M24M01-DF [STMICROELECTRONICS]

1 Mbit串行I2C总线EEPROM;
M24M01-DF
型号: M24M01-DF
厂家: ST    ST
描述:

1 Mbit串行I2C总线EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总30页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24M01-R  
1 Mbit serial I²C bus EEPROM  
Features  
2
Compatible with I C extended addressing  
2
Two-wire I C serial interface  
supports 1 MHz protocol  
Single supply voltage:  
– 1.8 V to 5.5 V  
SO8 (MN)  
150 mils width  
Hardware write control  
Byte and Page Write (up to 256 bytes)  
Random and Sequential Read modes  
Self-timed programming cycle  
Automatic address incrementing  
Enhanced ESD/Latch-Up protection  
More than 1 million Write cycles  
More than 40-year data retention  
SO8 (MW)  
208 mils width  
Packages  
– ECOPACK® (RoHS compliant)  
November 2007  
Rev 3  
1/30  
www.st.com  
1
Contents  
M24M01-R  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ECC (error correction code) and Write cycling . . . . . . . . . . . . . . . . . . . . . 16  
3.10 Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18  
3.11 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.13 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.14 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.15 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/30  
M24M01-R  
Contents  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5
6
7
8
9
3/30  
List of tables  
M24M01-R  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
AC characteristics at 400 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AC characteristics at 1 MHz (preliminary data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SO8 narrow – 8 lead plastic small outline, 150 mils body width, package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SO8W – 8 lead plastic small outline, 208 mils body width, package  
Table 14.  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 15.  
Table 16.  
4/30  
M24M01-R  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SO connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus  
bus  
bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
C
2
Figure 5.  
Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus bus  
bus at maximum frequency f = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
C
2
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . 26  
Figure 14. SO8W – 8 lead plastic small outline, 208 mils body width, package outline. . . . . . . . . . . . 27  
5/30  
Description  
M24M01-R  
1
Description  
2
The M24M01-R is an I C-compatible electrically erasable programmable memory  
(EEPROM) device organized as 128 Kb × 8 bits.  
2
The I C bus is a two-wire serial interface, comprising a bidirectional data line and a clock  
line. The devices carry a built-in 4-bit device type identifier code (1010) in accordance with  
2
the I C bus definition.  
2
The M24M01-R behaves as a slave in the I C protocol, with all memory operations  
synchronized by the serial clock. Read and Write operations are generated by the bus  
master and initiated by a Start condition, followed by the device select code, address bytes  
and data bytes. Data transfers are terminated by a Stop condition after an Ack for Write, and  
after a NoAck for Read.  
th  
When writing data to the memory, the device inserts an acknowledge bit during the 9 bit  
time, following the bus master’s 8-bit transmission. When data is read by the bus master, the  
bus master acknowledges the receipt of the data byte in the same way.  
In order to meet environmental requirements, ST offers the M24M01-R in ECOPACK®  
packages. ECOPACK® packages are Lead-free and RoHS compliant.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 1.  
Logic diagram  
V
CC  
2
E1-E2  
SDA  
M24M01-R  
SCL  
WC  
V
SS  
AI13415b  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
E1, E2  
SDA  
SCL  
WC  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
Input  
I/O  
Input  
Input  
VCC  
VSS  
6/30  
M24M01-R  
Description  
Figure 2.  
SO connections  
M24M01-R  
NC  
E1  
E2  
1
2
3
4
8
7
6
5
V
CC  
WC  
SCL  
SDA  
V
SS  
AI13416b  
1. See Section 7: Package mechanical for package dimensions, and how to identify pin-1.  
2. NC = Not Connected internally.  
7/30  
Signal description  
M24M01-R  
2
Signal description  
2.1  
Serial Clock (SCL)  
This input signal is used to strobe all data in and out of the device. In applications where this  
signal is used by slave devices to synchronize the bus to a slower clock, the bus master  
must have an open drain output, and a pull-up resistor must be connected from Serial Clock  
(SCL) to V . (Figure 5 indicates how the value of the pull-up resistor can be calculated). In  
CC  
most applications, though, this method of synchronization is not employed, and so the pull-  
up resistor is not necessary, provided that the bus master has a push-pull (rather than open  
drain) output.  
2.2  
2.3  
Serial Data (SDA)  
This bidirectional signal is used to transfer data in or out of the device. It is an open drain  
output that may be wire-OR’ed with other open drain or open collector signals on the bus. A  
pull up resistor must be connected from Serial Data (SDA) to V . (Figure 5 indicates how  
CC  
the value of the pull-up resistor can be calculated).  
Chip Enable (E1, E2)  
These input signals are used to set the value that is to be looked for on the two bits (b2, b1)  
of the 7-bit device select code. These inputs must be tied to V or V , to establish the  
CC  
SS  
device select code as shown in Figure 3. When not connected (left floating), these inputs  
are read as low (0,0).  
Figure 3.  
Device select code  
V
V
CC  
CC  
M24xxx  
M24xxx  
E
E
i
i
V
V
SS  
SS  
Ai12806  
2.4  
Write Control (WC)  
This input signal is useful for protecting the entire contents of the memory from inadvertent  
write operations. Write operations are disabled to the entire memory array when Write  
Control (WC) is driven high. When unconnected, the signal is internally read as V , and  
IL  
Write operations are allowed.  
When Write Control (WC) is driven high, device select and address bytes are  
acknowledged, Data bytes are not acknowledged.  
8/30  
M24M01-R  
Signal description  
2.5  
VSS ground  
V
is the reference for the V supply voltage.  
CC  
SS  
2.6  
Supply voltage (VCC)  
2.6.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 7). In order to  
CC  
CC  
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
2.6.2  
2.6.3  
Power-up conditions  
When the power supply is turned on, V rises from V to V . The V rise time must not  
vary faster than 1 V/µs.  
CC  
SS  
CC  
CC  
Device reset  
In order to prevent inadvertent Write operations during power-up, a power on reset (POR)  
circuit is included. At power-up (continuous rise of V ), the device does not respond to any  
CC  
instruction until V has reached the power on reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Table 7). When V passes over  
CC  
CC  
the POR threshold, the device is reset and is in Standby Power mode.  
In a similar way, during power-down (continuous decrease in V ), as soon as V drops  
CC  
CC  
below the Power On Reset threshold voltage, the device stops responding to any instruction  
sent to it.  
2.6.4  
Power-down conditions  
During power-down (continuous decrease in V ), the device must be in the Standby Power  
CC  
mode (mode reached after decoding a Stop condition, assuming that is there is no internal  
Write cycle in progress).  
9/30  
Signal description  
M24M01-R  
2
Figure 4.  
Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus  
bus  
bus at maximum frequency f = 400 kHz  
C
100  
10  
1
f
= 400 kHz, t  
= 1.3 µs  
C
LOW  
Rbus x Cbus time  
constant must be less than  
500 ns  
V
CC  
R
bus  
SCL  
SDA  
I²C bus  
master  
M24xxx  
C
bus  
10  
100  
1000  
Bus line capacitor (pF)  
ai14796  
2
Figure 5.  
Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus  
bus  
bus at maximum frequency f = 1MHz  
C
V
100  
CC  
f
= 1 MHz, t  
LOW  
= 500 ns,  
x C  
C
time constant R  
must be less than 150 ns  
bus  
bus  
R
bus  
SCL  
SDA  
I²C bus  
master  
10  
M24xxx  
f
= 1 MHz, t  
LOW  
= 700 ns,  
x C  
C
time constant R  
must be less than 270 ns  
bus  
bus  
C
bus  
1
10  
100  
Bus line capacitor (pF)  
ai14795  
10/30  
M24M01-R  
Signal description  
2
Figure 6.  
I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 2.  
Device select code  
Device type identifier(1)  
Chip Enable  
address(2)  
A16  
RW  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
b2  
b1  
b0  
Device select code  
E2  
E1  
A16  
RW  
1. The most significant bit, b7, is sent first.  
2. E1 and E2 are compared against the respective external pins on the memory device.  
Table 3.  
Most significant address byte  
b14 b13 b12  
b15  
b11  
b3  
b10  
b2  
b9  
b1  
b8  
b0  
Table 4.  
Least significant address byte  
b6 b5 b4  
b7  
11/30  
Device operation  
M24M01-R  
3
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 6. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The M24M01-R device is always a slave in  
all communication.  
3.1  
3.2  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer command. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition, and will not respond unless one is given.  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable  
and driven high. A Stop condition terminates communication between the device and the  
bus master. A Read command that is followed by NoAck can be followed by a Stop condition  
to force the device into the Standby mode. A Stop condition at the end of a Write command  
triggers the internal EEPROM Write cycle.  
3.3  
3.4  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
12/30  
M24M01-R  
Device operation  
3.5  
Memory addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, shown  
in Table 2 (on Serial Data (SDA), most significant bit first).  
The device select code consists of a 4-bit device type identifier, and a 2-bit Chip Enable  
“Address” (E2, E1). To address the memory array, the 4-bit device type identifier is 1010b.  
2
Up to four memory devices can be connected on a single I C bus. Each one is given a  
unique 2-bit code on the Chip Enable (E1, E2) inputs. When the device select code is  
received, the device only responds if the Chip Enable Address is the same as the value on  
the Chip Enable (E1, E2) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the device select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the device select code, it deselects itself from the bus, and goes into Standby mode.  
Table 5.  
Operating modes  
Mode  
RW bit WC(1) Bytes  
Initial sequence  
Current Address Read  
Random Address Read  
1
0
1
1
0
0
X
X
1
1
Start, device select, RW = 1  
Start, device select, RW = 0, Address  
reStart, device select, RW = 1  
X
Sequential Read  
Byte Write  
X
1  
Similar to Current or Random Address Read  
Start, device select, RW = 0  
VIL  
VIL  
1
Page Write  
256 Start, device select, RW = 0  
1. X = V or V .  
IH  
IL  
13/30  
Device operation  
M24M01-R  
Figure 7.  
Write mode sequences with WC = 1 (data write inhibited)  
WC  
ACK  
ACK  
ACK  
NO ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
NO ACK  
Data in 2  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
R/W  
WC (cont'd)  
NO ACK  
NO ACK  
Page Write (cont'd)  
Data in N  
AI01120d  
14/30  
M24M01-R  
Device operation  
3.6  
Write operations  
Following a Start condition the bus master sends a device select code with the R/W bit (RW)  
reset to 0. The device acknowledges this, as shown in Figure 8, and waits for two address  
bytes. The device responds to each address byte with an acknowledge bit, and then waits  
for the data byte.  
Writing to the memory may be inhibited if Write Control (WC) is driven high. Any Write  
instruction with Write Control (WC) driven high (during a period of time from the Start  
condition until the end of the two address bytes) will not modify the memory contents, and  
the accompanying data bytes are not acknowledged, as shown in Figure 7.  
Each data byte in the memory has a 17-bit address (the most significant bit b16 is in the  
device select code and the Least Significant Bits b15-b0 are defined in two address bytes).  
The most significant byte (Table 3) is sent first, followed by the least significant byte  
(Table 4).  
th  
When the bus master generates a Stop condition immediately after the Ack bit (in the “10  
bit” time slot), either at the end of a Byte Write or a Page Write, the internal memory Write  
cycle is triggered. A Stop condition at any other time slot does not trigger the internal Write  
cycle.  
After the Stop condition, the delay t , and the successful completion of a Write operation,  
W
the device’s internal address counter is incremented automatically, to point to the next byte  
address after the last one that was modified.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
3.7  
3.8  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, by Write Control (WC) being driven high, the  
device replies with NoAck, and the location is not modified. If, instead, the addressed  
location is not Write-protected, the device replies with Ack. The bus master terminates the  
transfer by generating a Stop condition, as shown in Figure 8.  
Page Write  
The Page Write mode allows up to 256 bytes to be written in a single Write cycle, provided  
that they are all located in the same ’row’ in the memory: that is, the most significant  
memory address bits, b15-b6, are the same. If more bytes are sent than will fit up to the end  
of the row, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to  
become overwritten in an implementation dependent way.  
The bus master sends from 1 to 256 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the  
addressed memory location are not modified, and each data byte is followed by a NoAck.  
After each byte is transferred, the internal byte address counter (the 6 least significant  
address bits only) is incremented. The transfer is terminated by the bus master generating a  
Stop condition.  
15/30  
Device operation  
M24M01-R  
Figure 8.  
Write mode sequences with WC = 0 (data write enabled)  
WC  
ACK  
ACK  
ACK  
ACK  
Byte Write  
Dev sel  
Byte addr  
Byte addr  
Data in  
R/W  
WC  
ACK  
ACK  
ACK  
ACK  
Page Write  
Dev sel  
Byte addr  
Byte addr  
Data in 1  
Data in 2  
R/W  
WC (cont'd)  
ACK  
ACK  
Page Write (cont'd)  
Data in N  
AI01106d  
3.9  
ECC (error correction code) and Write cycling  
The M24M01-R device offers an ECC (error correction code) logic which compares each 4-  
byte word with its six associated EEPROM ECC bits. As a result, if a single bit out of 4 bytes  
of data happens to be erroneous during a Read operation, the ECC detects it and replaces  
it by the correct value. The read reliability is therefore much improved by the use of this  
feature.  
Note however that even if a single byte has to be written, 4 bytes are internally modified  
(plus the ECC word), that is, the addressed byte is cycled together with the three other bytes  
making up the word. It is therefore recommended to write by packets of 4 bytes in order to  
benefit from the larger amount of Write cycles.  
The M24M01-R device is qualified at 1 million (1 000 000) Write cycles, using a cycling  
routine that writes to the device by multiples of 4-byte words.  
16/30  
M24M01-R  
Device operation  
Figure 9.  
Write cycle polling flowchart using ACK  
Write cycle  
in progress  
Start condition  
Device select  
with RW = 0  
ACK  
returned  
NO  
First byte of instruction  
YES  
with RW = 0 already  
decoded by the device  
Next  
Operation is  
addressing the  
memory  
NO  
YES  
Send Address  
and Receive ACK  
ReStart  
StartCondition  
NO  
YES  
Stop  
Data for the  
Write cperation  
Ddevice select  
with RW = 1  
Continue the  
Continue the  
Random Read operation  
Write operation  
AI01847d  
17/30  
Device operation  
M24M01-R  
3.10  
Minimizing system delays by polling on ACK  
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum Write time (tw) is  
shown in Table 11, but the typical time is shorter. To make use of this, a polling sequence  
can be used by the bus master.  
The sequence, as shown in Figure 9, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 10. Read mode sequences  
ACK  
NO ACK  
Current  
Address  
Read  
Dev sel  
Data out  
R/W  
ACK  
ACK  
ACK  
ACK  
NO ACK  
Random  
Address  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
Data out N  
Sequential  
Current  
Read  
Dev sel  
Data out 1  
R/W  
ACK  
ACK  
ACK  
ACK  
R/W  
ACK  
Sequention  
Random  
Read  
Dev sel *  
Byte addr  
Byte addr  
Dev sel *  
Data out1  
R/W  
ACK  
NO ACK  
Data out N  
AI01105d  
1. The seven most significant bits of the device select code of a Random Read (in the 1st and 4th bytes) must  
be identical.  
18/30  
M24M01-R  
Device operation  
3.11  
Read operations  
Read operations are performed independently of the state of the Write Control (WC) signal.  
After the successful completion of a Read operation, the device’s internal address counter is  
incremented by one, to point to the next byte address.  
3.12  
3.13  
3.14  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the device select code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 10, without acknowledging the byte.  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 10.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
3.15  
Acknowledge in Read mode  
For all Read commands, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) low during this  
time, the device terminates the data transfer and switches to its Standby mode.  
19/30  
Initial delivery state  
M24M01-R  
4
Initial delivery state  
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).  
5
Maximum rating  
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant  
quality documents.  
Table 6.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TA  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Lead temperature during soldering  
Input or output range  
see note (1)  
–0.50  
VCC + 0.6  
6.5  
VCC  
Supply voltage  
–0.50  
V
VESD  
Electrostatic discharge voltage (Human Body model)(2) –3000  
3000  
V
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
20/30  
M24M01-R  
DC and AC parameters  
6
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristic tables that  
follow are derived from tests performed under the measurement conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 7.  
Symbol  
Operating conditions  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
1.8  
5.5  
85  
V
Ambient operating temperature  
–40  
°C  
Table 8.  
Symbol  
AC measurement conditions  
Parameter  
Min.  
Max.  
Unit  
CL  
Load capacitance  
100  
pF  
ns  
V
Input rise and fall times  
Input levels  
50  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and output timing reference levels  
V
Figure 11. AC measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 9.  
Symbol  
Input parameters  
Parameter(1)  
Test condition  
Min.  
Max.  
Unit  
CIN  
CIN  
ZL  
Input capacitance (SDA)  
8
6
pF  
pF  
kΩ  
kΩ  
Input capacitance (other pins)  
VIN < 0.3 VCC  
VIN > 0.7VCC  
30  
Input impedance (WC)  
ZH  
400  
1. Sampled only, not 100% tested.  
21/30  
DC and AC parameters  
M24M01-R  
Table 10. DC characteristics  
Test condition (in addition to  
Symbol  
Parameter  
Min.  
Max.  
Unit  
those in Table 7)  
VIN = VSS or VCC  
Input leakage current  
(E1, E2, SCL, SDA)  
ILI  
± 2  
± 2  
0.8  
µA  
µA  
device in Standby mode  
ILO  
Output leakage current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC = 1.8 V, fc= 400 kHz  
(rise/fall time < 50 ns)  
mA  
VCC = 2.5 V, fc= 400 kHz  
(rise/fall time < 50 ns)  
1
2
mA  
mA  
ICC  
Supply current (Read)  
VCC = 5.0 V, fc= 400 kHz  
(rise/fall time < 50 ns)  
1.8 V < VCC < 5.5 V, fc= 1 MHz  
(rise/fall time < 50 ns)  
2.5  
5(1)  
1
mA  
mA  
µA  
ICC0  
Supply current (Write)  
Standby supply current  
During tW, 1.8V < VCC < 5.5V  
VIN = VSS or VCC  
,
VCC = 1.8 V  
VIN = VSS or VCC  
,
ICC1  
2
3
µA  
VCC = 2.5 V  
VIN = VSS or VCC  
,
µA  
V
VCC = 5.5 V  
1.8 V VCC < 2.5 V  
2.5 V VCC 5.5 V  
–0.45  
–0.45  
0.25 VCC  
0.3 VCC  
VCC+1  
VCC+1  
0.2  
Input low voltage  
(SCL, SDA, WC)  
VIL  
VIH  
1.8 V VCC < 2.5 V  
2.5 V VCC 5.5 V  
0.75VCC  
0.7VCC  
V
Input high voltage  
(SCL, SDA, WC)  
I
OL = 0.7 mA, VCC = 1.8 V  
V
V
V
VOL  
Output low voltage  
IOL = 2.1 mA, VCC = 2.5 V  
OL = 3.0 mA, VCC = 5.5 V  
0.4  
I
0.4  
1. Characterized value, not tested in production.  
22/30  
M24M01-R  
DC and AC parameters  
Table 11. AC characteristics at 400 kHz  
Test conditions specified in Table 7  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tR  
Clock frequency  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
600  
1300  
20  
(1)  
tXH1XH2  
300  
300  
100  
(1)  
tXL1XL2  
tDL1DL2  
tDXCX  
tF  
20  
tF  
20  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
tCLDX  
tCLQX  
tDH  
tAA  
Data out hold time  
200  
200  
600  
600  
600  
(2)(3)  
tCLQV  
tCHDX  
tDLCL  
tCHDH  
Clock low to next data valid (access time)  
900  
(4)  
tSU:STA Start condition set up time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
Time between Stop condition and next Start  
condition  
tDHDL  
tW  
tBUF  
1300  
ns  
Pulse width ignored (input filter on SCL and  
SDA)  
100  
5
ns  
(5)  
tNS  
tWR  
Write time 1.8 V < VCC < 5.5 V  
ms  
1. Values recommended by the I²C-bus Fast-Mode specification.  
2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8VCC in a  
compatible way with the I2C specification (which specifies tSU:DAT (min) = 100 ns), assuming that the Rbus  
× Cbus time constant is less than 500 ns (as specified in Figure 4).  
4. For a reStart condition, or following a Write cycle.  
5. Characterized only, not tested in production.  
23/30  
DC and AC parameters  
Table 12.  
M24M01-R  
AC characteristics at 1 MHz (preliminary data)  
Test conditions specified in Table 7  
Symbol  
Alt.  
fSCL  
Parameter  
Clock frequency  
Min.  
Max.  
Unit  
fC  
0
1
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
tHIGH  
tLOW  
tR  
Clock pulse width high  
Clock pulse width low  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
300  
400  
20  
-
(1)  
tXH1XH2  
300  
(1)  
tXL1XL2  
tF  
20  
300  
(2)  
tDL1DL2  
tF  
20  
100  
tDXCX  
tCLDX  
tCLQX  
tSU:DAT Data in setup time  
tHD:DAT Data in hold time  
80  
-
0
-
tDH  
tAA  
Data out hold time  
50  
-
(3)(4)  
tCLQV  
Clock low to next data valid (access time)  
50  
500  
(5)  
tCHDX  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
250  
250  
250  
-
-
-
tDLCL  
tCHDH  
Time between Stop condition and next  
Start condition  
tDHDL  
tW  
tBUF  
tWR  
500  
-
ns  
ms  
ns  
Write time  
-
-
5
Pulse width ignored (input filter on SCL  
and SDA)  
(2)  
tNS  
50  
1. Values recommended by the I²C-bus Fast-Mode specification.  
2. Characterized only, not tested in production.  
3. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
4. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach 0.8VCC, assuming  
that the Rbus × Cbus time constant is less than 150 ns (as specified in Figure 4).  
5. For a reStart condition, or following a Write cycle.  
24/30  
M24M01-R  
DC and AC parameters  
Figure 12. AC waveforms  
tXL1XL2  
tXH1XH2  
tCHCL  
tCLCH  
SCL  
tDLCL  
tXL1XL2  
SDA In  
tCHDX  
Start  
condition  
tCLDX  
tDXCX  
SDA  
Change  
tXH1XH2  
tCHDH tDHDL  
Start  
SDA  
Input  
Stop  
condition  
condition  
SCL  
SDA In  
tW  
Write cycle  
tCHDH  
tCHDX  
Stop  
condition  
Start  
condition  
tCHCL  
SCL  
tCLQV  
tCLQX  
Data valid  
tDL1DL2  
Data valid  
SDA Out  
AI00795e  
25/30  
Package mechanical  
M24M01-R  
7
Package mechanical  
Figure 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package  
outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 13. SO8 narrow – 8 lead plastic small outline, 150 mils body width, package  
mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.0689  
0.0098  
0.1  
0.0039  
0.0492  
0.011  
1.25  
0.28  
0.17  
0.48  
0.23  
0.1  
5
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
0.0067  
ccc  
D
4.9  
6
4.8  
5.8  
3.8  
-
0.1929  
0.2362  
0.1535  
0.05  
0.189  
0.2283  
0.1496  
-
E
6.2  
4
E1  
e
3.9  
1.27  
-
h
0.25  
0°  
0.5  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.4  
1.27  
0.0157  
0.05  
L1  
1.04  
0.0409  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
26/30  
M24M01-R  
Package mechanical  
Figure 14. SO8W – 8 lead plastic small outline, 208 mils body width, package outline  
A2  
A
c
b
CP  
e
D
N
1
E E1  
A1  
k
L
6L_ME  
1. Drawing is not to scale.  
2. The ‘1’ that appears in the top view of the package shows the position of pin 1 and the ‘N’ indicates the total  
number of pins.  
Table 14. SO8W – 8 lead plastic small outline, 208 mils body width, package  
mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
2.5  
0.25  
2
0.0984  
0.0098  
0.0787  
0.0201  
0.0138  
0.0039  
0.2382  
0.2449  
0.35  
0
0
1.51  
0.35  
0.1  
0.0594  
0.0138  
0.0039  
0.4  
0.2  
0.51  
0.35  
0.1  
0.0157  
0.0079  
c
CP  
D
6.05  
6.22  
8.89  
-
E
5.02  
7.62  
-
0.1976  
E1  
e
0.3  
1.27  
0.05  
-
0°  
-
k
0°  
10°  
0.8  
10°  
L
0.5  
8
0.0197  
8
0.0315  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
27/30  
Part numbering  
M24M01-R  
8
Part numbering  
Table 15. Ordering information scheme  
Example:  
M24M01  
H R MN 6  
T
P
Device type  
M24 = I2C serial access EEPROM  
Device function  
M01 = 1 Mbit (256 Kb × 8 bits)  
Clock frequency  
Blank: fC max = 400 kHz  
H: fC max = 1 MHz  
Operating voltage  
R = VCC = 1.8 V to 5.5 V  
Package  
MN = SO8 (150 mils width)  
MW = SO8 (208 mils width)  
Device grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating technology  
P or G = ECOPACK® (RoHS compliant)  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
The category of second-level interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
28/30  
M24M01-R  
Revision history  
9
Revision history  
Table 16. Document revision history  
Date  
Revision  
Changes  
07-Dec-2006  
1
Initial release.  
Document status promoted from Preliminary Data to full Datasheet.  
Section 2.6: Supply voltage (VCC) updated.  
Note 1 updated to latest standard revision below Table 6: Absolute  
maximum ratings.  
02-Oct-2007  
2
VIL, VIH modified and, rise/fall time corrected in Test conditions in  
Table 10: DC characteristics.  
Package values in inches calculated from mm and rounded to 4  
decimal digits (note added below package mechanical data tables in  
Section 7: Package mechanical.  
1 MHz maximum clock frequency added:  
Figure 5: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 1MHz  
Table 12: AC characteristics at 1 MHz (preliminary data) added.  
tNS moved from Table 9: Input parameters to Table 11: AC  
characteristics at 400 kHz. Note removed below Table 9. In Table 11,  
tCH1CH2, tCL1CL2 and tDL1DL2 removed, tXH1XH2, tXL1XL2 added,  
tDL1DL2 max modified, notes modified.  
26-Nov-2007  
3
Figure 4: Maximum Rbus value versus bus parasitic capacitance  
(Cbus) for an I2C bus at maximum frequency fC = 400 kHz modified.  
Figure 12: AC waveforms modified. Small text changes.  
29/30  
M24M01-R  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
30/30  

相关型号:

M24M01-DFCS6TP/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFDW6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFMN6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DF_12

1-Mbit serial I²C bus EEPROM
STMICROELECTR

M24M01-DRCS6TP/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRCT6P/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6P/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6TP/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRMN6TP/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR