M27C320-120N1 [STMICROELECTRONICS]

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM; 32兆位4Mb的X8或X16的2Mb OTP EPROM
M27C320-120N1
型号: M27C320-120N1
厂家: ST    ST
描述:

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
32兆位4Mb的X8或X16的2Mb OTP EPROM

存储 内存集成电路 光电二极管 可编程只读存储器 OTP只读存储器 电动程控只读存储器
文件: 总15页 (文件大小:96K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C320  
32 Mbit (4Mb x8 or 2Mb x16) OTP EPROM  
PRELIMINARY DATA  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
FAST ACCESS TIME: 80ns  
BYTE-WIDE or WORD-WIDE  
CONFIGURABLE  
44  
32 Mbit MASK ROM REPLACEMENT  
LOW POWER CONSUMPTION  
– Active Current 70mA at 8MHz  
1
SO44 (M)  
TSOP48 (N)  
12 x 20 mm  
– Stand-by Current 100mA  
PROGRAMMING VOLTAGE: 12V ± 0.25V  
PROGRAMMING TIME: 100µs/byte  
(typical)(PRESTO III Algorithm)  
ELECTRONIC SIGNATURE:  
– Manufacturer Code 0020h  
– Device Code: 0032h  
Figure 1. Logic Diagram  
DESCRIPTION  
The M27C320 is a 32 Mbit EPROM offered in the  
OTP range (one time programmable). It is ideally  
suited for microprocessor systems requiring large  
data or program storage. It is organised as either  
4 MWords of 8 bit or 2 MWords of 16 bit. The pin-  
out is compatible with the 32 Mbit Mask ROM.  
V
CC  
21  
Q15A–1  
The M27C320 is offered in TSOP48 (12 x 20mm)  
and SO44 packages.  
A0-A20  
15  
Q0-Q14  
BYTE  
E
M27C320  
Table 1. Signal Names  
GV  
PP  
A0-A20  
Q0-Q7  
Q8-Q14  
Q15A–1  
E
Address Inputs  
Data Outputs  
Data Outputs  
Data Output / Address Input  
Chip Enable  
V
SS  
AI02152  
GV  
Output Enable / Program Supply  
Byte-Wide Select  
Supply Voltage  
PP  
BYTE  
V
CC  
V
Ground  
SS  
September 1998  
1/15  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M27C320  
Figure 2A. SO Pin Connections  
Figure 2B. TSOP Pin Connections  
BYTE  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
V
V
SS  
NC  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A20  
A19  
A8  
SS  
2
Q15A–1  
Q7  
3
4
A9  
Q14  
Q6  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE  
6
Q13  
Q5  
7
8
Q12  
Q4  
9
A8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
A19  
V
CC  
V
CC  
V
SS  
V
12  
13  
37  
36  
M27C320  
SS  
M27C320  
A20  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
V
V
SS  
SS  
Q11  
GV  
Q15A–1  
PP  
Q0  
Q3  
Q7  
Q10  
Q2  
Q8  
Q1  
Q9  
Q2  
Q14  
Q6  
Q9  
Q13  
Q5  
Q1  
Q8  
Q10  
Q3  
Q12  
Q4  
Q0  
GV  
PP  
Q11  
V
CC  
V
SS  
V
SS  
AI02153  
24  
25  
AI02154  
Warning: NC = Not Connected.  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
(3)  
T
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
°C  
°C  
°C  
V
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
2/15  
M27C320  
Table 3. Operating Modes  
Mode  
E
GV  
BYTE  
A9  
X
Q0-Q7  
Data Out  
Data Out  
Data Out  
Hi-Z  
Q8-Q14  
Data Out  
Hi-Z  
Q15A–1  
PP  
V
V
V
Read Word-wide  
Read Byte-wide Upper  
Read Byte-wide Lower  
Output Disable  
Program  
Data Out  
IL  
IL  
IH  
V
V
V
V
V
V
V
V
X
V
IH  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
V
X
Hi-Z  
IL  
X
X
Hi-Z  
Hi-Z  
Data In  
Hi-Z  
IH  
PP  
PP  
V
Pulse  
V
V
V
V
X
Data In  
Hi-Z  
Data In  
Hi-Z  
IL  
IH  
IH  
V
Program Inhibit  
Standby  
X
IH  
IH  
V
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
V
V
V
V
Electronic Signature  
Codes  
Codes  
Code  
IL  
IL  
IH  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
Q4  
0
Q3  
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
1
1
0
0
IL  
V
0
0
1
0
1
0
32h  
IH  
Note: Outputs Q8-Q15 are set to ’0’.  
DEVICE OPERATION  
The M27C320 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. In addition the Word-wide or  
Byte-wide organisation must be selected.  
The operating modes of the M27C320 are listed in  
the Operating Modes Table. A single power supply  
is required in the read mode. All inputs are TTL  
compatible except for V and 12V on A9 for the  
Chip Enable (E) is the power control and should be  
used for device selection. Output Enable (G) is the  
output control and should be used to gate data to  
the output pins independent of device selection.  
Assuming that the addresses are stable, the ad-  
PP  
Electronic Signature.  
Read Mode  
The M27C320 has two organisations, Word-wide  
and Byte-wide. The organisation is selected by the  
dress access time (t  
) is equal to the delay  
AVQV  
signal level on the BYTE pin. When BYTE is at V  
IH  
from E to output (t  
). Data is available at the  
GLQV  
ELQV  
the Word-wide organisation is selected and the  
output after a delay of t  
from the falling edge  
Q15A–1 pin is used for Q15 Data Output. When  
of G, assuming that E has been low and the ad-  
the BYTE pin is at V the Byte-wide organisation  
IL  
dresses have been stable for at least t  
-t  
.
AVQV GLQV  
is selected and the Q15A–1 pin is used for the Ad-  
dress Input A–1. When the memory is logically re-  
garded as 16 bit wide, but read in the Byte-wide  
Standby Mode  
The M27C320 has standby mode which reduces  
the supply current from 50mA to 100µA. The  
M27C320 is placed in the standby mode by apply-  
ing aCMOS high signal to the Einput. When in the  
standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
organisation, then with A–1 at V the lower 8 bits  
IL  
of the 16 bit data are selected and with A–1 at V  
IH  
the upper 8 bits of the 16 bit data are selected.  
3/15  
M27C320  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
3V  
1N914  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
2.4V  
C
L
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
= 0V  
Min  
Max  
10  
Unit  
pF  
C
V
IN  
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
V
= 0V  
OUT  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
Two Line Output Control  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
4/15  
M27C320  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C; V = 5V ± 10%)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
Input Leakage Current  
Output Leakage Current  
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
±10  
µA  
LO  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
70  
50  
mA  
mA  
f = 8MHz  
I
Supply Current  
CC  
E = V , G = V , I  
= 0mA,  
IL OUT  
IL  
f = 5MHz  
I
I
1
2
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC  
IH  
E > V  
– 0.2V  
CC  
100  
10  
CC  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
0.8  
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
V
V
CC  
IH  
V
I
= 2.1mA  
Output Low Voltage  
0.4  
OL  
OL  
V
I
= –400µA  
OH  
Output High Voltage TTL  
2.4  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
System Considerations  
The power switching characteristics of Advanced  
CMOS EPROMs require carefull decoupliing of  
should be used between V  
and V for every  
CC SS  
eight devices. This capacitor should be mounted  
near the power supply connection point. The pur-  
pose of this capacitor is to overcome the voltage  
drop caused by the inductive effects of PCB trac-  
es.  
the supplies to the devices. The supply current I  
CC  
has three segments of importance to the system  
designer: the standby current, the active current  
and the transient peaks that are produced by the  
falling and rising edges of E.  
The magnitude of the transient current peaks is  
dependant on the capacititive and inductive load-  
ing of the device outputs. The associated transient  
voltage peaks can be supressed by complying  
with the two line output control and by properly se-  
lected decoupling capacitors. It is recommended  
that a 0.1µF ceramic capacitor is used on every  
Programming  
When delivered, all bits of the M27C320 are in the  
’1’ state. Data is introduced by selectively pro-  
gramming ’0’s into the desired bit locations. Al-  
though only ’0’s will be programmed, both ’1’s and  
’0’s can be present in the data word. The  
M27C320 is in the programming mode when V  
PP  
IL  
input is at 12.5V, G is at V and E is pulsed to V .  
IH  
The data to be programmed is applied to 16 bits in  
device between V  
and V . This should be a  
parallel to the data output pins. The levels required  
CC  
SS  
high frequency type of low inherent inductance  
and should be placed as close as possible to the  
device. In addition, a 4.7µF electrolytic capacitor  
for the address and data inputs are TTL. V  
is  
CC  
specified to be 6.25V ± 0.25V.  
5/15  
M27C320  
(1)  
Table 8. Read Mode AC Characteristics  
(T = 0 to 70 °C; V = 5V ± 10%)  
A
CC  
M27C320  
-100  
Unit  
Symbol  
Alt  
Parameter  
Test Condition  
-80  
-120  
Min Max Min  
Max  
100  
100  
100  
Min Max  
Address Valid to Output  
Valid  
t
t
E = V , G = V  
80  
80  
80  
120  
120  
120  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
IL  
t
t
E = V , G = V  
BYTE High to Output Valid  
BHQV  
ST  
IL  
Chip Enable Low to Output  
Valid  
t
t
G = V  
ELQV  
CE  
IL  
Output Enable Low to  
Output Valid  
t
t
E = V  
40  
40  
50  
40  
40  
60  
50  
ns  
ns  
ns  
GLQV  
OE  
IL  
(2)  
t
E = V , G = V  
BYTE Low to Output Hi-Z  
t
STD  
IL  
IL  
BLQZ  
Chip Enable High to Output  
Hi-Z  
(2)  
t
G = V  
0
0
5
5
40  
40  
0
0
5
5
0
0
5
5
50  
50  
t
DF  
IL  
EHQZ  
Output Enable High to  
Output Hi-Z  
(2)  
t
E = V  
IL  
40  
ns  
ns  
ns  
t
DF  
GHQZ  
Address Transition to  
Output Transition  
t
t
E = V , G = V  
AXQX  
OH  
IL  
IL  
IL  
BYTE Low to Output  
Transition  
t
t
E = V , G = V  
BLQX  
OH  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Word-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A20  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
GV  
PP  
tELQV  
Hi-Z  
Q0-Q15  
AI02207  
Note: BYTE = V  
.
IH  
6/15  
M27C320  
Figure 6. Byte-Wide Read Mode AC Waveforms  
VALID  
VALID  
A0-A20  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
GV  
PP  
tELQV  
Hi-Z  
Q0-Q7  
AI02218  
Note: BYTE = V  
.
IH  
Figure 7. BYTE Transition AC Waveforms  
A0-A20  
VALID  
A–1  
VALID  
tAVQV  
tAXQX  
BYTE  
tBHQV  
Q0-Q7  
tBLQX  
Q8-Q15  
tBLQZ  
DATA OUT  
Hi-Z  
DATA OUT  
AI02219  
Note: Chip Enable (E) and Output Enable (G) = V  
.
IL  
7/15  
M27C320  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
V
V V  
Input Leakage Current  
Supply Current  
LI  
IL  
IN  
IH  
I
CC  
I
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
PP  
IL  
V
–0.3  
2.4  
0.8  
IL  
V
V
V
+ 0.5  
CC  
V
IH  
I
= 2.1mA  
0.4  
V
OL  
OL  
V
OH  
I
= –2.5mA  
3.5  
V
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. MARGIN MODE AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
t
t
t
V
High to V High  
A9 PP  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
A9HVPH  
AS9  
t
V
V
High to Chip Enable Low  
High to Chip Enable High (Set)  
Low to Chip Enable High (Reset)  
2
VPHEL  
VPS  
AS10  
AS10  
AH10  
PP  
t
t
t
t
1
A10HEH  
A10  
t
V
A10  
1
A10LEH  
t
Chip Enable Transition to V  
Transition  
1
EXA10X  
A10  
t
t
Chip Enable Transition to V Transition  
2
EXVPX  
VPH  
PP  
t
t
V
Transition to V Transition  
A9  
2
VPXA9X  
AH9  
PP  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
.
PP  
CC  
PP  
8/15  
M27C320  
(1)  
Table 11. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
1
Max  
Unit  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
t
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
AS  
t
1
QVEL  
DS  
t
t
V
V
V
High to Chip Enable Low  
High to Chip Enable Low  
Rise Time  
2
VCHEL  
VCS  
OES  
CC  
PP  
PP  
t
t
1
VPHEL  
t
t
50  
45  
2
VPLVPH  
PRT  
t
t
PW  
Chip Enable Program Pulse Width (Initial)  
Chip Enable High to Input Transition  
55  
ELEH  
t
t
DH  
EHQX  
t
t
Chip Enable High to V Transition  
2
EHVPX  
OEH  
PP  
t
t
V
Low to Chip Enable Low  
PP  
1
VPLEL  
VR  
t
t
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Chip Enable High to Address Transition  
1
ELQV  
DV  
(2)  
t
0
0
130  
ns  
ns  
t
DFP  
EHQZ  
t
t
EHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 8. MARGIN MODE AC Waveforms  
V
CC  
A8  
A9  
tA9HVPH  
tVPXA9X  
GV  
E
PP  
tVPHEL  
tEXVPX  
tA10HEH  
tEXA10X  
A10 Set  
A10 Reset  
tA10LEH  
AI00736B  
Note: A8 High level = 5V; A9 High level = 12V.  
9/15  
M27C320  
Figure 9. Programming and Verify Modes AC Waveforms  
VALID  
A0-A20  
Q0-Q15  
tAVEL  
tQVEL  
tEHAX  
tEHQZ  
DATA IN  
DATA OUT  
tEHQX  
V
CC  
tVCHEL  
tVPHEL  
tEHVPX  
tELQV  
GV  
PP  
tVPLEL  
E
tELEH  
PROGRAM  
VERIFY  
AI02205  
Note: BYTE = V  
.
IH  
Figure 10. Programming Flowchart  
PRESTO III Programming Algorithm  
The PRESTO III Programming Algorithm allows  
the whole array to be programed with a guaran-  
teed margin in a typical time of 100 seconds. Pro-  
gramming with PRESTO III consists of applying a  
sequence of 50µs program pulses to each word  
until a correct verify occurs (see Figure 10). During  
programing and verify operation a MARGIN  
MODE circuit is automatically activated to guaran-  
tee that each cell is programed with enough mar-  
gin. No overprogram pulse is applied since the  
verify in MARGIN MODE provides the neccessary  
margin to each programmed cell.  
V
= 6.25V, V  
= 12V  
PP  
CC  
SET MARGIN MODE  
n = 0  
E = 50µs Pulse  
NO  
NO  
++n  
= 25  
Program Inhibit  
VERIFY  
++ Addr  
Programming of multiple M27C320s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C320 may be common. A TTL low level pulse  
YES  
YES  
Last  
NO  
FAIL  
applied to a M27C320’s E input and V at 12V,  
Addr  
PP  
will program that M27C320. A high level Einput in-  
hibits the other M27C320s from being pro-  
grammed.  
YES  
CHECK ALL WORDS  
Program Verify  
BYTE = V  
IH  
1st: V  
= 6V  
CC  
CC  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
2nd: V  
= 4.2V  
AI02220  
at V . Data should be verified with t  
after the  
IL  
ELQV  
falling edge of E.  
10/15  
M27C320  
On-Board Programming  
gramming the M27C320. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
The M27C320 can be directly programmed in the  
application circuit. See the relevant Application  
Note AN620.  
M27C320, with V =V =5V. Two identifier bytes  
PP  
CC  
may then be sequenced from the device outputs  
Electronic Signature  
by toggling address line A0 from V to V . All oth-  
IL  
IH  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
er address lines must be held at V during Elec-  
tronic Signature mode.  
IL  
Byte 0 (A0=V ) represents the manufacturer code  
IL  
and byte 1 (A0=V ) the device identifier code. For  
IH  
the STMicroelectronics M27C320, these two iden-  
tifier bytes are given in Table 4 and can be read-  
out on outputs Q0 to Q7.  
11/15  
M27C320  
Table 12. Ordering Information Scheme  
Example:  
M27C320  
-80  
M
1
Device Type  
Operating Voltage  
C = 4.5V to 5.5V  
Speed  
-80 = 80 ns  
-100 = 100 ns  
-120 = 120 ns  
Package  
M = SO44  
N = TSOP48: 12 x 20mm  
Temperature Range  
1 = –0 to 70 °C  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
12/15  
M27C320  
Table 13. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data  
mm  
Min  
2.42  
0.22  
2.25  
inches  
Symb  
Typ  
Max  
2.62  
0.23  
2.35  
0.50  
0.25  
28.30  
13.40  
Typ  
Min  
Max  
0.103  
0.010  
0.093  
0.020  
0.010  
1.114  
0.528  
A
A1  
A2  
B
0.095  
0.009  
0.089  
C
0.10  
28.10  
13.20  
0.004  
1.106  
0.520  
D
E
e
1.27  
0.050  
H
15.90  
16.10  
0.626  
0.634  
L
0.80  
0.031  
α
3°  
3°  
N
44  
44  
CP  
0.10  
0.004  
Figure 11. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline  
A2  
A
C
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-b  
Drawing is not to scale.  
13/15  
M27C320  
Table 14. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
12.10  
-
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.795  
0.728  
0.476  
-
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
11.90  
-
0.002  
0.037  
0.007  
0.004  
0.780  
0.720  
0.469  
-
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
48  
48  
CP  
0.10  
0.004  
Figure 12. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, ackage Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
14/15  
M27C320  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
1998 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

M27C320-120N6

2MX16 OTPROM, 120ns, PDSO48, 12 X 20 MM, PLASTIC, TSOP-48
STMICROELECTR

M27C320-80M1

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27C320-80M3

2MX16 OTPROM, 80ns, PDSO44, 0.525 INCH, PLASTIC, SO-44
STMICROELECTR

M27C320-80M6

2MX16 OTPROM, 80ns, PDSO44, 0.525 INCH, PLASTIC, SO-44
STMICROELECTR

M27C320-80N1

32 Mbit 4Mb x8 or 2Mb x16 OTP EPROM
STMICROELECTR

M27C322

32 Mbit 2Mb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100B1

32 Mbit (2Mb x16) UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100B3

32 Mbit (2Mb x16) UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100B6

32 Mbit (2Mb x16) UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100F1

32 Mbit 2Mb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100F3

32 Mbit 2Mb x16 UV EPROM and OTP EPROM
STMICROELECTR

M27C322-100F6

32 Mbit 2Mb x16 UV EPROM and OTP EPROM
STMICROELECTR