L6660 [STMICROELECTRONICS]

MILLI-ACTUATOR DRIVER; MILLI-传动装置驱动器
L6660
型号: L6660
厂家: ST    ST
描述:

MILLI-ACTUATOR DRIVER
MILLI-传动装置驱动器

驱动器 装置
文件: 总9页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6660  
®
MILLI-ACTUATOR DRIVER  
PRODUCT PREVIEW  
90V BCD MIXED TECHNOLOGY  
SO24 PLASTIC SMD PACKAGE  
4.5 TO 13.2V OPERATIVE VOLTAGE  
±25 TO ±35V OUTPUT VOLTAGE RANGE  
SELECTABLE BY EXTERNAL RESISTORS  
FULL-WAVE RESONANT DC-DC CON-  
VERTER USING SINGLE COIL FOR DUAL  
HIGH VOLTAGE GENERATOR WITH OUT-  
PUT SLEW RATE CONTROL AND SELF  
CURRENT LIMITING FOR LOW EMI  
SO24(Shrink)  
±35V OR 0/+70V OPERATIVE VOLTAGE  
DRIVING CONFIGURATION MODES:  
1. SINGLE ENDED VOLTAGE MODE  
2. DIFFERENTIAL VOLTAGE MODE  
3. SINGLE ENDED CHARGE MODE  
DOUBLE OPERATIONAL AMPLIFIERS WITH  
500KHZ GAIN BANDWIDTH PRODUCT AND  
LOAD DRIVING CAPABILITY FROM 0.4nF  
UP TO 24nF  
INTERNAL 2.5V VOLTAGE REFERENCE  
POWER SAVING SLEEP MODE  
USER SPECIFIED INPUT REFERENCE  
(2.25V DC)  
DESCRIPTION  
The L6660 is a piezoelectric actuator driver.  
ANALOG VOLTAGE SHIFTING CIRCUITRY  
BLOCK AND APPLICATION DIAGRAM  
[24] HVP  
HVP  
[7] SLEEP  
SLEEP  
1
K
-
[17] INB(inv)  
[18] OUTK-B  
[19] OUT1-B  
B
[16] INB(not inv)  
+
[10] Vosh  
1
K
HVM  
HVP  
Shifter  
Vosh=Vin-Vref  
[23] HVM  
[11] Vin0-5  
1
K
From DAC  
OUTPUT  
[8] INA(inv)  
V512  
-
[6] OUTK-A  
A
[9] INA(not inv)  
[5] OUT1-A  
+
2.2nF  
1
K
HVM  
47µH  
V5/12  
[15] WENA  
[4] AorB  
MUX  
+35V  
[3] COIL  
Controll  
Logic  
A-GND  
[1] AandB  
Internal  
Current  
Bias  
DC-DC LOGIC  
Back-Up  
Oscill.  
[20] V5/12AP  
[14] IN Vref  
Rfdb1  
220nF  
+
-
Rs  
Digital  
Rfdb2  
68nF  
Pwr Supply  
HVM  
[13] Vref out  
Internal Band-gap  
and 2.5 reference Voltage  
-35V  
220nF  
:5  
[12] GND-A  
[21] Vfdb  
[22] RCcomp  
[2] GND-P  
100nF  
47nF  
HVP=VrefIN(1+Rfdb1/Rfdb2)  
December 2000  
1/9  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
L6660  
PIN CONNECTION SO24-SHIRINK (Top view)  
A and B  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
HVP  
HVM  
GND-P  
COIL  
2
3
RC comp  
VFDB  
A or B.  
4
OUT1-A  
OUTK-A  
5
V5/12-AP  
OUT1-B  
OUTK-B  
INB(inv)  
INB(not inv)  
WENA  
6
SLEEP  
INA(inv)  
7
8
INA(not inv)  
VOSH  
9
10  
11  
12  
Vin 0-5  
GND-A  
Vref IN  
Vref OUT  
PINCON  
PIN FUNCTIONS  
N.  
1
Name  
AandB  
Description  
MUX Enable (see Tab. 1).  
Power ground.  
2
GND-P  
COIL  
3
Coil for positive step UP and capacitor for negative charge.  
MUX command Aor B input selection (0 = A; 1 = B).  
Output ampl.A.  
4
AorB  
5
OUT1-A  
OUTK-A  
SLEEP  
INA (inv)  
INA (not inv)  
Vosh  
6
Hi current output ampl.A.  
7
Sleep mode for stand-by condition (0=SLEEP 1=operative).  
Inverting input of A-amplifier.  
8
9
Non Inverting input of A-amplifier.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Analog level shifter output Vin-Vref (-2.5 to +2.5 dynamic range)  
Analog level shifter input positive voltage.  
Analog ground.  
Vin 0-5  
GND-A  
Vref OUT  
Precise 2.5V reference voltage.  
V
ref IN  
Input for external reference voltage.  
Multiplexer Enable, Falling Edge sensitive.  
Non Inverting input of B-amplifier.  
WENA  
INB (not inv)  
INB (inv)  
OUTK-B  
OUT1-B  
V5/12-AP  
Vfdb  
Inverting input of B-amplifier.  
Hi current output ampl.B.  
Output ampl.B.  
Analog&Power voltage supply 5 to 12V.  
Feedback voltage for HVP regulator.  
DC-DC converter compensation network.  
Negative High voltage generated op. amp. supply.  
Positive High voltage generated op. amp. supply.  
RC comp  
HVM  
HVP  
2/9  
L6660  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
14  
Unit  
V
V512  
HVP  
Supply voltage pin 17 referred to Ground  
Positive high voltage referred to HVM  
Negative high voltage referred to Ground  
Amplifier input voltage common mode  
Maximum difference between pin 20 and pins 8, 9, 16 & 17  
Operative Ambient Temperature  
75  
V
HVM  
-38  
V
IN A&B  
6
V
±
V
17  
V
Tamb  
Tstg  
-20 to +80  
-40 to +125  
°C  
°C  
Storage Temperature  
All the voltage value are referred to ground unless otherwise specified.  
ELECTRICAL CHARACTERISTICS  
(All the following parameters are specified @ 27°C and V5/12 = 12V 5%, unless otherwise specified.)  
±
Symbol  
V5/12  
HVP (1)  
Parameter  
Main power supply  
Test Condition  
Min.  
4.5  
Typ.  
Max.  
13.2  
Unit  
V
Output positive Voltage  
Double Supply Voltage V512  
Double Supply Voltage V512 < 8  
8
27  
18  
35  
35  
V
V
Single Supply Voltage V512  
Single Supply Voltage V512 < 8  
8
27  
18  
70  
35  
V
V
HVripple  
HVP, HVM ripple  
Characterized only, Not Tested  
External filter cap. 100nF  
ILOAD = 0mA  
0.8  
V
I, hvp  
I, hvm  
Top  
Output current (see figure 1)  
Time to operating condition  
Switching Frequency  
5
ms  
(2)  
Fswitch  
Refer to Block diagram  
page1/10  
300  
kHz  
Rds, on  
Iboost  
Vsup  
Boost transistor ON resistance  
Boost transistor current limiting  
4
mA  
V
850  
Minimum OpAmp supply  
Voltage (HVP if externally  
given)  
Double Supply  
Single Supply  
V512  
+4  
V512  
+4  
V
DC gain  
GBW  
OpAmp DC gain  
130  
500  
dB  
OpAmp Gain Bandwidth  
product  
Cload 0.4nF to 24nF  
Double Supply Voltage  
KHz  
DCinp  
OpAmp Input dynamic voltage  
Double supply  
Single supply  
-3.5  
1.2  
4.5  
5
V
V
Vout  
OpAmp Output dynamic voltage Capacitive load  
HVM  
HVP  
9
V
DC, Ibias  
OpAmp Bias supply current  
(both)  
|HVP| = |HVM| = 35V  
mA  
Iout (3)  
OpAmp Dynamic Output  
Average current with external  
supply  
-75  
+75  
mA  
PSRR,P  
PSRR,N  
Cload  
OpAmp Positive power supply  
rejection ratio  
@ 50kHz not tested in production  
-50  
-50  
dB  
dB  
nF  
nF  
OpAmp Negative power supply @ 50kHz not tested in production  
rejection ratio  
OpAmp Load capacitance  
range  
Voltage mode Gain min 20dB  
0.4  
24  
Cint  
K
OpAmp Integration capacitance Charge mode Gain min 20dB  
0.4  
9.8  
24  
OpAmp Current ratio  
OUTK/OUT1  
10  
10.2  
3/9  
L6660  
ELECTRICAL CHARACTERISTICS (continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vout0  
OpAmp Output Voltage with 0V External feedback programmed  
-1  
+1  
V
Input Voltage  
for DC gain value <30V/V  
VrefOUT  
Ivref  
Reference Voltage PIN13  
Reference Voltage Output Current  
Filter capacitor at PIN13  
Voltage shift value  
2.4  
-1  
2.5  
2.6  
+1  
V
mA  
nF  
V
Vref, cap  
Vshifted  
10  
100  
1.0V Vin0-5 3.5V  
VrefIN  
-2%  
VrefIN  
1.00  
VrefIN  
+2%  
(VPIN11 - VPIN10  
)
Shifter Gain Analog Voltage Shifter DC  
Voltage Gain  
VPIN11 = VREFIN  
V’  
10  
0.975  
1.025  
VPIN11 = VREFIN + 0.1V  
V"  
10  
V
10  
V’’ V’  
10  
10  
G =  
0.1  
V11  
BWVshift  
VrefIN  
Shifter circuitry Band Width  
External reference voltage  
(PIN14)  
3dB amplitude drop  
2
MHz  
V
2.0  
-12  
2.6  
Isleep  
Total current in Sleep Mode  
PIN7 at 0 logic  
VrefIN = 2.25V  
800  
+12  
A
µ
EAoff  
DC-DC converter Error  
mV  
Amplifier Input voltage Offset  
(VPIN14-VPIN21  
)
IEA  
Error amplifier Current  
Capability  
100  
±
A
µ
HVP%  
Vlogic0  
Total HVP precision  
Vref = 2.25V 0%  
-4  
+4  
%
±
Voltage level for 0 logic at  
digital input pin (Pin 1-4-7-15)  
0.9  
V
Vlogic1  
Ztime  
Top  
Voltage level for 1 logic at  
digital input pin (Pin 1-4-7-15)  
1.6  
V
Decay period for V = |19V|  
Vref (Pin14) = 2.25V See Fig. 3  
0°C < Tcase < 80°C  
140  
340  
4
s
µ
µ
Operative period from Not  
Selected phase to Selected  
phase for each driver  
s
Note 1: Selectable by external resistors.  
Note 2: Set by external Coil and Capacitor from 80 to 550KHz.  
Note 3: Take into account the total power dissipation.  
OPERATIONAL AMPLIFIERS DESCRIPTION  
Each driver has two output stages scaled in cur-  
rent by a factor K = 10.  
Figure 1. Load Regulation  
In voltage mode configuration the two outputs are  
shorted.  
36  
In charge mode configuration OUT1 drives a ca-  
pacitor Cint and is closed in feedback, while  
OUTK drives the piezo, mirroring the current sup-  
plied to Cint, with a current multiplied by a K fac-  
tor (see Fig.2).  
The supply voltage can be internally generated  
by the DC-DC converter, or external, maintaining  
the DC-DC converter in sleep mode (PIN3  
shorted to ground), in this case the supply volt-  
age can be 0 to V5/12+4 minimum value up to  
70V in single supply or V5/12+4 to 35V symmetri-  
cal to ground.  
12V  
34  
32  
30  
28  
26  
24  
22  
10V  
11V  
9V  
8V  
7V  
6V  
5V  
The drivers have 130dB DC gain and the Band-  
width is 500KHz. Stability is guaranteed with a  
minimum gain of 20dB, for a capacitive load in  
the range 0.4nF up to 24nF.  
5
9
13 17 21 25 29 33 37 41 45 49 53 57 61 65  
1
Load DC Current (mA)  
4/9  
L6660  
The drivers can be supplied with HVP-HVM (dou-  
ble supply mode) or with HVP-Ground (single  
supply mode). In both cases they can achieve a  
rail-to rail output dynamic range with an average  
In double supply mode the input stage has -  
5V/+5V common mode dynamic range, while in  
single supply configuration it has 1.2V up to 10V  
input common mode dynamic range.  
load current up to 75mA.  
±
Figure 2. Charge Mode Configuration (configuration example; the final application depends on  
user needs according with Electrical Characteristics).  
Qpiezo=K*[Cint*(1+Ra/Rb)+C]*Vdac  
Qpiezo=Cost*Vdac  
Cost=k*[Cint*(1+Ra/Rb)+C]  
HVP  
HVM  
1
1
K
K
Vdac  
+
-
Cpiezo  
RP  
Ra  
Rb  
C
Cint  
D98IN970A  
Input Multiplexer  
MULTIPLEXER is controlled by internal logic with 3 digital inputs, supplied by IntVref (2.5V), it is com-  
patible to 3.3V and 5V logic command signals, it allows to perform the following configuration:  
Table 1.  
AandB AorB WENA  
(PIN1) (PIN4) (PIN15)  
INA+Status  
INB+Status  
Comment  
0
0
1
1
1
1
1
0
1
0
1
0
X
INA+  
INB+  
Both drv. inp. are disconnected from ext  
connected to AGND connected to AGND PIN and are connected to AGND  
X
INA+  
connected to PIN9  
INB+  
Both drv. inp. are accesible  
connected to PIN16 (MUX is transparent)  
1
INA+  
connected to PIN9  
INB+  
connected to AGND  
INA is selected  
1
INA+  
INB+  
INB is selected  
connected to AGND connected to PIN16  
(F.E.)  
(F.E.)  
INA+  
connected to PIN9  
INB+  
From WENA Falling Edge, changes on  
connected to AGND AorB (pin 4) will not change MUX state.  
INA+  
INB+ From WENA Falling Edge, changes on  
connected to AGND connected to PIN16 AorB (pin 4) will not change MUX state.  
F.E. = Falling Edge  
The MUX is at NOT inv. Inputs, and NO current flows through the MUX switches, because the driver in-  
put stage is designed with high impedance stage.  
5/9  
L6660  
Figure 3. Not selected driver return to Zero Output voltage. Both drivers have the same behavior.  
The device is in operative condition and AandB (Pin1) and WENA (Pin15) are at 1 logic  
condition. The external feedback programmed for a DC gain value <30V/V.  
Drivers  
OUTPUT  
Voltage  
+20V  
Deselected  
Driver Output  
Voltage  
+2V  
0
t
AorB  
(PIN4)  
Ztime  
AorB  
(PIN4)  
Ztime  
Drivers  
OUTPUT  
Voltage  
0
t
-2V  
Deselected  
Driver Output  
Voltage  
-20V  
6/9  
L6660  
PIN21. The HVP voltage is programmed by two  
external resistors as shown in the block diagram,  
its value is:  
Not selected Output return to 0V  
Using the Multiplexer features and selecting just  
one driver, the second one, leaves its output volt-  
age and "goes" to 0V (have showed in Fig. 3), in  
"long time" with controlled slope see table 1.  
Rfdb1  
VHVP  
V
PIN21  
1
( +  
=
)
Rfdb2  
Voltage reference  
The DC-DC control loop precision will be im-  
proved lower than 4% respect external refer-  
±
An internal 2.5V voltage reference generator is  
connected to PIN13 (VrefOUT); it is based on an  
internal Band-Gap reference with a total precision  
ence voltage and resistor voltage divider.  
In Sleep Mode HVM is shorted to GND. When in  
single supply, HVM must be connected to GND.  
of 4% and a current capability of 1.0mA, it is al-  
±
±
ways present even in sleep mode condition.  
The topology is a standard resonant full-wave  
boost one: the LC oscillation is kept running all  
the time and a set of comparators is used to syn-  
chronize turning on and off of the power MOS in  
order to have zero current and zero voltage  
switching and furthermore controlled rectification.  
The step-up converter is designed to work in Lin-  
ear mode, and an AC compensation network is  
required (RC-comp) to guarantee the stability in a  
wide operative range (i.e. changing coil, load,  
output and input voltage...).  
This voltage is used to supply the internal MUX  
logic, allowing both 3.3V or 5V logic input signals,  
also the internal bias current is based on this ref-  
erence.  
The DC-DC converter reference voltage comes  
from PIN14 (VrefIN), so that the user can use an  
external voltage reference (from 2.0V up to 2.6V)  
or the internal one, in this case, just shorting to-  
gether VrefOUT and VrefIN (PIN13 and PIN14).  
According to the ouput voltage, the current  
loaded into the coil is changing like a Voltage  
Loop-Current Controlled system, and in every  
pulse there is a regulated power transfer to the  
load.  
The resonant LC topology has been chosen in or-  
der to limit the voltage slew-rate across the coil  
within reasonable values and so, to minimize ra-  
diation problems.  
The negative converter is a simple charge trans-  
fer: it is supplied by the positive high voltage and  
it capacitively translates this positive voltage  
down to a negative one, obviously to limit radia-  
tion problems also the charge output has a lim-  
ited slew-rate; moreover to reduce intermodula-  
tion phoenomenas the charge output is  
synchronized with the LC oscillations of the reso-  
nant boost.  
Voltage Shifter  
A voltage shifter is inserted to allow a ground  
symmetrical driving voltage on the piezo, starting  
from a positive (0V up to 5V) input signal coming  
from a positive supplied DAC. The DC Input-Out-  
put typical tranfer function is plotted in Fig. 4. This  
block works only in Double Supply mode, obvi-  
ously it doesn’t work if no negative supply is pre-  
sent. The voltage shifter output has not DC-cur-  
rent capability.  
For more details see the application note.  
DC-DC CONVERTER DESCRIPTION  
The DC-DC converter inside the chip can be sup-  
plied from 5V up to 12V and has two parts, one to  
supply the positive and one to supply the nega-  
tive voltage.  
This negative voltage is (not counting drops on  
external rectification diodes) in tracking with the  
positive one and so the negative output controller  
is not required.  
The DC-DC converter loop "measures" the HVP  
voltage by the EXTERNAL voltage divider and  
Figure 4. Shifter DC transfer function  
If the drivers are supplied by HVP & HVM gener-  
ated by external power supply the error amplifier  
output has to be connected to V5/12.  
In the external supply configuration the maximum  
voltage between HVP and HVM (|HVP| + |HVM|)  
must not exceed 70V and maximum voltage be-  
tween GND and HVM must be lower than 35V.  
Vosh  
PIN10  
VIN,MAX - VrefIN  
0
VIN,MAX  
Vin0-5  
PIN11  
VrefIN  
0-VrefIN  
5.0V IF V5/12 > 5.5V  
VIN,MAX =  
{
V5/12 - 0.5V IF V5/12 5.5V  
7/9  
L6660  
mm  
inch  
OUTLINE AND  
DIM.  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.079  
A
A1  
A2  
B
2.00  
0.25  
0.010  
1.51  
0.25  
0.10  
8.35  
7.60  
5.02  
2.00 0.060  
0.079  
0.30  
0.35 0.010 0.012 0.014  
C
0.35 0.004  
0.014  
0.37  
D
9.35  
8.70  
6.22  
0.33  
0.30  
0.20  
E
0.34  
E1  
e
6.10  
0.65  
0.24 0.244  
0.025  
k
0˚ (min), 10˚ (max)  
SSO24 (SHRINK)  
L
0.25  
0.50  
0.80 0.010 0.020 0.031  
A2  
A1  
A
K
B
e
C
0.10mm  
.004  
L
E1  
Seating Plane  
D
24  
13  
12  
E
1
SSO24ME  
8/9  
L6660  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
9/9  

相关型号:

L6668

SMART PRIMARY CONTROLLER
STMICROELECTR

L6668TR

SMART PRIMARY CONTROLLER
STMICROELECTR

L6668_06

SMART PRIMARY CONTROLLER
STMICROELECTR

L6690

INFRARED PULSED LASER DIODE
HAMAMATSU

L6690-53_15

PULSED LASER DIODE
HAMAMATSU

L6699D

Enhanced high voltage resonant controller
STMICROELECTR

L6699DTR

Enhanced high voltage resonant controller
STMICROELECTR

L6701

3 Phase Controller for VR10, VR9 and K8 CPUs
STMICROELECTR

L6701TR

3 Phase Controller for VR10, VR9 and K8 CPUs
STMICROELECTR

L6706TR

VR11.1 single phase controller with integrated driver
STMICROELECTR

L6710

6 BIT PROGRAMMABLE DUAL-PHASE CONTROLLER WITH DYNAMIC VID MANAGEMENT
STMICROELECTR

L6711

3 PHASE CONTROLLER WITH DYNAMIC VID AND SELECTABLE DACs
STMICROELECTR