L9352PD [STMICROELECTRONICS]

4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO36, POWER, SO-36;
L9352PD
型号: L9352PD
厂家: ST    ST
描述:

4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO36, POWER, SO-36

外围驱动器 驱动程序和接口 开关 接口集成电路 光电二极管
文件: 总21页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L9352  
INTELLIGENT QUAD (2X5A/2X2.5A) LOW-SIDE SWITCH  
Quad low-side switch  
2 x 5A designed as conventional switch  
2 x 2.5A designed as switched current-regulator  
Low ON-resistance 4 x 0.2 (typ.)  
Power SO-36 - package with integrated  
cooling area  
Integrated free-wheeling and clamping Z-diodes  
Output slope control  
PowerSO-36  
BARE DIE  
Short circuit protection  
ORDERING NUMBERS:  
L9352  
Selective overtemperature shutdown  
Open load detection  
L9352-DIE1  
Ground and supply loss detection  
External clock control  
DESCRIPTION  
Recirculation control  
The L9352 is an integrated quad low-side power  
switch to drive inductive loads like valves used in  
ABS systems. Two of the four channels are current  
regulators with current range from 250mA to 2.25A  
and an accuracy of 10%.  
Regulator drift detection  
Regulator error control  
Regulator resolution 5mA  
Status monitoring  
All channels are protected against fail functions.  
They are monitored by a status output.  
Status push-pull stages  
Electrostatic discharge (ESD) protection  
Figure 1. Pin Connection  
CLK  
GND  
PGND3  
PGND3  
Q3  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
ST3  
IN1  
IN3  
ST1  
Q3  
D3  
D3  
Q1  
PGND1  
PGND1  
VS  
PGND2  
PGND2  
TEST  
EN  
ST2  
IN4  
Q1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Q2  
Q2  
D4  
D4  
Q4  
Q4  
PGND4  
PGND4  
IN2  
ST4  
VDD  
VCC  
N.C.  
99AT0060  
June 2002  
1/21  
L9352  
Figure 2. Block Diagram  
VS  
VCC  
VDD  
Internal Supply  
EN  
CLK  
IN1  
Overtemperature  
Channel 4  
Overtemperature  
Channel 1  
Open Load  
Overload  
Q1  
LOGIC  
ST1  
IPD  
GND-det.  
Open Load  
D4  
Q4  
IN4  
Overload  
GND-det.  
LOGIC  
&
DA  
ST4  
IPD  
Overtemperature  
Channel 3  
Overtemperature  
Channel 2  
Open Load  
Overload  
IN2  
Q2  
LOGIC  
ST2  
IPD  
GND-det.  
Open Load  
D3  
Q3  
Overload  
GND-det.  
IN3  
LOGIC  
&
DA  
ST3  
IPD  
drift-det.  
TEST  
GND  
99AT0059  
2/21  
L9352  
PIN DESCRIPTION  
N°  
Pin  
GND  
PGND 3  
Q 3  
Function  
1
2, 3  
4, 5  
6, 7  
8, 9  
10, 11  
12, 13  
14, 15  
16, 17  
18  
Logic Ground  
Power Ground Channel 3  
Power Output Channel 3  
Free-Wheeling Diode Channel 3  
Power Output Channel 1  
Power Output Channel 2  
Free-Wheeling Diode Channel 4  
Power Output Channel 4  
Power Ground Channel 4  
Not Connected  
D 3  
Q 1  
Q 2  
D 4  
Q 4  
PGND 4  
NC  
19  
VCC  
VDD  
ST 4  
IN 2  
5V Supply  
20  
5V Supply  
21  
Status Output Channel 4  
Control Input Channel 2  
Control Input Channel 4  
Status Output Channel 2  
Enable Input for all four Channels  
Enable Input for Drift detection  
Power Ground Channel 2  
Supply Voltage  
22  
23  
IN 4  
24  
ST 2  
EN  
25  
26  
TEST  
PGND 2  
VS  
27, 28  
29  
30, 31  
32  
PGND 1  
ST 1  
IN 3  
Power Ground Channel 1  
Status Output Channel 1  
Control Input Channel 3  
Control Input Channel 1  
Status Output Channel 3  
Clock Input  
33  
34  
IN 1  
35  
ST 3  
CLK  
36  
3/21  
L9352  
ABSOLUTE MAXIMUM RATINGS  
The absolute maximum ratings are the limiting values for this device. Damage may occur if this device is sub-  
jected to conditions which are beyond these values.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
E
Q
Switch off energy for inductive loads  
50  
mJ  
Voltages  
V
Supply voltage  
-0.3  
-0.3  
40  
6
V
V
V
V
V
V
V
V
V
S
V
, V  
CC DD  
Supply voltage  
V
Q
V
Q
Output voltage static  
Output voltage during clamping  
Input voltage IN1 to IN4, EN  
Input Voltage CLK  
40  
60  
6
t < 1ms  
V , V  
IN  
I < |10|mA  
I
-1.5  
-1.5  
-0.3  
EN  
V
CLK  
6
V
Output voltage status  
Recirculation circuits D3, D4  
6
ST  
V
D
40  
55  
V
max. reverse breakdown voltage of free  
wheeling diodes D3, D4  
DRmax  
Currents  
I
Output current for Q1 and Q2  
Output current for Q3 and Q4  
>5  
>3  
-4  
internal  
limited  
A
A
A
Q1/2  
I
internal  
limited  
Q3/4  
I
,
Output current at reversal supply for Q1  
and Q2  
Q1/2  
I
I
PGND1/2  
I
,
Output current at reversal supply for  
Q3 and Q4  
-2  
-5  
A
Q3/4  
PGND3/4  
I
ST  
Output current status pin  
5
mA  
ESD Protection  
ESD  
Electrostatical Discharging  
MIL883C  
±2  
kV  
GND, PGND, Qx, Dx, CLK, ST, IN,  
TEST, EN  
VS,  
VCC,VDD  
Supply pins  
vs. GND and PGND  
±1  
kV  
kV  
ESD  
Output Pins (Qx, Dx)  
vs. Common GND  
(PGND1-4 + GND)  
±4  
THERMAL DATA  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
°C  
T
Junction temperature  
T
-40  
150  
j
j
T
Junction temperature during clamping  
(life time)  
175  
190  
°C  
Σt = 30min  
Σt = 15min  
jc  
T
Storage temperature  
T
-55  
150  
200  
°C  
°C  
stg  
stg  
(1)  
T
Overtemperature shutdown threshold  
175  
th  
(1)  
T
Overtemperature shutdown hysteresis  
Thermal resistance junction to case  
10  
°C  
hy  
R
R
thJC  
2
K/W  
thJC  
(1) This parameter will not be tested but assured by design  
4/21  
L9352  
OPERATING RANGE  
Symbol  
Parameter  
Test Conditions  
Min.  
4.8  
4.5  
-1  
Typ.  
Max.  
18  
Unit  
V
V
Supply voltage  
Supply voltage  
S
V
, V  
CC  
5.5  
1
V
DD  
dV /dt  
Supply voltage transient time  
Output voltage static  
V/µs  
V
S
V
V
-0.3  
40  
Q
Q
Output voltage induced by inductive switching Voltage will be  
60  
V
limited by internal  
Z-diode clamping  
V
Output voltage status  
Output current status  
Junction temperature  
-0.3  
-1  
6
1
V
ST  
I
mA  
°C  
°C  
ST  
T
-40  
150  
j
T
Junction temperature during clamping  
175  
190  
Σ = 30min  
Σ = 15min  
jc  
.
ELECTRICAL CHARACTERISTCS  
:
(Vs = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
j
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Power Supply  
I
Supply current  
5
5
mA  
mA  
V 18V  
(outputs ON)  
SON  
S
I
Quiescent current  
V 18V  
S
SOFF  
(outputs OFF)  
I
Supply current VCC (analog supply)  
Supply current VDD (digital supply)  
Supply current VDD (digital supply)  
VCC =5V  
5
5
5
mA  
uA  
cc  
dd  
dd  
I
I
VDD =5V f  
VDD =5V f  
=0Hz  
CLK  
=250kHz  
CLK  
mA  
General Diagnostic Functions  
V
Open load voltage  
0.3  
0.33  
2.5  
0.36  
x V  
V 6.5V  
(outputs OFF)  
QU  
Q
S
V
Signal-GND-loss threshold  
Power-GND-loss threshold  
Clock frequency error  
VCC= 5V  
0.1  
1.5  
10  
1
V
V
thGND  
V
thPGL  
VCC= 5V  
3.5  
100  
45  
f
kHz  
%
CLK,min  
DC  
Clock duty cycle error detection low  
f
f
= 250 kHz  
= 250 kHz  
33,3  
66,6  
CLKe_l  
ow  
CLK  
DC  
Clock duty cycle error detection high  
55  
2
%
V
CLKe_  
CLK  
high  
VS  
Supply detection  
VCC = VDD = 5V  
4.5  
loss  
Additional Diagnostic Functions channel 1 and channel 2 (non regulated channels)  
I
I
Open-load current channel 1, 2  
Over-load current channel 1, 2  
50  
5
300  
9
mA  
A
V 6.5V  
QU1,2  
S
7.5  
V 6.5V  
S
QO1,2  
5/21  
L9352  
ELECTRICAL CHARACTERISTCS  
: (continued)  
(Vs = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
j
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Additional Diagnostic Functions channel 3 and channel 4 (regulated channels)  
DC  
I
Output duty cycle range  
filtered with 10ms  
10  
90  
8
%
A
OUT  
Overload current  
channel 3,4  
2.5  
5
V 6.5V  
S
QO3,4  
V
Recirculation error shutdown  
threshold (open D3/D4)  
Iout > 50mA  
45  
50  
60  
V
rerr  
PWM  
Output PWM ratio during drift  
comparison  
V
V
= V  
= PWM  
IN  
-14.3  
+14.3  
%
dOU  
IN3  
IN4  
T
= H  
TEST  
Digital Inputs (IN1 to IN4, ENA, CLK, TEST). The valid PWM-Ratio for IN3/IN4 is 10% to 90%  
V
Input low voltage  
Input high voltage  
-0.3  
2
1
6
V
V
IL  
V
IH  
(1)  
V
20  
500  
mV  
IHy  
Input voltage hysteresis  
Input pull down current  
I
I
8
20  
40  
V
IN  
= 5V, V 6.5V  
µA  
S
Digital Outputs (ST1 to ST4)  
(2))  
(2)  
V
0
0.4  
V
I
ST 40µA  
STL  
Status output voltage in low state  
V
2.5  
2
3.45  
3.45  
1.5  
V
V
IST -40µA  
STH  
Status output voltage in high state  
I
ST -120µA  
R
R
R
R
+ R  
+ R  
in low state  
in high state  
0.3  
1.5  
0.64  
3.2  
kΩ  
kΩ  
DIAGL  
OUT  
OUT  
DSON  
7.0  
DIAGH  
DSON  
Power Outputs (Q1 to Q4)  
Static drain-source ON-resistance  
R
DSON  
0.2  
0.4  
1.5  
I
I
= 1A; V 9.5V  
S
Q
V
Forward voltage of free wheeling path  
D3, D4 @250mA  
= -250mA  
0.5  
2.0  
V
F_250mA  
D3/4  
V
Forward voltage of free wheeling path  
D3, D4 @2.25A  
I
= -2.25A  
4.5  
V
F_2.25A  
D3/4  
R
Sense resistor = (V  
2A  
V )/  
F_2.25A- F_250mA  
1
sens  
V
Z-diode clamping voltage  
Output pull down current  
Output leakage current  
45  
10  
60  
150  
5
V
I
Q 100mA  
Z
I
PD  
V
V
= H, V = L  
µA  
µA  
EN  
EN  
IN  
I
= L; V = 20V  
Qlk  
Q
Timing  
t
Output ON delay time  
0
0
5
20  
30  
µs  
µs  
ON  
I
I
= 1A  
Q
Q
t
Output OFF delay time channel  
10  
OFF  
= 1A  
(3)  
t
Output OFF delay time regulator  
Output rise time  
528  
1.5  
µs  
µs  
OFFREG  
t
0.5  
8
r
I
= 1A  
Q
6/21  
L9352  
ELECTRICAL CHARACTERISTCS  
: (continued)  
(Vs = 4.8 to 18V; T = -40 to 150°C unless otherwise specified)  
j
Symbol  
Parameter  
Output fall time  
Test Condition  
= 1A  
Min.  
Typ.  
Max.  
Unit  
t
f
0.5  
1.5  
8
µs  
I
f
f
Q
(3)  
(3)  
t
Short error detection filter time  
4
16  
4
8
32  
µs  
µs  
sf  
= 250kHz DC = 50%  
= 250kHz DC = 50%  
CLK  
CLK  
t
lf  
Long error detection filter time  
(3)  
t
Short circuit switch-OFF delay time  
30  
µs  
us  
SCP  
(3)  
(3)  
t
Status delay time  
896  
1024  
D
t
Regulation error status delay time  
10  
ms  
RE  
(reg. channels only)  
(3)  
t
Output off status delay time  
528  
µs  
Dreg  
(reg. channels only  
Reg. Current Accuracy (reg. channels only)  
I
Minimum current  
Maximum current  
DC = 10%  
DC = 90%  
200  
2
250  
300  
2.5  
mA  
A
Q3/Q4  
Q3/Q4  
I
2.25  
I
Max. regulation deviation @  
DC 10% - 90%  
250mA < I  
400mA I  
800mA < I  
< 400mA  
800mA  
< 2.25A  
±10  
±6  
±10  
%
%
%
REG  
Q3/Q4  
Q3/Q4  
Q3/Q4  
Min. quant. step  
5
mA  
I  
Q3/Q4  
Frequencies  
CLK frequency  
crystal-controlled  
250  
2
kHz  
kHz  
Input PWM frequency  
(reg. channels only)  
(1) This parameter will not be tested but assured by design.  
(2) Short circuit between two digital outputs (one in high the other in low state) will lead to the defined result "LOW"  
(3) Digital filtered with external clock, only functional test  
7/21  
L9352  
1.0  
1.1  
Functional Description  
Overview  
The L9352 is designed to drive inductive loads (relays, electromagnetic valves) in low side configuration. Inte-  
grated active Zener-clamp (for channel1 and 2) or free wheeling diodes (for channel 3 and 4) allow the recircu-  
lation of the inductive loads. All four channels are monitored with a status output. All wiring to the loads and  
supply pins of the device are controlled. The device is self-protected against short circuit at the outputs and over-  
temperature. For each channel one independent push-pull status output is used for a parallel diagnostic func-  
tion.  
Channel 3 and 4 work as current regulator. A PWM signal on the input defines the target output current. The  
output current is controlled through the output PWM of the power stage. The regulator limits of 10% or 90% are  
detected and monitored with the status signal. The current is measured during recirculation phase of the load.  
A test mode compares the differences between the two regulators. This “drift” test compares the output PWM  
of the regulators. By this feature a drift of the load during lifetime can be detected.  
1.2  
Input Circuits  
The INput, CLK, TEST and ENable inputs, are active high, consist of Schmidt triggers with hysteresis. All inputs  
are connected to pull-down current sources.  
1.3  
Output Stages (not regulated) Channel 1 and 2  
The two power outputs (5A) consist of DMOS-power transistors with open drain output. The output stages are  
protected against short circuit. Via integrated Zener-clamp-diodes the overvoltage of the inductive loads due to  
recirculation are clamped to typ. 52V for fast shut off of the valves. Parallel to the DMOS transistors there are  
internal pull-down current sources. They are provided to assure an open load condition in the OFF-state. With  
EN=low this current source is switched off, but the open load comparator is still active.  
1.4 Current-Regulator-Stages Channel 3 and 4  
The current-regulator channels are designed to drive inductive loads. The target value of the current is given by  
the duty cycle (DC) of the 2kHz PWM input signal. The following figure shows the relation between the input  
PWM and the output current and the specified accuracy  
.
Figure 3. Input PWM to output current range  
2250  
+-10%  
800  
+- 6%  
400  
±10%  
250  
INPUT PWM[%]  
90  
10  
8/21  
L9352  
The ON period of the input signal is measured with a 1MHz clock, synchronized with the external 250kHz clock.  
For requested precision of the output current the ratio between the frequencies of the input signal and the ex-  
ternal 250kHz clock has to be fixed according to the graph shown in Fig.  
Figure 4. Current accuracy according to the input and clock frequency ratio  
5.6%  
Regulator  
112.5  
125  
132  
fCLK / fIN  
0%  
switched off  
-10%  
The theoretical error is zero for f  
/ f = 125.  
CLK IN  
If the period of the input signal is longer than 132 times the period of the clock the regulator is switched off. For  
a clock frequency lower than 100kHz the clock control will also disable the regulator. For high precision appli-  
cations the clock frequency and the input frequency have to be correlated.  
The output current is measured during the recirculation of the load. The current sense resistor is in series to the  
free wheeling diode. If this recirculation path is interrupted the regulator stops immediately and the status output  
remains low for the rest of the input cycle.  
The output period is 64 times the clock period. With a clock frequency of 250kHz the output PWM frequency is  
3.9kHz. The output PWM is synchronized with the first negative edge of the input signal. After that the output  
and the input are asynchronous. The first period is used to measure the current. This means the first turn-on of  
µ
the power is 256 s after the first negative edge of the input signal.  
As regulator a digital PI-regulator with the Transfer function for:  
KI:  
and KP: 0.96  
0.126  
--------------  
z 1  
for a sampling time of 256us is realised.  
To speed up the current settling time the regulator output is locked to 90% output PWM untill the target current  
value is reached. This happens alsowhen the target current value changes and the output PWM reaches 90%  
during the regulation. The status output gets low if the target current value is not reached within the regulation  
t
error delay time of RE=10ms. The output PWM is than out of the regulation range from 10% to 90%.  
1.5  
Protective Circuits  
The outputs are protected against current overload, overtemperature, and power-GND-loss. The external clock  
f
is monitored by a clock watchdog. This clock watchdog detects a minimal frequency CLK,min and wrong clock  
duty cycles. The allowed clock duty cycle range is 45% to 55%. The current-regulator stages are protected  
9/21  
L9352  
against recirculation errors, when D3 or D4 is not connected. All these error conditions shut off the power stage  
and invert the status output information.  
1.6  
Error Detection  
The status outputs indicate the switching state under normal conditions (status LOW = OFF; status HIGH = ON).  
If an error occurs, the logic level of the status output is inverted, as listed in the diagnostic table below. All ex-  
ternal errors, for example open load, are filtered internally. The following table shows the detected errors, the  
filter times and the detection mode (on/off).  
ON State  
OFF State  
Filter time  
Reset done by  
EN &IN = HIGH EN &IN = LOW  
Short circuit of the load  
X
t
EN & IN = “LOW”  
sf  
for  
or  
T
Dreg  
T
D
Open load  
(under voltage detection)  
X
t
lf  
timer  
T
D
Open load  
(under current detection)  
X
X
t
t
timer  
T
sf  
sf  
D
Overtemperature  
Power-GND-loss  
EN & IN = “LOW”  
for or  
T
T
D
Dreg  
in on: EN & IN = “LOW”  
for or  
X
X
t
lf  
T
T
D
Dreg  
in off: timer  
T
D
Signal-GND-loss  
Supply-VS-loss  
Clock control  
X
X
X
X
X
X
t
timer  
timer  
T
T
lf  
lf  
D
D
t
no  
in on: EN & IN = “LOW”  
for or  
T
T
D
Dreg  
in off: timer  
T
D
Output voltage clamp active  
X
no  
in on: EN & IN = “LOW”  
for or  
(regulated  
channels)  
T
T
D
Dreg  
in off: timer  
T
D
EN&IN=low means that at least one between enable and input is low. For the inputs IN=low means also no input  
PWM. For the regulator input period longer than T and for the standard channel input period longer thanT .  
Dreg  
D
A detected error is stored in an error register. The reset of this register is made with a timer T . With this ap-  
D
proach all errors are present at the status output at least for the time T .  
D
All protection functions like short circuit of the output, overtemperature, clock failure or power-GND-loss in ON  
condition are stored into an internal “fail” register. The output is then shut off. The register must be reset with a  
low signal at the input. A “low signal” means that the input is low for a time longer than T or T  
for the re-  
DReg  
D
ulated channel, otherwise it is interpreted as a PWM input signal and the register is left in set mode.  
Signal-GND-loss and VS-loss are detected in the active on mode, but they do not set the fail register. This type  
t
of error is only delayed with the standard timer lf function.  
Open load is detected for all four channels in on- and off-state.  
Open load in off condition detects the voltage on the output pin. If this voltage is below 0.33 * VS the error reg-  
ister is set and delayed with T . A sink current stage pull the output down to ground, with EN high. With EN low  
D
the output is floating in case of openload and the detection is not assured. In the ON state the load current is  
monitored by the non-regulated channels. If it drops below the specified threshold value I  
an open load is  
QU  
detected and the error register is set and delayed with T . A regulated channel detects the open load in the on  
D
state with the current regulator error detection. If the output PWM reaches 90% for a time longer than t  
than  
RE  
an error occurs. This could happen when no load is connected, the resistivity of the load is too high or the supply  
voltage too low. The same error is shown if the regulator is not able to reduce the current in the load in the time  
t
, so the output PWM falls below 10%.  
RE  
f
A clock failure (clock loss) is detected when the frequency becomes lower than CLK,min. All status outputs are  
10/21  
L9352  
set on error and all power outputs are shut off. The status signals remain in their state until the clock signal is  
present again. A clock failure during power on of VCC is detected only on the regulated channels. The status  
outputs of the channel 1 and 2 are low in this case.  
1.7  
Drift Detection (regulated channels only)  
The drift detection is used to compare the two regulated channels during regulation. This “Drift” test compares  
the output PWM of the regulators. The resistivity of the load influences the output PWM. The approximated for-  
mula for the output current below shows the dependency of the load resistor to the output PWM. In this formula  
the energy reduction during the recirculation is not taken into account. The real output PWM is higher. The test-  
mode is enabled with IN,EN and TEST high. With an identical 2kHz PWM-Signal connected to the IN-inputs the  
output PWM must be in a range of +-14.3%. If the difference between the two on-times is more than ±14.3% of  
the expected value an error is detected and monitored by the status outputs, in the same way as described  
above, but a drift error will not be registered and also not delayed with T as other errors  
D
VBAT  
RL + RON  
----------------------------  
IOUT =  
PWM  
Drift Definition:  
Drift = PWM(1+E) - PWM (1-E) = 2PWM E  
Drift * 4 < PWM (1+E)  
with E >14.3% a drift is detected  
E.. not correlated Error of the channels  
%PWM ... Corresponding ideal output PWM to a given input PWM  
A 7bit output-PWM-register is used for the comparison. The register with the lower value is subtracted from the  
higher one. This result is multiplied by four and compared with the higher value.  
1.8  
Other Test modes  
The test pin is also used to test the regulated channels in the production. With a special sequence on this pin  
the power stages of the regulated channels can be controlled direct from the input. No status feedback of the  
regulated channels is given. The status output is clocked by the regulator logic. The output sequence is a indi-  
cation of a proper logic functionality. The following table shows the functionality of this special test mode  
EN  
1
IN  
X
1
TEST  
OUT  
X
STATUS  
Note  
disable test mode  
Drift mode  
X
1
X
1
1
on  
0
X
off  
test pattern  
test condition one  
0
0
0
0
X
X
0
1
off  
off  
off  
on  
test pattern  
test pattern  
test pattern  
test pattern  
test condition two  
test condition three  
test condition four  
test condition four  
For more details about the test condition four see timing diagram.  
11/21  
L9352  
Diagnostic Table  
The status follows the input signal in normal operating conditions.  
If any error is detected the status is inverted.  
Operating Condition  
Test  
Input  
TEST  
Enable  
Input  
ENA  
Control Input Power Output/  
non-reg./reg. Current reg.  
Status  
Output  
ST  
IN  
Q
Normal function  
L
L
L
L
L
L
H
L
OFF  
OFF  
OFF  
ON  
L
L
L
H/PWM  
L
H/PWM  
H
H
Open load or short to ground  
L
L
L
L
L
L
H
H
L
OFF  
OFF  
OFF  
ON  
X
X
H
L
H/PWM  
L
H/PWM  
Overload or short to supply  
Latched overload  
Reset latch  
L
L
L
L
H
H
H/PWM  
H/PWM  
X
OFF  
OFF  
OFF  
OFF  
L
L
L
L
H –> L  
H
Reset latch  
H/PWM –> L  
Overtemperature  
Latched overtemperature  
Reset latch  
L
L
L
L
H
H
H/PWM  
H/PWM  
X
OFF  
OFF  
OFF  
OFF  
L
L
L
L
H –> L  
H
Reset latch  
H/PWM –> L  
Recirculation error (reg.chn.)  
Latched error  
L
L
L
L
H
H
PWM  
PWM  
X
OFF  
OFF  
OFF  
OFF  
L
L
L
L
Reset latch  
Reset latch  
H –> L  
H
PWM –> L  
(1)  
L
L
L
L
L
L
H
H
L
OFF  
OFF  
OFF  
OFF  
H
H
H
L
Clock failure (clock loss)  
H/PWM  
L
H/PWM  
(2)  
H
H
H
H
L
L
H
H
L
OFF  
OFF  
ON  
X
X
L
Drift  
H/PWM  
H/PWM  
H/PWM  
Failure  
No failure  
ON  
H
(1) during power on sequence only detected on channel 3 and 4 (see description).  
(2) This input combination is also used for an internal chip-test and must not be used.  
12/21  
L9352  
2.0  
Timing Diagrams  
2.1 Non Regulated Channels  
Figure 5. Output Slope, Resistive Load  
VI  
VIH  
VIL  
t
tOFF  
tr  
tON  
tf  
VQ  
VS  
85% V S  
15% V S  
t
99AT0061  
Figure 6. Overload Switch-OFF Delay  
IQ  
IQO  
IQU  
t
tD  
tSCP  
VST  
tsf  
t
00RS0001  
13/21  
L9352  
Figure 7. Normal Condition, Resistive Load, Pulsed Input Signal  
VIN  
VQ  
IQ  
IQU  
tD  
tD  
VST  
99AT0063  
Figure 8. Current Overload  
tD  
Reset Fail  
register  
VIN  
VQ  
Set Fail  
register  
IQO  
IQ  
tD  
VST  
99AT0064  
14/21  
L9352  
Figure 9. Diagnostic Status Output at Different OPEN Load Current Conditions  
Under current condition followed by normal operation  
tD  
VIN  
VQ  
IQ  
IQU  
tD  
VST  
99AT0065  
Open load condition in the case of pulsed input signal followed by normal operation  
tD  
VIN  
VQ  
IQU  
IQ  
tD  
VST  
99AT0066  
15/21  
L9352  
Figure 10. Pulsed Open Load Conditions (regulated and non-regulated channels)  
VIN  
VQ  
0.33 x VS  
IQ  
tD  
tlf  
tlf  
VST  
99AT0067  
2.2 Regulated Channels (timing diagrams of diagnostic with 2kHz PWM input signal)  
Figure 11. Normal Condition, Inductive Load  
tDREG  
500µs  
VIN  
VQ  
IQ  
Target Current  
256µs  
256µs  
VST  
99AT0068  
16/21  
L9352  
Figure 12. Current Overload  
tDREG  
Reset Fail  
register  
500µs  
VIN  
VQ  
IQ  
Set fail  
registor  
IQO  
tsf  
VST  
99AT0069  
Figure 13. Recirculation Error  
tDREG  
Reset Fail  
register  
500µs  
VIN  
VQ  
Set Fail  
register  
target current  
IQ  
VST  
99AT0070  
17/21  
L9352  
Figure 14. Current Regulation Error (e.g. as a result of voltage reduction)  
500µs  
VIN  
VQ  
IQ  
PWMratio = 90%  
target current  
tRE  
VST  
99AT0071  
Figure 15. Overtemperature  
Overtemperature  
Condition  
tDREG  
Reset Fail  
register  
500µs  
VIN  
VQ  
Set Fail  
register  
target current  
IQ  
VST  
99AT0072  
18/21  
L9352  
Figure 16.  
Test mode 4  
VEN low  
VTEST  
VIN3/4  
VQ3/4  
99AT0073  
19/21  
L9352  
mm  
inch  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
OUTLINE AND  
MECHANICAL DATA  
A
a1  
a2  
a3  
b
3.60  
0.141  
0.012  
0.130  
0.004  
0.015  
0.012  
0.630  
0.385  
0.570  
0.10  
0.30 0.004  
3.30  
0
0.10  
0
0.22  
0.23  
0.38 0.008  
0.32 0.009  
16.00 0.622  
9.80 0.370  
14.50 0.547  
c
D (1) 15.80  
D1  
E
9.40  
13.90  
e
0.65  
0.0256  
0.435  
e3  
11.05  
E1 (1) 10.90  
E2  
11.10 0.429  
2.90  
0.437  
0.114  
0.244  
0.126  
0.004  
0.626  
0.043  
0.043  
E3  
E4  
G
H
5.80  
2.90  
0
6.20 0.228  
3.20 0.114  
0.10  
0
15.50  
15.90 0.610  
1.10  
h
L
0.80  
1.10 0.031  
10°(max.)  
8 °(max.)  
N
S
PowerSO36  
(1): "D" and "E1" do not include mold flash or protrusions  
- Mold flash or protrusions shall not exceed 0.15mm (0.006 inch)  
- Critical dimensions are "a3", "E" and "G".  
N
N
a2  
A
c
a1  
e
A
DETAIL B  
lead  
E
DETAIL A  
e3  
H
DETAIL A  
D
slug  
a3  
BOTTOM VIEW  
36  
19  
E3  
B
E1  
E2  
D1  
DETAIL B  
0.35  
Gage Plane  
- C -  
SEATING PLANE  
1
1
8
S
L
G
C
M
b
0.12  
A B  
PSO36MEC  
h x 45˚  
(COPLANARITY)  
20/21  
L9352  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
- Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
21/21  

相关型号:

L9352_08

Intelligent quad (2 x 5A / 2 x 2.5A) low-side switch
STMICROELECTR

L9353M

IF Filter for Audio Applications
EPCOS

L9355

Dual Peripheral Driver
ETC

L9360

Injector Driver
ETC

L9360D

Injector Driver
ETC

L9360M

Injector Driver
ETC

L9362

QUAD LOW SIDE DRIVER
STMICROELECTR

L9363

QUAD INTEGRATED LOW SIDE DRIVER
STMICROELECTR

L9374

Four channel valve driver
STMICROELECTR

L9374XP

Four channel valve driver
STMICROELECTR

L9375

PWM BASED PRPHL DRVR, PDSO36, LEAD FREE, SOP-36
STMICROELECTR

L9375LF

PWM BASED PRPHL DRVR, PDSO36, GREEN, SOP-36
STMICROELECTR