L9352B-TR-LF [STMICROELECTRONICS]

Intelligent quad (2 x 5A / 2 x 2.5A) low-side switch;
L9352B-TR-LF
型号: L9352B-TR-LF
厂家: ST    ST
描述:

Intelligent quad (2 x 5A / 2 x 2.5A) low-side switch

驱动 光电二极管 接口集成电路 驱动器
文件: 总27页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L9352B  
Intelligent quad (2 x 5A / 2 x 2.5A) low-side switch  
Features  
Quad low-side switch  
2 x 5 A designed as conventional switch  
2 x 2.5 A designed as switched current-  
regulator  
Low ON-resistance 4 x 0.2 (typ.)  
PowerSO-36 - package with integrated cooling  
PowerSO-36  
area  
Integrated free-wheeling and clamping Z-  
diodes  
status push-pull stages  
Output slope control  
Electrostatic discharge (ESD) protection  
Short circuit protection  
Selective overtemperature shutdown  
Open load detection  
Description  
The L9352B is an integrated quad low-side power  
switch to drive inductive loads like valves used in  
ABS systems. Two of the four channels are  
current regulators with current range from 0 mA to  
2.25 A.  
Ground and supply loss detection  
External clock control  
Recirculation control  
Regulator drift detection  
Regulator error control  
Status monitoring  
All channels are protected against fail functions.  
They are monitored by a status output.  
Table 1.  
Device summary  
Order code  
Package(1)  
Packing  
L9352B-LF  
PowerSO-36  
PowerSO-36  
Tray  
L9352B-TR-LF  
Tape and reel  
1. ECOPACK® package (see Section 6: Package information).  
September 2013  
Rev 7  
1/27  
www.st.com  
1
 
 
Contents  
L9352B  
Contents  
1
2
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
3.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output stages (not regulated) channel 1 and 2 . . . . . . . . . . . . . . . . . . . . 13  
Current-regulator-stages channel 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . 13  
Protective circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Drift detection (regulated channels only) . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Other test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1  
5.2  
Non regulated channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Regulated channels (timing diagrams of diagnostic with 2kHz  
PWM input signal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2/27  
L9352B  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Special test mode functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/27  
List of figures  
L9352B  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pins connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Input PWM to output current range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Current accuracy according to the input and clock frequency ratio . . . . . . . . . . . . . . . . . . 14  
Output slope, resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overload switch-off delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Normal condition, resistive load, pulsed input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Current overload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Diagnostic status output at different open load current conditions . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Pulsed open load conditions (regulated and non-regulated channels). . . . . . . . . . . . . . . . 22  
Figure 11. Normal condition, inductive load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Current overload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Recirculation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. Current regulation error (e.g. as a result of voltage reduction) . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15. Over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16. Test mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 17. PowerSO-36 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4/27  
L9352B  
Block diagram  
1
Block diagram  
Figure 1.  
Block diagram  
VS  
VCC  
VDD  
Internal Supply  
EN  
CLK  
IN1  
Overtemperature  
Channel 4  
Overtemperature  
Channel 1  
Open Load  
Overload  
Q1  
LOGIC  
ST1  
IPD  
GND-det.  
Open Load  
D4  
Q4  
IN4  
Overload  
GND-det.  
LOGIC  
&
DA  
ST4  
IPD  
Overtemperature  
Channel 3  
Overtemperature  
Channel 2  
Open Load  
Overload  
IN2  
Q2  
LOGIC  
ST2  
IPD  
GND-det.  
Open Load  
D3  
Q3  
Overload  
GND-det.  
IN3  
LOGIC  
&
DA  
ST3  
IPD  
drift-det.  
TEST  
GND  
99AT0059  
5/27  
Pins description  
L9352B  
2
Pins description  
Figure 2.  
Pins connection (top view)  
CLK  
GND  
PGND3  
PGND3  
Q3  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
ST3  
IN1  
IN3  
ST1  
Q3  
D3  
D3  
Q1  
PGND1  
PGND1  
VS  
PGND2  
PGND2  
TEST  
EN  
ST2  
IN4  
Q1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Q2  
Q2  
D4  
D4  
Q4  
Q4  
PGND4  
PGND4  
IN2  
ST4  
VDD  
VCC  
N.C.  
99AT0060  
Table 2.  
N°  
Pins description  
Pin  
Description  
1
2, 3  
4, 5  
6, 7  
8, 9  
10, 11  
12, 13  
14, 15  
16, 17  
18  
GND  
PGND3  
Q3  
Logic ground  
Power ground - Channel 3  
Power output - Channel 3  
D3  
Free-wheeling diode - Channel 3  
Power output - Channel 1  
Power output - Channel 2  
Free-wheeling diode - Channel 4  
Power output - Channel 4  
Power ground - Channel 4  
Not Connected  
Q1  
Q2  
D4  
Q4  
PGND4  
NC  
19  
VCC  
VDD  
ST4  
IN2  
5 V supply  
20  
5 V supply  
21  
Status output - Channel 4  
Control input - Channel 2  
Control input - Channel 4  
Status output - Channel 2  
Enable input for all four channels  
22  
23  
IN4  
24  
ST2  
EN  
25  
6/27  
L9352B  
Pins description  
Table 2.  
N°  
Pins description (continued)  
Pin  
Description  
26  
TEST  
PGND2  
VS  
Enable input for drift detection  
27, 28  
Power ground - Channel 2  
Supply voltage  
29  
30, 31  
32  
PGND1  
ST1  
Power ground - Channel 1  
Status output - Channel 1  
Control input - Channel 3  
Control input - Channel 1  
Status output - Channel 3  
Clock input  
33  
IN3  
34  
IN1  
35  
ST3  
36  
CLK  
7/27  
Electrical specifications  
L9352B  
3
Electrical specifications  
3.1  
Absolute maximum ratings  
The absolute maximum ratings are the limiting values for this device.  
Warning: Damage may occur if this device is subjected to conditions  
which are beyond these values.  
Table 3.  
Absolute maximum ratings  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
EQ  
Voltages  
VS  
Switch off energy for inductive loads  
50  
mJ  
Supply voltage  
-0.3  
-0.3  
40  
6
V
V
V
V
V
V
V
V
VCC, VDD Supply voltage  
VQ  
VQ  
Output voltage static  
40  
60  
6
Output voltage during clamping  
Input voltage IN1 to IN4, EN  
Input voltage CLK  
t < 1ms  
II < |10|mA  
VIN, VEN  
VCLK  
VST  
-1.5  
-1.5  
-0.3  
6
Output voltage status  
6
VD  
Recirculation circuits D3, D4  
40  
Max. reverse breakdown voltage of free  
wheeling diodes D3, D4  
VDRmax  
Currents  
IQ1/2  
55  
V
internal  
limited  
Output current for Q1 and Q2  
Output current for Q3 and Q4  
>5  
>3  
-4  
A
A
A
internal  
limited  
IQ3/4  
IQ1/2  
,
Output current at reversal supply for Q1  
and Q2  
IPGND1/2  
IQ3/4  
IPGND3/4  
,
Output current at reversal supply for  
Q3 and Q4  
-2  
-5  
A
IST  
Output current status pin  
5
mA  
ESD protection  
Electrostatical discharging  
ESD  
MIL883C  
2
kV  
GND, PGND, Qx, Dx, CLK, ST, IN,  
TEST, EN  
8/27  
L9352B  
Table 3.  
Electrical specifications  
Absolute maximum ratings (continued)  
Parameter Test conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VS,  
VCC,VDD  
Supply pins  
vs. GND and PGND  
1
kV  
vs. Common GND  
(PGND1-4 + GND)  
ESD  
Output pins (Qx, Dx)  
4
kV  
3.2  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Parameter  
Junction temperature  
Test conditions  
Min  
Typ  
Max  
Unit  
Tj  
Tj  
-40  
150  
°C  
Junction temperature during clamping t = 30min  
175  
190  
Tjc  
°C  
(life time)  
t = 15min  
Tstg  
Tth  
Storage temperature  
Tstg  
-55  
150  
200  
°C  
°C  
(1)  
Over temperature shutdown threshold  
Over temperature shutdown hysteresis  
Thermal resistance junction to case  
175  
(1)  
Thy  
10  
°C  
Rth j-case  
2
K/W  
1. This parameter will not be tested but assured by design.  
3.3  
Operating range  
Table 5.  
Symbol  
Operating range  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VS  
Supply voltage  
4.8  
4.5  
-1  
18  
5.5  
1
V
V
VCC, VDD Supply voltage  
dVS/dt  
VQ  
Supply voltage transient time  
V/s  
V
Output voltage static  
-0.3  
40  
Voltage will be  
limited by internal  
Z-diode clamping  
Output voltage induced by inductive  
switching  
VQ  
60  
V
VST  
IST  
Tj  
Output voltage status  
Output current status  
Junction temperature  
-0.3  
-1  
6
1
V
mA  
°C  
-40  
150  
= 30min  
= 15min  
175  
190  
Tjc  
Junction temperature during clamping  
°C  
9/27  
 
Electrical specifications  
L9352B  
3.4  
Electrical characteristics  
Table 6.  
Electrical characteristics  
(V = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
S
j
Symbol  
Parameter  
Test condition  
Min.  
Typ. Max.  
Unit  
Power supply  
VS 18V  
ISON  
Supply current  
5
5
mA  
mA  
(outputs ON)  
VS 18V  
ISOFF  
Quiescent current  
(outputs OFF)  
Icc  
Idd  
Idd  
Supply current VCC (analog supply) VCC = 5V  
5
5
5
mA  
A  
Supply current VDD (digital supply)  
Supply current VDD (digital supply)  
VDD = 5V fCLK=0Hz  
VDD = 5V fCLK=250kHz  
mA  
General diagnostic functions  
VS 6.5V  
VQU  
Open load voltage  
0.3  
0.33  
2.5  
0.36  
x VQ  
(outputs OFF)  
VthGND  
VthPGL  
fCLK,min  
Signal-GND-loss threshold  
Power-GND-loss threshold  
Clock frequency error  
VCC = 5V  
VCC = 5V  
0.1  
1.5  
10  
1
V
V
3.5  
100  
45  
kHz  
%
DCCLKe_low Clock duty cycle error detection low  
fCLK = 250 kHz  
33,3  
66,6  
DCCLKe_high Clock duty cycle error detection high fCLK = 250 kHz  
VSloss Supply detection VCC = VDD = 5V  
55  
2
%
4.5  
V
Additional diagnostic functions channel 1 and channel 2 (non regulated channels)  
IQU1,2  
IQO1,2  
Open-load current channel 1, 2  
Over-load current channel 1, 2  
VS 6.5V  
VS 6.5V  
50  
5
300  
9
mA  
A
7.5  
Additional diagnostic functions channel 3 and channel 4 (regulated channels)  
DCOUT  
IQO3,4  
Output duty cycle error  
filtered with 10ms  
90  
100  
8
%
A
Overload current  
channel 3,4  
VS 6.5V  
2.5  
5
Recirculation error shutdown  
threshold (open D3/D4)  
Vrerr  
Iout > 50mA  
45  
50  
60  
V
VIN3 = VIN4 = PWMIN  
VTEST = H  
Output PWM ratio during drift  
comparison  
PWMdOUT  
-14.3  
+14.3  
%
Digital inputs (IN1 to IN4, ENA, CLK, TEST). The valid PWM-Ratio for IN3/IN4 is 10% to 90%  
VIL  
VIH  
Input low voltage  
-0.3  
2
1
6
V
V
Input high voltage  
VIHy  
Input voltage hysteresis(1)  
20  
500  
mV  
10/27  
L9352B  
Table 6.  
Electrical specifications  
Electrical characteristics (continued)  
(V = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
S
j
Symbol  
Parameter  
Test condition  
Min.  
Typ. Max.  
Unit  
II  
Input pull down current  
VIN = 5V, VS 6.5V  
8
20  
40  
A  
Digital outputs (ST1 to ST4)  
VSTL  
Status output voltage in low state (2)) IST 40A  
0
0.4  
3.45  
3.45  
1.5  
V
V
IST - 40A  
IST -120A  
2.5  
2
VSTH  
Status output voltage in high state (2))  
V
RDIAGL  
RDIAGH  
ROUT + RDSON in low state  
ROUT + RDSON in high state  
0.3  
1.5  
0.64  
3.2  
k  
k  
7.0  
Power outputs (Q1 to Q4)  
RDSON  
Static drain-source ON-resistance  
IQ = 1A; VS 9.5V  
0.2  
0.4  
1.5  
W
V
Forward voltage of free wheeling path  
D3, D4 @250mA  
VF_250mA  
ID3/4 = -250mA  
0.5  
2.0  
Forward voltage of free wheeling path  
D3, D4 @2.25A  
VF_2.25A  
Rsens  
I
D3/4 = -2.25A  
4.5  
V
Sense resistor = (VF_2.25A-  
VF_250mA)/2A  
1
W
VZ  
IPD  
IQlk  
Z-diode clamping voltage  
Output pull down current  
Output leakage current  
IQ 100mA  
45  
10  
60  
150  
5
V
VEN = H, VIN = L  
VEN = L; VQ = 20V  
A  
A  
Timing  
tON  
tOFF  
tIN3/4min  
tOFFREG  
tr  
Output ON delay time  
IQ = 1A  
0
0
5
10  
2
20  
30  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ms  
s  
Output OFF delay time channel  
Minimum Input Register ON time  
Output OFF delay time regulator  
Output rise time  
IQ = 1A  
(3)  
528  
1.5  
1.5  
IQ = 1A  
0.5  
0.5  
4
8
8
tf  
Output fall time  
IQ = 1A  
tsf  
Short error detection filter time  
Long error detection filter time  
Short circuit switch-OFF delay time  
Status delay time  
fCLK = 250kHz DC = 50% (3)  
8
tlf  
fCLK = 250kHz DC = 50% (3)  
16  
4
32  
30  
1024  
(3)  
tSCP  
tD  
(3)  
896  
tRE  
Regulation error status delay time  
Output off status delay time  
(3) (reg. channels only)  
(3) (reg. channels only  
10  
tDreg  
528  
Reg. current accuracy (reg. channels only)  
IQ3/Q4 Maximum current  
DC = 90%  
2
2.25  
2.5  
A
11/27  
Electrical specifications  
L9352B  
Unit  
Table 6.  
Symbol  
Electrical characteristics (continued)  
(V = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
S
j
Parameter  
Test condition  
Min.  
Typ. Max.  
25  
10  
6
mA  
%
0.00A IQ3/Q4 0.25A  
0.25A IQ3/Q4 0.40A  
0.40A IQ3/Q4 0.80A  
0.80A IQ3/Q4 2.25A  
Current Resolution Input Duty Cycle  
0.4% - 99% fclk = 2KHz@  
IQ3/Q4  
%
-8  
6
%
IQ3/Q4  
Min. quant. step  
5
mA  
Frequencies  
CLK frequency  
crystal-controlled  
250  
2
kHz  
kHz  
Input PWM frequency  
(reg. channels only)  
1. This parameter will not be tested but assured by design.  
2. Short circuit between two digital outputs (one in high the other in low state) will lead to the defined result "LOW".  
3. Digital filtered with external clock, only functional test.  
12/27  
L9352B  
Functional description  
4
Functional description  
4.1  
Overview  
The L9352B is designed to drive inductive loads (relays, electromagnetic valves) in low side  
configuration. Integrated active Zener-clamp (for channel1 and 2) or free wheeling diodes  
(for channel 3 and 4) allow the recirculation of the inductive loads. All four channels are  
monitored with a status output. All wiring to the loads and supply pins of the device are  
controlled. The device is self-protected against short circuit at the outputs and over  
temperature. For each channel one independent push-pull status output is used for a  
parallel diagnostic function.  
Channel 3 and 4 work as current regulator. A PWM signal on the input defines the target  
output current. The output current is controlled through the output PWM of the power stage.  
The regulator limit of 90% is detected and monitored with the status signal. The current is  
measured during recirculation phase of the load.  
A test mode compares the differences between the two regulators. This “drift” test compares  
the output PWM of the regulators. By this feature a drift of the load during lifetime can be  
detected.  
4.2  
4.3  
Input circuits  
The INput, CLK, TEST and ENable inputs, are active high, consist of Schmidt triggers with  
hysteresis. All inputs are connected to pull-down current sources.  
Output stages (not regulated) channel 1 and 2  
The two power outputs (5A) consist of DMOS-power transistors with open drain output. The  
output stages are protected against short circuit. Via integrated Zener-clamp-diodes the  
overvoltage of the inductive loads due to recirculation are clamped to typ. 52V for fast shut  
off of the valves. Parallel to the DMOS transistors there are internal pull-down current  
sources. They are provided to assure an open load condition in the OFF-state. With EN=low  
this current source is switched off, but the open load comparator is still active.  
4.4  
Current-regulator-stages channel 3 and 4  
The current-regulator channels are designed to drive inductive loads. The target value of the  
current is given by the duty cycle (DC) of the 2 kHz PWM input signal. The following figure  
shows the relation between the input PWM and the output current and the specified  
accuracy  
.
13/27  
Functional description  
Figure 3.  
L9352B  
Input PWM to output current range  
2250  
IO  
(mA)  
800  
400  
250  
25  
6%  
-8% to +6%  
10%  
mA  
10 16  
32  
INPUT PWM(%)  
90  
D03AT513A  
The ON period of the input signal is measured with a 1MHz clock, synchronized with the  
external 250kHz clock. For requested precision of the output current the ratio between the  
frequencies of the input signal and the external 250kHz clock has to be fixed according to  
the graph shown in Figure 4.  
Figure 4.  
Current accuracy according to the input and clock frequency ratio  
5.6%  
Regulator  
112.5  
125  
132  
fCLK / fIN  
0%  
switched off  
-10%  
The theoretical error is zero for f  
/ f = 125.  
CLK IN  
If the period of the input signal is longer than 132 times the period of the clock the regulator  
is switched off. For a clock frequency lower than 100kHz the clock control will also disable  
the regulator. For high precision applications the clock frequency and the input frequency  
have to be correlated.  
The output current is measured during the recirculation of the load. The current sense  
resistor is in series to the free wheeling diode. If this recirculation path is interrupted the  
regulator stops immediately and the status output remains low for the rest of the input cycle.  
The output period is 64 times the clock period. With a clock frequency of 250kHz the output  
PWM frequency is 3.9kHz. The output PWM is synchronized with the first negative edge of  
the input signal. After that the output and the input are asynchronous. The first period is  
14/27  
 
L9352B  
Functional description  
used to measure the current. This means the first turn-on of the power is 256s after the first  
negative edge of the input signal.  
As regulator a digital PI-regulator with the Transfer function for:  
0.126  
KI: --------------  
z 1  
and KP: 0.96  
for a sampling time of 256µs is realized.  
To speed up the current settling time the regulator output is locked to 90% output PWM until  
the target current value is reached. This happens also when the target current value  
changes and the output PWM reaches 90% during the regulation. The status output gets  
low if the target current value is not reached within the regulation error delay time of  
tRE=10ms.  
4.5  
4.6  
Protective circuits  
The outputs are protected against current overload, over temperature, and power-GND-loss.  
The external clock is monitored by a clock watchdog. This clock watchdog detects a minimal  
frequency fCLK,min and wrong clock duty cycles. The allowed clock duty cycle range is 45% to  
55%. The current-regulator stages are protected against recirculation errors, when D3 or D4  
is not connected. All these error conditions shut off the power stage and invert the status  
output information.  
Error detection  
The status outputs indicate the switching state under normal conditions (status LOW = OFF;  
status HIGH = ON). If an error occurs, the logic level of the status output is inverted, as listed  
in the diagnostic table below. All external errors, for example open load, are filtered  
internally. The following table shows the detected errors, the filter times and the detection  
mode (on/off).  
Table 7.  
Error detection  
ON State  
OFF State  
Filter time  
Reset done by  
EN & IN = “LOW”  
EN &IN = HIGH EN &IN = LOW  
Short circuit of the load  
X
tsf  
for TD or TDreg  
Open load  
X
tlf  
timer TD  
(under voltage detection)  
Open load  
X
X
tsf  
timer TD  
(under current detection)  
EN & IN = “LOW”  
for TD or TDreg  
Overtemperature  
tsf  
in on: EN & IN = “LOW”  
for TD or TDreg  
Power-GND-loss  
Signal-GND-loss  
X
X
X
X
tlf  
tlf  
in off: timer TD  
timer TD  
15/27  
Functional description  
L9352B  
Table 7.  
Error detection (continued)  
ON State  
EN &IN = HIGH EN &IN = LOW  
OFF State  
Filter time  
Reset done by  
timer TD  
Supply-VS-loss  
X
X
X
X
tlf  
in on: EN & IN = “LOW”  
for TD or TDreg  
Clock control  
X
no  
no  
in off: timer TD  
in on: EN & IN = “LOW”  
for TD or TDreg  
Output voltage clamp active  
(regulated  
channels)  
in off: timer TD  
EN&IN = low means that at least one between enable and input is low. For the inputs IN=low  
means also no input PWM. For the regulator input period longer than T and for the  
Dreg  
standard channel input period longer than T .  
D
A detected error is stored in an error register. The reset of this register is made with a timer  
T . With this approach all errors are present at the status output at least for the time T .  
D
D
All protection functions like short circuit of the output, over temperature, clock failure or  
power-GND-loss in ON condition are stored into an internal “fail” register. The output is then  
shut off. The register must be reset with a low signal at the input. A “low signal” means that  
the input is low for a time longer than T or T  
for the related channel, otherwise it is  
D
DReg  
interpreted as a PWM input signal and the register is left in set mode.  
Signal-GND-loss and VS-loss are detected in the active on mode, but they do not set the fail  
register. This type of error is only delayed with the standard timer tlf function.  
Open load is detected for all four channels in on- and off-state.  
Open load in off condition detects the voltage on the output pin. If this voltage is below 0.33  
* VS the error register is set and delayed with T . A sink current stage pull the output down  
D
to ground, with EN high. With EN low the output is floating in case of openload and the  
detection is not assured. In the ON state the load current is monitored by the non-regulated  
channels. If it drops below the specified threshold value I an open load is detected and  
QU  
the error register is set and delayed with T . A regulated channel detects the open load in  
D
the on state with the current regulator error detection. If the output PWM reaches 90% for a  
time longer than t than an error occurs. This could happen when no load is connected, the  
RE  
resistivity of the load is too high or the supply voltage too low.  
A clock failure (clock loss) is detected when the frequency becomes lower than fCLK,min. All  
status outputs are set on error and all power outputs are shut off. The status signals remain  
in their state until the clock signal is present again. A clock failure during power on of V is  
CC  
detected only on the regulated channels. The status outputs of the channel 1 and 2 are low  
in this case.  
16/27  
L9352B  
Functional description  
4.7  
Drift detection (regulated channels only)  
The drift detection is used to compare the two regulated channels during regulation. This  
“Drift” test compares the output PWM of the regulators. The resistivity of the load influences  
the output PWM. The approximated formula for the output current below shows the  
dependency of the load resistor to the output PWM. In this formula the energy reduction  
during the recirculation is not taken into account. The real output PWM is higher. The  
testmode is enabled with IN, EN and TEST high. With an identical 2kHz PWM-Signal  
connected to the IN-inputs the output PWM must be in a range of 14.3%. If the difference  
between the two on-times is more than 14.3% of the expected value an error is detected  
and monitored by the status outputs, in the same way as described above, but a drift error  
will not be registered and also not delayed with T as other errors.  
D
VBAT  
IOUT = --------------------------- PWM  
RL + RON  
Drift Definition:  
Drift = PWM(1+E) - PWM (1-E) = 2PWM E  
Drift * 4 < PWM (1+E)  
with E >14.3% a drift is detected  
E.. not correlated Error of the channels  
%PWM ... Corresponding ideal output PWM to a given input PWM  
A 7bit output-PWM-register is used for the comparison. The register with the lower value is  
subtracted from the higher one. This result is multiplied by four and compared with the  
higher value.  
4.8  
Other test modes  
The test pin is also used to test the regulated channels in the production. With a special  
sequence on this pin the power stages of the regulated channels can be controlled direct  
from the input. No status feedback of the regulated channels is given. The status output is  
clocked by the regulator logic. The output sequence is a indication of a proper logic  
functionality. The following table shows the functionality of this special test mode.  
Table 8.  
EN  
Special test mode functionality  
IN  
TEST  
OUT  
STATUS  
Note  
1
1
0
0
0
0
0
X
1
X
1
X
X
disable test mode  
Drift mode  
on  
off  
off  
off  
off  
on  
1
X
X
X
0
test pattern  
test pattern  
test pattern  
test pattern  
test pattern  
test condition one  
test condition two  
test condition three  
test condition four  
test condition four  
1
For more details about the test condition four see timing diagram.  
17/27  
Functional description  
L9352B  
4.9  
Diagnostic  
The status follows the input signal in normal operating conditions.  
If any error is detected the status is inverted.  
Table 9.  
Diagnostic  
Test  
input  
TEST  
Enable  
input  
ENA  
Status  
Power  
output/current  
reg. Q  
Control input  
non-reg./reg. IN  
Operating condition  
output  
ST  
L
L
L
L
L
L
L
OFF  
OFF  
OFF  
ON  
L
L
H/PWM  
L
Normal function  
H
H
L
H/PWM  
H
L
L
L
L
L
L
L
OFF  
OFF  
OFF  
ON  
X
X
H
L
H/PWM  
L
Open load or short to ground  
H
H
H/PWM  
L
L
L
L
H
H
H/PWM  
H/PWM  
X
OFF  
OFF  
OFF  
OFF  
L
L
L
L
Overload or short to supply  
Latched overload  
Reset latch  
H –> L  
H
Reset latch  
H/PWM –> L  
L
L
L
L
H
H
H/PWM  
H/PWM  
X
OFF  
OFF  
OFF  
OFF  
L
L
L
L
Overtemperature  
Latched overtemperature  
Reset latch  
H –> L  
H
Reset latch  
H/PWM –> L  
Recirculation error (reg.chn.)  
Latched error  
L
L
L
L
H
H
PWM  
PWM  
OFF  
OFF  
OFF  
OFF  
L
L
L
L
Reset latch  
H –> L  
H
X
Reset latch  
PWM –> L  
L
L
L
L
L
L
L
OFF  
OFF  
OFF  
OFF  
H
H
H
L
H/PWM  
L
Clock failure (clock loss)(1)  
Drift(2)  
H
H
H/PWM  
H
H
H
H
L
L
L
OFF  
OFF  
ON  
X
X
L
H/PWM  
H/PWM  
H/PWM  
Failure  
No failure  
H
H
ON  
H
1. during power on sequence only detected on channel 3 and 4 (see description).  
2. This input combination is also used for an internal chip-test and must not be used.  
18/27  
L9352B  
Timing diagrams  
5
Timing diagrams  
5.1  
Non regulated channels  
Figure 5.  
Output slope, resistive load  
VI  
VIH  
VIL  
t
tOFF  
tr  
tON  
tf  
VQ  
VS  
85% V S  
15% V S  
t
99AT0061  
Figure 6.  
Overload switch-off delay  
IQ  
IQO  
IQU  
t
tD  
tSCP  
VST  
tsf  
t
00RS0001  
19/27  
Timing diagrams  
Figure 7.  
L9352B  
Normal condition, resistive load, pulsed input signal  
VIN  
VQ  
IQ  
IQU  
tD  
tD  
VST  
99AT0063  
Figure 8.  
Current overload  
tD  
Reset Fail  
register  
VIN  
VQ  
IQ  
Set Fail  
register  
IQO  
tD  
VST  
99AT0064  
20/27  
L9352B  
Timing diagrams  
Diagnostic status output at different open load current conditions  
Figure 9.  
Under current condition followed by normal operation  
tD  
VIN  
VQ  
IQ  
IQU  
tD  
VST  
99AT0065  
Open load condition in the case of pulsed input signal followed by normal operation  
tD  
VIN  
VQ  
IQU  
IQ  
tD  
VST  
99AT0066  
21/27  
Timing diagrams  
L9352B  
Figure 10. Pulsed open load conditions (regulated and non-regulated channels)  
VIN  
VQ  
IQ  
0.33 x VS  
tD  
tlf  
tlf  
VST  
99AT0067  
5.2  
Regulated channels (timing diagrams of diagnostic with  
2kHz PWM input signal)  
Figure 11. Normal condition, inductive load  
tDREG  
500μs  
VIN  
VQ  
IQ  
Target Current  
256μs  
256μs  
VST  
99AT0068  
22/27  
L9352B  
Timing diagrams  
Figure 12. Current overload  
tDREG  
Reset Fail  
register  
500μs  
VIN  
VQ  
IQ  
Set fail  
registor  
IQO  
tsf  
VST  
99AT0069  
Figure 13. Recirculation error  
tDREG  
Reset Fail  
register  
500μs  
VIN  
VQ  
Set Fail  
register  
target current  
IQ  
VST  
99AT0070  
23/27  
Timing diagrams  
Figure 14. Current regulation error (e.g. as a result of voltage reduction)  
L9352B  
500μs  
VIN  
VQ  
IQ  
PWMratio = 90%  
target current  
tRE  
VST  
99AT0071  
Figure 15. Over temperature  
Overtemperature  
Condition  
tDREG  
Reset Fail  
register  
500μs  
VIN  
VQ  
Set Fail  
register  
target current  
IQ  
VST  
99AT0072  
Figure 16. Test mode 4  
Test mode 4  
VEN low  
VTEST  
VIN3/4  
VQ3/4  
99AT0073  
24/27  
L9352B  
Package information  
6
Package information  
®
In order to meet environmental requirements, ST (also) offers these devices in ECOPACK  
®
packages. ECOPACK packages are lead-free. The category of second Level Interconnect  
is marked on the package and on the inner box label, in compliance with JEDEC Standard  
JESD97. The maximum ratings related to soldering conditions are also marked on the inner  
box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 17. PowerSO-36 mechanical data and package dimensions  
mm  
inch  
DIM.  
MIN.  
TYP. MAX. MIN.  
3.60  
TYP. MAX.  
0.1417  
0.0118  
0.1299  
0.0039  
0.0150  
0.0126  
0.6299  
0.3858  
0.5709  
0.4370  
0.1142  
0.2441  
0.0256  
0.4350  
0.0039  
0.6260  
0.0433  
0.0433  
OUTLINE AND  
MECHANICAL DATA  
A
a1  
a2  
a3  
b
0.10  
0.30 0.0039  
3.30  
0
0.10  
0.22  
0.23  
15.80  
9.40  
13.90  
10.90  
0.38 0.0087  
0.32 0.0091  
16.00 0.6220  
9.80 0.3701  
14.5 0.5472  
11.10 0.4291  
2.90  
c
D
D1  
E
E1  
E2  
E3  
e
5.80  
6.20 0.2283  
0.65  
e3  
G
11.05  
0
0.10  
H
15.50  
15.90 0.6102  
1.10  
h
L
0.8  
1.10 0.0315  
10˚ (max)  
8˚ (max)  
N
s
PowerSO-36  
Note: “D and E1” do not include mold flash or protusions.  
- Mold flash or protusions shall not exceed 0.15mm (0.006”)  
- Critical dimensions are "a3", "E" and "G".  
0096119 C  
25/27  
Revision history  
L9352B  
7
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
20-Feb-2004  
5
Initial release.  
Document reformatted.  
05-Sep-2008  
17-Sep-2013  
6
7
Updated the order codes in Table 1: Device summary.  
Updated Disclaimer  
26/27  
L9352B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
27/27  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY