L3000SX-77 [STMICROELECTRONICS]

SUBSCRIBER LINE INTERFACE KIT; 用户线接口KIT
L3000SX-77
型号: L3000SX-77
厂家: ST    ST
描述:

SUBSCRIBER LINE INTERFACE KIT
用户线接口KIT

文件: 总29页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L3000S  
L3030  
SUBSCRIBER LINE INTERFACE KIT  
PRELIMINARY DATA  
.
PROGRAMMABLE DC FEEDING RESIS-TAN-  
CEAND LIMITINGCURRENT (fourvaluesavai-  
lable)  
THREE OPERATING MODES :  
STAND-BY, CONVERSATION, RINGING  
NORMAL/BOOSTBATTERY,DIRECT/REVER-  
SE POLARITY  
SIGNALLINGFUNCTION (off-hook/GND-key)  
FILTERED OFF-HOOK DETECTION IN  
STAND-BY (10ms)  
.
.
.
.
PLCC44  
FLEXIWATT15  
.
QUICK OFF-HOOK DETECTION IN CONVER-  
SATION (< 1ms) FOR LOW DIAL PULSE DE-  
TECTION DISTORTION  
.
HYBRID FUNCTION  
.
RINGING GENERATION WITH QUASI ZERO  
OUTPUT IMPEDANCE, ZERO CROSSING IN-  
JECTION (no ext. relay needed) AND RING  
TRIP DETECTION  
PowerSO20  
slug-up  
slug-down  
.
.
AUTOMATIC RINGING STOP WHEN OFF-  
HOOK IS DETECTED  
PARALLEL AND SERIAL DIGITAL INTERFA-  
ORDERING NUMBERS :  
L3030 (PLCC44)  
L3000SX-VM (FLEXIWATT15)  
L3000SX (PowerSO20 slug-up)  
L3000SX-77 (PowerSO20 slug-down)  
CES  
.
.
TELETAXESIGNALINJECTION(2VRMS/5VRMS  
)
LOW NUMBER OF EXTERNAL COMPO-  
NENTS  
GOOD REJECTION OF THE NOISE ON BAT-  
TERY VOLTAGE (20dB at 10Hz and 35dB at  
1kHz)  
POSSIBILITY TO WORK ALSO WITH HIGH  
COMMON MODE CURRENTS  
INTEGRATED THERMAL PROTECTION WITH  
THERMAL OVERLOADINDICATION  
SURFACE MOUNT PACKAGE  
(PLCC44 + PowerSO-20)  
Additionalfunctions, such as batteryreversal, extra  
batteryuse, lineovervoltagesensing andmetering-  
pulse injection are also featured ; most external  
characteristics,asACandDCimpedances,arepro-  
grammablewithexternalcomponents.TheSLICin-  
jects ringing in balanced mode and for that,as well  
as for the operation in battery boosted, a positive  
batteryvoltage shall be available on thesubscriber  
card.As the rightringing signalamplification bothin  
voltage and in currentis provided by SLIC, thering  
signalgeneratorshall onlyprovidea lowlevelsignal  
(0.285Vrms).  
.
.
.
.
DESCRIPTION  
The ST SLIC KIT (L3000S/L3030)is a set of solid  
statedevicesdesignedto integratemain of the fun-  
ctions needed to interface a telephoneline. It con-  
sists of 2 integrated devices : the L3000S line  
interfacecircuit and the L3030control unit.  
Thiskit performsthe main featuresof the BORSHT  
functions:  
Thiskit is fabricatedusing a 140VBipolartechnolo-  
gy for L3000Sand a 12VBipolar I2L technologyfor  
L3030.  
L3030 is available PLCC44 and L3000S in both  
FLEXIWATT15andPowerSO-20forsurfacemount  
application.  
This kit is suitable for all the following applications:  
C.O.(CentralOffice),DLC(DigitalLoopCarrier)and  
high range PABX (Private Automatic Branch Ex-  
change).  
Batteryfeed  
-
Ringing  
-
Signalling  
Hybrid  
-
-
June 1997  
1/29  
L3000S - L3030  
PIN CONNECTIONS (top view)  
FLEXIWATT15  
PLCC44  
10  
9
8
7
6
5
4
3
2
1
11  
VB-  
VBIM  
VIN  
VB-  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VB-  
VB-  
N.C.  
TIP  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AGND  
REF  
C1  
RING  
N.C.  
IL  
VDD  
MNT  
VB+  
BGND  
VB+  
C2  
IT  
IT  
BGND  
VDD  
C2  
MNT  
TIP  
IL  
C1  
N.C.  
RING  
VB-  
VIN  
REF  
AGND  
VB-  
N.C.  
VB-  
VBIM  
VB-  
D97TL290  
D94TL125  
PowerSO-20 (slug-down)  
PowerSO-20 (slug-up)  
2/29  
L3000S - L3030  
PIN DESCRIPTION (L3000S)  
FLEX.  
PSO  
N
°
Name  
Description  
N
°
1
3
TIP  
A line termination output with current capability up to 100mA (Ia is the current sourced  
from this pin).  
2
3
4
4
5
6
MNT  
VB+  
Positive Supply Voltage Monitor  
Positive Battery Supply Voltage  
BGND Battery ground relative to the VB+ and the VB– supply voltages.  
It is also the reference ground for TIP and RING signals.  
5
6
7
7
8
9
VDD  
VIN  
Positive Power Supply + 5V  
2 wire unbalanced voltage input.  
VBIM Output voltage without current capability, with the following functions :  
- give an image of the total battery voltage scaled by 40 to the low voltage part.  
- filter by an external capacitor the noise on VB–.  
8
1, 10  
11, 20  
VB–  
Negative Battery Supply Voltage  
9
12  
13  
AGND Analog Ground. All input signals and the VDD supply voltage must be referred to this pin.  
10  
REF  
Voltage reference output with very low temperature coefficient. The connected resistor  
sets internal circuit bias current.  
11  
12  
13  
14  
15  
16  
C1  
C2  
IT  
Digital signal input (3 levels) that defines device status with pin 12.  
Digital signal input (3 levels) that defines device status with pin 11.  
High precision scaled transversal line current signal.  
I + Ib  
a
IT =  
100  
14  
17  
IL  
Scaled longitudinal line current signal.  
I
b Ia  
IL =  
100  
15  
19  
RING B line termination output with current capability up to 100mA (Ib is the current sunk into  
this pin).  
2, 18  
N.C.  
Not connected  
Notes: 1) Unless otherwise specified all the diagrams in this datasheet refers to the FLEXIWATT15 pin connection.  
2) All informations relative to the PowerSO-20 package option should be considered as advanced information on a new product  
now in development or undergoing evaluation. Details are subject to change without notice.  
3/29  
L3000S - L3030  
PIN DESCRIPTION (L3030)  
Pin  
Symbol  
Function  
1
TST  
This pin is connected internally for test purpose. It should not be used as a tie point for  
external components.  
2
3
4
5
6
7
8
9
REF  
AGND  
VSS  
VDD  
N.C.  
CZS  
ACF  
ZAC  
Bias Set  
Analog Ground  
– 5V  
+ 5V  
Not connected.  
AC Feedback Input  
AC Line Impedance Synthesis  
AC Impedance Adjustement  
10  
11  
12  
These pins are connected internally for test purpose. It should not be used as a tie point  
for external components.  
TST  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VOUT  
CM  
Two wire unbalanced output.  
Capacitor Multiplier Input  
DC Feedback Input  
Transversal Line Current  
DC Feeding System  
Read/write Command  
Chip Select Command  
Data Input/output  
RC  
IT  
RDC  
EIA  
NCS  
DIO  
DCKL  
DGND  
N.C.  
N.C.  
N.C.  
CI  
Clock Signal  
Digital Ground  
Not connected.  
Not connected.  
Not connected.  
Input/output Changing Command  
State Control Signal 1  
State Control Signal 2  
Not connected.  
C1  
C2  
N.C.  
N.C.  
IL  
Not connected.  
Longitudinal Line Current  
Ringtrip Det. & TTX Shaping  
Teletaxe Signal Input  
TTX Filter Level Compensation  
TTX Filter Input  
CRTS  
TTXIN  
RGTTX  
TTXF  
ZB  
Balancing Network  
37  
38  
39  
These pins are connected internally for test purpose. It should not be used as a tie point  
for external components.  
TST  
40  
41  
42  
TX  
4W Sending Output  
RX/RG  
VBIM  
4W Receiving and Ring Input  
Battery Image Input  
43  
44  
These pins are connected internally for test purpose. It should not be used as a tie point  
for external components.  
TST  
4/29  
L3000S - L3030  
L3000S BLOCK DIAGRAM  
L3030 BLOCK DIAGRAM  
5/29  
L3000S - L3030  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
Vb–  
Vb+  
Negative Battery Voltage  
Positive Battery Voltage  
– 80  
80  
V
|Vb–| + |Vb+| Total Battery Voltage  
140  
V
Vdd  
Vss  
Positive Supply Voltage  
Negative Supply Voltage  
+ 6  
V
– 6  
5
V
V
agnd – Vbgnd Max. Voltage between Analog Ground and Battery Ground  
V
Tj  
Max. Junction Temperature  
Storage Temperature  
+ 150  
°
°
C
C
Tstg  
– 55 to + 150  
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
L3000S HIGH VOLTAGE  
Flexiwatt  
PWSO20  
Typ. 2  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
Max. 4  
°C/W  
°C/W  
Max. 50  
Max. 60  
L3030 LOW VOLTAGE  
Rth j-amb  
Max. Resistance Junction to Ambient  
80  
°
C/W  
OPERATING RANGE  
Symbol  
Parameter  
Operating Temperature Range  
Min.  
0
Typ.  
Max.  
70  
Unit  
Toper  
Vb–  
C
°
Negative Battery Voltage  
Positive Battery Voltage  
Total Battery Voltage  
– 70  
0
– 48  
+ 72  
120  
– 24  
+ 75  
130  
V
Vb+  
V
V
Vb– + Vb+  
Vdd  
Positive Supply Voltage  
Negative Supply Voltage  
Total Line Current (IL + IT)  
+ 4.5  
– 5.5  
+ 5.5  
– 4.5  
85  
V
Vss  
V
Imax  
mA  
FUNCTIONAL DESCRIPTION  
L3000S - High Voltage Circuit  
Thetwo groundshouldbe shortedtogetherata low  
impedancepoint.  
L3030 - Control Unit  
TheL3000Slineinterfaceprovidesabatteryfeeding  
fortelephonelinesandringing injection.TheICcon-  
tainsastatedecoderthatunderexternalcontrolcan  
force the following operational modes : stand-by,  
conversationand ringing.  
The L3030low voltagecontrolunit controls L3000S  
line interface module,giving the proper information  
to set line feed characteristic, to inject ringing and  
TTXsignal andsynthetizesthelineandbalanceim-  
pedances.An on chip digital interfaceallows a mi-  
croprocessor to control all the operations. L3030  
definesworking statesof line interface and also in-  
formsthe card controllerabout line status.  
In addition Power down mode can be forced con-  
necting the bias current resistor to VDD or leavingit  
open.  
Twopins,IL andIT, carryouttheinformationconcer-  
ninglinestatuswhich isdetectedby sensingtheline  
currentinto the outputstage.  
L3000S - Working States  
In order to carry out the different possible opera-  
tions,the L3000Shas several differentworkingsta-  
tes.Eachstateisdefinedbythevoltagerespectively  
applied by pins 27 and 28 of L3030 to the pins 11  
and 12 of L3000S.  
The L3000Samplifies both the AC and DC signals  
enteringat pin 6 (VIN) by a factorequal to 40.  
Separategroundsare provided :  
- Analog ground as a referencefor analog signals  
- Battery ground as a reference for the output sta-  
ges  
Three differentvoltage levels (– 3, 0, + 3) are avai-  
lable at each connection, so defining nine possible  
6/29  
L3000S - L3030  
Table 1.  
Pin 28 of L3030 / Pin 12 of L3000S (C2)  
+ 3  
0
– 3  
+ 3  
0
Stand-by  
Conversation in Normal  
Battery Direct Polarity  
Conversation in Normal  
Battery Reverse Polar  
Pin 27 of L3030  
Pin of L3000S  
Not allowed.  
Not allowed.  
Conversation in Boost  
Battery Direct Polarity  
Conversation in Boost  
Battery Reverse Polar  
11  
– 3  
Ringing with Direct  
Polarity  
Not allowed.  
statesas listed in Table. 1.  
is inOnhookandPD statusonlyin emergencycon-  
ditionwhen it is mandatory to cut any possible dis-  
sipationbut no operationare requested.  
Appropriate combinations of two pins define the  
three modesof the ST SLIC, that are :  
a) Stand-by(SBY)  
b) Conversation (CVS), Normal and Reverse pola-  
rity  
c) Ringing (RING)  
d) BoostBattery(BB), Normal and Reversepolarity  
OPERATING MODES  
Stand-by (SBY) Mode  
In this mode, the bias currents of both L3000S and  
L3030arereducedasonlysomepartsofthetwocir-  
cuits are completely active, control interface and  
currentsensors among them. The current supplied  
tothe line is limited at 7mA,and the slope of theDC  
characteristiccorresponds to :  
A fifth status,Powerdown (PD), can be set discon-  
nectingthebiasresistor(RH)frompin10 ofL3000S  
by means of an external transistor.  
The main differencebetween Stand-by and Power  
down is that in SBY the power consumptionon the  
voltage battery VB– (– 48V) is reduced but the  
L3000SDC feedingand monitoring circuits are still  
active. In PD the power consumption on VB- is re-  
duced to zero, and the L3000S is completely swit-  
chedoff.  
2
R = x (RFS + 2RP)  
3
TheLinevoltageinon Hookconditionisjustthebat-  
teryvoltageminusthevoltagedrop(approx.15V)of  
the outputstage amplifiers (see Fig. 1).  
TheSBYstatusshouldbeusedwhenthe telephone  
Figure 1 : DC Characteristics in Stand-byMode.  
7/29  
L3000S - L3030  
The AC characteristic is just the resistance of the  
two serial resistors RP.  
Serial Interface.  
1) Normal Battery (NB)  
2) Boost Battery(BB)  
InStand-bymodethe batterypolarity is just indirect  
condition,thatis the TIPwiremorepositivethanthe  
RING one ; boost batteryis not achievable. There  
are two possible line conditions where the SLIC is  
expectedto be in stand-bymode :  
Itisalsopossibleto select(BIT4R)thepolarityofthe  
DC line voltage and (BIT6R-BIT7R) one of the four  
values of limiting current (25mA or 30mA or 45mA  
or 70mA).  
1) ON-HOOK (Iline < 5mA). Normal on-hook  
condition.  
2) OFF-HOOK (Iline > 7mA).Handset is unhooked,  
the SLIC is waiting for command to activate  
conversation.  
Batteryreverse can take place either before or du-  
ring conversation.  
As far as the DC characteristicin Normal Batteryis  
concerned, three different feeding conditions are  
present:  
When the SLICis in stand-bymode, the powerdis-  
sipationof L3000Sdoes not exceed 120mW (from  
-48V) eventually increased of a certain amount if  
some current is flowing into the line.  
a) currentlimiting region; theDC impedanceof the  
SLICis very high (> 20 Kohm)and therefore the  
systemworkslikeacurrentgenerator,thecurrent  
value being set through the digital interface  
(25/30/45/70mA).  
The powerdissipation of L3030in the same condi-  
tion, is typically 120mW.  
b) standard feeding system region  
;
the  
The Stand-byMode is setwhenthe byte sentto the  
L3030 Serial Digital Interface has the first two bits  
(BIT0R and BIT1R) equal to ”0”.  
characteristicis equal to a – 48V (– 60V)battery  
(note1),inserieswithtworesistors,whosevalue  
is set by external components (see external  
componentlist of L3030).  
Settingto 0 allthe 8bitsof thecommandsentto the  
digital interface of L3030, the bias currents of both  
L3000S and L3030 are reduced and only some  
parts of the two circuits are active similarly to the  
stand-by mode ; in this situation, named power-  
down denial, the line sensors are disabled  
(ON/OFF-HOOKline conditionscannotbe recogni-  
zed)and the currentsuppliedto thelineis limited at  
0.25mA.  
c) low impedance region ; the battery value is  
reducedto 33V(45V)and theserial resistanceis  
reducedto the value specifiedin standby mode,  
2
that is : x (RFS+ 2RP)  
3
Switchingbetweenthethree regionis automaticwi-  
thout discontinuity, and depends on the loop resi-  
stance.Fig. 2 showstheDCcharacteristicin normal  
batterycondition.  
Conversation(CVS) or Active Mode  
Inconversationmodeitis possibletoselectbetween  
twodifferentDCCharacteristicsbythe BIT5Rofthe  
Whentheboostbatteryconditionisactivatedthelow  
impedanceregion can never be reached by the sy-  
Figure 2 :  
DCCharacteristic (n.b.) ILIM = 25/30/45/70mA.  
Note : 1. This value of voltage battery, named apparent battery, is fixed internally by the control unit and is independent of the actual battery  
value. So, the voltage drop in the lowimpedance regionis 15V.It is alsopossible toincrease up to 25V this valuesetting BIT3R to1.  
8/29  
L3000S - L3030  
stem ; in this case the internal dropout voltage is  
equal to 30V.  
of which being:  
1) the line impedance(Zline),  
2) the SLIC impedance at line terminals (ZML),  
3) thenetworkZAconnectedbetweenpin36and41  
ofL3030(see externalcomponentlist of L3030),  
4) the network ZB between pin 36 and ground that  
shall copy the line impedance.  
Fig. 3 shows the DC characteristic in boost battery  
condition.  
Inconversationmode, onrequestofcontrolproces-  
sor, whatevercondition is set (normal or boostbat-  
tery, direct or reverse polarity), you can inject the  
12kHz(or16kHz)signal(permanentlyappliedatthe  
pin 33 with 950mVrmstyp. amplitude),as metering  
pulses. A patentedautomaticcontrol systemadjust  
the level of the metering signal, across the line, to  
2Vrmssetting BIT3 = 0, or to 5Vrms setting BIT3 =  
1 ; this,regardlessof the lineimpedance.Moreover  
the metering signal is rampedat the beginningand  
atthe endof eachpulseto preventundesirableclic-  
king noise ; the slope is determined by the value of  
CINT (see the external component list of L3030).  
The SLIC also provides, in the transmit direction  
(fromlineto4-wireside),an amplifiertoinsertanex-  
ternalnotchfilter (series resonator)for suppressing  
the 12/16kHz residualsignal.  
Fora perfectbalancing,the followingequationshall  
be verified :  
ZA ZML  
=
ZB Zline  
It is important to underline that ZA and ZB are not  
obliged to be equal to ZML and to Zline, but they  
bothmay be multiplied by a factor(up to ten)so al-  
lowing use of smaller capacitors.  
Inconversation,theL3000Sdissipatesabout250mW  
foritsownoperation;thedissipationdependingonthe  
current suppliedto the line shall be added.  
Thefig5 andfig6showtheDCcharacteristicfortwo  
differentFeedingresistance.  
Fig.4 showsa suggestednotchFilterconfiguration.  
2 x 200 Ohm and 2 x 400 respectively.  
The meteringpulses can be injected with a DC line  
currentequal to zero (ON-HOOK Operation).  
Figure 3 : DC Characteristic (b.b.)  
Ifteletaxis not used the notchfiltercan be replaced  
by a 1Kresistor.  
I
LIM = 25/30/45/70mA.  
InconversationmodetheACimpedanceatthelineter-  
minals,ZML,issynthetizedbytheexternalcomponents  
ZACandRP, accordingto thefollowingformula:  
ZML = ZAC + (RP1 + RP2)  
Dependingon the characteristicof the ZACnetwork,  
ZMLcanbe eithera pureresistanceoracomplexim-  
pedance,soallowingSTSLICtomeetdifferentstand-  
ards as far as the return loss is concerned. The  
capacitorCCOMP guaranteesstabilityto the system.  
The two-to-four wire conversion is achieved byme-  
ansof aWheatstonebridge configuration,the sides  
Figure 4 : ExternalTeletaxe Filter.  
1
f
=
2π LxC  
R2 x R4 xR5  
R3  
L
xC2  
=
9/29  
L3000S - L3030  
Figure 5 : DCCharacteristic for 2 x 200 ohm Feeding System.  
Figure 6 : DC Characteristicfor 2 x 400 ohm Feeding System.  
Figure 7 : LineCurrent Versus Loop Resistance, RFS = 200, RP = 30, VB– = –48V.  
10/29  
L3000S - L3030  
Ringing Mode  
tied to a voltagebetween 4 and 5V).  
Whenringingis selected(BIT2R= 1,BIT0R=0),the  
control unit L3030 presets the L3000S to operate  
between48V (– 60V)and + 72V(+ 60V) battery.  
Then,settingBIT1=1, alowlevelsignal(0.285Vrms  
with frequencyrange 16-66Hz)appliedto pin 41, is  
amplifiedand injected in balancedmode to the line  
throughL3000Switha superimposedDC voltageof  
24V. The impedance to the line is given by the two  
external resistors and the 24V DC polarity can only  
be direct.  
1) Serial Mode  
The five wires of the digitalinterface havethe follo-  
wing functions :  
- clock (DCLK), entering at pin 21  
- data in/dataout (DIO), exchangedat pin 20  
- input/outputselect (EIA), entering at pin 18  
- chip select (NCS), entering at pin 19  
- changeNCS from in to out (CI), enteringat pin26  
(note1)  
The maximum clock frequency is 600Khz.  
Thefirstandthelastringingcyclesaresynchronized  
by L3030 so that ringing always starts and stops at  
zero crossing. Ring trip detection is performed au-  
tonomouslybytheSLIC,withoutanyparticularcom-  
mand, using a patentedsystem ; when handset is  
lifted, SLIC suspends the ringing signal just remai-  
ningintheringingmode.Inthiscondition,thecontrol  
unit L3030 checks that the loop is closed for a time  
equalto two periods of the ringingsignal ; if the clo-  
sure is confirmed, a flag (BIT0T = 1) is set and the  
SLICwaits the new command from the controlpro-  
cessor. Whereas the loop closure is not confirmed,  
theringingsignalis newlyappliedto theline,without  
settingBIT0T.  
WhenEIAsignalis lowdataaretransferredfromthe  
card controllerinto I/O registersof the L3030selec-  
ted by NCS signal tied at low level ; then data are  
latchedfor execution.In thisphasea complete8 bit  
wordis loadedintointernalregisterandconsequen-  
tly NCS signal must remain low for the correspon-  
ding 8 clock pulses (DCLK). The EIA signal must  
remainat lowlevelatleastforthetimeinwhichNCS  
signal remain low. Thedeviceload data in input re-  
gister during the positive edge of clock signal  
(DCLK)andstorethecontentsoftheregisteron the  
positive edge of NCS signal.  
When EIA signal is high data are transferred from  
the L3030 selected by NCS tied to low level to the  
card controller. The L3030 status is described by  
five bits contained in the output register ; the NCS  
signalcanremainlowforfiveor lessclockpulsesde-  
pendingif the card controllerwant to read thecom-  
pleteL3030 status or only a part of it.  
DIGITAL INTERFACE  
Functional Description  
The L3030 states and functions are controlled by  
central processorthrough five wires defininga digi-  
talinterface.Itis possibletoselecttheinterfacewor-  
king mode between SERIAL or PARALLEL(pin 33  
Fig.8,9 showthe completewriteandreadoperation  
timing. Table 1 showsthemeaning of eachbit ofan  
I/O data.  
11/29  
L3000S - L3030  
Table 1 :  
Serial Mode.  
Meaning  
Value  
Data in (note 2)  
BIT0R = Impedance (note 3)  
BIT1R = TTX & Ring Timing (note 4)  
BIT2R = Ring (note 5)  
0 - Stand-by/ringing  
1 - Conversation  
0 - Timing off  
1 - Timing on  
0 - TTX Signal Injection  
1 - Ring Signal Injection  
BIT3R = TTX Level  
0 - Low Amplitude (2VRMS)  
1 - High Amplitude (5VRMS  
0 - Normal Polarity  
1 - Reverse Polarity  
0 - Normal Battery  
)
BIT4R = Battery Polarity  
BIT5R = Extra Feeding  
1 - Boosted Battery  
BIT6R  
0
25mA  
0
0
30mA  
1
1
45mA  
1
1
70mA  
0
Current  
Limiting  
BIT7R  
Data Out (note 6)  
BIT0T = Line Supervision  
0 - On Hook  
1 - Off Hook  
BIT1T = Ground Key  
1 - Long. Line Current < 17mA  
0 - Long. Line Current > 17mA  
BIT2T = Internal Line Current Limiter (note7)  
BIT3T = Line Voltage  
0 - Off  
1 - On  
0 - Normal  
1 - Minus of Half Battery  
1 - Off  
BIT4T = Thermal Overload (note 8)  
0 - On  
Notes : 1. When CI signal is tied to low level, NCS signal is the chip select input ; with CI signal at high level, the NCS signal  
becomes an output that carry out the logical sum of the following bits : BIT0T, BIT1T.  
2. The description of the commands is referred to the system L3030 + LINE INTERFACE module.  
3. To set SBY mode with Ilim = 7mA : BIT0R = 0 and at least one of the two last bits (BIT6R ; BIT7R) must be set to 1.  
4. TTX and RING signals are injected into the line interface module with BIT1R to ”1”.  
5. To set RING mode at least one of the three last bits (BIT5R, BIT6R, BIT7R) must be set to 1, in addi tion BIT0R  
must be set to 0.  
6. The description of the commands is referred to the system L3030 + LINE INTERFACE module.  
7. The bit BIT2T is set to 1 when the SLIC is operating in Conversation Mode and into the limiting current region (short  
loop).  
8. The bit BIT4T is set to 1 when the junction temperature of L3000S is about 140°C.  
12/29  
L3000S - L3030  
Figure 8 : Writing Operation Timing (serial mode).  
Figure 9 : Reading OperationTiming (serial mode).  
13/29  
L3000S - L3030  
2) Parallel Mode  
In this operating mode the signalsat the inputsare  
immediatelyexecuted,without anyexternalclockti-  
ming; alltheinternalregistersarebypassed.Thein-  
formations sent back on pins 19 and 20, display in  
real time the settingof internalcircuits, that means  
line status. In the table 2 the correspondencebet-  
ween the interface wires in the parallel mode and  
equivalent bit in serial mode is pointed out ; where  
there isn’t this correspondence,the internal setting  
is shown.  
This operating mode is enabled connecting pin 33  
toa voltageintherangefrom4V to 5V.Thefivewire  
havethe following functions:  
- powerdown/feeding(EIA), entering at pin 18  
- timing (CI), enteringat pin 26  
- ring (DCLK), enteringat pin 21  
- on-hook/off-hook(NCS), outgoingat pin19  
- ground-key(DIO), outgoingat pin20  
Table 2 : Parallel Mode.  
Pin  
Rif.  
Meaning (note 1)  
PD/feeding  
Eq. Bit of Ser. Interf.  
Value  
0 : High Impedance  
1 : Low Impedance  
0 : Ring Timing Off  
1 : Ring Timing On  
0 : No Ring  
18  
EIA  
BIT0R  
BIT1R  
BIT2R  
26  
21  
CI  
Timing  
Ring  
DCKL  
1 : Ring Injection  
0 : Low Amplitude  
0 : Normal Polarity  
0 : Normal Battery  
0 :  
BIT3R  
BIT4R  
BIT5R  
BIT6R  
BIT7R  
BIT0T  
Line Curr. = 30mA  
1 :  
19  
20  
NCS  
DIO  
On-hook/off-hook  
Ground Key  
0 : On-hook  
1 : Off-hook  
BIT1T  
1 : Long. Curr. < 17mA  
0 : Long. Curr. > 17mA  
BIT2T  
BIT3T  
BIT4T  
Note : 1. The description of the commands is referred to the system L3030 + LINEINTERFACEmodule.  
DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS  
(VDD = + 5V, VSS = – 5V, Tamb. = 25oC) (refer to PLCC44 package)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
STATIC ELECTRICAL CHARACTERISTICS  
Vil  
Vih  
Iil  
Input Voltage at Logical ”0”  
Input Voltage at Logical ”1”  
Input Current at Logical ”0”  
Input Current at Logical ”1”  
Output Voltage at Logical ”0”  
Output Voltage at Logical ”1”  
Tristate Leak. Current  
Pins 18, 19, 20, 21, 26  
0
0.8  
5
V
V
2.0  
Vil = 0V  
200  
10  
A
A
µ
µ
Iih  
Vih = 5V  
Vol  
Voh  
Ilk  
Pins 19, 20 Iout = – 1mA  
Pins 19, 20 Iout = 1mA  
Pin 20 NCS = ”1”  
0.4  
V
2.4  
V
10  
µ
A
14/29  
L3000S - L3030  
DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
DYNAMIC ELECTRICAL CHARACTERISTICS  
fclk  
Clock Frequency  
1
600  
50  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tr, Tf  
Clock Rise and Fall Time  
Twh, Twl Clock Impulse Width  
750  
300  
300  
300  
0
Tis  
Tec  
Tsc  
Tsd  
Thd  
Tcs  
Tca  
Tac  
Tzd  
Tce  
Tdz  
Tdd  
Tsi  
CI to NCS Set up Time  
”0” EIA to DCKL Set up Time  
DCKL to NCS Delay (+ edge)  
Data in Set up Time  
Data in Hold Time  
800  
800  
900  
400  
0
NCS to DCKL Hold Time  
”0” EIA to DCKL Hold Time  
”1” EIA to DCKL Set up Time  
Data out to ”0” NCS Delay  
”1” EIA to DCKL Hold Time  
Data out to ”1” NCS Delay  
Data out to DCKL Delay  
”0” CI to NCS Hold Time  
600  
900  
500  
1500  
300  
OPERATION DESCRIPTION  
conversion). It is usuallya compleximpedance.  
- the ringing signal frequency Fr (ST SLIC allows  
frequencyranging from 16 to 66Hz).  
- the metering pulse frequency Ft (two values are  
possible : 12kHzor 16kHz).  
- the value of the two resistors RP1/RP2 in series  
with the line terminals ; main purpose of the a.m.  
resistors is to allow primary protection to fire. ST  
suggest the minimum value of 50 ohm for each  
side.  
To set SLIC in operation the following parameters  
haveto be defined :  
- the DCfeedingresistanceRFS, definedasthe re-  
sistanceof each sideof the traditionalfeedingsy-  
stem (most common values are 200, 400 or 500  
ohm).  
- theAC impedanceat lineterminals,ZML, towhich  
thereturnlossmeasurementreferences.It canbe  
real (typically 600 ohm) or complex.  
- the equivalent AC impedance of the line Zline,  
when evaluating the trans hybrid loss (2/4 wire  
Onthisassumptions,the following componentlistis  
defined.  
15/29  
L3000S - L3030  
EXTERNAL COMPONENT LIST FOR THE LINE INTERFACE  
Component  
Pin  
Involved Parameter or Function  
Ref.  
Value  
L3000S  
10  
1,15  
7
RREF  
RP  
Bias Resistance  
24.9k  
1%  
30 to 100  
±  
Line Series Resistor  
CDVB  
CVB+  
CVB–  
D1  
Battery Voltage Rejection  
Positive Battery Filter  
Negative Battery Filter  
Protective Shottky Diode  
47 F – 20V  
µ
3
0.1 F – 100V (1)  
µ
8
0.1µF – 100V (2)  
8
BAT 49X  
L3030 (PLCC44)  
4-3  
5-3  
CVSS  
CVDD  
RR  
Negative Supply Voltage Filter  
Positive Supply Voltage Filter  
Capacitor Multiplier Gain (8)  
0.1 F – 15V  
µ
0.1µF – 15V  
7-8  
16K (range: 10 to 50K  
Ω)  
15-17  
7-15  
RDC  
2 x (RFS – RP1)  
1
DC Feeding Resistor (RDC > 270)  
AC Path decoupling  
CAC1 (3)  
6.28 x 250 x (ZAC+ RDC)  
CAC1  
14-15  
8-9  
CAC2  
ZAC  
ZML – (RP1 + RP2)  
1/(6.28 x 150000 x (RPC))  
RP1 + RP2  
2 Wire AC impedance  
8-9  
CCOMP  
RPC  
RREF  
ZB  
AC loop compensation  
9-14  
2-3  
Rp insertion loss compensation  
Bias Resistance  
24.9K 1%  
36-3  
36-41  
K x Zline (note 4)  
Line Impedance Balancing Network  
SLIC Impedance Balancing Network (note 5)  
ZL  
K x RPC in Series with  
K x ZAC // (CCOMP/K)  
32-3  
15-16  
35  
CINT  
Ccon  
(note 6)  
Ring trip detection time constant  
Interface Time Constant  
Teletax filter.  
0.15µF (note 7)  
TTx FILT.  
ZTTX = 1k 1% in speech band  
ZTTX  
0
at TTX freq. (note 9)  
34  
RGTTX  
Teletax filter.  
10k1%  
Notes :  
1. In case line cards with less than 7 subscribers are implemented CVB– capacitor should be equal to 680nF/N where  
N is the number of subscriber per card.  
2. This shottky diode or equivalent is necessary to avoid to damage to the device during hot insertion or in all those  
cases when a proper power up sequence cannot be guaranteed.  
In case the shottky diode is not implemented the power sequence should guarantee that VB+ is always the last  
supply applied at power on and the first removed at power off.  
In case an other shottky diode type is adopted it must fulfill the following characteristics:  
VF < 450mV @ IF = n 15mA, Tamb = 25 C  
°
VF < 350mV @ IF = n 15mA, Tamb = 50°C (TjL3000 = 90°C)  
VF < 245mV @ IF = n 15mA, Tamb = 85°C (TjL3000 = 120°C)  
Where n is the number of line sharing the same diode.  
3. If the internal capacity multiplier stage is not used, pin 7 must be connected with pin 14 without mounting RR and  
CAC2. In this case CAC1 = 1/(6.28 x 30 x RDC).  
4. The structure of this network shall copy the line impedance, in case multiplied by a factor K = 1....10  
5. K as fixed at note 4.  
6. CINT can have the following values :  
Fr. (Hz)  
16/18  
560  
18/21  
470  
21/26  
390  
26/31  
330  
31/38  
270  
38/46  
220  
46/57  
180  
57/66  
150  
CINT (nF)  
7. Ccon is necessary to work ”without on/off hook detection-errors” during TTX-pulses.  
8. RR is used by a capacitor multiplier circuit to synthetize an higher AC/DC splitting capacitor starting from CAC1  
RR + ZML  
and CAC2. Supposing CAC1 = CAC2 = CAC the synthetized capacitor value will be equal  
9. If Teletax is not used the TTX FILT. can be replaced by a 1kresistor.  
CAC.  
ZML  
16/29  
L3000S - L3030  
Figure 10 : Typical ApplicationSchematic Diagram.  
L3000S  
Figure 11 : Typical ApplicationSchematic Diagram without Capacitor Multiplier.  
L3000S  
17/29  
L3000S - L3030  
ELECTRICAL CHARACTERISTICS (refer to the test circuits of the Figure 12, VDD = + 5V, VSS = -  
5V, VB+ = + 72V, VB– = – 48V, Tamb = + 25oC, TTX FILT = 1k)  
Symbol  
STAND-BY  
Vls  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Output Voltage at L3000S  
Terminals  
Iline = 0mA  
Iline = 5mA  
30.0  
28.2  
40.0  
38.5  
V
V
Ilcc  
Iot  
Short Circuit Current  
DATA IN (note 1) 000X00X1  
5
5
8.5  
8.5  
.75  
mA  
mA  
V
On/off-hook Detection Threshold  
Symmetry to Ground  
Vls  
Iline = 0mA  
STAND BY DENIAL  
Ilcc Short Circuit Current  
DATA IN 000X00X0  
2
mA  
DC OPERATION - NORMAL BATTERY (VTTX = 2VRMS, low level)  
Vlo  
Output Voltage at L3000S  
Terminals Ilim = 70mA Data in  
1000X010  
Iline = 0mA  
Iline = 20mA  
Iline = 50mA  
31.0  
24.0  
2.5  
35.0  
28.8  
17.5  
V
V
V
Ilim  
Current Programmed Through  
the Digital Inter.  
– 10%  
Ilim  
17  
+ 15%  
mA  
Io  
If  
On-hook Detection Threshold  
Off-hook Detection Threshold  
8
mA  
mA  
mA  
12  
10  
Ilgk  
Longitudinal Line Current with  
GK Detect  
26  
DC OPERATION - BOOST BATTERY  
Vlo  
Output Voltage at L3000S  
Terminals  
Iline = 0mA  
Iline = 20mA  
86  
68.6  
95.6  
81  
V
V
AC OPERATION  
Ztx  
Zrx  
Sending Output Impedance  
10  
4 Wire Side  
Receiving Input Impedance  
4 Wire Side  
100  
k
THD  
Signal Distorsion at 2W and 4W  
Terminals  
0.5  
%
R1  
Thl  
Gs  
2W Return Loss  
Trans Hybrid Loss  
Sending Gain  
f = 300 to 3400Hz  
f = 300 to 3400Hz  
22  
24  
dB  
dB  
dB  
Vso = 0dBm f = 1020Hz  
Norm. Polarity  
– 0.25  
– 0.1  
+ 0.25  
+ 0.1  
Gsf  
Gsl  
Sending Gain Flatness versus  
Frequency  
f = 300 to 3400Hz Respect  
to 1020Hz  
dB  
dB  
Sending Gain Linearity  
fr = 1020Hz,  
Vsoref = –10dBm  
Vso = + 4 /– 40dBm  
– 0.1  
+ 0.1  
Gr  
Receiving Gain  
Vri = 0dBm f = 1020Hz  
Norm. Polarity  
dB  
dB  
– 0.25  
– 0.1  
0
+ 0.25  
+ 0.1  
Grf  
Receiving Gain Flatness  
f = 300 to 3400Hz Respect  
to 1020  
Notes : 1. The data into the digital interface of L3030 are send in serial mode. The format of data is the following :  
a) DATA IN : the bit at left side is BIT 0 of the writing word, while the bit at the right side is BIT 7.  
b) DATA OUT : the bit at the left side is BIT0 of the reading word, while the bit at the right is BIT4.  
When appear a symbol X, the value of the bit don’t care.  
18/29  
L3000S - L3030  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
AC OPERATION (continued)  
Grl  
Receiving Gain Linearity  
fr = 1020Hz, Vriref = – 10dBm – 0.1  
Vri = + 4 /– 40dBm  
+ 0.1  
dB  
Np4W  
Psophometric Noise at 4W-Tx  
Terminals  
– 75  
– 75  
– 70 dBmp  
Np2W  
SVRR  
Psophometric Noise at Line Terminals  
– 70 dBmp  
Supply Voltage Rejection Ratio  
Relative to VB–  
f = 3400Hz  
– 30  
dB  
SVRR  
SVRR  
Ltc  
Relative to VDD  
f = 3400Hz  
– 30  
– 32  
60  
– 26  
– 30  
dB  
dB  
dB  
dB  
Vs = 100mVrms  
Relative to VSS  
Longitudinal to Transversal Conversion  
Transversal to Longitudinal Conversion  
Propagation Time  
f = 300 to 3400Hz  
Iline = 30mA, ZML = 600  
49 (1)  
48  
Tlc  
51  
Td  
Both Direction  
40  
25  
s
s
µ
µ
Tdd  
Vttx  
Propag. Time Distortion  
Line Voltage of Teletaxe Signal  
VTTXin = 950mVrms  
Note 2 1.7  
2.3  
5.5  
V
V
Note 3  
4.5  
THD  
Teletaxe Signal Harmonic  
5
%
Dist. ttx Filt = 0 @ 16kHz  
Note 4  
Zitt  
Teletaxe Amplif. Input Impedance  
Pin 33 of L3030  
100  
kΩ  
AC OPERATION BOOST BATTERY  
Gs  
Sending Gain  
Vso = 0dBm f = 1020Hz  
Norm. Polarity  
– 0.66 – 0.16 + 0.34  
– 0.27 + 0.08 + 0.43  
dB  
dB  
Gr  
Receiving Gain  
Vri = 0dBm f = 1020Hz  
Norm. Polarity  
Np4W  
Psophometric Noise at 4W-Tx  
Terminals  
– 73  
– 68 dBmp  
Np2W  
SVRR  
Psophometric Noise at line Terminals  
Relative to Vdd  
– 73  
– 68  
– 23  
dB  
dB  
f = 3400Hz  
Vs = 100mVrms  
SVRR  
Relative to Vss  
– 23  
dB  
RINGING PHASE  
Vlr  
Superimposed DC Voltage  
19  
17  
23  
21  
27  
25  
V
V
Rloop > 100k  
Rloop = 1k  
Vacr  
If  
Ringing Signal at Line Termin.  
DC Off-hook Det. Threshold  
Current Limit.  
56  
1.5  
85  
Vrms  
mA  
Rloop = 1k /1 F  
µ
3.5  
130  
2
Ilim  
Vrs  
THDr  
mA  
Ringing Simmetry  
Vrms  
%
Ringing Signal Distortion  
VAC = 0.285VRMS  
fRING = 30Hz  
5
Notes : 1. Up to 52dB using selected L3000S.  
2. The configuration of data sent to device change, every 100mS, from - 1100X010 - to - 1000X010 -  
3. The configuration of data sent to device change, every 100mS, from - 1101X010 - to - 1001X010 -  
4. Error generated by ttx filt 0 ohm, on the output teletax amplitude is err% = 100 x (1 + A) x B/C where A = 10  
Kohm/RGTTX[Kohm], B = TTXFILT[Kohm], C = (TTXFILT[Kohm] + 1 Kohm), for example 10 ohm means err% = 2 %.  
19/29  
L3000S - L3030  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
RINGING PHASE  
Zir  
Vrr  
Ringing Amplif. Input Impedance  
Pin 41 of L3030  
100  
kΩ  
Residual of Ringing Signal at TX  
Output  
600  
mV  
Trt  
Toh  
Trs  
Ring Trip Detection Time  
125  
ms  
ms  
ms  
(1T)  
(2T)  
fring = 16Hz  
T = 1/fring  
Off-hook Status Delay after the  
Ringing Stop  
125  
(2T)  
Cut off of Ringing  
Ring Trip not Confirmed  
188  
(3T)  
SUPPLY CURRENT  
IDD  
Positive Supply Current CS = 1  
Stand-by  
Conversation (NB/BB)  
Ringing  
16.0  
26.0  
16.5  
20.0  
31.0  
21.0  
mA  
mA  
mA  
ISS  
Negative Supply Current CS = 1  
Stand-by  
Conversation (NB/BB)  
Ringing  
9
19  
9
12  
23  
12  
mA  
mA  
mA  
IBAT–  
Negative Battery Supply Current Line  
Current = 0mA  
Stand-by  
2
5
6.6  
14  
2.5  
6.5  
8.0  
17  
mA  
mA  
mA  
mA  
Conversation NB  
Conversation BB  
Ringing  
IBAT+  
Positive Battery Supply Current Line  
Current = 0mA  
Stand by  
10  
10  
8
15  
15  
µA  
Conversation NB  
Conversation BB  
Ringing  
A
µ
10  
mA  
mA  
12  
13.5  
NB = Normal Battery  
BB = Boosted Battery  
Figure 12 :  
Slic Test Circuit Schematic.  
L3000S  
20/29  
L3000S - L3030  
Figure 13: Typical application schematic with 2nd generationCOMBO.  
9D4TL216  
C D V B  
21/29  
L3000S - L3030  
Figure 14: Typical application schematic with 1st generation COMBO.  
9D4T17L2A  
C D V B  
22/29  
L3000S - L3030  
APPENDIX  
SLIC TEST CIRCUITS  
Referring to the test circuit reported at the end of each SLIC data sheethere below you can find the proper  
configurationfor each measurement.  
In particular : A-B : Line terminals  
C : TX sending output on 4W side  
D : RX receiving input on 4W side  
E : TTX teletaxe signal input  
RGIN : low level ringing signal input.  
TEST CIRCUITS  
Figure 1 : Symmetryto Ground.  
Figure 2 : 2W Return Loss.  
|ZL Z|  
|ZL + Z|  
|2 VS|  
20 log  
=
RL 20 log  
=
|E|  
1
<< Z  
WC  
Figure 3 : Trans-hybridLoss.  
Figure 4 : SendingGain.  
|VR|  
|VS|  
G
S = 20 log  
10 |VSO  
|
THL 20log  
=
10 |VR|  
23/29  
L3000S - L3030  
TEST CIRCUITS (continued)  
Figure 5 : ReceivingGain.  
Figure 6 : SVRRRelative to Battery Voltage VB–.  
| VR |  
| VS |  
| Vn |  
| VR |  
G
R = 20 log  
10  
SVRR 20 log  
=
Figure 7 :  
Figure 8 :  
Longitudinalto Transversal Conversion.  
Transversal to LongitudinalConversion.  
L
T
| VR  
| E |  
|
| VR |  
| VS |  
T
L
= 20 log  
= 20 log10  
Figure 9 :  
Figure 10 :  
RingingSimmetry.  
TTX Level at Line Terminals.  
24/29  
L3000S - L3030  
PLCC44 PACKAGE MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
17.4  
16.51  
3.65  
4.2  
TYP.  
MAX.  
17.65  
16.65  
3.7  
MIN.  
0.685  
0.650  
0.144  
0.165  
0.102  
TYP.  
MAX.  
0.695  
0.656  
0.146  
0.180  
0.108  
A
B
C
D
4.57  
2.74  
d1  
d2  
E
2.59  
0.68  
0.027  
14.99  
16  
0.590  
0.630  
e
1.27  
12.7  
0.46  
0.71  
0.050  
0.500  
0.018  
0.028  
e3  
F
F1  
G
0.101  
0.004  
M
M1  
1.16  
1.14  
0.046  
0.045  
25/29  
L3000S - L3030  
FLEXIWATT 15 PACKAGE MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
5.00  
1.90  
0.1  
MIN.  
TYP.  
MAX.  
0.196  
0.074  
0.004  
A
B
b1  
D
4 (typ.)  
°
E
0.30  
0.90  
0.012  
0.035  
F
F1  
G
0.57  
2.03  
0.022  
0.080  
1.77  
1.9  
0.070  
0.075  
1.054  
1.142  
1.102  
0.669  
0.031  
G1  
H1  
H2  
H3  
H4  
L
26.77  
29.00  
28.00  
17.00  
0.80  
19.05  
1.10  
19.95  
1.40  
0.75  
0.785  
0.055  
0.114  
0.616  
L1  
L2  
L3  
N1  
N3  
N4  
Dia1  
0.043  
0.102  
0.604  
2.60  
2.90  
15.35  
15.65  
10  
6.8  
0.394  
0.268  
0.15  
3.8  
13.00  
0.511  
H1  
H2  
H3  
Dia.2  
Dia.4  
A
H4  
b1  
E
B
Dia.3  
F1  
G
F
G1  
D
FLEX15  
D
26/29  
L3000S - L3030  
PowerSO-20 (slug-up) PACKAGE MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
3.70  
MIN.  
TYP.  
MAX.  
0.145  
0.01  
A
a1  
b
0
0.25  
0
0.40  
0.23  
15.80  
9.4  
0.53  
0.016  
0.009  
0.622  
0.37  
0.021  
0.012  
0.63  
c
0.32  
D
16.00  
9.80  
D1  
E
0.385  
0.57  
13.90  
14.50  
0.547  
e
1.27  
0.05  
0.45  
e3  
E1  
E2  
E3  
G
h
11.43  
10.90  
11.10  
2.90  
6.20  
0.10  
1.10  
1.10  
0.429  
0.437  
0.114  
0.244  
0.004  
0.043  
0.043  
5.80  
0
0.228  
0
L
0.80  
0.031  
N
10 (Max.)  
°
S
8 (Max.)  
°
E3 (slug width)  
N
N
A
c
a1  
b
e
DETAILA  
E
e3  
h x 45°  
1
10  
DETAILA  
0.35  
E2  
E1  
Gage Plane  
- C -  
SEATINGPLANE  
S
L
G
C
(COPLANARITY)  
D1(slug width)  
20  
11  
PSO20DME  
D
27/29  
L3000S - L3030  
PowerSO20 (slug-down) PACKAGE MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
3.60  
0.30  
3.30  
0.10  
0.53  
0.32  
16.00  
14.50  
MIN.  
TYP.  
MAX.  
0.1417  
0.0118  
0.1299  
0.0039  
0.0209  
0.0126  
0.6299  
0.570  
A
a1  
a2  
a3  
b
0.10  
0.0039  
0
0
0.40  
0.23  
15.80  
13.90  
0.0157  
0.009  
0.6220  
0.5472  
c
D (1)  
E
e
1.27  
0.050  
0.450  
e3  
E1 (1)  
E2  
G
11.43  
10.90  
0
11.10  
2.90  
0.10  
1.10  
1.10  
0.4291  
0
0.437  
0.1141  
0.0039  
h
L
0.80  
0.0314  
0.0433  
N
10 (max.)  
°
S
8 (max.)  
°
T
10.0  
0.3937  
(1) ”D and E1” do not include mold flash or protrusions  
- Mold flash or protrusions shall not exceed 0.15mm (0.006”)  
R
N
N
a2  
A
c
a1  
b
e
DETAILB  
DETAILA  
E
e3  
D
DETAILA  
lead  
20  
11  
slug  
a3  
DETAILB  
0.35  
E2  
E1  
Gage Plane  
T
- C -  
S
SEATING PLANE  
L
G
C
(COPLANARITY)  
1
10  
PSO20MEC  
h x 45°  
28/29  
L3000S - L3030  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for  
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifica-  
tions mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-  
viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of SGS-THOMSON Microelectronics.  
1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved  
PowerSO-20 is a Trademark of the SGS-THOMSON Microelectronics  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
29/29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY