is less than  
CC  
1 mA.  
During UVLO, the output driver is in a low state and it can easily sink 1 mA, enough to  
insure the MOSFET is held off.  
5.2  
Reference voltage  
The HVLED002 contains a precision reference voltage (5 V) that generates all the internal  
reference voltages such as the error amplifier's reference (connected to its non-inverting  
input), current sense clamp limit (MAXCS) and oscillator's internal bias currents and  
thresholds.  
The reference voltage is also available on the VREF pin that, thanks to its high output  
current capability (over 20 mA), is able to supply not only nearby passive circuitries but also  
auxiliary microcontrollers.  
The pin must be bypassed with at least a 0.1 µF ceramic capacitor placed as close as  
possible to the respective VREF and GND pins.  
5.3  
Oscillator  
The HVLED002 oscillator is programmed as shown in Figure 14. The timing capacitor CT is  
charged from a reference voltage (e.g.: VREF) through the timing resistor RT, and  
discharged by an internal current source.  
The MOSFET is turned on (GD pin high) when the oscillator starts the charge of the CT. As  
soon as the voltage of the CT reaches an upper threshold the internal discharge current is  
activated until the CT voltage reaches a lower threshold. This occurrence initiates a new  
oscillator cycle.  
The difference between the upper and the lower thresholds (Vosc) determines the duration  
of charging and discharging time. During the discharging time (also called deadtime) the  
MOSFET is off and any spurious GD triggering is avoided. The deadtime also limits the  
maximum obtainable duty cycle.  
The oscillator can be differently connected to external circuitry to obtain different operating  
schemes. Connecting the RT to VREF a very accurate fixed frequency operation is  
achieved: the RT,CT combinations are plot into Figure 5 on page 8, Figure 6 and Figure 8  
for a quick reference, or calculated as follows:  
Equation 1  
FOSC (kHz) = 1.72 / [RT (k) x CT (µF)]  
12/19  
DocID028720 Rev 1  
HVLED002  
Application information  
Connecting the RT to a variable voltage, dependency of the operating frequency on said  
voltage is introduced. A pull-down switch can be used to reset the CT during the MOSFET's  
on time, for example to operate in fixed off time. A synchronous operation is also possible  
using circuitries like the one proposed as an example in Figure 19. The HVLED002  
oscillator can be used to a maximum of 500 kHz.  
5.4  
Current sense  
The peak current mode operation of the HVLED002 is made by the embedded current  
sense comparator: the said element turns off the MOSFET as soon as the current sense  
input voltage is greater than the internal threshold derived by the COMP pin voltage  
(Figure 17).  
The current sense pin (ISENSE) is normally connected to a shunt resistor, put in series with  
the main switch, but different connections are also possible.  
Under the normal operation the threshold voltage (VCS) is controlled by the E/A according  
to the following relation:  
Equation 2  
VCS = 1/3 * (VCOMP - 1.4 V)  
VCS is upper limited to MAXCS to reduce the shunt resistor power dissipation without the  
need of current transformers or offsets circuitries. This parameter is beneficial in those  
applications where both the peak current accuracy and the operating power dissipation are  
critical aspects (e.g.: LED secondary side LED current regulators).  
When the sensing current resistor is in series with the power switch, the current waveform  
will often have a large spike at its leading edge due to parasitic capacitances and gate driver  
charging currents. A very simple leading edge blanking (LEB) circuit consists on an RC filter,  
but more effective active circuitries are also possible.  
Figure 21. Leading edge blanking circuitries  
065165  
*
*
4
4
$
3
)7-&%ꢇꢄ  
)7-&%ꢇꢄ  
*4&/4&  
3
*4&/4&  
$
3
4
3
4
(/%  
(/%  
"
.ꢇ  
DocID028720 Rev 1  
13/19  
19  
Application information  
HVLED002  
5.5  
Error amplifier  
An error amplifier (E/A) structure is present in the HVLED002 (Figure 15 on page 10). The  
non-inverting input is internally connected to a very precise reference voltage (2.5 V ± 2%).  
The E/A output and inverting pin are connected respectively to the pin 1 and 2, available for  
external compensation. The E/A output will source at least 0.5 mA and sink 2 mA. Figure 8  
on page 9 shows the open loop frequency response of the E/A.  
The output of the error amplifier can be forced to ground in different ways to shut down the  
application as shown in Figure 22.  
Figure 22. Shutdown circuitries  
4
OSC  
8
R
BIAS  
R
+
1 mA  
2R  
+
-
2
1
EA  
R
5
2N  
3905  
2N  
3903  
The SCR must be selected for a holding current of less than 0.5 mA at T  
.
A(min)  
The simple two-transistor circuit can be used in place of the SCR as shown. All resistors are 10 K  
.
AM039818  
5.6  
Totem pole output  
The HVLED002 has a single totem pole output which can be operated to the ± 1 Amp peak  
current for driving MOSFET gates, and a + 200 mA average current for bipolar power  
transistors.  
Cross conduction between the driver's output transistors is minimal, the average added  
power with VIN = 30 V is around 80 mW at 200 kHz.  
Limiting the peak current through the IC is accomplished by placing a resistor between the  
totem pole output and the gate of the MOSFET. Without this resistor, the peak current is  
limited only by the dV/dT rate of the totem pole switching and the FET gate capacitance.  
An additional discharging diode can be put in parallel with the said limiting resistor to quickly  
turn off the MOSFET, reducing the switching losses and the control to output delay.  
14/19  
DocID028720 Rev 1  
 
HVLED002  
Application information  
5.7  
Typical application  
The HVLED002 device can be used as a secondary side step-down current regulator in the  
multiple staged LED driver - see Figure 23. It is easy to configure the device to drive an  
inverse (or modified) buck topology based on the fixed off-time (FOT) algorithm.  
The MOSFET remains on until the current sense threshold is reached; during the on time,  
the oscillator remains reset to ground. The current sense threshold is set by the saturation  
of the E/A to MAXCS to guarantee the higher precision as possible.  
The MOSFET is then turned off and the oscillator is released: the resulting off time is fixed  
by the charging of the CT by RT, connected to VREF.  
An optional auxiliary microcontroller, supplied by VREF itself can be used to dim the LED  
current according to the information sent to the application by a remote controller.  
Figure 23. Typical application  
V
IN  
Vaux  
)
5.6 V(1  
COMP  
D
VFB  
1
Vi  
2
8
7
6
VDD  
VREF  
L
OUTPUT  
Isense  
Q
1
μC  
HVLED002  
User interface  
GPIO  
3
RT/CT  
4
5
GND  
R
S
GROUND  
Osc. reset  
Dimming  
1. Optional for better performances.  
DocID028720 Rev 1  
15/19  
19  
 
Package information  
HVLED002  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
6.1  
SO-8 package information  
Figure 24. SO-8 package outline  
$0ꢀꢀꢁꢂꢁ9ꢀ  
16/19  
DocID028720 Rev 1  
HVLED002  
Package information  
Table 6. SO-8 package mechanical data  
Dimensions (mm)  
Typ.  
Dimensions (inch)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.750  
0.250  
0.0689  
0.0098  
0.100  
1.250  
0.280  
0.170  
4.800  
5.800  
3.800  
0.0039  
0.0492  
0.0110  
0.0067  
0.1890  
0.2283  
0.1496  
0.480  
0.230  
5.000  
6.200  
4.000  
0.0189  
0.0091  
0.1969  
0.2441  
0.1575  
c
D(1)  
4.900  
6.000  
3.900  
1.270  
0.1929  
0.2362  
0.1535  
0.0500  
E
E1(2)  
e
h
0.250  
0.400  
0.500  
1.270  
0.0098  
0.0157  
0.0197  
0.0500  
L
L1  
k
1.040  
0.0409  
0°  
8°  
0°  
8°  
ccc  
0.10  
0.0039  
1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold Flash, protrusions or gate burrs  
shall not exceed 0.15 mm in total (both sides).  
2. Dimension “E1” does not include interlead Flash or protrusions. Interlead Flash or protrusions shall not  
exceed 0.25 mm per side.  
DocID028720 Rev 1  
17/19  
19  
Revision history  
HVLED002  
7
Revision history  
Table 7. Document revision history  
Date  
Revision  
Changes  
15-Dec-2015  
1
Initial release.  
18/19  
DocID028720 Rev 1  
HVLED002  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID028720 Rev 1  
19/19  
19  

相关型号:

HVLED805

Off-line LED driver with primary-sensing
STMICROELECTR

HVLED805TR

Off-line LED driver with primary-sensing
STMICROELECTR

HVLED807PF

Off-line LED driver with primary-sensing and high power factor up to 7W
STMICROELECTR

HVLED815PF

Offline LED driver with primary-sensing, high power factor up to 15 W
STMICROELECTR

HVLED815PFTR

Offline LED driver with primary-sensing, high power factor up to 15 W
STMICROELECTR

HVM-100C1-502

ISDN SO DIL Interface Modules
NUVOTEM TALEM

HVM-120A1-502

ISDN SO DIL Interface Modules
NUVOTEM TALEM

HVM-130C1-502

ISDN SO DIL Interface Modules
NUVOTEM TALEM

HVM-140C1-502

ISDN SO DIL Interface Modules
NUVOTEM TALEM

HVM10

HIGH-VOLTAGE DIODES
LRC

HVM10

HIGH VOLTAGE ASSEMBLIED RECTIFIER (VOLTAGE RANGE 5000 to 16000 Volts CURRENT 0.35 Amperes)
RECTRON

HVM10

TECHNICAL SPECIFICATIONS OF HIGH VOLTAGE ASSEMBLIED RECTIFIER
DCCOM