L6393D [STMICROELECTRONICS]

Half-bridge gate driver; 半桥栅极驱动器
L6393D
型号: L6393D
厂家: ST    ST
描述:

Half-bridge gate driver
半桥栅极驱动器

驱动器 栅极 栅极驱动
文件: 总20页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6393  
Half-bridge gate driver  
Preliminary Data  
Features  
High voltage rail up to 600 V  
dV/dt immunity ꢀ0 V/nsec in full temperature  
range  
Driver current capability:  
– 270 mA source,  
– 430 mA sink  
SO-14  
DIP-14  
Switching times 7ꢀ/3ꢀ nsec rise/fall with 1 nF  
load  
3.3 V, ꢀ V CMOS/TTL inputs comparators with  
hysteresys  
Integrated bootstrap diode  
Uncommitted comparator  
Adjustable dead-time  
Description  
The L6393 is a high-voltage device manufactured  
with the BCD "OFF-LINE" technology. It has a  
monolithic half-bridge gate driver for N-channel  
Power MOSFET or IGBT.  
Compact and simplified layout  
Bill of material reduction  
Flexible, easy and fast design  
The high side (floating) section is designed to  
stand a voltage rail up to 600 V.  
The logic inputs are CMOS/TTL compatible down  
to 3.3 V for easy of interfacing µC/DSP.  
Application  
Motor driver for home appliances, factory  
automation, industrial drives and fans. HID  
ballasts, power supply units.  
The IC embeds an uncommited comparator  
available for protections against over-current,  
over-temperature, etc.  
Table 1.  
Device summary  
Order codes  
Package  
Packaging  
L6393  
L6393D  
DIP-14  
SO-14  
SO-14  
Tube  
Tube  
L6393D013TR  
Tape and reel  
March 2008  
Rev 2  
1/20  
This is preliminary information on a new product now in development or undergoing evaluation.  
Details are subject to change without notice.  
www.st.com  
20  
Contents  
L6393  
Contents  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.1  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ꢀ.1  
ꢀ.2  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6
7
8
Waveforms definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8.1  
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
10  
2/20  
L6393  
Block diagram  
1
Block diagram  
Figure 1.  
Block diagram  
BOOTSTRAP DRIVER  
FLOATING STRUCTURE  
14  
4
VCC  
BOOT  
from LVG  
UV  
DETECTION  
UV  
DETECTION  
HVG  
DRIVER  
S
R
13  
1
LEVEL  
SHIFTER  
HVG  
PHASE  
LOGIC  
12  
OUT  
SHOOT  
THROUGH  
PREVENTION  
3
BRAKE  
VCC  
LVG  
DRIVER  
LVG  
10  
2
SD  
6
5V  
10  
CPOUT  
9
COMPARATOR  
+
CP+  
-
CP-  
8
DEAD  
TIME  
5
DT  
7
GND  
3/20  
Pin connection  
L6393  
2
Pin connection  
Figure 2.  
Pin connection (top view)  
PHASE  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
BOOT  
HVG  
OUT  
NC  
SD  
BRAKE  
VCC  
DT  
LVG  
CP+  
CPOUT  
GND  
CP-  
8
2.1  
Pin description  
Table 2.  
Pin N#  
Pin description  
Pin name  
Type  
Function  
1
2
PHASE  
SD (1)  
BRAKE  
VCC  
I
I
Driver logic input (active high)  
Shut down input (active low)  
Driver logic input (active low)  
Lower section supply voltage  
Dead time setting  
3
I
4
P
I
DT  
6
CPOUT  
GND  
O
P
I
Comparator output (open drain)  
Ground  
7
8
CP-  
Comparator negative input  
Comparator positive input  
Low side driver output  
9
CP+  
I
10  
11  
12  
13  
14  
LVG (1)  
O
NC  
Not connected  
OUT  
P
O
P
High side (floating) common voltage  
High side driver output  
HVG (1)  
BOOT  
Bootstrapped supply voltage  
1. The circuit guarantees less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with VCC > 3 V. This  
allows omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET  
normally used to hold the pin low; the gate driver assures low impedance also in SD condition.  
4/20  
L6393  
Truth table  
3
Truth table  
Table 3.  
Truth table  
INPUTS  
PHASE  
OUTPUTS  
SD  
BRAKE  
LVG  
HVG  
L
H
H
H
H
X
L
X
L
L
H
H
H
L
L
L
L
L
H
L
H
L
H
H
H
Note:  
X: don’t care  
In the L6393 IC the two input signals PHASE and BRAKE are fed into an AND logic port and  
the resulting signal is in phase with the high side output HVG and in opposition of phase with  
the low side output LVG. This means that if BRAKE is kept to high level, the PHASE signal  
drives the half-bridge in phase with the HVG output and in opposition of phase with the LVG  
output. If BRAKE is set to low level the low side output LVG is always ON and the high side  
output HVG is always OFF, whatever the PHASE signal. This kind of logic interface provides  
the possibility to control the power stages using the PHASE signal to select the current  
direction in the bridge and the BRAKE signal to perform current slow decay on the low sides.  
From the point of view of the logic operations the two signals PHASE and BRAKE are  
completely equivalent, that means the two signals can be exchanged without any change in  
the behavior on the resulting output signals (see the Block Diagram in Fig.1).  
Note: the dead time between the turn OFF of one power switch and the turn ON of the other  
power switch is defined by the resistor connected between DT pin and the ground.  
ꢀ/20  
Electrical data  
L6393  
4
Electrical data  
4.1  
Absolute maximum ratings  
Table 4.  
Symbol  
Absolute maximum rating  
Parameter  
Value  
Unit  
Vout  
Vcc  
Output voltage  
Vboot - 21 to Vboot + 0.3  
- 0.3 to + 21  
V
V
V
V
V
Supply voltage  
Vcp-  
Vcp+  
Vboot  
Comparator negative input voltage  
Comparator positive input voltage  
Floating supply voltage  
-0.3 to VCC + 0.3  
-0.3 to VCC + 0.3  
VCC - 0.3 to 620  
High side gate output voltage  
output voltage  
Vhvg  
Vout - 0.3 to Vboot + 0.3  
-0.3 to Vcc +0.3  
V
V
High side gate output voltage  
output voltage  
VIvg  
Vi  
Logic input voltage  
-0.3 to 1ꢀ  
-0.3 to 1ꢀ  
ꢀ0  
V
V
Vcpout Open drain voltage  
dVout/dt Allowed output slew rate  
V/ns  
mW  
°C  
Ptot  
TJ  
Total power dissipation (TA = 8ꢀ °C)  
TBD  
Junction temperature  
Storage temperature  
1ꢀ0  
Tstg  
-ꢀ0 to 1ꢀ0  
°C  
Note:  
ESD immunity for pins 12, 13 and 14 is guaranteed up to V (Human Body Model)  
4.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
SO-14  
DIP-14  
Unit  
Rth(JA) Thermal resistance junction to ambient max.  
16ꢀ  
100  
°C/W  
6/20  
L6393  
Electrical data  
4.3  
Recommended operating conditions  
Table 6.  
Recommended operating conditions  
Parameter Test condition  
Symbol Pin  
Min  
Max  
Unit  
Vout  
12 Output voltage (1)  
ꢀ80  
V
V
(2)  
VBS  
14 Floating supply voltage (1)  
TBD  
TBD  
HVG, LVG load  
CL = 1 nF  
fsw  
Switching frequency  
800  
kHz  
Vcc  
Tj  
4
Supply Voltage  
TBD  
40  
TBD  
12ꢀ  
V
Junction Temperature  
°C  
1. If the condition TBD V < Vboot - Vout < TBD V and Vboot < TBD V are guaranteed, Vout can range from TBD  
V to ꢀ80 V  
2. VBS = Vboot -Vout  
7/20  
Electrical characteristics  
L6393  
5
Electrical characteristics  
5.1  
AC operation  
Table 7.  
AC operation electrical characteristics (V = 15 V, T = +25 °C)  
CC J  
Symbol Pin  
Parameter  
Test condition  
Min  
Typ  
Max  
Unit  
AC operation  
High/low side driver turn-  
on propagation delay  
1,3  
ton  
12ꢀ  
12ꢀ  
ns  
ns  
Vout = 0 V  
Vboot = Vcc  
CL = 1 nF  
vs  
10,  
High/low side driver turn-  
off propagation delay  
toff  
13  
Vi = 0 to 3.3 V  
2 vs  
10,  
13  
Shut down to high/low  
side propagation delay  
see Figure 3 on page 9  
tsd  
12ꢀ  
ns  
ns  
Delay matching, HS & LS  
turn-ON/OFF  
MT  
40  
R
dt = 0, CL = 1 nF, CDT = 100 nF  
0.1ꢀ  
0.ꢀ  
1.ꢀ  
2.8  
µs  
µs  
µs  
µs  
Rdt = 37 k, CL = 1 nF, CDT = 100 nF  
Rdt = 136 k, CL = 1 nF, CDT = 100 nF  
Rdt = 260 k, CL = 1 nF, CDT = 100 nF  
dt  
Dead time setting range  
Matching dead time  
Rdt = 0 ; CL = 1 nF; CDT = 100 nF  
Rdt = 37 k;CL = 1 nF;CDT = 100 nF  
Rd = 136 k;CL = 1 nF;CDT = 100 nF  
Rdt = 260 k;CL = 1 nF;CDT = 100 nF  
60  
ns  
ns  
ns  
ns  
TBD  
TBD  
TBD  
MDT  
tr  
tf  
Rise time  
Fall time  
CL = 1000 pF  
CL = 1000 pF  
7ꢀ  
3ꢀ  
ns  
ns  
10,  
13  
8/20  
L6393  
Electrical characteristics  
Figure 3.  
Timing  
50%  
50%  
Logic Input  
(PHASE or BRAKE)  
tr  
tf  
90%  
90%  
10%  
10%  
HVG  
ton  
toff  
50%  
50%  
Logic Input  
(PHASE or BRAKE)  
tf  
tr  
90%  
90%  
10%  
10%  
ton  
LVG  
toff  
50%  
50%  
SD  
tr  
tf  
90%  
90%  
10%  
10%  
LVG/HVG  
ton  
toff  
9/20  
Electrical characteristics  
L6393  
5.2  
DC operation  
Table 8.  
Symbol  
DC opereation electrical characteristics (V = 15 V; T = +25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max  
Unit  
Low supply voltage section  
Vcc_hys  
Vcc_thON  
Vcc_thOFF  
Vcc UV hysteresis  
600  
1ꢀ00  
9.ꢀ  
mV  
V
Vcc UV Turn ON threshold  
Vcc UV Turn OFF threshold  
8.0  
V
VCC = 8 V  
SD = ꢀ V; PHASE and  
BRAKE = GND;  
Undervoltage quiescent  
supply current  
Iqccu  
110  
600  
1ꢀ0  
µA  
µA  
4
RDT = 0 ;  
CP + = GND; CP - = 0.ꢀ V  
VCC = 1ꢀ V  
SD = ꢀ V; PHASE and  
BRAKE = GND;  
Iqcc  
Quiescent current  
1000  
RDT = 0 ;  
CP + = GND; CP - = 0.ꢀ V  
Bootstrapped supply voltage section  
VBS_hys  
V
BS UV hysteresis  
600  
1000  
9.1  
mV  
V
VBS_thON  
VBS UV turn ON Threshold  
VBS UV turn OFF  
Threshold  
VBS_thOFF  
8.1  
V
VBS = 7 V  
SD = ꢀ V; PHASE and  
BRAKE = ꢀ V;  
Undervoltage Vboot  
quiescent current  
IQBSU  
60  
110  
µA  
14  
RDT = 0 ;  
CP + = GND; CP - = 0.ꢀ V  
VBS = 1ꢀ V  
SD = ꢀ V; PHASE and  
BRAKE = ꢀ V;  
IQBS  
Vboot quiescent current  
140  
120  
210  
10  
µA  
RDT = 0 ;  
CP + = GND; CP - = 0.ꢀ V  
High voltage leakage  
current  
ILK  
Vhvg = Vout = Vboot = 600 V  
µA  
Bootstrap driver on  
resistance (1)  
Rdson  
LVG ON  
10/20  
L6393  
Electrical characteristics  
Table 8.  
Symbol  
DC opereation electrical characteristics (V = 15 V; T = +25 °C) (continued)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max  
Unit  
Driving buffers section  
High/low side source short  
circuit current  
Iso  
Isi  
VIN = Vih (tp < 10 µs)  
270  
430  
mA  
mA  
10, 13  
High/low side sink short  
circuit current  
VIN = Vil (tp < 10 µs)  
Logic inputs  
Low level logic threshold  
voltage  
Vil  
0.83  
V
1, 2, 3  
High level logic threshold  
voltage  
Vih  
2.21  
V
PHASE logic “1” input bias  
current  
IPHASEh  
IPHASEl  
IBRAKEh  
IBRAKEl  
ISDh  
PHASE = 1ꢀ V  
PHASE = 0 V  
BRAKE = 1ꢀ V  
BRAKE = 0 V  
SD = 1ꢀ V  
17ꢀ  
17ꢀ  
30  
260  
1
µA  
µA  
µA  
µA  
µA  
µA  
1
3
2
PHASE logic “0” input bias  
current  
BRAKE logic “1” input bias  
current  
260  
1
BRAKE logic “0” input bias  
current  
SD logic “1” input bias  
current  
100  
1
SD logic “0” input bias  
current  
ISDl  
SD = 0 V  
1. RDSon is tested in the following way:  
DSon = [(VCC - VCBOOT1) - (VCC - VCBOOT2)] / [I1(VCC,VCBOOT1) - I2(VCC,VCBOOT2)]  
where I1 is pin 14 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2  
R
.
Table 9.  
Sense comparator  
Symbol  
Pin  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Vio  
Iib  
Input offset voltage  
Input bias current  
10  
TBD  
1
mV  
8, 9  
µA  
Open drain low level  
Output voltage  
Vol  
6
6
Iod = - 3 mA  
0.ꢀ  
V
CPOUT pulled to ꢀ V  
through 100kresistor  
td_comp  
SR  
Comparator delay  
Slew rate  
110  
210  
ns  
CL = 180 nF, Rpu = ꢀ kΩ  
TBD  
V/µs  
11/20  
Waveforms definition  
L6393  
6
Waveforms definition  
Figure 4.  
Dead time waveform definition  
PHASE  
BRAKE  
LVG  
DT  
DT  
DT  
DT  
HVG  
12/20  
L6393  
Typical application diagram  
7
Typical application diagram  
Figure 5.  
Application diagram  
BOOTSTRAP DRIVER  
FLOATING STRUCTURE  
14  
VCC  
BOOT  
4
from LVG  
UV  
DETECTION  
UV  
DETECTION  
Cboot  
H.V.  
HVG  
DRIVER  
S
R
HVG  
13  
1
LEVEL  
SHIFTER  
PHASE  
BRAKE  
LOGIC  
SHOOT  
THROUGH  
PREVENTION  
3
12  
10  
OUT  
LVG  
TO LOAD  
VCC  
LVG  
DRIVER  
SD  
2
6
CPOUT  
5V  
10  
9
COMPARATOR  
CP+  
CP-  
+
-
8
DT  
DEAD  
TIME  
5
7
GND  
13/20  
Bootstrap driver  
L6393  
8
Bootstrap driver  
A bootstrap circuitry is needed to supply the high voltage section. This function is normally  
accomplished by a high voltage fast recovery diode (Figure 6.a). In the L6393 a patented  
integrated structure replaces the external diode. It is realized by a high voltage DMOS,  
driven synchronously with the low side driver (LVG), with diode in series, as shown in Figure  
6.b.  
An internal charge pump (Figure 6.b) provides the DMOS driving voltage.  
The diode connected in series to the DMOS has been added to avoid undesirable turn on of  
it.  
8.1  
CBOOT selection and charging  
To choose the proper CBOOT value the external MOS can be seen as an equivalent  
capacitor. This capacitor CEXT is related to the MOS total gate charge:  
Qgate  
CEXT = -------------  
Vgate  
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.  
It has to be:  
C
>>> C  
EXT  
BOOT  
e.g.: if Qgate is 30nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be  
300 mV.  
If HVG has to be supplied for a long time, the CBOOT selection has to take into account also  
the leakage and quiescent losses.  
e.g.: HVG steady state consumption is lower than 200 µA, so if HVG TON is ꢀ ms, CBOOT has  
to supply 1 µC to CEXT. This charge on a 1 µF capacitor means a voltage drop of 1 V.  
The internal bootstrap driver gives a great advantage: the external fast recovery diode can  
be avoided (it usually has great leakage current).  
This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the  
LVG is on. The charging time (Tcharge ) of the CBOOT is the time in which both conditions are  
fulfilled and it has to be long enough to charge the capacitor.  
The bootstrap driver introduces a voltage drop due to the DMOS RDSon (typical value:  
120 ). At low frequency this drop can be neglected. Anyway increasing the frequency it  
must be taken in to account.  
The following equation is useful to compute the drop on the bootstrap DMOS:  
Qgate  
------------------  
Rdson  
Vdrop = IchargeRdson Vdrop  
=
Tcharge  
14/20  
L6393  
Bootstrap driver  
where Qgate is the gate charge of the external power MOS, RDSon is the on resistance of the  
bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor.  
For example: using a power MOS with a total gate charge of 30 nC the drop on the  
bootstrap DMOS is about 1 V, if the Tcharge is ꢀ µs. In fact:  
30nC  
µs  
--------------  
120Ω ∼ 0.7V  
Vdrop  
=
V
drop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop  
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode  
can be used.  
Figure 6.  
Bootstrap driver  
DBOOT  
VS  
BOOT  
H.V.  
BOOT  
H.V.  
VS  
HVG  
LVG  
HVG  
LVG  
CBOOT  
CBOOT  
VOUT  
VOUT  
TO LOAD  
TO LOAD  
D99IN1067  
a
b
1ꢀ/20  
Package mechanical data  
L6393  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect . The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com  
16/20  
L6393  
Package mechanical data  
DIP-14 mechanical data and package dimensions  
Figure 7.  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.ꢀ1  
0.020  
1.39  
1.6ꢀ 0.0ꢀꢀ  
0.06ꢀ  
0.ꢀ  
0.020  
0.010  
b1  
D
E
e
0.2ꢀ  
20  
0.787  
8.ꢀ  
2.ꢀ4  
1ꢀ.24  
0.33ꢀ  
0.100  
0.600  
e3  
F
7.1  
ꢀ.1  
0.280  
I
0.201  
L
3.3  
0.130  
DIP-14  
Z
1.27  
2.ꢀ4 0.0ꢀ0  
0.100  
17/20  
Package mechanical data  
Figure 8. SO-14 mechanical data and package dimensions  
L6393  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.069  
A
A1  
A2  
B
1.3ꢀ  
0.10  
1.10  
0.33  
0.19  
8.ꢀꢀ  
1.7ꢀ 0.0ꢀ3  
0.30 0.004  
1.6ꢀ 0.043  
0.ꢀ1 0.013  
0.2ꢀ 0.007  
8.7ꢀ 0.337  
0.012  
0.06ꢀ  
0.020  
C
0.01  
(1)  
0.344  
D
E
e
3.80  
4.0  
0.1ꢀ0  
0.1ꢀ7  
0.0ꢀ0  
1.27  
H
ꢀ.8  
6.20 0.228  
0.ꢀ0 0.01  
0.244  
h
0.2ꢀ  
0.40  
0.02  
L
1.27 0.016  
0° (min.), 8° (max.)  
0.10  
0.0ꢀ0  
k
ddd  
0.004  
SO-14  
(1) “D” dimension does not include mold flash, protusions or gate  
burrs. Mold flash, protusions or gate burrs shall not exceed  
0.1ꢀmm per side.  
0016019 D  
18/20  
L6393  
Revision history  
10  
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
03-Mar-2008  
18-Mar-2008  
1
2
Initial release  
Cover page updated  
19/20  
L6393  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
20/20  

相关型号:

L6393D013TR

Half-bridge gate driver
STMICROELECTR

L6393N

Half bridge gate driver
STMICROELECTR

L6393_10

Half-bridge gate driver
STMICROELECTR

L6398

High voltage high and low side driver
STMICROELECTR

L6398D

High voltage high and low side driver
STMICROELECTR

L6398DTR

High voltage high and low side driver
STMICROELECTR

L6398N

High voltage high and low side driver
STMICROELECTR

L63B1A801-A1Z00-000

Rocker Switch,
Carling Techn

L63GD

T-1 3/4 (5MM) SOLID STATE LAMPS
KINGBRIGHT

L63GT

T-1 3/4 (5MM) SOLID STATE LAMPS
KINGBRIGHT

L63ID

T-1 3/4 (5MM) SOLID STATE LAMPS
KINGBRIGHT

L63IT

T-1 3/4 (5MM) SOLID STATE LAMPS
KINGBRIGHT