M24C04DW1T [STMICROELECTRONICS]

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM; 16Kbit的, 8Kbit , 4k位, 2Kbit和1K位,串行I²C总线EEPROM
M24C04DW1T
型号: M24C04DW1T
厂家: ST    ST
描述:

16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I2C Bus EEPROM
16Kbit的, 8Kbit , 4k位, 2Kbit和1K位,串行I²C总线EEPROM

存储 内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总25页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24C16, M24C08  
M24C04, M24C02, M24C01  
16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I²C Bus EEPROM  
FEATURES SUMMARY  
Two-Wire I²C Serial Interface  
Figure 1. Packages  
Supports 400kHz Protocol  
Single Supply Voltage:  
2.5 to 5.5V for M24Cxx-W  
1.8 to 5.5V for M24Cxx-R  
8
Write Control Input  
BYTE and PAGE WRITE (up to 16 Bytes)  
RANDOM and SEQUENTIAL READ Modes  
Self-Timed Programming Cycle  
Automatic Address Incrementing  
Enhanced ESD/Latch-Up Protection  
More than 1 Million Erase/Write Cycles  
More than 40-Year Data Retention  
Packages  
1
PDIP8 (BN)  
8
ECOPACK® (RoHS compliant)  
1
SO8 (MN)  
150 mil width  
Table 1. Product List  
Reference  
Part Number  
M24C16-W  
M24C16  
M24C08  
M24C04  
M24C02  
M24C01  
M24C16-R  
M24C08-W  
M24C08-R  
M24C04-W  
M24C04-R  
M24C02-W  
M24C02-R  
M24C01-W  
M24C01-R  
TSSOP8 (DW)  
169 mil width  
TSSOP8 (DS)  
3x3mm² body size (MSOP)  
UFDFPN8 (MB)  
2x3mm² (MLP)  
October 2005  
1/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Device internal reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Serial Clock (SCL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Acknowledge in Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
SUMMARY DESCRIPTION  
These I²C-compatible electrically erasable pro-  
grammable memory (EEPROM) devices are orga-  
nized as 2048/1024/512/256/128 x 8 (M24C16,  
M24C08, M24C04, M24C02 and M24C01).  
scribed in Table 3.), terminated by an acknowl-  
edge bit.  
When writing data to the memory, the device in-  
th  
serts an acknowledge bit during the 9 bit time,  
In order to meet environmental requirements, ST  
offers these devices in ECOPACK® packages.  
ECOPACK® packages are Lead-free and RoHS  
compliant.  
ECOPACK is an ST trademark. ECOPACK speci-  
fications are available at: www.st.com.  
following the bus master’s 8-bit transmission.  
When data is read by the bus master, the bus  
master acknowledges the receipt of the data byte  
in the same way. Data transfers are terminated by  
a Stop condition after an Ack for Write, and after a  
NoAck for Read.  
Table 2. Signal Names  
Figure 2. Logic Diagram  
E0, E1, E2  
SDA  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
V
CC  
SCL  
WC  
3
V
V
CC  
SS  
E0-E2  
SDA  
Device internal reset  
In order to prevent inadvertent Write operations  
during Power-up, a Power On Reset (POR) circuit  
M24Cxx  
SCL  
WC  
is included. At Power-up (continuous rise of V ),  
CC  
the device will not respond to any instructions until  
the V  
has reached the Power On Reset  
CC  
threshold voltage (this threshold is lower than the  
min. operating voltage defined in DC and AC  
V
SS  
V
CC  
AI02033  
PARAMETERS). When V has passed over the  
CC  
POR threshold, the device is reset and is in  
Standby  
Power  
mode.  
At  
Power-down  
(continuous decay of V ), as soon as V drops  
CC  
CC  
I²C uses a two-wire serial interface, comprising a  
bi-directional data line and a clock line. The devic-  
es carry a built-in 4-bit Device Type Identifier code  
(1010) in accordance with the I²C bus definition.  
The device behaves as a slave in the I²C protocol,  
with all memory operations synchronized by the  
serial clock. Read and Write operations are initiat-  
ed by a Start condition, generated by the bus mas-  
ter. The Start condition is followed by a Device  
Select Code and Read/Write bit (RW) (as de-  
from the normal operating voltage to below the  
Power On Reset threshold voltage, the device  
stops responding to any instruction sent to it.  
Prior to selecting and issuing instructions to the  
memory, a valid and stable V  
voltage must be  
CC  
applied. This voltage must remain stable and valid  
until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of  
the internal write cycle (t ).  
W
Figure 3. 8-Pin Package Connections (Top View)  
M24Cxx  
16Kb/8Kb/4Kb/2Kb  
NC / NC / NC/ E0  
NC / NC/ E1/ E1  
NC/ E2/ E2/ E2  
/1Kb  
/ E0  
/ E1  
/ E2  
1
2
3
4
8
7
6
5
V
CC  
WC  
SCL  
SDA  
V
SS  
AI02034E  
Note: 1. NC = Not Connected  
2. See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1.  
3/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
SIGNAL DESCRIPTION  
Serial Clock (SCL). This input signal is used to  
strobe all data in and out of the device. In applica-  
tions where this signal is used by slave devices to  
synchronize the bus to a slower clock, the bus  
master must have an open drain output, and a  
pull-up resistor can be connected from Serial  
Figure 4. Device Select Code  
V
V
CC  
CC  
M24Cxx  
M24Cxx  
Clock (SCL) to V . (Figure 5. indicates how the  
CC  
E
E
i
i
value of the pull-up resistor can be calculated). In  
most applications, though, this method of synchro-  
nization is not employed, and so the pull-up resis-  
tor is not necessary, provided that the bus master  
has a push-pull (rather than open drain) output.  
V
V
SS  
SS  
Ai11650  
Serial Data (SDA). This bi-directional signal is  
used to transfer data in or out of the device. It is an  
open drain output that may be wire-OR’ed with  
other open drain or open collector signals on the  
bus. A pull up resistor must be connected from Se-  
Write Control (WC). This input signal is useful  
for protecting the entire contents of the memory  
from inadvertent write operations. Write opera-  
tions are disabled to the entire memory array when  
Write Control (WC) is driven High. When uncon-  
rial Data (SDA) to V . (Figure 5. indicates how  
CC  
nected, the signal is internally read as V , and  
IL  
the value of the pull-up resistor can be calculated).  
Write operations are allowed.  
Chip Enable (E0, E1, E2). These input signals  
are used to set the value that is to be looked for on  
the three least significant bits (b3, b2, b1) of the 7-  
bit Device Select Code. These inputs must be tied  
When Write Control (WC) is driven High, Device  
Select and Address bytes are acknowledged,  
Data bytes are not acknowledged.  
to V or V , to establish the Device Select Code  
CC  
SS  
as shown in Figure 4.  
Figure 5. Maximum RP Value versus Bus Parasitic Capacitance (C) for an I²C Bus  
V
CC  
20  
16  
RP  
RP  
12  
8
SDA  
SCL  
MASTER  
C
fc = 100kHz  
4
0
fc = 400kHz  
C
10  
100  
C (pF)  
1000  
AI01665b  
4/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 6. I²C Bus Protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 3. Device Select Code  
1
2,3  
RW  
b0  
Device Type Identifier  
Chip Enable  
b7  
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
E1  
E1  
E1  
A9  
A9  
b1  
E0  
E0  
A8  
A8  
A8  
M24C01 Select Code  
M24C02 Select Code  
M24C04 Select Code  
M24C08 Select Code  
M24C16 Select Code  
1
1
1
1
1
RW  
RW  
RW  
RW  
RW  
0
1
0
E2  
0
1
0
E2  
0
1
0
E2  
0
1
0
A10  
Note: 1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
3. A10, A9 and A8 represent most significant bits of the address.  
5/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
DEVICE OPERATION  
The device supports the I²C protocol. This is sum-  
marized in Figure 6.. Any device that sends data  
on to the bus is defined to be a transmitter, and  
any device that reads the data to be a receiver.  
The device that controls the data transfer is known  
as the bus master, and the other as the slave de-  
vice. A data transfer can only be initiated by the  
bus master, which will also provide the serial clock  
for synchronization. The M24Cxx device is always  
a slave in all communication.  
Clock (SCL), and the Serial Data (SDA) signal  
must change only when Serial Clock (SCL) is driv-  
en Low.  
Memory Addressing  
To start communication between the bus master  
and the slave device, the bus master must initiate  
a Start condition. Following this, the bus master  
sends the Device Select Code, shown in Table 3.  
(on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device  
Type Identifier, and a 3-bit Chip Enable “Address”  
(E2, E1, E0). To address the memory array, the 4-  
bit Device Type Identifier is 1010b.  
Start Condition  
Start is identified by a falling edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable in the  
High state. A Start condition must precede any  
data transfer command. The device continuously  
monitors (except during a Write cycle) Serial Data  
(SDA) and Serial Clock (SCL) for a Start condition,  
and will not respond unless one is given.  
Each device is given a unique 3-bit code on the  
Chip Enable (E0, E1, E2) inputs. When the Device  
Select Code is received, the device only responds  
if the Chip Enable Address is the same as the val-  
ue on the Chip Enable (E0, E1, E2) inputs. How-  
ever, those devices with larger memory capacities  
(the M24C16, M24C08 and M24C04) need more  
address bits. E0 is not available for use on devices  
that need to use address line A8; E1 is not avail-  
able for devices that need to use address line A9,  
and E2 is not available for devices that need to use  
address line A10 (see Figure 3. and Table 3. for  
details). Using the E0, E1 and E2 inputs, up to  
eight M24C02 (or M24C01), four M24C04, two  
M24C08 or one M24C16 devices can be connect-  
ed to one I²C bus. In each case, and in the hybrid  
cases, this gives a total memory capacity of  
16 Kbits, 2 KBytes (except where M24C01 devic-  
es are used).  
Stop Condition  
Stop is identified by a rising edge of Serial Data  
(SDA) while Serial Clock (SCL) is stable and driv-  
en High. A Stop condition terminates communica-  
tion between the device and the bus master. A  
Read command that is followed by NoAck can be  
followed by a Stop condition to force the device  
into the Stand-by mode. A Stop condition at the  
end of a Write command triggers the internal Write  
cycle.  
Acknowledge Bit (ACK)  
The acknowledge bit is used to indicate a success-  
ful byte transfer. The bus transmitter, whether it be  
bus master or slave device, releases Serial Data  
th  
The 8 bit is the Read/Write bit (RW). This bit is  
(SDA) after sending eight bits of data. During the  
th  
set to 1 for Read and 0 for Write operations.  
9
clock pulse period, the receiver pulls Serial  
Data (SDA) Low to acknowledge the receipt of the  
eight data bits.  
Data Input  
During data input, the device samples Serial Data  
(SDA) on the rising edge of Serial Clock (SCL).  
For correct device operation, Serial Data (SDA)  
must be stable during the rising edge of Serial  
If a match occurs on the Device Select code, the  
corresponding device gives an acknowledgment  
on Serial Data (SDA) during the 9 bit time. If the  
device does not match the Device Select code, it  
deselects itself from the bus, and goes into Stand-  
by mode.  
th  
Table 4. Operating Modes  
1
Mode  
RW bit  
Bytes  
Initial Sequence  
WC  
X
Current Address Read  
1
0
1
1
0
0
1
START, Device Select, RW = 1  
X
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
Random Address Read  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
16  
START, Device Select, RW = 0  
Note: 1. X = VIH or VIL.  
6/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 7. Write Mode Sequences with WC=1 (data write inhibited)  
WC  
ACK  
ACK  
NO ACK  
DATA IN  
Byte Write  
DEV SEL  
BYTE ADDR  
R/W  
WC  
ACK  
ACK  
NO ACK  
NO ACK  
DATA IN 3  
Page Write  
DEV SEL  
BYTE ADDR  
DATA IN 1 DATA IN 2  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
Page Write  
(cont'd)  
DATA IN N  
AI02803C  
Write Operations  
the Start condition until the end of the address  
byte), the device replies to the data byte with  
NoAck, as shown in Figure 7., and the location is  
not modified. If, instead, the addressed location is  
not Write-protected, the device replies with Ack.  
The bus master terminates the transfer by gener-  
ating a Stop condition, as shown in Figure 8..  
Following a Start condition the bus master sends  
a Device Select Code with the Read/Write bit  
(RW) reset to 0. The device acknowledges this, as  
shown in Figure 8., and waits for an address byte.  
The device responds to the address byte with an  
acknowledge bit, and then waits for the data byte.  
Page Write  
When the bus master generates a Stop condition  
immediately after the Ack bit (in the “10 bit” time  
th  
The Page Write mode allows up to 16 bytes to be  
written in a single Write cycle, provided that they  
are all located in the same page in the memory:  
that is, the most significant memory address bits  
are the same. If more bytes are sent than will fit up  
to the end of the page, a condition known as ‘roll-  
over’ occurs. This should be avoided, as data  
starts to become overwritten in an implementation  
dependent way.  
The bus master sends from 1 to 16 bytes of data,  
each of which is acknowledged by the device if  
Write Control (WC) is Low. If the addressed loca-  
tion is Write-protected, by Write Control (WC) be-  
ing driven High (during the period from the Start  
slot), either at the end of a Byte Write or a Page  
Write, the internal Write cycle is triggered. A Stop  
condition at any other time slot does not trigger the  
internal Write cycle.  
During the internal Write cycle, Serial Data (SDA)  
and Serial Clock (SCL) are ignored, and the de-  
vice does not respond to any requests.  
Byte Write  
After the Device Select code and the address byte,  
the bus master sends one data byte. If the ad-  
dressed location is Write-protected, by Write Con-  
trol (WC) being driven High (during the period from  
7/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
condition until the end of the address byte), the de-  
vice replies to the data bytes with NoAck, as  
shown in Figure 7., and the locations are not mod-  
ified. After each byte is transferred, the internal  
byte address counter (the 4 least significant ad-  
dress bits only) is incremented. The transfer is ter-  
minated by the bus master generating a Stop  
condition.  
Figure 8. Write Mode Sequences with WC=0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
PAGE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN 1  
DATA IN 2  
DATA IN 3  
R/W  
WC (cont'd)  
ACK  
ACK  
PAGE WRITE  
(cont'd)  
DATA IN N  
AI02804B  
8/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 9. Write Cycle Polling Flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
Minimizing System Delays by Polling On ACK  
Initial condition: a Write cycle is in progress.  
During the internal Write cycle, the device discon-  
nects itself from the bus, and writes a copy of the  
data from its internal latches to the memory cells.  
Step 1: the bus master issues a Start condition  
followed by a Device Select Code (the first  
byte of the new instruction).  
The maximum Write time (t ) is shown in Table  
w
Step 2: if the device is busy with the internal  
Write cycle, no Ack will be returned and the  
bus master goes back to Step 1. If the device  
has terminated the internal Write cycle, it  
responds with an Ack, indicating that the  
device is ready to receive the second part of  
the instruction (the first byte of this instruction  
having been sent during Step 1).  
13. and Table 14., but the typical time is shorter.  
To make use of this, a polling sequence can be  
used by the bus master.  
The sequence, as shown in Figure 9., is:  
9/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 10. Read Mode Sequences  
ACK  
NO ACK  
DATA OUT  
CURRENT  
ADDRESS  
READ  
DEV SEL  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT N  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
R/W  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01942  
st  
rd  
Note: The seven most significant bits of the Device Select Code of a Random Read (in the 1 and 3 bytes) must be identical.  
Read Operations  
Read operations are performed independently of  
the state of the Write Control (WC) signal.  
dressed byte. The bus master must not  
acknowledge the byte, and terminates the transfer  
with a Stop condition.  
Current Address Read  
The device has an internal address counter which  
is incremented each time a byte is read.  
Random Address Read  
A dummy Write is first performed to load the ad-  
dress into this address counter (as shown in Fig-  
ure 10.) but without sending a Stop condition.  
Then, the bus master sends another Start condi-  
tion, and repeats the Device Select Code, with the  
Read/Write bit (RW) set to 1. The device acknowl-  
edges this, and outputs the contents of the ad-  
For the Current Address Read operation, following  
a Start condition, the bus master only sends a De-  
vice Select Code with the Read/Write bit (RW) set  
to 1. The device acknowledges this, and outputs  
the byte addressed by the internal address  
counter. The counter is then incremented. The bus  
master terminates the transfer with a Stop condi-  
tion, as shown in Figure 10., without acknowledg-  
ing the byte.  
10/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Acknowledge in Read Mode  
Sequential Read  
This operation can be used after a Current Ad-  
dress Read or a Random Address Read. The bus  
master does acknowledge the data byte output,  
and sends additional clock pulses so that the de-  
vice continues to output the next byte in sequence.  
To terminate the stream of bytes, the bus master  
must not acknowledge the last byte, and must  
generate a Stop condition, as shown in Figure 10..  
For all Read commands, the device waits, after  
each byte read, for an acknowledgment during the  
9 bit time. If the bus master does not drive Serial  
Data (SDA) Low during this time, the device termi-  
nates the data transfer and switches to its Stand-  
by mode.  
th  
The output data comes from consecutive address-  
es, with the internal address counter automatically  
incremented after each byte output. After the last  
memory address, the address counter ‘rolls-over’,  
and the device continues to output data from  
memory address 00h.  
INITIAL DELIVERY STATE  
The device is delivered with all bits in the memory  
array set to 1 (each byte contains FFh).  
11/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
MAXIMUM RATING  
Stressing the device outside the ratings listed in  
Table 5. may cause permanent damage to the de-  
vice. These are stress ratings only, and operation  
of the device at these, or any other conditions out-  
side those indicated in the Operating sections of  
this specification, is not implied. Exposure to Ab-  
solute Maximum Rating conditions for extended  
periods may affect device reliability. Refer also to  
the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 5. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Ambient Operating Temperature  
Min.  
–40  
–65  
Max.  
125  
Unit  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Storage Temperature  
150  
1
Lead Temperature during Soldering  
Input or Output range  
–0.50  
–0.50  
–4000  
6.5  
6.5  
VCC  
Supply Voltage  
V
2
VESD  
4000  
V
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
12/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 6. Operating Conditions (M24Cxx-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
CC  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 7. Operating Conditions (M24Cxx-R)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
–40  
85  
°C  
Table 8. DC Characteristics (M24Cxx-W, Device Grade 6)  
Test Condition  
(in addition to those in Table 6.)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input Leakage Current  
(SCL, SDA, E0, E1,and E2)  
ILI  
V
IN = VSS or VCC  
± 2  
µA  
ILO  
Output Leakage Current  
V
OUT = VSS or VCC, SDA in Hi-Z  
± 2  
µA  
mA  
mA  
µA  
µA  
V
V
CC=5V, f =400kHz (rise/fall time < 30ns)  
2
1
c
ICC  
Supply Current  
VCC =2.5V, f =400kHz (rise/fall time < 30ns)  
c
VIN = VSS or VCC , VCC = 5 V  
1
ICC1  
Stand-by Supply Current  
V
IN = VSS or VCC , VCC = 2.5 V  
0.5  
0.3VCC  
(1)  
VIL  
VIH  
VOL  
–0.45  
Input Low Voltage  
(1)  
0.7VCC  
VCC+1  
0.4  
V
V
Input High Voltage  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.5 V  
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.  
13/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 9. DC Characteristics (M24Cxx-W, Device Grade 3)  
Test Condition  
(in addition to those in Table 6.)  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Input Leakage Current  
(SCL, SDA, E0, E1,and E2)  
ILI  
V
IN = VSS or VCC  
± 2  
µA  
ILO  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
± 2  
3
µA  
VCC=5V, f =400kHz (rise/fall time < 30ns)  
mA  
C
ICC  
V
CC =2.5V, f =400kHz  
C
3
mA  
(rise/fall time < 30ns)  
VIN = VSS or VCC , VCC = 5 V  
VIN = VSS or VCC , VCC = 2.5 V  
5
2
µA  
µA  
V
ICC1  
Stand-by Supply Current  
(1)  
VIL  
VIH  
VOL  
–0.45  
0.3VCC  
Input Low Voltage  
(1)  
0.7VCC  
VCC+1  
0.4  
V
V
Input High Voltage  
Output Low Voltage  
IOL = 2.1 mA, VCC = 2.5 V  
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.  
Table 10. DC Characteristics (M24Cxx-R)  
Test Condition  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(in addition to those in Table 7.)  
Input Leakage Current  
(SCL, SDA, E0, E1,and E2)  
ILI  
V
IN = VSS or VCC  
± 2  
µA  
ILO  
ICC  
Output Leakage Current  
Supply Current  
V
OUT = VSS or VCC, SDA in Hi-Z  
± 2  
0.8  
µA  
mA  
µA  
V
V
CC =1.8V, f =400kHz (rise/fall time < 30ns)  
c
ICC1  
Stand-by Supply Current  
V
IN = VSS or VCC , VCC = 1.8 V  
2.5 V VCC  
0.3  
–0.45  
–0.45  
0.3 VCC  
0.25 VCC  
VCC+1  
0.2  
(1)  
VIL  
Input Low Voltage  
1.8 V VCC < 2.5 V  
V
(1)  
VIH  
0.7VCC  
V
Input High Voltage  
VOL  
Output Low Voltage  
IOL = 0.7 mA, VCC = 1.8 V  
V
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.  
Table 11. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
C
Load Capacitance  
100  
pF  
ns  
V
L
Input Rise and Fall Times  
Input Levels  
50  
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Levels  
V
CC  
14/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 11. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 12. Input Parameters  
1,2  
Symbol  
CIN  
Test Condition  
Min.  
Max.  
8
Unit  
pF  
Parameter  
Input Capacitance (SDA)  
Input Capacitance (other pins)  
WC Input Impedance  
CIN  
6
pF  
ZWCL  
ZWCH  
V
IN < 0.3 V  
15  
70  
kΩ  
kΩ  
WC Input Impedance  
V
IN > 0.7VCC  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
tNS  
Single glitch  
100  
ns  
Note: 1. T = 25°C, f = 400kHz  
A
2. Sampled only, not 100% tested.  
15/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Table 13. AC Characteristics (M24Cxx-W)  
Test conditions specified in Table 6. and Table 11.  
Parameter  
Symbol  
fC  
Alt.  
fSCL  
Min.  
Max.  
Unit  
kHz  
ns  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
600  
600  
600  
1300  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
ns  
ns  
ns  
ns  
ms  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
Start Condition Hold Time  
Stop Condition Set Up Time  
Time between Stop Condition and Next Start Condition  
Write Time  
4
tWR  
5
tW  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. Previous devices bearing the process letter “L” in the package marking guarantee a maximum write time of 10ms. For more infor-  
mation about these devices and their device identification, please ask your ST Sales Office for Process Change Notices PCN MPG/  
EE/0061 and 0062 (PCEE0061 and PCEE0062).  
Table 14. AC Characteristics (M24Cxx-R)  
Test conditions specified in Table 7. and Table 10.  
4
4
Symbol  
fC  
Alt.  
fSCL  
Parameter  
Unit  
kHz  
ns  
Min.  
Max.  
Clock Frequency  
400  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tF  
Clock Pulse Width High  
Clock Pulse Width Low  
SDA Fall Time  
600  
1300  
20  
ns  
2
300  
900  
ns  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT  
tHD:DAT  
tDH  
Data In Set Up Time  
Data In Hold Time  
Data Out Hold Time  
100  
0
ns  
ns  
200  
200  
600  
600  
600  
1300  
ns  
3
tAA  
Clock Low to Next Data Valid (Access Time)  
Start Condition Set Up Time  
ns  
tCLQV  
1
tSU:STA  
tHD:STA  
tSU:STO  
tBUF  
ns  
tCHDX  
tDLCL  
tCHDH  
tDHDL  
tW  
Start Condition Hold Time  
ns  
Stop Condition Set Up Time  
ns  
Time between Stop Condition and Next Start Condition  
Write Time  
ns  
tWR  
10  
ms  
Note: 1. For a reSTART condition, or following a Write cycle.  
2. Sampled only, not 100% tested.  
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.  
4. This is preliminary information.  
16/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 12. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
STOP  
tCHDX  
START  
Condition  
tW  
Write Cycle  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
17/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
PACKAGE MECHANICAL  
Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Note: Drawing is not to scale.  
Table 15. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
18/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 16. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
19/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 15. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Note: 1. Drawing is not to scale.  
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to V . It must not be allowed to be connected to  
SS  
any other voltage or signal line on the PCB, for example during the soldering process.  
Table 17. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data  
mm  
Min.  
0.50  
0.00  
0.20  
inches  
Min.  
Symbol  
Typ.  
Max.  
0.60  
0.05  
0.30  
Typ.  
Max.  
0.024  
0.002  
0.012  
A
A1  
b
0.55  
0.022  
0.020  
0.000  
0.008  
0.25  
2.00  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
0.012  
8
8
20/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 16. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Note: Drawing is not to scale.  
Table 18. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
21/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Figure 17. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note: Drawing is not to scale.  
Table 19. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.100  
0.150  
0.950  
0.400  
0.230  
3.100  
5.150  
3.100  
Typ.  
Max.  
0.0433  
0.0059  
0.0374  
0.0157  
0.0091  
0.1220  
0.2028  
0.1220  
A
A1  
A2  
b
0.050  
0.750  
0.250  
0.130  
2.900  
4.650  
2.900  
0.0020  
0.0295  
0.0098  
0.0051  
0.1142  
0.1831  
0.1142  
0.850  
0.0335  
c
D
3.000  
4.900  
3.000  
0.650  
0.1181  
0.1929  
0.1181  
0.0256  
E
E1  
e
CP  
L
0.100  
0.700  
0.0039  
0.0276  
0.550  
0.950  
0.400  
0°  
0.0217  
0.0374  
0.0157  
0°  
L1  
α
6°  
6°  
22/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
PART NUMBERING  
Table 20. Ordering Information Scheme  
Example:  
M24C16  
W DW  
3
T
P
/W  
Device Type  
2
M24 = I C serial access EEPROM  
Device Function  
16 = 16 Kbit (2048 x 8)  
08 = 8 Kbit (1024 x 8)  
04 = 4 Kbit (512 x 8)  
02 = 2 Kbit (256 x 8)  
01 = 1 Kbit (128 x 8)  
Operating Voltage  
W = V = 2.5 to 5.5V (400 kHz)  
CC  
R = V = 1.8 to 5.5V (400 kHz)  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
MB = UDFDFPN8 (MLP8)  
DW = TSSOP8 (169 mil width)  
DS = TSSOP8 (3x3mm² body size, MSOP8)  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
1
3 = Device tested with High Reliability Certified Flow .  
Automotive temperature range (–40 to 125 °C)  
Option  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P or G = ECOPACK® (RoHS compliant)  
2
Process  
/W or /S = F6SP36%  
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-  
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.  
2. Used only for Device Grade 3.  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
The category of second Level Interconnect is  
marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The  
maximum ratings related to soldering conditions  
are also marked on the inner box label.  
23/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
REVISION HISTORY  
Table 21. Document Revision History  
Date  
Version  
Description of Revision  
TSSOP8 Turned-Die package removed (p 2 and order information)  
Lead temperature added for TSSOP8 in table 2  
10-Dec-1999  
2.4  
18-Apr-2000  
05-May-2000  
2.5  
2.6  
Labelling change to Fig-2D, correction of values for ‘E’ and main caption for Tab-13  
Extra labelling to Fig-2D  
SBGA package information removed to an annex document  
-R range changed to being the -S range, and the new -R range added  
23-Nov-2000  
3.0  
SBGA package information put back in this document  
Lead Soldering Temperature in the Absolute Maximum Ratings table amended  
Write Cycle Polling Flow Chart using ACK illustration updated  
References to PSDIP changed to PDIP and Package Mechanical data updated  
Wording brought in to line with standard glossary  
19-Feb-2001  
3.1  
20-Apr-2001  
08-Oct-2001  
3.2  
3.3  
Revision of DC and AC characteristics for the -S series  
Ball numbers added to the SBGA connections and package mechanical illustrations  
Specification of Test Condition for Leakage Currents in the DC Characteristics table  
improved  
09-Nov-2001  
3.4  
Document reformatted using new template. SBGA5 package removed  
TSSOP8 (3x3mm² body size) package (MSOP8) added. -L voltage range added  
30-Jul-2002  
04-Feb-2003  
3.5  
3.6  
Document title spelt out more fully. W”-marked devices with tw=5ms added.  
-R voltage range upgraded to 400kHz working, and no longer preliminary data.  
5V voltage range at temperature range 3 (-xx3) no longer preliminary data.  
-S voltage range removed. -Wxx3 voltage+temp ranged added as preliminary data.  
05-May-2003  
07-Oct-2003  
3.7  
4.0  
Table of contents, and Pb-free options added. Minor wording changes in Summary  
Description, Power-On Reset, Memory Addressing, Read Operations. V (min) improved to  
IL  
-0.45V. t (max) value for -R voltage range corrected.  
W
MLP package added. Absolute Maximum Ratings for V (min) and V (min) changed.  
IO  
CC  
Soldering temperature information clarified for RoHS compliant devices. Device grade  
information clarified. Process identification letter “G” information added. 2.2-5.5V range is  
removed, and 4.5-5.5V range is now Not for New Design  
17-Mar-2004  
7-Oct-2005  
5.0  
6.0  
Product List summary table added. AEC-Q100-002 compliance. Device Grade informaton  
clarified. Updated Device internal reset section, Figure 4., Figure 5., Table 14. and Table  
20. Added Ecopack® information. Updated tW=5ms for the M24Cxx-W.  
24/25  
M24C16, M24C08, M24C04, M24C02, M24C01  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
25/25  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY