LM358AWD [STMICROELECTRONICS]

Low Power Dual Operational Amplifiers; 低功耗双运算放大器
LM358AWD
型号: LM358AWD
厂家: ST    ST
描述:

Low Power Dual Operational Amplifiers
低功耗双运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM358W-LM358AW  
Low Power Dual Operational Amplifiers  
Internally frequency compensated  
Large DC voltage gain: 100dB  
Wide bandwidth (unity gain): 1.1mHz  
(temperature compensated)  
N
DIP-8  
(Plastic Package)  
Very low supply current/op (500µA) essentially  
independent of supply voltage  
Low input bias current: 20nA  
(temperature compensated)  
Low input offset voltage: 2mV  
Low input offset current: 2nA  
D & S  
SO-8 & miniSO-8  
(Plastic Micropackage)  
Input common-mode voltage range includes  
ground  
Differential input voltage range equal to the  
power supply voltage  
P
Large output voltage swing 0V to (Vcc - 1.5V)  
ESD internal protection: 1.5kV  
TSSOP8  
(Thin Shrink Small Outline Package)  
Description  
Pin Connections (top view)  
These circuits consist of two independent, high-  
gain, internally frequency-compensated which  
were designed specifically to operate from a  
single power supply over a wide range of voltages.  
The low power supply drain is independent of the  
magnitude of the power supply voltage.  
1
2
3
4
8
7
6
5
-
+
-
Application areas include transducer amplifiers,  
DC gain blocks and all the conventional op-amp  
circuits which now can be more easily  
implemented in single power supply systems. For  
example, these circuits can be directly supplied  
with the standard +5V which is used in logic  
systems and will easily provide the required  
interface electronics without requiring any  
additional power supply.  
+
1 - Output 1  
2 - Inverting input  
3 - Non-inverting input  
-
4 - VCC  
5 - Non-inverting input 2  
6 - Inverting input 2  
7 - Output 2  
In the linear mode the input common-mode  
voltage range includes ground and the output  
voltage can also swing to ground, even though  
operated from only a single power supply voltage.  
+
8 - VCC  
Rev 2  
1/16  
July 2005  
www.st.com  
16  
LM358W-LM358AW  
Order Codes  
Temperature  
Range  
Part Number  
Package  
Packaging  
Marking  
LM358WN  
LM358WD  
LM358WDT  
LM358AWD  
LM358AWDT  
DIP-8  
Tube  
LM358WN  
358W  
0°C, +70°C  
SO-8  
Tube or Tape & Reel  
358AW  
2/16  
LM358W-LM358AW  
Absolute Maximum Ratings  
1
Absolute Maximum Ratings  
Table 1.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter LM158W,AW LM258W,AW LM358W,AW Unit  
V
Supply voltage  
Input Voltage  
+32  
-0.3 to +32  
+32  
V
V
CC  
Vi  
V
Differential Input Voltage  
V
id  
(1)  
P
500  
mW  
Power Dissipation  
tot  
(2)  
Infinite  
50  
Output Short-circuit Duration  
(3)  
I
mA  
°C  
°C  
kV  
V
Input Current  
in  
T
Operating Free-air Temperature Range  
Storage Temperature Range  
-55 to +125  
-40 to +105  
-65 to +150  
1.5  
0 to +70  
oper  
T
stg  
(4)  
HBM: Human Body Model  
(5)  
ESD  
200  
MM: Machine Model  
CDM: Charged Device Model  
1.5  
kV  
1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.  
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is  
approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from  
simultaneous short-circuit on all amplifiers.  
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the  
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes  
clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action  
can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive)  
for the time duration than an input is driven negative. This is not destructive and normal output will set up again  
for input voltage higher than -0.3V.  
4. Human body model, 100pF discharged through a 1.5kresistor into pin of device.  
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with  
no external series resistor (internal resistor < 5), into pin to pin of device.  
3/16  
Typical Application Schematic  
LM358W-LM358AW  
2
Typical Application Schematic  
Figure 1. Schematic diagram (1/2 LM158W)  
4/16  
LM358W-LM358AW  
Electrical Characteristics  
3
Electrical Characteristics  
+
-
Table 2.  
Symbol  
V
= +5V, V = Ground, V = 1.4V, T  
= +25°C (unless otherwise specified)  
CC  
CC  
o
amb  
LM158AW-LM258AW  
LM358AW  
LM158W-LM258W  
LM358W  
Parameter  
Unit  
Min. Typ.  
Max.  
Min. Typ.  
Max.  
(1)  
Input Offset Voltage - note  
= +25°C  
T
1
3
2
7
5
amb  
LM158, LM258  
LM158A  
V
mV  
io  
2
4
9
7
T
T  
T  
min  
amb max  
LM158, LM258  
Input Offset Current  
T
= +25°C  
I
2
10  
30  
2
30  
40  
nA  
nA  
amb  
io  
T
T  
T  
min  
amb max  
(2)  
Input Bias Current - note  
= +25°C  
I
T
20  
50  
100  
20  
150  
200  
ib  
amb  
T
T  
T  
min  
amb max  
Large Signal Voltage Gain  
= +15V, R = 2kΩ, V = 1.4V to 11.4V  
V
V/  
mV  
CC  
L
o
A
vd  
50  
25  
100  
50  
25  
100  
T
= +25°C  
amb  
T
T  
T  
min  
amb max  
Supply Voltage Rejection Ratio (R 10k)  
s
+
V
T
= 5V to 30V  
= +25°C  
CC  
SVR  
dB  
mA  
V
65  
65  
100  
0.7  
65  
65  
100  
0.7  
amb  
T
T  
T  
min  
amb max  
Supply Current, all Amp, no load  
T
T
T  
T  
T  
T  
, V = +5V  
I
1.2  
1
1.2  
2
min  
min  
amb  
amb  
max  
max  
CC  
CC  
, V = +30V  
CC  
Input Common Mode Voltage Range  
(3)  
V
T
= +30V - note  
= +25°C  
CC  
V
+
+
icm  
V
-1.5  
V
-1.5  
0
0
0
0
CC  
CC  
amb  
+
+
T
T  
T  
V
-2  
V
-2  
CC  
min  
amb max  
CC  
Common Mode Rejection Ratio (R 10k)  
s
T
= +25°C  
CMR  
70  
60  
85  
40  
70  
60  
85  
40  
dB  
amb  
T
T  
T  
min  
amb max  
Output Current Source  
= +15V, V = +2V, V = +1V  
I
mA  
source  
V
20  
60  
20  
60  
CC  
o
id  
Output Sink Current (V = -1V)  
id  
I
V
V
= +15V, V = +2V  
o
10  
12  
20  
50  
10  
12  
20  
50  
mA  
µA  
sink  
CC  
CC  
= +15V, V = +0.2V  
o
5/16  
Electrical Characteristics  
LM358W-LM358AW  
+
-
Table 2.  
Symbol  
V
= +5V, V = Ground, V = 1.4V, T  
= +25°C (unless otherwise specified)  
CC  
CC  
o
amb  
LM158AW-LM258AW  
LM158W-LM258W  
LM358W  
LM358AW  
Parameter  
Unit  
Min. Typ.  
Max.  
Min. Typ.  
Max.  
Output Voltage Swing ( R = 2kΩ)  
L
+
+
V
-1.5  
V
-1.5  
V
T
= +25°C  
0
0
0
0
CC  
CC  
OPP  
amb  
+
+
T
T  
T  
V
-2  
V
-2  
CC  
min  
amb max  
CC  
+
High Level Output Voltage (V  
= 30V)  
CC  
T
= +25°C, R = 2kΩ  
L
amb  
26  
26  
27  
27  
27  
28  
26  
26  
27  
27  
27  
28  
V
V
T
T
T  
T  
OH  
min  
amb max  
= +25°C, R = 10kΩ  
amb  
L
T
T  
T  
min  
amb max  
Low Level Output Voltage (R = 10k)  
L
V
T
= +25°C  
5
20  
20  
5
20  
20  
mV  
V/µs  
MHz  
%
OL  
amb  
T
T  
T  
min  
amb max  
Slew Rate  
= 15V, V = 0.5 to 3V, R = 2k,  
V
SR  
CC  
i
L
C = 100pF, unity Gain  
0.3  
0.7  
0.6  
0.3  
0.7  
0.6  
L
Gain Bandwidth Product  
V
= 30V, f =100kHz,V = 10mV, R = 2k,  
GBP  
THD  
CC  
in L  
C = 100pF  
1.1  
1.1  
L
Total Harmonic Distortion  
f = 1kHz, A = 20dB, R = 2kΩ, V = 2V ,  
pp  
C = 100pF, V = 2Vpp  
v
L
o
0.02  
0.02  
L
O
Equivalent Input Noise Voltage  
nV  
-----------  
e
n
f = 1kHz, R = 100Ω, V = 30V  
Hz  
55  
7
55  
7
s
CC  
µV/  
°C  
DV  
DI  
Input Offset Voltage Drift  
Input Offset Current Drift  
15  
30  
io  
pA/  
°C  
10  
200  
10  
300  
Iio  
(4)  
Channel Separation - note  
1kHz f 20kHZ  
V /V  
dB  
o1 o2  
120  
120  
1. Vo = 1.4V, Rs = 0, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V  
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output  
so no loading change exists on the input lines.  
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The  
upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage.  
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these  
external parts. This typically can be detected as this type of capacitance increases at higher frequences.  
6/16  
LM358W-LM358AW  
Electrical Characteristics  
Figure 2. Open loop frequency response  
Figure 3. Large signal frequency response  
(NOTE 3)  
OPEN LOOP FREQUENCY RESPONSE  
140  
LARGE SIGNAL FREQUENCY RESPONSE  
20  
10M  
100k  
W
W
0.1  
F
120  
100  
m
1k  
W
+15V  
-
V
-
CC  
VO  
V
V
I
V
I
15  
10  
O
V
/2  
CC  
2k  
+
+
W
+7V  
80  
60  
40  
V
CC  
-55°C  
= 30V &  
T
amb  
+125°C  
5
0
20  
0
V
= +10 to + 15V &  
CC  
T
amb  
+125°C  
-55°C  
1.0 10  
100  
1k  
10k 100k 1M 10M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Voltage follower pulse response  
Figure 5. Voltage follower pulse response  
VOLTAGE FOLLOWER PULSSE RESPONSE  
VOLAGE FOLLOWER PULSE RESPONSE  
4
(SMALL SIGNAL)  
500  
RL 2 k  
W
3
VCC = +15V  
+
450  
e
2
1
0
3
2
1
O
e
l
-
50pF  
400  
350  
300  
250  
Input  
Output  
T
V
= +25°C  
= 30 V  
amb  
CC  
0
10  
20  
30  
40  
0
1
2
3
4
5
6
7
8
TIME ( s)  
TIME ( s)  
m
m
Figure 6. Input current  
Figure 7. Output characteristics  
INPUT CURRENT (Note 1)  
OUTPUT CHARACTERISTICS  
10  
90  
80  
70  
60  
VCC = +5V  
VCC = +15V  
VCC = +30V  
V = 0 V  
I
V
V
= +30 V  
= +15 V  
CC  
1
50  
40  
v
cc  
CC  
v
/2  
cc  
-
30  
20  
10  
0
0.1  
I
O
V
= +5 V  
V
O
+
CC  
T
= +25°C  
10  
amb  
0.01  
0,001  
0,01  
0,1  
1
100  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
7/16  
Electrical Characteristics  
LM358W-LM358AW  
Figure 8. Output characteristics  
Figure 9. Current limiting  
CURRENT LIMITING (Note 1)  
OUTPUT CHARACTERISTICS  
90  
80  
70  
60  
8
7
6
V
CC  
-
I
O
+
-
V
V
/2  
O
CC  
+
5
I
50  
40  
O
4
30  
20  
10  
0
Independent of V  
CC  
3
2
1
T
= +25°C  
amb  
-55 -35 -15  
5
25 45 65 85 105 125  
0,01  
0,1  
1
10  
100  
0,001  
OUTPUT SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
Figure 10. Input voltage range  
Figure 11. Positive supply voltage  
INPUT VOLTAGE RANGE  
160  
15  
10  
5
W
R L = 20k  
120  
W
R L = 2k  
Négative  
80  
40  
Positive  
0
10  
20  
30  
40  
0
5
10  
15  
POSITIVE SUPPLY VOLTAGE (V)  
POWER SUPPLY VOLTAGE (±V)  
Figure 12. Input voltage range  
Figure 13. Supply current  
SUPPLY CURRENT  
160  
4
3
2
1
W
R L = 20k  
V
CC  
120  
80  
I
D
mA  
-
W
R L = 2k  
+
40  
T
= 0°C to +125°C  
amb  
T
= -55°C  
amb  
0
10  
20  
30  
0
10  
20  
30  
POSITIVE SUPPLY VOLTAGE (V)  
POSITIVE SUPPLY VOLTAGE (V)  
8/16  
LM358W-LM358AW  
Electrical Characteristics  
Figure 15. Gain bandwidth product  
Figure 14. Input current  
100  
1.5  
1.35  
1.2  
75  
50  
25  
1.05  
0.9  
VCC  
=
15V  
0.75  
0.6  
0.45  
0.3  
Tamb= +25°C  
0.15  
0
-55-35-15 5 25 45 65 85 105 125  
0
10  
20  
30  
TEMPERATURE (°C)  
POSITIVE SUPPLY VOLTAGE (V)  
Figure 16. Power supply rejection ratio  
Figure 17. Common mode rejection ratio  
115  
110  
105  
100  
95  
115  
110  
SVR  
105  
100  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
-55-35-15 5 25 45 65 85 105 125  
60  
-55-35-15 5 25 45 65 85 105 125  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
9/16  
Typical Applications  
LM358W-LM358AW  
4
Typical Applications  
(single supply voltage) V = +5V  
cc  
dc  
Figure 18. AC coupled inverting amplifier  
Figure 19. Non-inverting DC amplifier  
Rf  
100k  
R2  
R1  
W
Rf  
A
V= 1 +  
A = -  
V
R1  
10k  
W
R1  
(as shown A = -10)  
A
(As shown V = 101)  
V
CI  
W
10k  
eO  
+5V  
Co  
1/2  
LM158  
1/2  
LM158  
2VPP  
0
eo  
R
B
W
R
L
W
6.2k  
10k  
eI  
R2  
100k  
R3  
W
100k  
~
V
W
R2  
CC  
1M  
W
R1  
W
10k  
C1  
m
10  
F
0
eI  
(mV)  
Figure 20. AC coupled non-inverting amplifier Figure 21. DC summing amplifier  
e 1  
W
R1  
100k  
R2  
1M  
100k  
W
W
R2  
R1  
A
= 1 +  
V
(as shown A = 11)  
V
C1  
0.1 F  
m
eO  
1/2  
LM158  
Co  
100k  
W
1/2  
LM158  
2VPP  
0
eo  
CI  
e 2  
e 3  
W
W
100k  
R
B
W
R
L
10k  
6.2k  
100k  
W
R3  
1M  
eI  
~
W
100k  
W
R4  
100k  
W
e 4  
100k  
W
V
CC  
C2  
R5  
W
100k  
eo = e1 + e2 - e3 - e4  
where (e1 + e2) (e3 + e4)  
to keep eo 0V  
m
10 F  
Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC  
instrumentation amplifier  
R1  
100k  
W
R4  
100k  
R3  
100k  
R4  
100k  
W
R2  
100k  
W
W
1/2  
LM158  
W
e1  
R1  
100k  
eO  
1/2  
LM158  
W
Gain adjust  
R3  
100k  
R2  
W
2k  
R5  
100k  
W
W
1/2  
LM158  
1/2  
LM158  
R6  
100k  
R7  
100k  
W
V
o
+V1  
+V2  
W
1/2  
LM158  
e2  
if R1 = R5 and  
if R1 = R5 and R3 = R4 = R6 = R7  
2R1  
R3 = R4 = R6 = R7  
eo = [1 +  
] ( (e2 + e1)  
2R1  
eo = [ 1 +  
] ( (e2 + e1)  
-----------  
R2  
-----------  
R2  
As shown eo = 101 (e2 + e1)  
As shown eo = 101 (e2 + e1)  
10/16  
LM358W-LM358AW  
Typical Applications  
Figure 25. Low drift peak detector  
Figure 24. Using symmetrical amplifiers to  
reduce input current  
I
1/2  
LM158  
B
eo  
I I  
I
B
1/2  
LM158  
e I  
eo  
I
I
I
B
B
1/2  
LM158  
2N 929  
Zo  
C
2I  
e I  
B
1mF  
m
0.001 F  
ZI  
2N 929  
I
0.001  
m
F
B
B
I
2I  
B
1/2  
B
W
3M  
LM158  
R
1/2  
LM158  
3R  
3M  
1M  
W
Input current compensation  
W
I
B
Input current  
compensation  
W
1.5M  
I
B
Figure 26. Active band-pass filter  
R1  
100k  
W
C1  
330pF  
1/2  
R2  
100k  
R5  
470k  
LM158  
W
W
+V1  
R4  
10M  
W
1/2  
LM158  
C2  
R6  
470k  
330 F  
p
R3  
100k  
W
W
Vo  
1/2  
LM158  
R7  
100k  
W
VCC  
C3  
R8  
100k  
m
10  
F
W
11/16  
Package Mechanical Data  
LM358W-LM358AW  
5
Package Mechanical Data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK packages.  
These packages have a Lead-free second level interconnect. The category of second level  
interconnect is marked on the package and on the inner box label, in compliance with JEDEC  
Standard JESD97. The maximum ratings related to soldering conditions are also marked on  
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:  
www.st.com..  
5.1  
DIP8 Package  
Plastic DIP-8 MECHANICAL DATA  
mm.  
TYP  
3.3  
inch  
TYP.  
0.130  
DIM.  
MIN.  
MAX.  
MIN.  
MAX.  
A
a1  
B
0.7  
1.39  
0.91  
0.028  
0.055  
0.036  
1.65  
1.04  
0.065  
0.041  
B1  
b
0.5  
0.020  
b1  
D
E
0.38  
0.5  
9.8  
0.015  
0.020  
0.386  
8.8  
0.346  
0.100  
0.300  
0.300  
e
2.54  
7.62  
7.62  
e3  
e4  
F
7.1  
4.8  
0.280  
0.189  
I
L
3.3  
0.130  
Z
0.44  
1.6  
0.017  
0.063  
P001F  
12/16  
LM358W-LM358AW  
Package Mechanical Data  
5.2  
SO-8 Package  
SO-8 MECHANICAL DATA  
mm.  
inch  
DIM.  
MIN.  
TYP  
MAX.  
MIN.  
TYP.  
MAX.  
A
A1  
A2  
B
1.35  
1.75  
0.053  
0.069  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
13/16  
Package Mechanical Data  
LM358W-LM358AW  
5.3  
MiniSO-8 Package  
14/16  
LM358W-LM358AW  
Package Mechanical Data  
5.4  
TSSOP8 Package  
TSSOP8 MECHANICAL DATA  
mm.  
inch  
DIM.  
MIN.  
TYP  
MAX.  
1.2  
MIN.  
TYP.  
MAX.  
0.047  
0.006  
0.041  
0.012  
0.008  
0.122  
0.260  
0.177  
A
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
2.90  
6.20  
4.30  
0.15  
1.05  
0.30  
0.20  
3.10  
6.60  
4.50  
0.002  
0.031  
0.007  
0.004  
0.114  
0.244  
0.169  
1.00  
0.039  
c
D
3.00  
6.40  
4.40  
0.65  
0.118  
0.252  
0.173  
0.0256  
E
E1  
e
K
0˚  
8˚  
0˚  
8˚  
L
0.45  
0.60  
1
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
0079397/D  
15/16  
Revision History  
LM358W-LM358AW  
6
Revision History  
Date  
Revision  
Changes  
Nov. 2002  
July 2005  
1
3
First Release  
ESD protection inserted in Table 1 on page 3  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
16/16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY