L6221C_03 [STMICROELECTRONICS]

QUAD DARLINGTON SWITCH; QUAD达林顿开关管
L6221C_03
型号: L6221C_03
厂家: ST    ST
描述:

QUAD DARLINGTON SWITCH
QUAD达林顿开关管

开关
文件: 总15页 (文件大小:1523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6221C  
®
QUAD DARLINGTON SWITCH  
.
FOUR NON INVERTING INPUTS WITH  
ENABLE  
OUTPUT VOLTAGE UP TO 60 V  
OUTPUT CURRENT UP TO 1.8 A  
VERY LOW SATURATION VOLTAGE  
TTL COMPATIBLE INPUTS  
.
.
.
.
.
Multiwatt 15  
INTEGRAL FAST RECIRCULATION DIODES  
Powerdip 12 + 2 + 2  
SO16 + 2 + 2  
DESCRIPTION  
The L6221 monolithic quad darlington switch is de-  
signed for high current, high voltage switching appli-  
cations. Each of the four switches is controlled by a  
logic input and all four are controlled by a common  
enable input. All inputsareTTL-compatiblefordirect  
connection to logic circuits.  
ORDERING NUMBERS :L6221C (Powerdip 12+2+2)  
L6221CN (Multiwatt 15 )  
L6221CD (SO16+2+2)  
outputs of the same device may be paralleled.  
Three versions are available : the L6221C mounted  
in a Powerdip 12 + 2 + 2 package and the L6221CN  
mounted in a 15--lead Multiwatt package, the  
L6221CD in SO16+2+2 package.  
Each switch consists of an open-collector darlington  
transistor plus a fast diode for switching applications  
with inductive device loads. The emitters of the four-  
switches are commoned. Any number of inputs and  
BLOCK DIAGRAM  
July 2003  
1/15  
L6221C  
THERMAL DATA  
Symbol  
Parameter  
SO20  
Powerdip Multiwatt15 Unit  
Rth j-pins  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction-pins  
Thermal Resistance Junction-case  
Thermal Resistance Junction-ambient  
Max.  
Max.  
Max.  
17  
80  
14  
80  
3
35  
°C/W  
°C/W  
°C/W  
PIN CONNECTIONS (top views)  
OUT4  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN4  
CLAMPB  
N.C.  
IN3  
N.C.  
ENABLE  
GND  
GND  
VS  
OUT3  
GND  
GND  
OUT2  
N.C.  
N.C.  
IN2  
CLAMPA  
OUT1  
10  
IN1  
D95IN231  
L6221C (Powerdip)  
L6221CD (SO20)  
L6221CN (Multiwatt-15)  
2/15  
L6221C  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
60  
Unit  
V
VO  
VS  
Output Voltage  
Logic Supply Voltage  
7
V
VIN , VEN Input Voltage, Enable Voltage  
VS  
IC  
IC  
IC  
Continuous Colllector Current (for each channel)  
1.8  
1.2  
A
A
for L6221CD  
Collector Peak Current (repetitive, duty cycle = 10% ton = 5ms)  
for L6221CD  
2.5  
1.7  
A
A
3.2  
2.2  
A
A
Collector Peak Current (non repetitive, t = 10µs)  
for L6221CD  
Top  
Tstg  
Isub  
Ptot  
Operating Temperature Range (junction)  
Storage Temperature Range  
Output Substrate Current  
-40 to +150  
-55 to +150  
350  
°C  
°C  
mA  
Total Power Dissipation  
4.3  
20  
3.5  
1
2.3  
1
W
W
W
W
W
W
at Tpins = 90°C (powerdip)  
at Tcase = 90°C (multiwatt)  
at Tcase = 90°C (SO20)  
at Tamb = 70°C (powerdip)  
at Tamb = 70°C (multiwatt)  
at Tamb = 70°C (SO20)  
TRUTH TABLE  
Enable  
Input  
Power Out  
H
H
L
H
L
X
ON  
OFF  
OFF  
For each input : H = High level  
L = Low level  
X = Don’t care  
PIN FUNCTIONS (see block diagram)  
Name  
Function  
IN 1  
Input to Driver 1  
Input to Driver 2  
Output of Driver 1  
Output of Driver 2  
IN 2  
OUT 1  
OUT 2  
CLAMP A  
IN 3  
Diode Clamp to Driver 1 and Driver 2  
Input to Driver 3  
IN 4  
Input to Driver 4  
OUT 3  
OUT 4  
CLAMP B  
ENABLE  
VS  
Output of Driver 3  
Output of Driver 4  
Diode Clamp to Driver3 and Driver 4  
Enable Input to All Drivers  
Logic Supply Voltage  
Common Ground  
GND  
3/15  
L6221C  
ELECTRICAL CHARACTERISTICS Refer to The Test Circuit to Fig.1 to Fig.9 (VS = 5V, Tamb = 25°C unless  
otherwise specified)  
Symbol  
Parameter  
Logic Supply Voltage  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
VS  
IS  
4.5  
5.5  
V
Logic Supply Current  
All outputs ON IC = 0.7A  
All outputs OFF  
20  
20  
mA  
mA  
ICEX  
Output Leakage Current  
VCE = 60V VEN = VEN  
IN = VINL  
VS = 4.5V VIN = VINH  
EN = VEN  
H
1
mA  
V
VCE(sat)  
Collector Emitter Saturation Voltage  
(one input on; all others inputs off).  
V
H
IC = 1A  
(*) IC = 2A  
1.4  
1.85  
V
V
VINL, VEN  
L
Input Low Voltage  
Input Low Current  
0.8  
V
µA  
V
IINL, IEN  
L
VIN = VINL VEN = VEN  
L
-100  
VINH, VENH Input High Voltage  
2
IINH, IEN  
IR  
H
Input High Current  
VIN = VINH VEN = VEN  
VR = 60V VEN = VEN  
IN = VINL  
H
100  
100  
µA  
Clamp Diode Leakage Current  
H
µ
A
V
VF  
Clamp Diode Forward Voltage  
IF = 1A  
IF = 2A (*)  
1.8  
2.2  
V
V
td(on)  
td(off)  
IS  
Turn on Delay Time  
2
5
ms  
VP = 5V RL = 10Ω  
VP = 5V RL = 10Ω  
VIN = 5V VEN = 5V  
Turn off Delay Time  
µs  
Logic Supply Current Variation  
150  
mA  
I
out = -500mA for Each  
Channel  
(*) Only for L6221C - L6221CN types  
4/15  
L6221C  
TEST CIRCUITS  
(X) = Referred to Multiwatt package  
X = Referred to Powerdip package  
Figure 1 : Logic supply current.  
Set VIN = 4.5V, V EN = 0.8V, or V IN = 0.8V, V EN = 4.5V, for I S (all outputs off)  
Set V IN = 2V, V EN = 2V, for I S (all outputs on)  
Figure 2 : Output Sustaining Voltage.  
Figure 3 : Output Leakage Current.  
VP = +60V  
5/15  
L6221C  
Figure 4 : Collector-emitter Saturation  
Figure 5 : Logic Input Characteristics.  
Voltage.  
Set S1, S2 open, VIN, VEN = 0.8V for IIN L, IEN  
Set S1, S2 open, VIN, VEN = 2V for IIN H, IEN  
Set S1, S2 close, VIN, VEN = 0.8V for VIN L, VEN  
Set S1, S2 close, VIN, VEN = 2V for VIN H, VEN  
L
H
L
H
Figure 6 : Clamp Diode Leakage Current.  
Figure 7 : Clamp Diode Forward Voltage.  
VP = +60V  
6/15  
L6221C  
Figure 8 : Switching Times Test Circuit.  
Figure 9 : Switching TImes Waveforms.  
Figure 10 : Allowed Peak Collector Cur-  
rent vs. Duty Cycle for 1, 2, 3  
or 4 Contemporary Working  
Outputs (L6221C).  
Figure 11 : Allowed Peak Collector Current  
vs. Duty Cycle for 1, 2, 3 or 4  
Contemporary Working Outputs  
(L6221CN).  
7/15  
L6221C  
Figure 12 : Collector Saturation Voltage  
Figure 13 : Free-wheeling Diode Forward  
Voltage vs. Diode Current .  
vs. Collector Current.  
Figure 14 : Collector Saturation Voltage  
vs. Junction Temperature  
at IC = 1A.  
Figure 15 : Free-wheeling Diode Forward  
Voltage vs. Junction Tempera-  
ture at IF = 1A.  
Figure 16 : Saturation Voltage vs. Junc-  
Figure 17 : Free-wheeling Diode Forward  
Voltage vs. Junction Tempera-  
ture at If = 1.8A.  
tion Temperature at IC = 1.8A.  
8/15  
L6221C  
APPLICATION INFORMATION  
Figure 18.  
When inductive loads are driven by L6221C/CD, a  
zener diode in series with the integral free-wheeling  
diodes increases the voltage across which energy  
stored in the load is discharged and therefore  
speeds the current decay (fig. 18).  
The zener has to be chosen in such a way that  
VCLAMP is limited to 60V taking into account the  
zener’s voltage changes due to: spread on VZ, tem-  
perature changes, and the voltage drop due to oh-  
mic resistance.  
Moreover, the instantaneous power must be limited  
in order to avoid the reverse second breakdown.  
Figure 19 : Driver for Solenoids up to 3A.  
Some care must be taken to ensure that the collec-  
tors are placed close together to avoid different cur-  
rent partitioning at turn-off.  
electrical characteristics of the logic section (turn-on  
and turn-off delay time) and the power stages (col-  
lector saturation voltage, free-wheeling diode for-  
ward voltage).  
We suggest to put in parallel channel 1 and 4 and  
channel 2 and 3 as shown in figure 19 for the similar  
9/15  
L6221C  
Figure 20 : Saturation Voltage vs.  
Figure 21 : Peak Collector Current vs.  
Duty Cycle for 1 or 2 Paralleled  
Outputs Driven (L6221N).  
Collector Current.  
Figure 22 : Peak Collector Current vs.  
Duty Cycle for 1 or 2 Paralleled  
Outputs Driven (L6221CN).  
10/15  
L6221C  
MOUNTING INSTRUCTION  
The Rth j-amb of the L6221C can be reduced by sol-  
dering the GND pins to a suitable copper area of the  
printed circuit board (Fig. 23) or to an external  
heatsink (Fig. 24).  
ing a thickness of 35µ (1.4 mils). During soldering  
the pins temperature must not exceed 260 °C and  
the soldering time must not be longer than 12 sec-  
onds.  
The diagram of figure 25 shows the maximum dis-  
sipable power Ptot and the Rth j-amb as a function of  
the side " α" of two equal square copper areas hav-  
The external heatsink or printed circuit copper area  
must be connected to electrical ground.  
Figure 24 : External Heatsink Mounting  
Example.  
Figure 23 : Example of P.C. Board Copper  
Area Which is Used as Heatsink.  
Figure 25 : Maximum Dissipable Power  
and Junction to Ambient Ther-  
mal Resistance vs. Side " α".  
Figure 26 : Maximum Allowable Power  
Dissipation vs. Ambient  
Temperature.  
11/15  
L6221C  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
B
5
0.197  
0.104  
0.063  
2.65  
1.6  
C
D
1
0.039  
E
0.49  
0.66  
1.02  
0.55 0.019  
0.75 0.026  
0.022  
0.030  
F
G
1.27  
1.52 0.040 0.050 0.060  
G1  
H1  
H2  
L
17.53 17.78 18.03 0.690 0.700 0.710  
19.6  
0.772  
20.2  
0.795  
21.9  
21.7  
22.2  
22.1  
22.5 0.862 0.874 0.886  
22.5 0.854 0.870 0.886  
L1  
L2  
L3  
L4  
L7  
M
17.65  
18.1 0.695  
0.713  
17.25 17.5 17.75 0.679 0.689 0.699  
10.3  
2.65  
4.25  
4.63  
1.9  
10.7  
10.9 0.406 0.421 0.429  
2.9 0.104 0.114  
4.55  
5.08  
4.85 0.167 0.179 0.191  
5.53 0.182 0.200 0.218  
M1  
S
2.6  
2.6  
0.075  
0.075  
0.102  
0.102  
0.152  
S1  
Dia1  
1.9  
Multiwatt15 V  
3.65  
3.85 0.144  
12/15  
L6221C  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.51  
0.85  
0.020  
1.40 0.033  
0.055  
0.50  
0.020  
b1  
D
E
e
0.38  
0.50 0.015  
20.0  
0.020  
0.787  
8.80  
2.54  
0.346  
0.100  
0.700  
e3  
F
17.78  
7.10  
5.10  
0.280  
0.201  
I
L
3.30  
0.130  
Powerdip 16  
Z
1.27  
0.050  
13/15  
L6221C  
mm  
inch  
OUTLINE AND  
MECHANICAL DATA  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
A1  
B
C
D
E
e
2.35  
0.1  
2.65 0.093  
0.3 0.004  
0.104  
0.012  
0.020  
0.013  
0.512  
0.299  
0.33  
0.23  
12.6  
7.4  
0.51 0.013  
0.32 0.009  
13  
0.496  
0.291  
7.6  
1.27  
0.050  
H
h
10  
0.25  
0.4  
10.65 0.394  
0.75 0.010  
0.419  
0.030  
0.050  
L
1.27 0.016  
SO20  
K
0˚ (min.)8˚ (max.)  
L
h x 45˚  
A
B
A1  
K
C
e
H
D
20  
11  
E
1
01  
SO20MEC  
14/15  
L6221C  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-  
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this  
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-  
croelectronics products are not authorized for use as critical components in life support devices or systems without express written  
approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
http://www.st.com  
15/15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY