LSM303DLM [STMICROELECTRONICS]

Sensor module:3-axis accelerometer and 3-axis magnetometer; 传感器模块: 3轴加速计和3轴磁强计
LSM303DLM
型号: LSM303DLM
厂家: ST    ST
描述:

Sensor module:3-axis accelerometer and 3-axis magnetometer
传感器模块: 3轴加速计和3轴磁强计

传感器
文件: 总38页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LSM303DLM  
Sensor module:  
3-axis accelerometer and 3-axis magnetometer  
Preliminary data  
Features  
Analog supply voltage: 2.16 V to 3.6 V  
Digital supply voltage IOs: 1.8 V  
Power-down mode  
3 magnetic field channels and 3 acceleration  
channels  
LGA-28L (5x5x1.0 mm)  
±1.3 to ±8.1 gauss magnetic field full-scale  
The various sensing elements are manufactured  
by using specialized micromachining processes,  
while the IC interfaces are realized using a CMOS  
technology that allows the design of a dedicated  
circuit which is trimmed to better match the  
sensing element characteristics. The  
LSM303DLM has a linear acceleration full-scale  
of ±2 g / ±± g / ±8 g and a magnetic field full-scale  
of ±1.3 / ±1.9 / ±2.5 / ±±.0 / ±±.7 / ±5.6 / ±8.1  
gauss, both fully selectable by the user.  
±2 g/±± g/±8 g dynamically selectable full-  
scale  
High performance g-sensor  
2
I C serial interface  
2 independent programmable interrupt  
generators for free-fall and motion detection  
Accelerometer sleep-to-wakeup function  
6D orientation detection  
2
®
The LSM303DLM includes an I C serial bus  
ECOPACK , RoHS, and “Green” compliant  
interface that supports standard mode (100 kHz)  
and fast mode (±00 kHz). The system can be  
configured to generate an interrupt signal by  
inertial wakeup/free-fall events, as well as by the  
position of the device itself. Thresholds and timing  
of interrupt generators are programmable on the  
fly by the end user.  
Applications  
Compensated compass  
Map rotation  
Position detection  
Motion-activated functions  
Free-fall detection  
Magnetic and accelerometer parts can be  
enabled or put into power-down mode separately.  
The LSM303DLM is available in a plastic land grid  
array package (LGA), and is guaranteed to  
operate over an extended temperature range from  
-±0 to +85 °C.  
Intelligent power-saving for handheld devices  
Display orientation  
Gaming and virtual reality input devices  
Impact recognition and logging  
Vibration monitoring and compensation  
Table 1.  
Device summary  
Temp.  
Part number  
range  
[°C]  
Package Packing  
Description  
The LSM303DLM is a system-in-package  
featuring a 3D digital linear acceleration sensor  
and a 3D digital magnetic sensor.  
LSM303DLM  
LSM303DLMTR  
Tray  
-±0 to +85 LGA-28  
Tape and  
reel  
April 2011  
Doc ID 018725 Rev 1  
1/38  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
38  
 
Contents  
LSM303DLM  
Contents  
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.1  
1.2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
2.3.1  
Sensor I C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
±.1  
±.2  
±.3  
Linear acceleration sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
6
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.1  
6.2  
6.3  
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1±  
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.1  
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2
7.1.1  
7.1.2  
7.1.3  
I C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Linear acceleration digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Magnetic field digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8
9
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/38  
Doc ID 018725 Rev 1  
LSM303DLM  
Contents  
9.1  
Linear acceleration register description . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
9.1.1  
9.1.2  
9.1.3  
9.1.±  
9.1.5  
9.1.6  
9.1.7  
9.1.8  
9.1.9  
CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±  
CTRL_REG±_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CTRL_REG5_A (2±h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) 26  
HP_FILTER_RESET_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REFERENCE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STATUS_REG_A(27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . 27  
9.1.12 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
9.1.13 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1.1± INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1.15 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1.16 INT2_CFG_A (3±h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.1.17 INT2_SRC_A (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.1.18 INT2_THS_A (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.1.19 INT2_DURATION_A (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2  
Magnetic field sensing register description . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2.1  
9.2.2  
9.2.3  
9.2.±  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
CRA_REG_M (00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CRB_REG_M (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MR_REG_M (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
OUT_X_H_M (03), OUT_X_LH_M (0±h) . . . . . . . . . . . . . . . . . . . . . . . . 33  
OUT_Z_H_M (05), OUT_Z_L_M (06h) . . . . . . . . . . . . . . . . . . . . . . . . . 3±  
OUT_Y_H_M (07), OUT_Y_L_M (08h) . . . . . . . . . . . . . . . . . . . . . . . . . 3±  
SR_REG_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±  
IR_REG_M (0Ah/0Bh/0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±  
WHO_AM_I _M (0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3±  
10  
11  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Doc ID 018725 Rev 1  
3/38  
List of tables  
LSM303DLM  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table ±.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Table 5.  
I C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 16  
SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 17  
SAD and read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 21  
Normal-mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 22  
CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±  
CTRL_REG±_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±  
CTRL_REG±_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2±  
CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Sleep-to-wakeup configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REFERENCE_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STATUS_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
INT1_CFG_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
INT2_CFG_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
INT2_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Interrupt mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
INT2_SRC_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 1±.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 2±.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 3±.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table ±0.  
Table ±1.  
Table ±2.  
Table ±3.  
Table ±±.  
Table ±5.  
Table ±6.  
Table ±7.  
Table ±8.  
±/38  
Doc ID 018725 Rev 1  
LSM303DLM  
List of tables  
Table ±9.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 5±.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 6±.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
INT2_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
INT2_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CRA_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CRA_REG_M description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Data rate configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CRA_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Gain setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MR_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MR_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Magnetic sensor operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
IRA_REG_M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
IRB_REG_M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
IRC_REG_M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
WHO_AM_I_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Doc ID 018725 Rev 1  
5/38  
Block diagram and pin description  
LSM303DLM  
1
Block diagram and pin description  
1.1  
Block diagram  
Figure 1.  
Block diagram  
A/D  
converter  
Control  
Logic  
Sensing Block  
Sensing Interface  
X+  
Y+  
Z+  
CHARGE  
AMPLIFIER  
SDA_A  
SCL_A  
I (a)  
+
MUX  
-
SDA_M  
SCL_M  
Z-  
Y-  
X-  
INT1  
INT2  
X+  
CHARGE  
AMPLIFIER  
Y+  
Z+  
I (M)  
+
MUX  
-
Z-  
Y-  
X-  
TRIMMING  
CIRCUITS  
INTERRUPT GEN.  
CLOCK  
REFERENCE  
BUILT-IN  
SET/RESET  
OFFSET  
CIRCUITS  
CIRCUITS  
AM09239V1  
6/38  
Doc ID 018725 Rev 1  
 
 
LSM303DLM  
Block diagram and pin description  
1.2  
Pin description  
Figure 2.  
Pin connection  
:
$)2%#4)/. /&  
$%4%#4!",%  
9
ꢅꢅ  
ꢅꢂ  
-!'.%4)# &)%,$3  
ꢅꢃ  
.#  
2%3  
'.$  
3#,?-  
3$!?-  
$2$9?-  
2%3  
8
2%3  
3!ꢇ?!  
.#  
,3-ꢆꢇꢆ$-  
ꢀ"/44/- 6)%7ꢁ  
:
3%4ꢃ  
6$$  
2%3  
9
$)2%#4)/. /&  
$%4%#4!",%  
#ꢃ  
ꢃꢉ  
ꢃꢄ  
!##%,%2!4)/.3  
8
!-ꢇꢊꢇꢄꢄVꢅ  
Table 2.  
Pin description  
Name  
Pin#  
Function  
1
2
3
Reserved  
GND  
Connect to GND  
0 V supply  
Reserved  
Connect to GND  
Linear acceleration signal I2C less significant bit of the device  
address (SA0)  
±
SA0_A  
5
NC  
Internally not connected  
Power supply  
6
Vdd  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SET2  
Connect to Vdd  
8
Leave unconnected  
9
Leave unconnected  
10  
11  
12  
13  
1±  
15  
16  
17  
18  
19  
Leave unconnected  
Leave unconnected  
S/R capacitor connection (C2)  
Leave unconnected  
Reserved  
Reserved  
C1  
Leave unconnected  
Reserved capacitor connection (C1)  
S/R capacitor connection (C2)  
Connect to GND  
SET1  
Reserved  
DRDY_M  
SDA_M  
Magnetic signal interface data ready  
Magnetic signal interface I2C serial data (SDA)  
Doc ID 018725 Rev 1  
7/38  
 
 
Block diagram and pin description  
LSM303DLM  
Table 2.  
Pin#  
Pin description (continued)  
Name  
Function  
20  
21  
22  
23  
2±  
25  
26  
27  
28  
SCL_M  
NC  
Magnetic signal interface I2C serial clock (SCL)  
Internally not connected  
Vdd_IO  
Reserved  
SCL_A  
SDA_A  
INT1  
Signal interface power supply for I/O pins  
Connect to Vdd_IO  
Linear acceleration signal interface I2C serial clock (SCL)  
Linear acceleration signal interface I2C serial data (SDA)  
Inertial Interrupt 1  
INT2  
Inertial Interrupt 2  
Reserved  
Connect to GND  
8/38  
Doc ID 018725 Rev 1  
LSM303DLM  
Module specifications  
2
Module specifications  
2.1  
Sensor characteristics  
(a)  
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted  
.
Table 3.  
Symbol  
Sensor characteristics  
Parameter  
Test conditions  
FS bit set to 00  
Min.  
Typ.(1)  
Max.  
Unit  
±2.0  
±±.0  
±8.0  
±1.3  
±1.9  
±2.5  
±±.0  
±±.7  
±5.6  
±8.1  
Linear acceleration  
LA_FS  
M_FS  
FS bit set to 01  
g
measurement range(2)  
FS bit set to 11  
GN bits set to 001  
GN bits set to 010  
GN bits set to 011  
Magnetic measurement range GN bits set to 100  
GN bits set to 101  
gauss  
GN bits set to 110  
GN bits set to 111  
FS bit set to 00  
12-bit representation  
1
2
FS bit set to 01  
Linear acceleration sensitivity  
LA_So  
mg/digit  
12-bit representation  
FS bit set to 11  
12-bit representation  
3.9  
GN bits set to 001 (X,Y)  
GN bits set to 001 (Z)  
GN bits set to 010 (X,Y)  
GN bits set to 010 (Z)  
GN bits set to 011 (X,Y)  
GN bits set to 011 (Z)  
GN bits set to 100 (X,Y)  
GN bits set to 100 (Z)  
GN bits set to 101 (X,Y)  
GN bits set to 101 (Z)  
GN bits set to 110 (X,Y)  
GN bits set to 110 (Z)  
1100  
980  
855  
760  
670  
600  
±50  
±00  
±00  
355  
330  
295  
230  
205  
LSB/  
M_GN  
Magnetic gain setting  
gauss  
GN bits set to 111(2) (X,Y)  
GN bits set to 111(2) (Z)  
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.  
Doc ID 018725 Rev 1  
9/38  
 
 
 
Module specifications  
LSM303DLM  
Table 3.  
Symbol  
Sensor characteristics (continued)  
Parameter  
Test conditions  
Min.  
Typ.(1)  
Max.  
Unit  
Linear acceleration sensitivity  
change vs. temperature  
LA_TCSo  
FS bit set to 00  
±0.01  
%/°C  
Linear acceleration typical  
LA_TyOff Zero-g level offset  
FS bit set to 00  
±60  
mg  
accuracy(3),(±)  
Linear acceleration Zero-g level  
change vs. temperature  
LA_TCOff  
Max. delta from 25 °C  
±0.5  
±1  
mg/°C  
Cross field = 0.5 gauss  
H applied = ±3 gauss  
%FS/  
gauss  
M_CAS Magnetic cross-axis sensitivity  
No permitting effect on  
zero reading  
M_EF  
M_R  
Maximum exposed field  
Magnetic resolution  
10000  
gauss  
5
mgauss  
Sensitivity starts to  
M_DF  
Disturbing field  
degrade. Use S/R pulse to  
restore sensitivity  
20  
gauss  
°C  
Top  
Operating temperature range  
-±0  
+85  
1. Typical specifications are not guaranteed.  
2. Verified by wafer level test and measurement of initial offset and sensitivity.  
3. Typical Zero-g level offset value after MSL3 preconditioning.  
±. Offset can be eliminated by enabling the built-in high-pass filter.  
2.2  
Electrical characteristics  
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted.  
Table 4.  
Symbol  
Electrical characteristics  
Test  
Parameter  
Min.  
Typ.(1)  
Max.  
Unit  
conditions  
Vdd  
Supply voltage  
2.16  
1.71  
3.6  
V
V
Vdd_IO  
Module power supply for I/O  
1.8  
Vdd+0.1  
Current consumption in normal  
Idd  
360  
µA  
mode(2)  
-
Current consumption in power-  
down mode  
IddPdn  
Top  
2
µA  
°C  
Operating temperature range  
-±0  
+85  
1. Typical specifications are not guaranteed.  
2. Magnetic sensor setting ODR = 7.5 Hz. Accelerometer sensor ODR = 50 Hz.  
10/38  
Doc ID 018725 Rev 1  
 
 
LSM303DLM  
Module specifications  
2.3  
Communication interface characteristics  
2
2.3.1  
Sensor I C - inter IC control interface  
Subject to general operating conditions for Vdd and top.  
2
Table 5.  
Symbol  
I C slave timing values  
I2C standard mode (1)  
I2C fast mode (1)  
Parameter  
Unit  
KHz  
µs  
Min.  
0
Max.  
Min.  
0
Max.  
f(SCL)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock frequency  
SCL clock low time  
SCL clock high time  
SDA setup time  
100  
±00  
±.7  
±.0  
250  
0.01  
1.3  
0.6  
100  
0.01  
ns  
µs  
SDA data hold time  
SDA and SCL rise time  
3.±5  
1000  
300  
0.9  
300  
300  
(2)  
(2)  
t
r(SDA) tr(SCL)  
tf(SDA) f(SCL)  
th(ST)  
tsu(SR)  
20 + 0.1Cb  
ns  
t
SDA and SCL fall time  
20 + 0.1Cb  
0.6  
START condition hold time  
±
Repeated START condition  
setup time  
±.7  
±
0.6  
0.6  
1.3  
µs  
tsu(SP)  
STOP condition setup time  
Bus free time between STOP  
and START condition  
tw(SP:SR)  
±.7  
1. Data based on standard I2C protocol requirement, not tested in production.  
2. Cb = total capacitance of one bus line, in pF.  
2
(b)  
Figure 3.  
I C slave timing diagram  
5(3($7('  
67$57  
67$57ꢀ  
WVXꢁ65ꢂ  
67$57  
WZꢁ63ꢃ65ꢂ  
6'$ꢀ  
WVXꢁ6'$ꢂ  
WKꢁ6'$ꢂ  
WIꢁ6'$ꢂ  
WUꢁ6'$ꢂ  
6723  
WVXꢁ63ꢂ  
6&/ꢀ  
WKꢁ67ꢂ WZꢁ6&//ꢂ  
WZꢁ6&/+ꢂ  
WUꢁ6&/ꢂ  
WIꢁ6&/ꢂ  
b. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.  
Doc ID 018725 Rev 1  
11/38  
 
 
 
Absolute maximum ratings  
LSM303DLM  
3
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 6.  
Symbol  
Absolute maximum ratings  
Ratings  
Maximum value  
Unit  
Vdd  
Vdd_IO  
Vin  
Supply voltage  
-0.3 to ±.8  
-0.3 to ±.8  
V
V
I/O pins supply voltage  
Input voltage on any control pin (SCL, SDA)  
-0.3 to Vdd_IO +0.3  
3,000 for 0.5 ms  
10,000 for 0.1 ms  
3,000 for 0.5 ms  
10,000 for 0.1 ms  
-±0 to +85  
V
g
APOW  
Acceleration (any axis, powered, Vdd = 2.5 V)  
Acceleration (any axis, unpowered)  
g
g
AUNP  
g
TOP  
Operating temperature range  
Storage temperature range  
°C  
°C  
TSTG  
-±0 to +125  
This is a mechanical shock sensitive device, improper handling can cause permanent  
damage to the part.  
This is an ESD sensitive device, improper handling can cause permanent damage to  
the part.  
12/38  
Doc ID 018725 Rev 1  
 
 
LSM303DLM  
Terminology  
4
Terminology  
4.1  
Linear acceleration sensitivity  
Linear acceleration sensitivity describes the gain of the accelerometer sensor and can be  
determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations,  
this can be done easily by pointing the selected axis towards the ground, noting the output  
value, rotating the sensor 180 degrees (pointing to the sky) and noting the output value  
again. By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger  
output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity  
of the sensor. This value changes very little over temperature and over time. The sensitivity  
tolerance describes the range of sensitivities of a large number of sensors.  
4.2  
Zero-g level  
Zero-g level Offset (LA_TyOff) describes the deviation of an actual output signal from the  
ideal output signal if no linear acceleration is present. A sensor in steady-state on a  
horizontal surface measures 0 g on both the X and Y axes, whereas the Z axis measures 1  
g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT  
registers 00h, data expressed as 2’s complement number). A deviation from the ideal value  
in this case is called Zero-g offset. Offset is, to some extent, a result of stress to the MEMS  
sensor and therefore the offset can slightly change after mounting the sensor onto a printed  
circuit board or exposing it to extensive mechanical stress. Offset changes little over  
temperature, see “Linear acceleration Zero-g level change vs. temperature” (LA_TCOff) in  
Table 3. The Zero-g level tolerance (TyOff) describes the standard deviation of the range of  
Zero-g levels of a group of sensors.  
4.3  
Sleep-to-wakeup  
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further  
reduction of system power consumption and the development of new smart applications.  
The LSM303DLM may be set to a low-power operating mode, characterized by lower data  
rate refreshing. In this way, the device, even if sleeping, continues sensing acceleration and  
generating interrupt requests.  
When the sleep-to-wakeup function is activated, the LSM303DLM is able to automatically  
wake up as soon as the interrupt event has been detected, increasing the output data rate  
and bandwidth. With this feature the system may be efficiently switched from low-power  
mode to full-performance depending on user-selectable positioning and acceleration events,  
therefore ensuring power-saving and flexibility.  
Doc ID 018725 Rev 1  
13/38  
 
 
 
 
Functionality  
LSM303DLM  
5
Functionality  
The LSM303DLM is a system-in-package featuring a 3D digital linear acceleration and 3D  
digital magnetic field detection sensor.  
The system includes specific sensing elements and an IC interface capable of measuring  
both the linear acceleration and the magnetic field applied on it and to provide a signal to the  
2
external world through an I C serial interface with separated digital output.  
The sensing system is manufactured using specialized micromachining processes, while  
the IC interfaces are realized using a CMOS technology that allows the design of a  
dedicated circuit which is trimmed to better match the sensing element characteristics.  
The LSM303DLM features two data-ready signals (RDY) which indicate when a new set of  
measured acceleration data and magnetic data are available, therefore simplifying data  
synchronization in the digital system that uses the device.  
The LSM303DLM may also be configured to generate an inertial wakeup and free-fall  
interrupt signal according to a programmed acceleration event along the enabled axes. Both  
free-fall and wakeup can be used simultaneously on two different accelerometer interrupts.  
5.1  
Factory calibration  
The IC interface is factory calibrated for linear acceleration sensitivity (LA_So), and linear  
acceleration Zero-g level (LA_TyOff).  
The trimming values are stored inside the device in non-volatile memory. When the device is  
turned on, the trimming parameters are downloaded into the registers to be used during  
normal operation. This allows the use of the device without further calibration.  
1±/38  
Doc ID 018725 Rev 1  
 
 
LSM303DLM  
Application hints  
6
Application hints  
2
Figure 4.  
LSM303DLM electrical connection - recommended for I C fast mode  
Vdd_IO  
Vdd_IO  
Electrical connection  
Rpu  
Rpu=10kOhm  
Z
Vdd  
1
Y
C3 = 10uF  
X
DIRECTIONS OF  
DETECTABLE  
MAGNETIC FIELDS  
C± = 100uF  
Vdd_IO  
28  
22  
Z
Rpu  
Rpu=10kOhm  
RES  
1
1
21 NC  
SCL_M  
Y
GND  
SDA_M  
GND  
X
SA0  
DRDY_M  
LSM303DLM  
(TOP VIEW)  
RES  
DIRECTIONS OF  
DETECTABLE  
ACCELERATIONS  
NC  
SET1  
VDD  
C1=±.7uF  
RES  
C1  
7
15  
8
1±  
C2=0.22uF  
GND  
AM092±0V1  
6.1  
External capacitors  
The C1 and C2 external capacitors should have a low SR value ceramic type construction.  
Reservoir capacitor C1 is nominally ±.7 µF in capacitance, with the set/reset capacitor C2  
nominally 0.22 µF in capacitance.  
The device core is supplied through the Vdd line. Power supply decoupling capacitors  
(C±=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin  
of the device (common design practice). All the voltage and ground supplies must be  
present at the same time to obtain proper behavior of the IC (refer to Figure 4).  
The functionality of the device and the measured acceleration/magnetic field data is  
2
selectable and accessible through the I C interface.  
The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can  
2
be completely programmed by the user through the I C interface.  
Doc ID 018725 Rev 1  
15/38  
 
 
 
Application hints  
LSM303DLM  
6.2  
Soldering information  
®
The LGA package is compliant with the ECOPACK , RoHS and “Green” standard.  
It is qualified for soldering heat resistance according to JEDEC J-STD-020.  
Leave “pin 1 indicator” unconnected during soldering.  
Land pattern and soldering recommendations are available at www.st.com.  
6.3  
High current wiring effects  
High current in the wiring and printed circuit traces can be the cause of errors in magnetic  
field measurements for compassing.  
Conductor-generated magnetic fields add to the Earth’s magnetic field, creating errors in  
compass heading computation.  
Keep currents that are higher than 10 mA a few millimeters further away from the sensor IC.  
16/38  
Doc ID 018725 Rev 1  
 
 
LSM303DLM  
Digital interfaces  
7
Digital interfaces  
2
The registers embedded inside the LSM303DLM are accessible through two separate I C  
serial interfaces; one for the accelerometer core and the other for the magnetometer core.  
The two interfaces can be connected together on the PCB.  
Table 7.  
Pin name  
SCL_A  
Serial interface pin description  
Pin description  
I2C serial clock (SCL) for accelerometer  
I2C serial data (SDA) for accelerometer  
I2C serial clock (SCL) for magnetometer  
I2C serial data (SDA) for magnetometer  
SDA_A  
SCL_M  
SDA_M  
7.1  
I2C serial interface  
2
2
The LSM303DLM I C is a bus slave. The I C is employed to write the data into the registers  
whose content can also be read back.  
2
The relevant I C terminology is given in the table below.  
Table 8.  
Term  
Serial interface pin description  
Description  
Transmitter  
Receiver  
The device which sends data to the bus  
The device which receives data from the bus  
The device which initiates a transfer, generates clock signals, and terminates a  
transfer  
Master  
Slave  
The device addressed by the master  
2
There are two signals associated with the I C bus; the serial clock line (SCL) and the serial  
data line (SDA). The latter is a bidirectional line used for sending and receiving the data  
to/from the interface.  
Doc ID 018725 Rev 1  
17/38  
 
 
 
 
Digital interfaces  
2
LSM303DLM  
7.1.1  
I C operation  
The transaction on the bus is started through a START (ST) signal. A START condition is  
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After  
this has been transmitted by the master, the bus is considered busy. The next byte of data  
transmitted after the start condition contains the address of the slave in the first 7 bits and  
th  
the 8 bit tells whether the master is receiving data from the slave or transmitting data to the  
slave. When an address is sent, each device in the system compares the first seven bits  
after a start condition with its address. If they match, the device considers itself addressed  
by the master.  
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line  
during the acknowledge pulse. The receiver must then pull the data line LOW so that it  
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which  
has been addressed is obliged to generate an acknowledge after each byte of data  
received.  
2
The I C embedded inside the LSM303DLM behaves like a slave device and the following  
protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a  
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted; the  
7 LSBs represent the actual register address while the MSB enables address auto-  
increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically  
increased to allow multiple data read/write.  
Table 9.  
Transfer when master is writing one byte to slave  
ST SAD + W SUB  
Master  
DATA  
SP  
Slave  
SAK  
SAK  
SAK  
Table 10. Transfer when master is writing multiple bytes to slave  
Master  
Slave  
ST  
SAD + W  
SUB  
DATA  
DATA  
SP  
SAK  
SAK  
SAK  
SAK  
Table 11. Transfer when master is receiving (reading) one byte of data from slave  
Master ST SAD + W  
SUB  
SR SAD + R  
NMAK SP  
Slave  
SAK  
SAK  
SAK  
DATA  
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number  
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit  
(MSb) first. If a receiver cannot receive another complete byte of data until it has performed  
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait  
state. Data transfer only continues when the receiver is ready for another byte and releases  
the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to  
receive because it is performing a real-time function) the data line must be left HIGH by the  
slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line  
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be  
terminated by the generation of a STOP (SP) condition.  
18/38  
Doc ID 018725 Rev 1  
 
 
 
 
LSM303DLM  
Digital interfaces  
7.1.2  
Linear acceleration digital interface  
For linear acceleration, the default (factory) 7-bit slave address is 001100xb. The SDO/SA0  
pad can be used to modify the least significant bit of the device address. If the SA0 pad is  
connected to voltage supply, the LSB is ‘1’ (address 0011001b) otherwise, if the SA0 pad is  
connected to ground, the LSB value is ‘0’ (address 0011000b). This solution permits  
2
connecting and addressing two different accelerometers to the same I C lines.  
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated  
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),  
the master transmits to the slave with the direction unchanged. Table 12 explains how the  
SAD+read/write bit pattern is composed, listing all the possible configurations.  
Table 12. SAD and read/write patterns  
Command  
SAD[6:1]  
SAD[0] = SA0  
R/W  
SAD+R/W  
Read  
Write  
Read  
Write  
001100  
001100  
001100  
001100  
0
0
1
1
1
0
1
0
00110001 (31h)  
00110000 (30h)  
00110011 (33h)  
00110010 (32h)  
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-  
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the  
address of the first register to be read.  
In the presented communication format, MAK is master acknowledge and NMAK is no  
master acknowledge.  
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave  
Master ST SAD+W  
Slave  
SUB  
SR SAD+R  
MAK  
MAK  
NMAK SP  
SAK  
SAK  
SAK DATA  
DATA  
DATA  
7.1.3  
Magnetic field digital interface  
For magnetic sensors the default (factory) 7-bit slave address is 0011110xb.  
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated  
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write),  
the master transmits to the slave with the direction unchanged. Table 14 explains how the  
SAD is composed.  
Table 14. SAD and read/write patterns  
Command  
SAD[6:0]  
R/W  
SAD+R/W  
Read  
Write  
0011110  
0011110  
1
0
00111101 (3Dh)  
00111100 (3Ch)  
Doc ID 018725 Rev 1  
19/38  
 
 
 
 
 
Digital interfaces  
LSM303DLM  
Magnetic signal interface reading/writing  
The interface uses an address pointer to indicate which register location is to be read from  
or written to. These pointer locations are sent from the master to this slave device and  
succeed the 7-bit address plus 1 bit read/write identifier.  
To minimize communication between the master and magnetic digital interface of  
LSM303DLM, the address pointer updates automatically without master intervention.  
This automatic address pointer update has two additional features. First, when address 12  
or higher is accessed, the pointer updates to address 00, and secondly, when address 08 is  
reached, the pointer rolls back to address 03. Logically, the address pointer operation  
functions as shown below.  
If (address pointer = 08) then the address pointer = 03  
Or else, if (address pointer >= 12) then the address pointer = 0  
Or else, (address pointer) = (address pointer) + 1  
2
The address pointer value itself cannot be read via the I C bus.  
Any attempt to read an invalid address location returns 0, and any write to an invalid  
address location, or an undefined bit within a valid address location, is ignored by this  
device.  
20/38  
Doc ID 018725 Rev 1  
LSM303DLM  
Register mapping  
8
Register mapping  
Table 15 provides a listing of the 8-bit registers embedded in the device and the related  
addresses:  
Table 15. Register address map  
Register address  
Hex Binary  
Slave  
address  
Name  
Type  
Default  
Comment  
Reserved (do not modify)  
CTRL_REG1_A  
CTRL_REG2_A  
CTRL_REG3_A  
CTRL_REG±_A  
CTRL_REG5_A  
HP_FILTER_RESET_A  
REFERENCE_A  
STATUS_REG_A  
OUT_X_L_A  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 12  
Table 14  
Table 14  
Table 14  
--  
rw  
rw  
rw  
rw  
rw  
r
00 - 1F  
20  
--  
--  
Reserved  
010 0000  
010 0001  
010 0010  
010 0011  
010 0100  
010 0101  
010 0110  
010 0111  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
--  
00000111  
00000000  
00000000  
00000000  
00000000  
--  
21  
22  
23  
2±  
25  
Dummy register  
rw  
r
26  
00000000  
00000000  
output  
27  
r
28  
OUT_X_H_A  
r
29  
output  
OUT_Y_L_A  
r
2A  
output  
OUT_Y_H_A  
r
2B  
output  
OUT_Z_L_A  
r
2C  
2D  
2E - 2F  
30  
output  
OUT_Z_H_A  
r
output  
Reserved (do not modify)  
INT1_CFG_A  
--  
--  
Reserved  
rw  
r
011 0000  
011 0001  
011 0010  
011 0011  
011 0100  
011 0101  
011 0110  
011 0111  
--  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
--  
INT1_SOURCE_A  
INT1_THS_A  
31  
rw  
rw  
rw  
r
32  
INT1_DURATION_A  
INT2_CFG_A  
33  
3±  
INT2_SOURCE_A  
INT2_THS_A  
35  
rw  
rw  
--  
36  
INT2_DURATION_A  
Reserved (do not modify)  
CRA_REG_M  
37  
38 - 3F  
00  
Reserved  
rw  
rw  
rw  
00000000  
00000001  
00000010  
00010000  
00100000  
00000011  
CRB_REG_M  
01  
MR_REG_M  
02  
Doc ID 018725 Rev 1  
21/38  
 
 
Register mapping  
LSM303DLM  
Comment  
Table 15. Register address map (continued)  
Slave  
Register address  
Hex Binary  
Name  
Type  
Default  
address  
OUT_X_H_M  
OUT_X_L_M  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
Table 14  
r
r
03  
0±  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
--  
output  
output  
OUT_Y_H_M  
r
07  
output  
OUT_Y_L_M  
r
08  
output  
OUT_Z_H_M  
r
05  
output  
OUT_Z_L_M  
r
06  
output  
SR_REG_Mg  
r
09  
00000000  
01001000  
00110100  
00110011  
--  
IRA_REG_M  
r
0A  
IRB_REG_M  
r
0B  
IRC_REG_M  
r
0C  
Reserved (do not modify)  
WHO_AM_I_M  
Reserved (do not modify)  
--  
r
0D - 0E  
0F  
Reserved  
Who am I ID  
Reserved  
00001111  
--  
00111100  
--  
--  
10 - 3A  
Registers marked as “reserved” must not be changed. Writing to these registers may cause  
permanent damage to the device.  
The content of the registers that are loaded at boot should not be changed. They contain the  
factory calibrated values. Their content is automatically restored when the device is powered  
up.  
22/38  
Doc ID 018725 Rev 1  
LSM303DLM  
Register description  
9
Register description  
The device contains a set of registers which are used to control its behavior and to retrieve  
acceleration data. The register address, made up of 7 bits, is used to identify them and to  
write the data through the serial interface.  
9.1  
Linear acceleration register description  
CTRL_REG1_A (20h)  
9.1.1  
Table 16. CTRL_REG1_A register  
PM2  
PM1  
PM0  
DR1  
DR0  
Zen  
Yen  
Xen  
Table 17. CTRL_REG1_A description  
Power mode selection. Default value: 000  
PM2 - PM0  
DR1, DR0  
Zen  
(000: power-down; others: refer to Table 18)  
Data rate selection. Default value: 00  
(00:50 Hz; others: refer to Table 19)  
Z axis enable. Default value: 1  
(0: Z axis disabled; 1: Z axis enabled)  
Y axis enable. Default value: 1  
Yen  
(0: Y axis disabled; 1: Y axis enabled)  
X axis enable. Default value: 1  
Xen  
(0: X axis disabled; 1: X axis enabled)  
PM bits allow selection between power-down and two operating active modes. The device is  
in power-down mode when the PD bits are set to “000” (default value after boot). Table 18  
shows all the possible power mode configurations and respective output data rates. Output  
data in the low-power modes are computed with a low-pass filter cut-off frequency defined  
by DR1 and DR0 bits.  
DR bits, in normal-mode operation, select the data rate at which acceleration samples are  
produced. In low-power mode they define the output data resolution. Table 19 shows all the  
possible configurations for the DR1 and DR0 bits.  
Table 18. Power mode and low-power output data rate configurations  
Output data rate [Hz]  
PM2  
PM1  
PM0  
Power mode selection  
ODRLP  
0
0
0
0
0
1
0
1
0
Power-down  
Normal mode  
Low-power  
--  
ODR  
0.5  
Doc ID 018725 Rev 1  
23/38  
 
 
 
 
 
 
Register description  
LSM303DLM  
Table 18. Power mode and low-power output data rate configurations (continued)  
Output data rate [Hz]  
PM2  
PM1  
PM0  
Power mode selection  
ODRLP  
0
1
1
1
1
0
0
1
1
0
1
0
Low-power  
Low-power  
Low-power  
Low-power  
1
2
5
10  
Table 19. Normal-mode output data rate configurations and low-pass cut-off  
frequencies  
Output data rate [Hz]  
ODR  
Low-pass filter cut-off  
frequency [Hz]  
DR1  
DR0  
0
0
1
1
0
1
0
1
50  
100  
±00  
1000  
37  
7±  
292  
780  
9.1.2  
CTRL_REG2_A (21h)  
Table 20. CTRL_REG2_A register  
BOOT HPM1 HPM0 FDS  
HPen2  
HPen1  
HPCF1  
HPCF0  
Table 21. CTRL_REG2_A description  
Reboot memory content. Default value: 0  
BOOT  
(0: normal mode; 1: reboot memory content)  
High-pass filter mode selection. Default value: 00  
HPM1, HPM0  
FDS  
(00: normal mode; others: refer to Table 22)  
Filtered data selection. Default value: 0  
(0: internal filter bypassed; 1: data from internal filter sent to output register)  
High-pass filter enabled for Interrupt 2 source. Default value: 0  
(0: filter bypassed; 1: filter enabled)  
HPen2  
High-pass filter enabled for Interrupt 1 source. Default value: 0  
(0: filter bypassed; 1: filter enabled)  
HPen1  
High-pass filter cut-off frequency configuration. Default value: 00  
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=6±)  
HPCF1,  
HPCF0  
The BOOT bit is used to refresh the content of internal registers stored in the Flash memory  
block. At device power-up, the content of the Flash memory block is transferred to the  
internal registers related to trimming functions to permit good device behavior. If, for any  
2±/38  
Doc ID 018725 Rev 1  
 
 
 
 
LSM303DLM  
Register description  
reason, the content of the trimming registers has changed, it is sufficient to use this bit to  
restore the correct values. When the BOOT bit is set to ‘1’ the content of the internal Flash is  
copied to the corresponding internal registers and is used to calibrate the device. These  
values are factory-trimmed and are different for every accelerometer. They permit good  
device behavior and normally do not have to be modified. At the end of the boot process, the  
BOOT bit is again set to ‘0’.  
Table 22. High-pass filter mode configuration  
HPM1  
HPM0  
High-pass filter mode  
0
0
1
0
1
0
Normal mode (reset reading HP_RESET_FILTER)  
Reference signal for filtering  
Normal mode (reset reading HP_RESET_FILTER)  
HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency (f , which  
t)  
is given by:  
fs  
1
HPc  
------  
ft = ln 1 ----------- ⋅  
2π  
The equation can be simplified to the following approximated equation:  
fs  
ft = ----------------------  
6 HPc  
Table 23. High-pass filter cut-off frequency configuration  
ft [Hz]  
ft [Hz]  
ft [Hz]  
ft [Hz]  
HPcoeff2,1  
Data rate = 50 Hz Data rate = 100 Hz Data rate = 400 Hz Data rate = 1000 Hz  
00  
01  
10  
11  
1
2
1
8
±
2
1
20  
10  
5
0.5  
0.25  
0.125  
0.5  
0.25  
2.5  
9.1.3  
CTRL_REG3_A (22h)  
Table 24. CTRL_REG3_A register  
IHL  
PP_OD  
LIR2  
I2_CFG1  
I2_CFG0  
LIR1  
I1_CFG1  
I1_CFG0  
Table 25. CTRL_REG3_A description  
Interrupt active high, low. Default value: 0  
(0: active high; 1: active low)  
IHL  
Push-pull/open drain selection on interrupt pad. Default value 0.  
(0: push-pull; 1: open drain)  
PP_OD  
Doc ID 018725 Rev 1  
25/38  
 
 
 
 
 
Register description  
LSM303DLM  
Table 25. CTRL_REG3_A description (continued)  
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by  
reading INT2_SRC itself. Default value: 0.  
LIR2  
(0: interrupt request not latched; 1: interrupt request latched)  
Data signal on INT 2 pad control bits. Default value: 00.  
I2_CFG1,  
I2_CFG0  
(see Table 26)  
Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by  
reading INT1_SRC register. Default value: 0.  
LIR1  
(0: interrupt request not latched; 1: interrupt request latched)  
Data signal on INT 1 pad control bits. Default value: 00.  
I1_CFG1,  
I1_CFG0  
(see Table 26)  
Table 26. Data signal on INT 1 and INT 2 pad  
I1(2)_CFG1  
I1(2)_CFG0  
INT 1(2) Pad  
0
0
1
1
0
1
0
1
Interrupt 1 (2) source  
Interrupt 1 source OR Interrupt 2 source  
Data ready  
Boot running  
9.1.4  
CTRL_REG4_A (23h)  
Table 27. CTRL_REG4_A register  
BDU BLE FS1  
FS0  
0
0
0(1)  
---  
1. This bit must be set to ‘0’ for correct working of the device.  
Table 28. CTRL_REG4_A description  
Block data update. Default value: 0  
BDU  
(0: continuos update; 1: output registers not updated between MSB and LSB reading)  
Big/little endian data selection. Default value 0.  
BLE  
(0: data LSB @ lower address; 1: data MSB @ lower address)  
Full-scale selection. Default value: 00.  
FS1, FS0  
(00: ±2 g; 01: ±± g; 11: ±8 g)  
The BDU bit is used to inhibit output register updates between the reading of the upper and  
lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are  
updated continuously. If it is not certain whether to read faster than the output data rate, it is  
recommended to set BDU bit to ‘1’. In this way, after the reading of the lower (upper) register  
part, the content of that output register is not updated until the upper (lower) part is read  
also. This feature avoids reading LSB and MSB related to different samples.  
26/38  
Doc ID 018725 Rev 1  
 
 
 
 
LSM303DLM  
Register description  
9.1.5  
CTRL_REG5_A (24h)  
Table 29. CTRL_REG5_A register  
0
0
0
0
0
0
TurnOn1  
TurnOn0  
Table 30. CTRL_REG5_A description  
TurnOn1,  
TurnOn0  
Turn-on mode selection for sleep-to-wakeup function. Default value: 00.  
TurnOn bits are used for turning on the sleep-to-wakeup function.  
Table 31. Sleep-to-wakeup configuration  
TurnOn1  
TurnOn0  
Sleep-to-wakeup status  
Sleep-to-wakeup function is disabled  
0
0
Turned on: the device is in low-power mode  
(ODR is defined in CTRL_REG1_A)  
1
1
By setting the TurnOn [1:0] bits to 11, the “sleep-to-wakeup” function is enabled. When an  
interrupt event occurs, the device goes into normal mode, increasing the ODR to the value  
defined in CTRL_REG1_A. Although the device is in normal mode, CTRL_REG1_A content  
is not automatically changed to “normal mode” configuration.  
9.1.6  
9.1.7  
HP_FILTER_RESET_A (25h)  
Dummy register. Reading at this address instantaneously zeroes the content of the internal  
high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0  
g. This makes it possible to surmount the settling time of the high-pass filter.  
REFERENCE_A (26h)  
Table 32. REFERENCE_A register  
Ref7  
Ref6  
Ref5  
Ref±  
Ref3  
Ref2  
Ref1  
Ref0  
Table 33. REFERENCE_A description  
Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h.  
This register sets the acceleration value taken as a reference for the high-pass filter output.  
When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM  
bits are set to “01”, filter out is generated taking this value as a reference.  
Doc ID 018725 Rev 1  
27/38  
 
 
 
 
 
 
 
 
Register description  
LSM303DLM  
9.1.8  
STATUS_REG_A(27h)  
Table 34. STATUS_REG_A register  
ZYXOR ZOR YOR XOR  
ZYXDA  
ZDA  
YDA  
XDA  
Table 35. STATUS_REG_A description  
X, Y, and Z axis data overrun. Default value: 0  
ZYXOR  
(0: no overrun has occurred, 1: new data has overwritten the previous one)  
Z axis data overrun. Default value: 0  
ZOR  
(0: no overrun has occurred, 1: new data for the Z-axis has overwritten the previous  
one)  
Y axis data overrun. Default value: 0  
YOR  
(0: no overrun has occurred, 1: new data for the Y-axis has overwritten the previous  
one)  
X axis data overrun. Default value: 0  
XOR  
ZYXDA  
ZDA  
(0: no overrun has occurred, 1: new data for the X-axis has overwritten the previous  
one)  
X, Y, and Z axis new data available. Default value: 0  
(0: a new set of data is not yet available, 1: a new set of data is available)  
Z axis new data available. Default value: 0  
(0: new data for the Z-axis is not yet available, 1: new data for the Z-axis is available)  
YDA  
Y axis new data available. Default value: 0  
(0: new data for the Y-axis is not yet available, 1: new data for the Y-axis is available)  
XDA  
X axis new data available. Default value: 0  
(0: new data for the X-axis is not yet available, 1: new data for the X-axis is available)  
9.1.9  
OUT_X_L_A (28h), OUT_X_H_A (29h)  
X-axis acceleration data. The value is expressed as 2’s complement.  
9.1.10  
9.1.11  
9.1.12  
OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)  
Y-axis acceleration data. The value is expressed as 2’s complement.  
OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)  
Z-axis acceleration data. The value is expressed as 2’s complement.  
INT1_CFG_A (30h)  
Table 36. INT1_CFG_A register  
AOI  
6D  
ZHIE  
ZLIE  
YHIE  
YLIE  
XHIE  
XLIE  
28/38  
Doc ID 018725 Rev 1  
 
 
 
 
 
 
 
 
LSM303DLM  
Register description  
Table 37. INT1_CFG_A description  
AND/OR combination of interrupt events. Default value: 0  
AOI  
6D  
(see Table 38).  
6-direction detection function enable. Default value: 0  
(see Table 38).  
Enable interrupt generation on Z high event. Default value: 0  
(0: disable interrupt request,  
ZHIE  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on Z low event. Default value: 0  
(0: disable interrupt request,  
ZLIE  
YHIE  
YLIE  
XHIE  
XLIE  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Enable interrupt generation on Y high event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on Y low event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Enable interrupt generation on X high event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on X low event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Configuration register for Interrupt 1 source.  
Table 38. Interrupt 1 source configurations  
AOI  
6D  
Interrupt mode  
0
0
1
1
0
1
0
1
OR combination of interrupt events  
6-direction movement recognition  
AND combination of interrupt events  
6-direction position recognition  
9.1.13  
INT1_SRC_A (31h)  
Table 39. INT1_SRC register  
IA ZH  
0
ZL  
YH  
YL  
XH  
XL  
Doc ID 018725 Rev 1  
29/38  
 
 
 
 
Register description  
LSM303DLM  
Table 40. INT1_SRC_A description  
Interrupt active. Default value: 0  
IA  
(0: no interrupt has been generated, 1: one or more interrupts have been generated)  
Z high. Default value: 0  
ZH  
ZL  
YH  
YL  
XH  
XL  
(0: no interrupt, 1: Z high event has occurred)  
Z low. Default value: 0  
(0: no interrupt, 1: Z low event has occurred)  
Y high. Default value: 0  
(0: no interrupt, 1: Y high event has occurred)  
Y low. Default value: 0  
(0: no interrupt, 1: Y low event has occurred)  
X high. Default value: 0  
(0: no interrupt, 1: X high event has occurred)  
X low. Default value: 0  
(0: no interrupt, 1: X low event has occurred)  
Interrupt 1 source register. Read-only register.  
Reading at this address clears the INT1_SRC_A IA bit (and the interrupt signal on the INT 1  
pin) and allows the refreshing of data in the INT1_SRC_A register if the latched option was  
chosen.  
9.1.14  
INT1_THS_A (32h)  
Table 41. INT1_THS register  
0
THS6  
THS5  
THS±  
THS3  
THS2  
THS1  
THS0  
Table 42. INT1_THS description  
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000  
9.1.15  
INT1_DURATION_A (33h)  
Table 43. INT1_DURATION_A register  
0
D6  
D5  
D±  
D3  
D2  
D1  
D0  
Table 44. INT2_DURATION_A description  
D6 - D0 Duration value. Default value: 000 0000  
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.  
Duration steps and maximum values depend on the ODR chosen.  
30/38  
Doc ID 018725 Rev 1  
 
 
 
 
 
 
 
LSM303DLM  
Register description  
9.1.16  
INT2_CFG_A (34h)  
Table 45. INT2_CFG_A register  
AOI  
6D  
ZHIE  
ZLIE  
YHIE  
YLIE  
XHIE  
XLIE  
Table 46. INT2_CFG_A description  
AND/OR combination of interrupt events. Default value: 0  
AOI  
6D  
(see Table 47).  
6-direction detection function enable. Default value: 0  
(see Table 47).  
Enable interrupt generation on Z high event. Default value: 0  
(0: disable interrupt request,  
ZHIE  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on Z low event. Default value: 0  
(0: disable interrupt request,  
ZLIE  
YHIE  
YLIE  
XHIE  
XLIE  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Enable interrupt generation on Y high event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on Y low event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Enable interrupt generation on X high event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value higher than preset threshold)  
Enable interrupt generation on X low event. Default value: 0  
(0: disable interrupt request,  
1: enable interrupt request on measured accel. value lower than preset threshold)  
Configuration register for Interrupt 2 source.  
Table 47. Interrupt mode configuration  
AOI  
6D  
Interrupt mode  
0
0
1
1
0
1
0
1
OR combination of interrupt events  
6-direction movement recognition  
AND combination of interrupt events  
6-direction position recognition  
Doc ID 018725 Rev 1  
31/38  
 
 
 
 
Register description  
LSM303DLM  
9.1.17  
INT2_SRC_A (35h)  
Table 48. INT2_SRC_A register  
IA ZH  
0
ZL  
YH  
YL  
XH  
XL  
Table 49. INT2_SRC_A description  
Interrupt active. Default value: 0  
IA  
(0: no interrupt has been generated; 1: one or more interrupts have been generated)  
Z high. Default value: 0  
ZH  
ZL  
(0: no interrupt, 1: Z high event has occurred)  
Z low. Default value: 0  
(0: no interrupt; 1: Z low event has occurred)  
Y high. Default value: 0  
YH  
YL  
XH  
XL  
(0: no interrupt, 1: Y high event has occurred)  
Y low. Default value: 0  
(0: no interrupt, 1: Y low event has occurred)  
X high. Default value: 0  
(0: no interrupt, 1: X high event has occurred)  
X Low. Default value: 0  
(0: no interrupt, 1: X low event has occurred)  
Interrupt 2 source register. Read-only register.  
Reading at this address clears the INT2_SRC_A IA bit (and the interrupt signal on the INT 2  
pin) and allows the refreshing of data in the INT2_SRC_A register if the latched option was  
chosen.  
9.1.18  
INT2_THS_A (36h)  
Table 50. INT2_THS register  
0
THS6  
THS5  
THS±  
THS3  
THS2  
THS1  
THS0  
Table 51. INT2_THS description  
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000  
9.1.19  
INT2_DURATION_A (37h)  
Table 52. INT2_DURATION_A register  
0
D6  
D5  
D±  
D3  
D2  
D1  
D0  
32/38  
Doc ID 018725 Rev 1  
 
 
 
 
 
 
 
 
LSM303DLM  
Register description  
Table 53. INT2_DURATION_A description  
D6 - D0 Duration value. Default value: 000 0000  
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.  
Duration time steps and maximum values depend on the ODR chosen.  
9.2  
Magnetic field sensing register description  
9.2.1  
CRA_REG_M (00h)  
Table 54. CRA_REG_M register  
0(1)  
0(1)  
0(1)  
DO2  
DO1  
DO0  
0(1)  
0(1)  
1. This bit must be set to ‘0’ for correct working of the device.  
Table 55. CRA_REG_M description  
Data output rate bits. These bits set the rate at which data is written to all three data  
output registers (refer to Table 56). Default value: 100  
DO2 to DO0  
Table 56. Data rate configurations  
DO2  
DO1  
DO0  
Minimum data output rate (Hz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.75  
1.5  
3.0  
7.5  
15  
30  
75  
220  
9.2.2  
CRB_REG_M (01h)  
Table 57. CRA_REG register  
GN2 GN1 GN0  
0(1)  
0(1)  
0(1)  
0(1)  
0(1)  
1. This bit must be set to ‘0’ for correct working of the device.  
CRA_REG description  
Gain configuration bits. The gain configuration is common for all channels (refer to  
Table 58)  
GN1-0  
Doc ID 018725 Rev 1  
33/38  
 
 
 
 
 
 
 
 
Register description  
LSM303DLM  
Table 58. Gain setting  
Gain X/Y and  
Z
Sensor input  
field range  
[Gauss]  
Gain Z  
GN2  
GN1  
GN0  
Output range  
[LSB/Gauss]  
[LSB/Gauss]  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
±1.3  
±1.9  
±2.5  
±±.0  
±±.7  
±5.6  
±8.1  
1100  
855  
670  
±50  
±00  
330  
230  
980  
760  
600  
±00  
355  
295  
205  
0xF800–0x07FF  
(-20±8–20±7)  
9.2.3  
MR_REG_M (02h)  
Table 59. MR_REG  
0(1)  
0(1)  
0(1)  
0(1)  
0(1)  
0(1)  
MD1  
MD0  
1. This bit must be set to ‘0’ for correct working of the device  
Table 60. MR_REG description  
Mode select bits. These bits select the operation mode of this device (refer to  
Table 61)  
MD1-0  
Table 61. Magnetic sensor operating mode  
MD1  
MD0  
Mode  
0
0
1
1
0
1
0
1
Continuous-conversion mode  
Single-conversion mode  
Sleep-mode. Device is placed in sleep-mode  
Sleep-mode. Device is placed in sleep-mode  
9.2.4  
9.2.5  
9.2.6  
OUT_X_H_M (03), OUT_X_LH_M (04h)  
X-axis magnetic field data. The value is expressed as 2’s complement.  
OUT_Z_H_M (05), OUT_Z_L_M (06h)  
Z-axis magnetic field data. The value is expressed as 2’s complement.  
OUT_Y_H_M (07), OUT_Y_L_M (08h)  
Y-axis magnetic field data. The value is expressed as 2’s complement.  
3±/38  
Doc ID 018725 Rev 1  
 
 
 
 
 
 
 
 
LSM303DLM  
Register description  
9.2.7  
SR_REG_M (09h)  
Table 62. SR register  
--  
--  
--  
--  
--  
--  
LOCK  
DRDY  
Table 63. SR register description  
Data output register lock. Once a new set of measurements is available, this bit  
is set when the first magnetic field data register has been read.  
LOCK  
DRDY  
Data ready bit. This bit is when a new set of measurements is available.  
9.2.8  
IR_REG_M (0Ah/0Bh/0Ch)  
Table 64. IRA_REG_M  
0
1
0
1
1
0
1
1
1
0
0
0
1
0
0
0
1
0
0
1
Table 65. IRB_REG_M  
0
0
Table 66. IRC_REG_M  
0
0
9.2.9  
WHO_AM_I _M (0F)  
Table 67. WHO_AM_I_M  
0
0
1
1
1
1
0
0
Doc ID 018725 Rev 1  
35/38  
 
 
 
 
 
 
 
 
 
Package information  
LSM303DLM  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions, and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
Figure 5.  
LGA-28: mechanical data and package dimensions  
Dimensions  
Outline and  
mechanical data  
mm  
Ref.  
Min.  
Typ.  
Max.  
A1  
A2  
A3  
D1  
E1  
L1  
L2  
N1  
M
1
0.785  
0.200  
5.000  
5.000  
1.650  
3.300  
0.550  
0.100  
0.300  
0.±00  
0.200  
0.050  
0.100  
±.850  
±.850  
5.150  
5.150  
0.0±0  
0.260  
0.360  
0.160  
0.3±0  
0.±±0  
T1  
T2  
d
LGA-28 (5x5x1)  
Land Grid Array Packages  
k
h
8192208_B  
36/38  
Doc ID 018725 Rev 1  
 
LSM303DLM  
Revision history  
11  
Revision history  
Table 68. Document revision history  
Date  
Revision  
Changes  
11-Apr-2011  
1
Initial release.  
Doc ID 018725 Rev 1  
37/38  
 
 
LSM303DLM  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
38/38  
Doc ID 018725 Rev 1  

相关型号:

LSM303DLMTR

Sensor module:3-axis accelerometer and 3-axis magnetometer
STMICROELECTR

LSM303DTR

e-Compass: 3D accelerometer, 3D magnetometer, ultra compact, high performance, I2C, SPI interfaces
STMICROELECTR

LSM315

3 AMP SCHOTTKY ORING RECTIFIER
MICROSEMI

LSM315G

Schottky Rectifier
MICROSEMI

LSM315G/TR13

DIODE SCHOTTKY 15V 3A DO215AB
MICROSEMI

LSM315GE3/TR13

DIODE SCHOTTKY 15V 3A DO215AB
MICROSEMI

LSM315J

Schottky Rectifier
MICROSEMI

LSM315JE3/TR13

DIODE SCHOTTKY 15V 3A DO214AB
MICROSEMI

LSM3200.000KHZ(A/C)

Oscillator, 0.03MHz Min, 0.2MHz Max, 0.2MHz Nom, Hybrid
STATEK

LSM3200.000KHZ(A/I)

Oscillator, 0.03MHz Min, 0.2MHz Max, 0.2MHz Nom, Hybrid
STATEK

LSM3200.000KHZ(B/C)

Oscillator, 0.03MHz Min, 0.2MHz Max, 0.2MHz Nom, Hybrid
STATEK

LSM3200.000KHZ(B/I)

Oscillator, 0.03MHz Min, 0.2MHz Max, 0.2MHz Nom, Hybrid
STATEK