M27C1024-80XK3 [STMICROELECTRONICS]

64KX16 OTPROM, 80ns, PQCC44, PLASTIC, LCC-44;
M27C1024-80XK3
型号: M27C1024-80XK3
厂家: ST    ST
描述:

64KX16 OTPROM, 80ns, PQCC44, PLASTIC, LCC-44

可编程只读存储器
文件: 总16页 (文件大小:110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C1024  
1 Mbit (64Kb x16) UV EPROM and OTP EPROM  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 35ns  
LOW POWER CONSUMPTION:  
– Active Current 35mA at 5MHz  
– Standby Current 100µA  
40  
40  
1
1
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
FDIP40W (F)  
PDIP40 (B)  
– Device Code: 8Ch  
DESCRIPTION  
The M27C1024 is a 1 Mbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for micro-  
processor systems requiring large data or program  
storage and is organized as 65,536 words of 16  
bits.  
PLCC44 (K)  
TSOP40 (N)  
10 x 14 mm  
Figure 1. Logic Diagram  
The FDIP40W (window ceramic frit-seal package)  
has a transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
For application where the content is programmed  
only one time and erasure is not required, the  
M27C1024 is offered in PDIP40, PLCC44 and  
TSOP40 (10 x 14 mm) packages.  
V
V
PP  
CC  
16  
16  
A0-A15  
Q0-Q15  
P
E
M27C1024  
G
V
SS  
AI00702B  
September 2000  
1/16  
M27C1024  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
V
1
2
3
4
5
6
7
8
9
40  
39  
V
P
PP  
E
CC  
Q15  
Q14  
Q13  
Q12  
Q11  
Q10  
Q9  
38 NC  
37 A15  
36 A14  
35 A13  
34 A12  
33 A11  
32 A10  
31 A9  
1 44  
Q12  
A13  
A12  
A11  
A10  
A9  
Q11  
Q10  
Q9  
Q8  
Q8 10  
M27C1024  
V
12  
M27C1024  
34  
V
SS  
SS  
V
11  
30  
V
SS  
SS  
NC  
Q7  
Q6  
Q5  
Q4  
NC  
A8  
A7  
A6  
A5  
Q7 12  
Q6 13  
Q5 14  
Q4 15  
Q3 16  
Q2 17  
Q1 18  
Q0 19  
29 A8  
28 A7  
27 A6  
26 A5  
25 A4  
24 A3  
23 A2  
22 A1  
21 A0  
23  
AI00704  
G
20  
AI00703  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A15  
Address Inputs  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
NC  
1
40  
V
SS  
A8  
Q0-Q15  
Data Outputs  
Chip Enable  
Output Enable  
Program  
A7  
E
G
P
A6  
A5  
A4  
A3  
A2  
V
Program Supply  
Supply Voltage  
Ground  
PP  
P
A1  
V
V
10 M27C1024 31  
A0  
CC  
CC  
(Normal)  
V
PP  
E
11  
30  
G
V
SS  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
DQ9  
NC  
Not Connected Internally  
DQ8  
20  
21  
V
SS  
AI01582  
2/16  
M27C1024  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
P
A9  
X
Q15-Q0  
Data Output  
Hi-Z  
PP  
V
V
V
V
V
or V  
or V  
Read  
IL  
IL  
IL  
IL  
IL  
IH  
CC  
CC  
SS  
SS  
Output Disable  
Program  
V
V
V
V
V
X
X
IH  
V
Pulse  
V
X
X
Data Input  
Data Output  
Hi-Z  
IL  
PP  
PP  
PP  
Verify  
V
V
X
V
IL  
IH  
V
Program Inhibit  
Standby  
X
X
X
IH  
IH  
V
V
or V  
CC SS  
X
X
X
Hi-Z  
V
V
V
V
V
CC  
Electronic Signature  
Codes  
IL  
IL  
IH  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
0
1
IL  
V
0
0
0
1
1
0
0
8Ch  
IH  
Note: Outputs Q15-Q8 are set to ’0’.  
3/16  
M27C1024  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
OUT  
V
OUT  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
The modes of operations of the M27C1024 are  
listed in the Operating Modes table. A single pow-  
er supply is required in the read mode. All inputs  
are TTL levels except for V and 12V on A9 for  
Electronic Signature.  
(t  
(t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
OE  
of t from the falling edge of G, assuming that E  
PP  
has been low and the addresses have been stable  
for at least t  
-t  
.
AVQV GLQV  
Read Mode  
Standby Mode  
The M27C1024 has a standby mode which reduc-  
es the active current from 35mA to 100µA.  
The M27C1024 is placed in the standby mode by  
applying a TTL high signal to the E input. When in  
the standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
The M27C1024 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable(G) is the output control and should  
be used to gate data to the output pins, indepen-  
4/16  
M27C1024  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C, –40 to 85 °C; –40 to 105 °C or –40 to 125 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±10  
±10  
Unit  
I
µA  
µA  
0V V V  
LI  
IN  
CC  
I
0V V V  
OUT CC  
LO  
E = V , G = V ,  
IL  
IL  
I
Supply Current  
35  
mA  
CC  
I
= 0mA, f = 5MHz  
OUT  
I
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
E = V  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
100  
100  
0.8  
CC2  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
CC  
Input High Voltage  
V
V
IH  
V
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
I
I
2.4  
OH  
OH  
V
OH  
V
– 0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C, –40 to 85 °C; –40 to 105 °C or –40 to 125 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27C1024  
(3)  
(3)  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
-35  
-45  
-55  
Min Max Min Max Min Max  
t
t
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
E = V , G = V  
35  
35  
20  
45  
45  
25  
55  
55  
30  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
t
G = V  
IL  
ELQV  
CE  
t
E = V  
IL  
GLQV  
(2)  
OE  
t
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
0
0
30  
30  
0
0
30  
30  
0
0
30  
30  
ns  
ns  
t
DF  
DF  
IL  
EHQZ  
(2)  
E = V  
t
IL  
GHQZ  
Address Transition to Output  
Transition  
t
t
E = V , G = V  
IL IL  
0
0
0
ns  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
Two Line Output Control  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
5/16  
M27C1024  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70 °C, –40 to 85 °C; –40 to 105 °C or –40 to 125 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27C1024  
-10/-12  
-15/-20  
Symbol  
Alt  
Parameter  
Test Condition  
-70  
-80/-90  
Unit  
Min Max Min Max Min Max  
t
t
t
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
E = V , G = V  
70  
70  
35  
80  
80  
40  
100  
100  
50  
ns  
ns  
ns  
AVQV  
ELQV  
GLQV  
ACC  
IL  
IL  
t
G = V  
CE  
IL  
t
t
E = V  
IL  
OE  
(2)  
(2)  
t
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
E = V  
0
0
30  
30  
0
0
30  
30  
0
0
30  
30  
ns  
ns  
t
DF  
DF  
IL  
EHQZ  
GHQZ  
t
t
IL  
Address Transition to Output  
Transition  
t
E = V , G = V  
0
0
0
ns  
AXQX  
OH  
IL  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
.
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A15  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q15  
AI00705B  
System Considerations  
The power switching characteristics of Advanced  
CMOS EPROMs requirecareful decoupling of the  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
devices. The supply current, I , has three seg-  
CC  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
transient current peaks is dependent on the ca-  
pacitive and inductive loading of the device at the  
output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point.The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
6/16  
M27C1024  
(1)  
Table 9. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
Input Leakage Current  
Supply Current  
0 V V  
LI  
IN  
IH  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
V
+ 0.5  
CC  
V
IH  
V
OL  
I
= 2.1mA  
OL  
0.4  
V
V
I
= –400µA  
2.4  
V
OH  
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
t
Address Valid to Program Low  
Input Valid to Program Low  
AVPL  
AS  
t
2
QVPL  
DS  
t
t
V
V
High to Program Low  
High to Program Low  
2
VPHPL  
VPS  
VCS  
CES  
PP  
CC  
t
t
t
2
VCHPL  
t
t
Chip Enable Low to Program Low  
Program Pulse Width  
2
ELPL  
t
95  
2
105  
PLPH  
PW  
t
t
Program High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
PHQX  
DH  
t
t
2
QXGL  
GLQV  
OES  
t
t
100  
130  
OE  
(2)  
t
Output Enable High to Output Hi-Z  
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
GHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
light (UV EPROM). The M27C1024 is in the pro-  
gramming mode when V input is at 12.75V, E is  
PP  
When delivered (and after each ’1’s erasure for UV  
EPROM), all bits of the M27C1024 are in the ’1’  
state. Data is introduced by selectively program-  
ming ’0’s into the desired bit locations. Although  
only ’0’s will be programmed, both ’1’s and ’0’s can  
be present in the data word. The only way to  
change a ’0’ to a ’1’ is by die exposure to ultraviolet  
at V and P is pulsed to V . The data to be pro-  
IL  
IL  
grammed is applied to 16 bits in parallel to the data  
output pins. The levels required for the address  
and data inputs are TTL. V  
is specified to be  
CC  
6.25V ± 0.25V.  
7/16  
M27C1024  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A15  
Q0-Q15  
tAVPL  
tQVPL  
DATA IN  
DATA OUT  
tPHQX  
V
PP  
tVPHPL  
tVCHPL  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tELPL  
tPLPH  
P
tQXGL  
G
PROGRAM  
VERIFY  
AI00706  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows pro-  
gramming of the whole array with a guaranteed  
margin, in a typical time of 6.5 seconds. Program-  
ming with PRESTO II consists of applying a se-  
quence of 100µs program pulses to each word  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
since the verify in MARGIN MODE provides nec-  
essary margin to each programmed cell.  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
P = 100µs Pulse  
NO  
NO  
Program Inhibit  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Programming of multiple M27C1024s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C1024 may be common. A TTL low level  
pulse applied to a M27C1024’s P input, with E low  
YES  
Last  
NO  
FAIL  
Addr  
and V at 12.75V, will program that M27C1024.  
PP  
YES  
A high level E input inhibits the other M27C1024s  
from being programmed.  
CHECK ALL WORDS  
1st: V  
2nd: V  
Program Verify  
= 6V  
= 4.2V  
CC  
CC  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with E  
AI00707C  
and G at V , P at V , V at 12.75V and V at  
IL  
IH  
PP  
CC  
6.25V.  
8/16  
M27C1024  
Electronic Signature  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C1024. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
The erasure characteristics of the M27C1024 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase atypical M27C1024 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27C1024 is to be exposed to  
these types of lighting conditions for extended pe-  
riods of time, it is suggested that opaque labels be  
put over the M27C1024 window to prevent unin-  
tentional erasure. The recommended erasure pro-  
cedure for the M27C1024 is exposure to short  
wave ultraviolet light which has wavelength 2537  
Å. The integrated dose (i.e. UV intensity x expo-  
sure time) for erasure should be a minimum of 15  
M27C1024 with V  
= V  
= 5V. Two identifier  
PP  
CC  
bytes maythen be sequenced from the device out-  
puts by toggling address line A0 from V to V . All  
IL  
IH  
other address lines must be held at V during  
IL  
Electronic Signature mode. Byte 0 (A0 = V ) rep-  
IL  
resents the manufacturer code and byte 1  
(A0 = V ) the device identifier code. For the  
IH  
STMicroelectronics M27C1024, these two identifi-  
er bytes are given in Table 4 and can be read-out  
on outputs Q7 to Q0.  
2
W-sec/cm . The erasure time with this dosage is  
approximately 15 to 20 minutes using an ultravio-  
2
let lamp with 12000µW/cm power rating. The  
M27C1024 should be placed within 2.5 cm (1 inch)  
of the lamp tubes during the erasure. Some lamps  
have a filter on their tubes which should be re-  
moved before erasure.  
9/16  
M27C1024  
Table 11. Ordering Information Scheme  
Example:  
M27C1024  
-12  
X
C
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
1024 = 1 Mbit (64Kb x16)  
Speed  
(1)  
-35  
-45  
-55  
= 35 ns  
= 45 ns  
= 55 ns  
(1)  
(1)  
-70 = 70 ns  
-80 = 80 ns  
-90 = 90 ns  
-10 = 100 ns  
-12 = 120 ns  
-15 = 150 ns  
-20 = 200 ns  
V
Tolerance  
CC  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP40W  
B = PDIP40  
K = PLCC44  
N = TSOP40: 10 x 14 mm  
Temperature Range  
1 = 0 to 70 °C  
3 = –40 to 125 °C  
6 = –40 to 85 °C  
7 = –40 to 105 °C  
Options  
X = Additional Burn-in  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/16  
M27C1024  
Table 12. Revision History  
Date  
Revision Details  
September 1998 First Issue  
09/20/00  
AN620 Reference removed  
11/16  
M27C1024  
Table 13. FDIP40W - 40 pin Ceramic Frit-seal DIP with window, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
51.79  
0.30  
52.60  
0.009  
2.039  
0.012  
2.071  
D
D2  
E
48.26  
15.24  
1.900  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
8.13  
0.320  
α
4°  
11°  
4°  
11°  
N
40  
40  
Figure 8. FDIP40W - 40 pin Ceramic Frit-seal DIP with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
12/16  
M27C1024  
Table 14. PDIP40 - 40 pin Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
4.45  
0.64  
Max  
Typ  
Max  
A
A1  
A2  
B
0.175  
0.025  
0.38  
3.56  
0.38  
1.14  
0.20  
51.78  
0.015  
0.140  
0.015  
0.045  
0.008  
2.039  
3.91  
0.53  
1.78  
0.31  
52.58  
0.154  
0.021  
0.070  
0.012  
2.070  
B1  
C
D
D2  
E
48.26  
1.900  
14.80  
13.46  
16.26  
13.99  
0.583  
0.530  
0.640  
0.551  
E1  
e1  
eA  
eB  
L
2.54  
0.100  
0.600  
15.24  
15.24  
3.05  
1.52  
0°  
17.78  
3.81  
2.29  
15°  
0.600  
0.120  
0.060  
0°  
0.700  
0.150  
0.090  
15°  
S
α
N
40  
40  
Figure 9. PDIP40 - 40 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
13/16  
M27C1024  
Table 15. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
4.20  
2.29  
inches  
Min  
Symbol  
Typ  
Max  
4.70  
3.04  
0.51  
0.53  
0.81  
17.65  
16.66  
16.00  
17.65  
16.66  
16.00  
Typ  
Max  
0.185  
0.120  
0.020  
0.021  
0.032  
0.695  
0.656  
0.630  
0.695  
0.656  
0.630  
A
A1  
A2  
B
0.165  
0.090  
0.33  
0.66  
17.40  
16.51  
14.99  
17.40  
16.51  
14.99  
0.013  
0.026  
0.685  
0.650  
0.590  
0.685  
0.650  
0.590  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
44  
44  
CP  
0.10  
0.004  
Figure 10. PLCC44 - 44 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
14/16  
M27C1024  
Table 16. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 14 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
14.20  
12.50  
10.10  
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.559  
0.492  
0.398  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
13.80  
12.30  
9.90  
0.002  
0.037  
0.007  
0.004  
0.543  
0.484  
0.390  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
40  
40  
CP  
0.10  
0.004  
Figure 11. TSOP40 - 40 lead Plastic Thin Small Outline, 10 x 14 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
15/16  
M27C1024  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
16/16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY