M24M01-DFCT6P/B [STMICROELECTRONICS]

I2C/2-WIRE SERIAL EEPROM;
M24M01-DFCT6P/B
型号: M24M01-DFCT6P/B
厂家: ST    ST
描述:

I2C/2-WIRE SERIAL EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总41页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24M01-R M24M01-DF  
1-Mbit serial I²C bus EEPROM  
Datasheet production data  
Features  
2
Compatible with all I C bus modes:  
– 1 MHz Fast-mode Plus  
– 400 kHz Fast mode  
– 100 kHz Standard mode  
Memory array:  
SO8 (MN)  
150 mil width  
– 1 Mbit (128 Kbytes) of EEPROM  
– Page size: 256 bytes  
– Additional Write lockable page  
(M24M01-D order codes)  
Write  
– Byte Write within 5 ms  
– Page Write within 5 ms  
TSSOP8 (DW)  
WLCSP (CS)  
Single supply voltage: 1.7 V to 5.5 V  
Operating temperature range: from -40 °C up  
to +85 °C  
Random and sequential Read modes  
Write protect of the whole memory array  
Enhanced ESD/Latch-Up protection  
More than 4 million Write cycles  
More than 200-year data retention  
Packages  
– RoHS compliant and halogen-free  
®
(ECOPACK )  
April 2012  
Doc ID 12943 Rev 9  
1/41  
This is information on a product in full production.  
www.st.com  
1
Contents  
M24M01-R M24M01-DF  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
4.5  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 18  
Lock Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 18  
ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 19  
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 20  
5.2  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.2.1  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Contents  
5.2.2  
5.2.3  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.3  
5.4  
Read Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . 22  
Read the lock status (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.4.1  
Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7
8
9
10  
11  
Doc ID 12943 Rev 9  
3/41  
List of tables  
M24M01-R M24M01-DF  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cycling performance by groups of four bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC characteristics (voltage range R, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (voltage range F, device grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 33  
SO8N – 8 lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . . 34  
WLCSP8 – Wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . 35  
WLCSP – Wafer level chip size package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 36  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
4/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WLCSP connections for die identified by process letter A (bump side view) . . . . . . . . . . . . 7  
WLCSP connections for die identified by process letter K (bump side view) . . . . . . . . . . . . 8  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Figure 10. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. Maximum R  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
Figure 14. Maximum R  
value versus bus parasitic capacitance C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
Figure 15. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 16. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 17. SO8N – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 34  
Figure 18. Standard WLCSP8 – Wafer level chip scale package outline (for die  
identified by process letter A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 19. Thin WLCSP – Wafer level chip size package outline (for die identified  
by process letter K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Doc ID 12943 Rev 9  
5/41  
Description  
M24M01-R M24M01-DF  
1
Description  
2
The M24M01 is a 1 Mb I C-compatible EEPROM (Electrically Erasable PROgrammable  
Memory) organized as 128 K × 8 bits.  
The M24M01-R can operate with a supply voltage from 1.8 V to 5.5 V, and the M24M01-DF  
can operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of  
-40 °C / +85 °C.  
The M24M01-D offers an additional page, named the Identification Page (256 bytes). The  
Identification Page can be used to store sensitive application parameters which can be  
(later) permanently locked in Read-only mode.  
Figure 1.  
Logic diagram  
6
##  
%ꢁꢂ%ꢀ  
3$!  
-ꢀꢃXXX  
3#,  
7#  
6
33  
.4ꢀꢁꢂꢂꢀ7ꢃ  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
E1, E2  
SDA  
SCL  
WC  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
Input  
I/O  
Input  
Input  
VCC  
VSS  
6/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Figure 2.  
Description  
8-pin package connections  
-ꢀꢃ-ꢊꢁ  
$5  
%ꢁ  
%ꢀ  
6
##  
7#  
3#,  
3$!  
6
33  
-3ꢁꢄꢅꢅꢆ6ꢁ  
1. DU: Don't Use (if connected, must be connected to VSS  
)
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
Figure 3.  
WLCSP connections for die identified by process letter A (bump side  
view)  
)NDEX  
6
3#,  
3$!  
##  
6
7#  
$5  
33  
%ꢁ  
%ꢀ  
-3ꢁꢄꢅꢅꢀ6ꢁ  
1. DU: Don't Use (if connected, must be connected to VSS  
)
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
Doc ID 12943 Rev 9  
7/41  
Description  
M24M01-R M24M01-DF  
Figure 4.  
WLCSP connections for die identified by process letter K (bump side  
view)  
SCL  
VCC  
W
SDA  
VSS  
DU  
E1  
E2  
MS30220V1  
1. DU: Don't Use (if connected, must be connected to VSS  
)
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
Caution:  
As EEPROM cells lose their charge (and so their binary value) when exposed to ultra violet  
(UV) light, EEPROM dice delivered in wafer form by STMicroelectronics must never be  
exposed to UV light.  
8/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Signal description  
2
Signal description  
2.1  
Serial Clock (SCL)  
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to  
output the data on SDA(out).  
2.2  
2.3  
Serial Data (SDA)  
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open  
drain output that may be wire-OR’ed with other open drain or open collector signals on the  
bus. A pull up resistor must be connected (Figure 13 indicates how to calculate the value of  
the pull-up resistor).  
Chip Enable (E1, E2)  
These input signals are used to set the value that is to be looked for on the two bits (b3, b2)  
of the 7-bit device select code. These inputs must be tied to V or V , to establish the  
CC  
SS  
device select code as shown in Figure 5. When not connected (left floating), these inputs  
are read as low (0,0).  
Figure 5.  
Device select code  
V
V
CC  
CC  
M24xxx  
M24xxx  
E
E
i
i
V
V
SS  
SS  
Ai12806  
2.4  
Write Control (WC)  
This input signal is useful for protecting the entire contents of the memory from inadvertent  
write operations. Write operations are disabled to the entire memory array when Write  
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either  
driven low or left floating.  
When Write Control (WC) is driven high, device select and address bytes are  
acknowledged, Data bytes are not acknowledged.  
Doc ID 12943 Rev 9  
9/41  
 
Signal description  
M24M01-R M24M01-DF  
2.5  
VSS (ground)  
V
is the reference for the V supply voltage.  
CC  
SS  
2.6  
Supply voltage (VCC)  
2.6.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Operating conditions  
CC  
CC  
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is  
recommended to decouple the V line with a suitable capacitor (usually of the order of 10  
CC  
nF to 100 nF) close to the V /V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a write instruction, until the completion of the internal write cycle (t ).  
W
2.6.2  
2.6.3  
Power-up conditions  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
(see Operating conditions in Section 8: DC and AC parameters) and the rise time must not  
vary faster than 1 V/µs.  
Device reset  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V has reached the  
CC  
internal reset threshold voltage. This threshold is lower than the minimum V operating  
CC  
voltage (see Operating conditions in Section 8: DC and AC parameters). When V passes  
CC  
over the POR threshold, the device is reset and enters the Standby Power mode; however,  
the device must not be accessed until V reaches a valid and stable DC voltage within the  
CC  
specified [V (min), V (max)] range (see Operating conditions in Section 8: DC and AC  
CC  
CC  
parameters).  
In a similar way, during power-down (continuous decrease in V ), the device must not be  
CC  
accessed when V drops below V (min). When V drops below the internal reset  
CC  
CC  
CC  
threshold voltage, the device stops responding to any instruction sent to it.  
2.6.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in the Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that there is no internal  
write cycle in progress).  
10/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Memory organization  
3
Memory organization  
The memory is organized as shown in Figure 6.  
Figure 6.  
Block diagram  
7#  
%ꢀ  
%ꢁ  
(IGH VOLTAGE  
GENERATOR  
#ONTROL LOGIC  
3#,  
3$!  
)ꢋ/ SHIFT REGISTER  
$ATA  
REGISTER  
!DDRESS REGISTER  
AND COUNTER  
ꢁ PAGE  
)DENTIFICATION PAGE  
8 DECODER  
-3ꢁꢄꢅꢄꢄ6ꢁ  
Doc ID 12943 Rev 9  
11/41  
 
Device operation  
M24M01-R M24M01-DF  
4
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 7. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The device is always a slave in all  
communications.  
2
Figure 7.  
I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
12/41  
Doc ID 12943 Rev 9  
 
M24M01-R M24M01-DF  
Device operation  
4.1  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer instruction. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
4.2  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable  
and driven high. A Stop condition terminates communication between the device and the  
bus master. A Read instruction that is followed by NoAck can be followed by a Stop  
condition to force the device into the Standby mode.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
4.3  
4.4  
4.5  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
th  
acknowledge the receipt of the eight data bits.  
Device addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 7 (on Serial Data (SDA), most significant bit first).  
Table 2.  
Device select code  
Device type identifier(1)  
Chip Enable  
address(2)  
Address bits  
RW  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
b1  
b0  
When accessing  
the memory  
E1  
A16  
RW  
When accessing  
the Identification  
page  
1
0
1
1
E2  
E1  
A16  
RW  
1. The most significant bit, b7, is sent first.  
2. E2,E1 are compared against the external pin on the memory device.  
Doc ID 12943 Rev 9  
13/41  
 
Device operation  
M24M01-R M24M01-DF  
When the device select code is received, the device only responds if the Chip Enable  
address is the same as the value on its Chip Enable E2,E1 inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, the device deselects itself from the bus, and goes into Standby  
mode.  
14/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Instructions  
5
Instructions  
5.1  
Write operations  
Following a Start condition the bus master sends a device select code with the R/W bit (RW)  
reset to 0. The device acknowledges this, as shown in Figure 8, and waits for two address  
bytes. The device responds to each address byte with an acknowledge bit, and then waits  
for the data byte.  
Table 3.  
Most significant address byte  
A14 A13 A12  
A15  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
Table 4.  
Least significant address byte  
A6 A5 A4  
A7  
The 128 Kbytes (1 Mb) are addressed with 17 address bits, the 16 lower address bits being  
defined by the two address bytes and the most significant address bit (A16) being included  
in the Device Select code (see Table 2).  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write  
cycle t is triggered. A Stop condition at any other time slot does not trigger the internal  
W
Write cycle.  
After the Stop condition and the successful completion of an internal Write cycle (t ), the  
W
device internal address counter is automatically incremented to point to the next byte after  
the last modified byte.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
If the Write Control input (WC) is driven High, the Write instruction is not executed and the  
accompanying data bytes are not acknowledged, as shown in Figure 9.  
Doc ID 12943 Rev 9  
15/41  
Instructions  
M24M01-R M24M01-DF  
5.1.1  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, by Write Control (WC) being driven high, the  
device replies with NoAck, and the location is not modified. If, instead, the addressed  
location is not Write-protected, the device replies with Ack. The bus master terminates the  
transfer by generating a Stop condition, as shown in Figure 8.  
Figure 8.  
Write mode sequences with WC = 0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
Data in 2  
R/W  
WC (cont'd)  
ACK  
ACK  
Page Write (cont'd)  
Data in N  
AI01106d  
16/41  
Doc ID 12943 Rev 9  
 
M24M01-R M24M01-DF  
Instructions  
5.1.2  
Page Write  
The Page Write mode allows up to 256 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits, b16-b8, are the same. If more bytes are sent than will fit up to the end  
of the page, a condition known as “roll-over” occurs. In case of roll-over, the first bytes of the  
page are overwritten.  
The bus master sends from 1 to 256 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the  
addressed memory location are not modified, and each data byte is followed by a NoAck, as  
shown in Figure 9. After each transferred byte, the internal page address counter is  
incremented.  
The transfer is terminated by the bus master generating a Stop condition.  
Figure 9.  
Write mode sequences with WC = 1 (data write inhibited)  
WC  
ACK  
ACK  
ACK  
NO ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
NO ACK  
Data in 2  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
Page Write (cont'd)  
Data in N  
AI01120d  
Doc ID 12943 Rev 9  
17/41  
 
Instructions  
M24M01-R M24M01-DF  
5.1.3  
Write Identification Page (M24M01-D only)  
The Identification Page (256 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode. It is written by issuing the Write Identification Page  
instruction. This instruction uses the same protocol and format as Page Write (into memory  
array), except for the following differences:  
Device type identifier = 1011b  
MSB address bits A16/A8 are don't care except for address bit A10 which must be ‘0’.  
LSB address bits A7/A0 define the byte address inside the Identification page.  
If the Identification page is locked, the data bytes transferred during the Write Identification  
Page instruction are not acknowledged (NoAck).  
5.1.4  
Lock Identification Page (M24M01-D only)  
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page  
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with  
the following specific conditions:  
Device type identifier = 1011b  
Address bit A10 must be ‘1’; all other address bits are don't care  
The data byte must be equal to the binary value xxxx xx1x, where x is don't care  
18/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Instructions  
5.1.5  
ECC (Error Correction Code) and Write cycling  
The Error Correction Code (ECC) is an internal logic function which is transparent for the  
2
I C communication protocol.  
(a)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(a)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the 4 bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined in Table 9: Cycling performance by groups of four bytes.  
a. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an  
integer.  
Doc ID 12943 Rev 9  
19/41  
 
 
Instructions  
M24M01-R M24M01-DF  
5.1.6  
Minimizing Write delays by polling on ACK  
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC  
parameters, but the typical time is shorter. To make use of this, a polling sequence can be  
used by the bus master.  
The sequence, as shown in Figure 10, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 10. Write cycle polling flowchart using ACK  
Write cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
NO  
returned  
First byte of instruction  
with RW = 0 already  
decoded by the device  
YES  
Next  
Operation is  
addressing the  
memory  
NO  
YES  
Send Address  
and Receive ACK  
ReStart  
NO  
YES  
Stop  
StartCondition  
Data for the  
Write cperation  
Device select  
with RW = 1  
Continue the  
Continue the  
Random Read operation  
Write operation  
AI01847de  
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the  
figure) must be identical to the seven most significant bits of the Device Select code of the Write (polling  
instruction in the figure).  
20/41  
Doc ID 12943 Rev 9  
 
M24M01-R M24M01-DF  
Instructions  
5.2  
Read operations  
Read operations are performed independently of the state of the Write Control (WC) signal.  
After the successful completion of a Read operation, the device’s internal address counter is  
incremented by one, to point to the next byte address.  
Figure 11. Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev sel  
Data out  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
R/W  
ACK  
R/W  
ACK  
ACK  
ACK  
R/W  
ACK  
Sequention  
Random  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
ACK  
NO ACK  
Data out N  
AI01105d  
5.2.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 11) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
Doc ID 12943 Rev 9  
21/41  
 
Instructions  
M24M01-R M24M01-DF  
5.2.2  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 11, without acknowledging the byte.  
5.2.3  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 11.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
5.3  
Read Identification Page (M24M01-D only)  
The Identification Page (256 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode.  
The Identification Page can be read by issuing an Read Identification Page instruction. This  
instruction uses the same protocol and format as the Random Address Read (from memory  
array) with device type identifier defined as 1011b. The MSB address bits A16/A8 are don't  
care, the LSB address bits A7/A0 define the byte address inside the Identification Page. The  
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when  
reading the Identification Page from location 100d, the number of bytes should be less than  
or equal to 156, as the ID page boundary is 256 bytes).  
5.4  
Read the lock status (M24M01-D only)  
The locked/unlocked status of the Identification page can be checked by transmitting a  
specific truncated command [Identification Page Write instruction + one data byte] to the  
device. The device returns an acknowledge bit if the Identification page is unlocked,  
otherwise a NoAck bit if the Identification page is locked.  
Right after this, it is recommended to transmit to the device a Start condition followed by a  
Stop condition, so that:  
Start: the truncated command is not executed because the Start condition resets the  
device internal logic,  
Stop: the device is then set back into Standby mode by the Stop condition.  
5.4.1  
Acknowledge in Read mode  
For all Read instructions, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) low during this  
time, the device terminates the data transfer and switches to its Standby mode.  
22/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Initial delivery state  
6
Initial delivery state  
The device is delivered with all bits set to 1 (both in the memory array and in the  
Identification page - that is, each byte contains FFh).  
Doc ID 12943 Rev 9  
23/41  
Maximum rating  
M24M01-R M24M01-DF  
7
Maximum rating  
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Lead temperature during soldering  
Input or output range  
see note (1)  
–0.50  
VCC+0.6  
5
IOL  
DC output current (SDA = 0)  
Supply voltage  
-
–0.50  
-
mA  
V
VCC  
6.5  
VESD  
Electrostatic pulse (Human Body model)(2)  
4000(3)  
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. Positive and negative pulses applied on pin pairs, according to AEC-Q100-002 (compliant with JEDEC Std  
JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω).  
3. 3000 V for previous devices (process letter A or B).  
24/41  
Doc ID 12943 Rev 9  
 
M24M01-R M24M01-DF  
DC and AC parameters  
8
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 6.  
Symbol  
Operating conditions (voltage range R)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.8  
–40  
-
5.5  
85  
1
V
Ambient operating temperature  
Operating clock frequency  
°C  
fC  
MHz  
Table 7.  
Symbol  
Operating conditions (voltage range F)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.7  
–40  
-
5.5  
85  
1
V
Ambient operating temperature  
Operating clock frequency  
°C  
fC  
MHz  
Table 8.  
Symbol  
AC measurement conditions  
Parameter  
Min.  
Max.  
Unit  
Cbus  
Load capacitance  
100  
pF  
ns  
V
SCL input rise/fall time, SDA input fall time  
Input levels  
50  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing reference levels  
V
Figure 12. AC measurement I/O waveform  
)NPUT VOLTAGE LEVELS  
)NPUT AND OUTPUT  
4IMING REFERENCE LEVELS  
ꢊꢌꢇ6  
##  
ꢊꢌꢅ6  
##  
ꢊꢌꢆ6  
##  
ꢊꢌꢀ6  
##  
-3ꢁꢄꢅꢅꢃ6ꢁ  
Doc ID 12943 Rev 9  
25/41  
 
DC and AC parameters  
M24M01-R M24M01-DF  
Table 9.  
Symbol  
Cycling performance by groups of four bytes  
Parameter  
Test condition(1)  
Max.  
Unit  
TA 25 °C, 1.8 V < VCC < 5.5 V  
4,000,000  
1,200,000  
Write cycle  
Write  
Ncycle  
endurance(2)  
cycle(3)  
TA = 85 °C, 1.8 V < VCC < 5.5 V  
1. Cycling performance for products identified by process letter K.  
2. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1,  
4*N+2, 4*N+3] where N is an integer. The Write cycle endurance is defined by characterization and  
qualification.  
3. A Write cycle is executed when either a Page Write, a Byte Write, a Write Identification Page or a Lock  
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write  
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling.  
Table 10. Memory cell data retention  
Parameter  
Data retention(1)  
Test condition  
TA = 55 °C  
Min.  
Unit  
200  
Year  
1. For products identified by process letter K. The data retention is not tested in production but defined from  
characterization and qualification results.  
Table 11. Input parameters  
Symbol  
Parameter(1)  
Test condition  
Min.  
Max.  
Unit  
CIN  
CIN  
ZL  
Input capacitance (SDA)  
8
6
pF  
pF  
kΩ  
kΩ  
Input capacitance (other pins)  
VIN < 0.3 VCC  
VIN > 0.7 VCC  
30  
Input impedance (WC)  
ZH  
400  
1. Sampled only, not 100% tested.  
26/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
DC and AC parameters  
.
Table 12. DC characteristics (voltage range R, device grade 6)  
Test conditions (in addition to  
Symbol  
Parameter  
Min.  
Max.  
Unit  
those in Table 6)  
VIN = VSS or VCC  
Input leakage current  
(E1, E2, SCL, SDA)  
ILI  
2
2
µA  
µA  
device in Standby mode  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (Read)  
VCC = 1.8 V, fc= 400 kHz  
VCC = 2.5 V, fc =400 kHz  
VCC = 5.5 V, fc =400 kHz  
1(1)  
1
mA  
mA  
mA  
ICC  
1.5(2)  
fc= 1 MHz  
During tW  
1.5(3)  
2(4)(5)  
3(6)  
mA  
mA  
µA  
ICC0  
Supply current (Write)  
Standby supply current  
Device not selected,  
VIN = VSS or VCC, VCC = 1.8 V  
Device not selected,  
ICC1  
3(7)  
5(8)  
µA  
µA  
VIN = VSS or VCC, VCC = 2.5 V  
Device not selected,  
VIN = VSS or VCC, VCC = 5.5 V  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
1.8 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
–0.45  
–0.45  
0.25 VCC  
0.30 VCC  
V
V
v
Input low voltage  
(SCL, SDA, WC)  
VIL  
VIH  
0.75 VCC VCC+1  
Input high voltage  
(SCL, SDA)  
0.70 VCC 0 VCC+1  
v
I
OL = 1.0 mA, VCC = 1.8 V  
0.2  
0.4  
0.4  
V
V
V
VOL  
Output low voltage  
IOL = 2.1 mA, VCC = 2.5 V  
IOL = 3.0 mA, VCC = 5.5 V  
1. Devices identified by process letter A or B offer ICC = 0.8 mA  
2. The previous product identified by process letter A or B was specified with Icc(max) = 2 mA.  
3. Devices identified by process letter A or B offer ICC = 2.5 mA.  
4. Characterized only, not tested in production.  
5. The previous product identified by process letter A or B was characterized with Icc0(max) = 5 mA.  
6. Devices identified by process letter A or B offer ICC1 = 1 µA.  
7. Devices identified by process letter A or B offer ICC1 = 2 µA.  
8. Devices identified by process letter A or B offer ICC1 = 3 µA.  
Doc ID 12943 Rev 9  
27/41  
DC and AC parameters  
M24M01-R M24M01-DF  
Table 13. DC characteristics (voltage range F, device grade 6)  
Test conditions (in addition to  
Symbol  
Parameter  
Min.  
Max.  
Unit  
those in Table 6)  
VIN = VSS or VCC  
Input leakage current  
(E1, E2, SCL, SDA)  
ILI  
2
2
µA  
µA  
device in Standby mode  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
Supply current (Read)  
VCC = 1.7 V, fc= 400 kHz  
VCC = 2.5 V, fc =400 kHz  
VCC = 5.5 V, fc =400 kHz  
1
mA  
mA  
mA  
1
ICC  
1.5  
fc= 1 MHz  
During tW  
1.5  
2(1)  
3
mA  
mA  
µA  
ICC0  
Supply current (Write)  
Standby supply current  
Device not selected,  
VIN = VSS or VCC, VCC = 1.7 V  
Device not selected,  
ICC1  
3
5
µA  
µA  
VIN = VSS or VCC, VCC = 2.5 V  
Device not selected,  
VIN = VSS or VCC, VCC = 5.5 V  
1.7 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
1.7 V VCC < 2.5 V  
2.5 V VCC < 5.5 V  
IOL = 1.0 mA, VCC = 1.7 V  
–0.45  
–0.45  
0.25 VCC  
0.30 VCC  
V
V
v
Input low voltage  
(SCL, SDA, WC)  
VIL  
VIH  
0.75 VCC VCC+1  
Input high voltage  
(SCL, SDA)  
0.70 VCC 0 VCC+1  
v
0.2  
0.4  
0.4  
V
V
V
VOL  
Output low voltage  
I
OL = 2.1 mA, VCC = 2.5 V  
IOL = 3.0 mA, VCC = 5.5 V  
1. Characterized only, not tested in production.  
28/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
DC and AC parameters  
Table 14. 400 kHz AC characteristics  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
-
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time  
600  
1300  
-
-
20(2)  
300  
(1)  
tQL1QL2  
tXH1XH2  
tXL1XL2  
tDXCH  
(3)  
(3)  
tR  
Input signal rise time  
Input signal fall time  
(3)  
(3)  
tF  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
(4)  
tCLQX  
tDH  
tAA  
Data out hold time  
100(5)  
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
-
900  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
600  
600  
600  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
1300  
-
ns  
(7)(2)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
-
-
µs  
µs  
(8)(2)  
tDHWH  
tW  
tWR  
Internal Write cycle duration  
5
ms  
Pulse width ignored (input filter on SCL and  
SDA) - single glitch  
80(9)  
ns  
(2)  
tNS  
-
1. Characterized only, not tested in production.  
2. With CL = 10 pF.  
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when  
f
C < 400 kHz.  
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
5. The previous product identified by process letter A was specified with tCLQX = 200 ns (min).  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or  
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 13.  
7. WC=0 set up time condition to enable the execution of a WRITE command.  
8. WC=0 hold time condition to enable the execution of a WRITE command.  
9. The previous product identified by process letter A or B was specified with tNS = 100 ns (max).  
Doc ID 12943 Rev 9  
29/41  
DC and AC parameters  
M24M01-R M24M01-DF  
Table 15. 1 MHz AC characteristics  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCL  
Clock frequency  
0
1
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tHIGH Clock pulse width high  
tLOW Clock pulse width low  
300  
tCLCH  
400  
-
(1)  
(1)  
tXH1XH2  
tXL1XL2  
tR  
tF  
tF  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
(1)  
(1)  
(8)  
tQL1QL2  
tDXCX  
tCLDX  
-
120  
tSU:DAT Data in setup time  
tHD:DAT Data in hold time  
80  
0
-
-
(2)  
tCLQX  
tDH  
tAA  
Data out hold time  
50  
-
-
(3)  
tCLQV  
Clock low to next data valid (access time)  
500  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
250  
250  
250  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
500  
-
ns  
(4)(8)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
-
-
µs  
µs  
(5)(8)  
tDHWH  
tW  
tWR  
Write time  
5
ms  
Pulse width ignored (input filter on SCL and  
SDA)  
80(7)  
ns  
(6)  
tNS  
-
1. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when  
fC < 1 MHz.  
2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or  
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 14.  
4. WC=0 set up time condition to enable the execution of a WRITE command.  
5. WC=0 hold time condition to enable the execution of a WRITE command.  
6. Characterized only, not tested in production.  
7. The previous product identified by process letter A or B was specified with tNS = 50 ns (max).  
30/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Figure 13. Maximum R  
DC and AC parameters  
value versus bus parasitic capacitance (C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 400 kHz  
C
ꢁꢊꢊ  
4HE 2  
X # TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢃꢊꢊ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢌ  
6
##  
ꢁꢊ  
2
BUS  
(ERE 2  
BUS  
§ # ꢏ ꢁꢀꢊ NS  
BUS  
ꢃ K½  
3#,  
3$!  
)£# BUS  
MASTER  
-ꢀꢃXXX  
ꢆꢊ P&  
#
BUS  
ꢁꢊ  
ꢁꢊꢊ  
"US LINE CAPACITOR ꢍP&ꢎ  
ꢁꢊꢊꢊ  
AIꢁꢃꢅꢄꢈB  
Figure 14. Maximum R  
value versus bus parasitic capacitance C ) for  
bus  
bus  
2
an I C bus at maximum frequency f = 1MHz  
C
6
ꢊ  
##  
2
BUS  
4HE 2  
§ #  
TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢁꢉꢊ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢌ  
3#,  
3$!  
)£# BUS  
MASTER  
ꢁꢊ  
-ꢀꢃXXX  
(EREꢐ  
#
§
BUS  
ꢏ ꢁꢀꢊ NS  
#
2
BUS  
BUS  
ꢁꢊ  
ꢆꢊ  
"US LINE CAPACITOR ꢍP&ꢎ  
ꢁꢊꢊ  
-3ꢁꢄꢅꢃꢉ6ꢁ  
Doc ID 12943 Rev 9  
31/41  
DC and AC parameters  
M24M01-R M24M01-DF  
Figure 15. AC waveforms  
3TART  
CONDITION  
3TART  
CONDITION  
3TOP  
CONDITION  
T8,ꢁ8,ꢀ  
T#(#,  
T8(ꢁ8(ꢀ  
3#,  
T#,#(  
T$,#,  
T8,ꢁ8,ꢀ  
3$! )N  
7#  
3$!  
)NPUT  
T#($,  
T7,$,  
T#,$8  
T$8#(  
3$!  
#HANGE  
T8(ꢁ8(ꢀ  
T#($(  
T$($,  
T$(7(  
3TOP  
CONDITION  
3TART  
CONDITION  
3#,  
3$! )N  
T7  
7RITE CYCLE  
T#($(  
T#($,  
3#,  
T#,16  
T#,18  
$ATA VALID  
T1,ꢁ1,ꢀ  
$ATA VALID  
3$! /UT  
!)ꢊꢊꢅꢄꢉG  
32/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 16. TSSOP8 – 8-lead thin shrink small outline, package outline  
1. Drawing is not to scale.  
Table 16. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 12943 Rev 9  
33/41  
Package mechanical data  
M24M01-R M24M01-DF  
Figure 17. SO8N – 8 lead plastic small outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 17. SO8N – 8 lead plastic small outline, 150 mils body width, package data  
millimeters  
inches (1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
1.750  
0.250  
0.0689  
0.0098  
A1  
A2  
b
0.100  
1.250  
0.280  
0.170  
0.0039  
0.0492  
0.0110  
0.0067  
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
c
ccc  
D
4.900  
6.000  
3.900  
1.270  
4.800  
5.800  
3.800  
0.1929  
0.2362  
0.1535  
0.0500  
0.1890  
0.2283  
0.1496  
E
E1  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.400  
1.270  
0.0157  
0.0500  
L1  
1.040  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
34/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Package mechanical data  
Figure 18. Standard WLCSP8 – Wafer level chip scale package outline (for die  
identified by process letter A)  
e1  
D
e2  
e
Detail A  
e2  
E
Orientation  
reference  
aaa  
(4X)  
G
A2  
F
Orientation reference  
A
Wafer back side  
Side view  
Bump side  
Bump  
A1  
eee Z  
(2)  
Z
b(8X)  
(3)  
Seating plane  
Note 4  
Detail A rotated by 90°  
E1_ME_b  
1
2
3
4
Drawing is not to scale and corresponds to preliminary data.  
The dimension is measured at the maximum bump diameter parallel to primary datum Z.  
The primary datum Z and seating plane are defined by the spherical crowns of the bump.  
Bump position designation per JESD 95-1, SPP-010.  
(1)  
Table 18. WLCSP8 – Wafer level chip scale package mechanical data  
millimeters  
inches(2)  
Symbol  
Typ  
0.580  
Min  
Max  
0.605  
Typ  
Min  
Max  
A
0.555  
0.0228  
0.0091  
0.0138  
0.0127  
0.1406  
0.0807  
0.0236  
0.0945  
0.0472  
0.0230  
0.0167  
0.0043  
0.0043  
0.0043  
0.0024  
0.0024  
0.0219  
0.0238  
A1  
A2  
b
0.230  
0.350  
0.322  
3.570  
2.050  
0.600  
2.400  
1.200  
0.585  
0.424  
0.110  
0.110  
0.110  
0.060  
0.060  
D
3.685  
2.165  
0.1451  
0.0852  
E
e
e1  
e2  
F
G
aaa  
bbb  
ccc  
ddd  
eee  
N (number of bumps) 8  
1. Preliminary data.  
2. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 12943 Rev 9  
35/41  
Package mechanical data  
M24M01-R M24M01-DF  
Figure 19. Thin WLCSP – Wafer level chip size package outline (for die identified  
by process letter K)  
6$$ BALL MARKING  
$
Eꢀ  
Eꢆ  
%
E
E
Eꢁ  
"UMP SIDE  
7AFER BACK SIDE  
"UMP  
$ETAIL !  
!ꢁ  
!
!ꢀ  
$ETAIL ꢁ  
ROTATED ꢄꢊ  
-3ꢆꢊꢀꢁꢇ6ꢁ  
Table 19. WLCSP – Wafer level chip size package mechanical data  
millimeters  
inches(1)  
Symbol  
Typ.  
Min.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
0.300  
0.100  
0.200  
0.126  
2.560  
1.698  
1.000  
1.200  
1.100  
0.500  
0.280  
0.320  
0.0118  
0.0039  
0.0079  
0.0050  
0.1008  
0.0669  
0.0394  
0.0472  
0.0433  
0.0197  
0.0110  
0.0126  
D
E
1.823  
0.0676  
e
e1  
e2  
e3  
1. Values in inches are converted from mm and rounded to four decimal digits.  
36/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Part numbering  
10  
Part numbering  
Table 20. Ordering information scheme  
Example:  
M24M01-D  
R
MN 6  
T
P /K  
Device type  
M24 = I2C serial access EEPROM  
Device function  
M01 = 1 Mbit (128 Kb × 8 bits)  
Device family  
Blank: Without Identification page  
-D: With additional Identification page  
Operating voltage  
R = VCC = 1.8 V to 5.5 V  
F = VCC = 1.7 V to 5.5 V  
Package  
MN = SO8 (150 mil width)(1)  
DW = TSSOP8 (169 mil width)(1)  
CS = standard WLCSP  
CT = thin WLCSP  
Device grade  
6 = Industrial: device tested with standard test flow over –40 to 85 °C  
Option  
blank = standard packing  
T = Tape and reel packing  
Plating technology  
P = ECOPACK® (RoHS compliant)  
Process(2)  
/A, /B or /K= Manufacturing technology code  
1. RoHS-compliant and halogen-free (ECOPACK2®)  
2. The process letter applies to WLCSP devices only.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of the devices, please contact your nearest ST sales office.  
Doc ID 12943 Rev 9  
37/41  
 
Revision history  
M24M01-R M24M01-DF  
11  
Revision history  
Table 21. Document revision history  
Date  
Revision  
Changes  
07-Dec-2006  
1
Initial release.  
Document status promoted from Preliminary Data to full Datasheet.  
Section 2.6: Supply voltage (VCC) updated.  
Note 1 updated to latest standard revision below Table 5: Absolute  
maximum ratings.  
02-Oct-2007  
2
VIL, VIH modified and, rise/fall time corrected in Test conditions in  
Table 11: DC characteristics (M24M01-R and M24M01-HR).  
Package values in inches calculated from mm and rounded to 4  
decimal digits (note added below package mechanical data tables in  
Section 7: Package mechanical data.  
1 MHz maximum clock frequency added:  
Figure 6: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 1MHz  
Table 14: AC characteristics at 1 MHz (M24M01-HR) added.  
tNS moved from Table 8: Input parameters to Table 13: AC  
characteristics at 400 kHz (M24M01-R and M24M01-W). Note  
removed below Table 8. In Table 13, tCH1CH2, tCL1CL2 and tDL1DL2  
removed, tXH1XH2, tXL1XL2 added, tDL1DL2 max modified, notes  
modified.  
26-Nov-2007  
3
Figure 5: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 400 kHz modified.  
Figure 13: AC waveforms modified. Small text changes.  
M24M01-HR root part number added. Small text changes.  
Figure 6: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 1MHz modified.  
Most significant address bits modified in Section 3.8: Page Write on  
page 15.  
18-Mar-2008  
4
Test conditions modified for ILI, ICC and VOL in Table 11: DC  
characteristics (M24M01-R and M24M01-HR).  
TW and TNS values corrected in Table 13: AC characteristics at  
400 kHz (M24M01-R and M24M01-W).  
Cross-reference corrected in Note 5 below Table 14: AC  
characteristics at 1 MHz (M24M01-HR).  
38/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Table 21. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Added: M24M01-W part number in device grade 3 temperature range  
(see Table 8: Operating conditions (M24M01-W), Table 12: DC  
characteristics (M24M01-W) and Table 17: Ordering information  
scheme (M24M01-x products sold in packages)).  
M24M01-R offered as a bare die (see Section 8: Part numbering and  
Table 18: Ordering information scheme (M24M01-R sold as bare  
dice)).  
In Table 13: AC characteristics at 400 kHz (M24M01-R and M24M01-  
W), Note 1 modified, Note 2 added, tXH1XH2, tXL1XL2 and tDL1DL2  
values modified.  
02-Sep-2008  
5
In Table 14: AC characteristics at 1 MHz (M24M01-HR), Note 1  
modified, Note 3 added, tXH1XH2, tXL1XL2 and tDL1DL2 values modified.  
tCHDX, tDL1DL2 and tDXCX changed to tCHDL, tQL1QL2 and tDXCH  
,
respectively (see Table 13, Table 14 and Figure 13).  
Table 19: Available M24M01-x products (package, voltage range,  
frequency, temperature grade) added.  
Small text changes.  
WLCSP8 package added (see Figure 3: WLCSP8 connections  
(bumps side view) and Section 7: Package mechanical data).  
Section 2.6: Supply voltage (VCC) updated.  
12-Mar-2009  
6
IOL added to Table 5: Absolute maximum ratings.  
VRES added to Table 11: DC characteristics (M24M01-R and  
M24M01-HR) and Table 12: DC characteristics (M24M01-W).  
ECOPACK text updated.  
Section : Features updated.  
NC pin changed to DU in Figure 2: SO connections.  
Device select code Chip enable address bits updated in Section 2.3.  
Internal reset threshold modified in Section 2.6.3: Device reset.  
Figure 6: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 1MHz updated.  
VRES removed, and ICC1 conditions modified in Table 11: DC  
characteristics (M24M01-R and M24M01-HR), and Table 12: DC  
characteristics (M24M01-W). VRES removed from Table 12: DC  
characteristics (M24M01-W).  
26-Jun-2009  
7
tXH1XH2 updated in Table 13: AC characteristics at 400 kHz (M24M01-  
R and M24M01-W). tXH1XH2 updated, and Note 5 updated in Table 14:  
AC characteristics at 1 MHz (M24M01-HR).  
Command replaced by instruction in the whole document.  
Doc ID 12943 Rev 9  
39/41  
Revision history  
Table 21. Document revision history (continued)  
M24M01-R M24M01-DF  
Date  
Revision  
Changes  
Updated Features on page 1.  
Updated Figure 3: WLCSP8 connections (bumps side view), Figure 5:  
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an  
I2C bus at maximum frequency fC = 400 kHz and Figure 6: Maximum  
Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at  
maximum frequency fC = 1MHz.  
Updated Table 10: DC characteristics (M24M01-R and M24M01-HR).  
02-May-2011  
8
Updated footnote 5 of Table 14: AC characteristics at 1 MHz  
(M24M01-HR).  
Modified description of Write Control in Section 3.6: Write operations.  
Replaced CL with Cbus in Table 7: AC measurement conditions.  
Changed note 4 about tCLQV in Table 13: AC characteristics at  
400 kHz (M24M01-R and M24M01-W).  
Datasheet split into:  
– M24M01-R, M24M01-DF (this datasheet) for standard products  
(range 6),  
23-Apr-2012  
9
– M24M01-125 datasheet for automotive products (range 3).  
40/41  
Doc ID 12943 Rev 9  
M24M01-R M24M01-DF  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 12943 Rev 9  
41/41  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY