M27C4001-10XK6TR [STMICROELECTRONICS]

512KX8 OTPROM, 100ns, PQCC32, PLASTIC, LCC-32;
M27C4001-10XK6TR
型号: M27C4001-10XK6TR
厂家: ST    ST
描述:

512KX8 OTPROM, 100ns, PQCC32, PLASTIC, LCC-32

可编程只读存储器
文件: 总17页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C4001  
4 Mbit (512Kb x 8) UV EPROM and OTP EPROM  
5V ± 10% SUPPLY VOLTAGE in READ  
OPERATION  
ACCESS TIME: 35ns  
LOW POWER CONSUMPTION:  
– Active Current 30mA at 5MHz  
– Standby Current 100µA  
32  
32  
1
1
FDIP32W (F)  
PDIP32 (B)  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 41h  
LCCC32W (L)  
DESCRIPTION  
The M27C4001 is a 4 Mbit EPROM offered in the  
two ranges UV (ultra violet erase) and OTP (one  
time programmable). It is ideally suited for micro-  
processor systems requiring large programs and  
is organised as 524,288 by 8 bits.  
TSOP32 (N)  
8 x 20 mm  
PLCC32 (K)  
The FDIP32W (window ceramic frit-seal package)  
and LCCC32W (leadless chip carrier package)  
have a transparent lid which allow the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
Figure 1. Logic Diagram  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27C4001 is offered in PDIP32, PLCC32 and  
TSOP32 (8 x 20 mm) packages.  
V
V
PP  
CC  
19  
8
A0-A18  
Q0-Q7  
E
M27C4001  
G
V
SS  
AI00721B  
September 2000  
1/17  
M27C4001  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
V
1
2
3
4
5
6
7
8
9
32  
V
CC  
PP  
A16  
A15  
A12  
A7  
31 A18  
30 A17  
29 A14  
28 A13  
27 A8  
1 32  
A7  
A14  
A13  
A8  
A6  
A5  
A4  
A6  
A5  
26 A9  
A9  
A4  
25 A11  
M27C4001  
A3  
A2  
A1  
A0  
Q0  
9
M27C4001  
25 A11  
G
A3  
24  
23 A10  
22  
G
A2 10  
A1 11  
A0 12  
Q0 13  
Q1 14  
Q2 15  
A10  
E
E
21 Q7  
20 Q6  
19 Q5  
18 Q4  
17 Q3  
Q7  
17  
V
SS  
16  
AI00723  
AI00722  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A18  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
Output Enable  
A11  
A9  
1
32  
G
A10  
E
G
A8  
A13  
A14  
A17  
A18  
Q7  
Q6  
Q5  
Q4  
Q3  
V
Program Supply  
Supply Voltage  
Ground  
PP  
V
CC  
V
SS  
V
8
9
M27C4001 25  
CC  
(Normal)  
V
PP  
24  
V
SS  
A16  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A3  
A15  
A12  
A7  
A6  
A5  
A4  
16  
17  
AI01155B  
2/17  
M27C4001  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
(1)  
Table 3. Operating Modes  
Mode  
V
E
G
A9  
X
Q7 - Q0  
Data Out  
Hi-Z  
pp  
V
V
V
V
or V  
Read  
IL  
IL  
IL  
IH  
IH  
CC  
CC  
SS  
SS  
Output Disable  
Program  
V
V
V
X
or V  
V
Pulse  
V
X
Data In  
Data Out  
Hi-Z  
IL  
PP  
PP  
PP  
Verify  
V
V
IL  
V
IH  
X
V
IH  
IH  
IH  
V
V
V
Program Inhibit  
Standby  
X
V
or V  
SS  
X
X
Hi-Z  
CC  
V
V
V
V
CC  
Electronic Signature  
Codes  
IL  
IL  
ID  
Note: 1. X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
Manufacturer’s Code  
Electronic Signature  
IL  
V
0
1
0
0
0
0
0
1
41h  
IH  
3/17  
M27C4001  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4 to 2.4V  
0.8 and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
IN  
IN  
C
OUT  
V
OUT  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
dresses are stable, the address access time  
(t  
(t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
GLQV  
AVQV  
ELQV  
of t  
The operating modes of the M27C4001 are listed  
in the Operating Modes table. A single power sup-  
ply is required in the read mode. All inputs are TTL  
from the falling edge of G, assuming that  
E has been low and the addresses have been sta-  
levels except for V and 12V on A9 for Electronic  
PP  
ble for at least t  
-t  
.
AVQV GLQV  
Signature.  
Read Mode  
Standby Mode  
The M27C4001 has a standby mode which reduc-  
es the supply current from 30mA to 100µA. The  
M27C4001 is placed in the standby mode by ap-  
plying a CMOS high signal to the E input. When in  
the standby mode, the outputs are in a high imped-  
ance state, independent of the G input.  
The M27C4001 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable(G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
4/17  
M27C4001  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
Test Condition  
0V V V  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Min  
Max  
Unit  
µA  
I
±10  
±10  
LI  
IN  
CC  
I
0V V V  
OUT CC  
µA  
LO  
E = V , G = V ,  
IL  
IL  
I
Supply Current  
30  
mA  
CC  
I
= 0mA, f = 5MHz  
OUT  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
E > V – 0.2V  
CC  
100  
10  
CC2  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
0.8  
IL  
(2)  
V
+ 1  
CC  
Input High Voltage  
V
V
IH  
V
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
OH  
OH  
I
I
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
V
OH  
V
– 0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27C4001  
(3)  
(3)  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
-35  
Min  
-45  
-55  
Min  
Max  
Min  
Max  
Max  
Address Valid to  
Output Valid  
t
t
E = V , G = V  
35  
35  
20  
30  
30  
45  
55  
55  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
t
G = V  
IL  
45  
25  
30  
30  
ELQV  
CE  
Output Enable Low to  
Output Valid  
t
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
t
t
G = V  
0
0
0
0
0
0
0
0
0
t
DF  
DF  
IL  
EHQZ  
Output Enable High to  
Output Hi-Z  
(2)  
E = V  
t
IL  
GHQZ  
Address Transition to  
Output Transition  
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
Two Line Output Control  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
5/17  
M27C4001  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85 °C; V = 5V ± 5% or 5V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27C4001  
-80/-90  
Symbol  
Alt  
Parameter  
Test Condition  
-70  
-10/-12/-15  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Address Valid to  
Output Valid  
t
t
E = V , G = V  
70  
70  
35  
30  
30  
80  
100  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to  
Output Valid  
t
t
G = V  
IL  
80  
40  
30  
30  
100  
50  
ELQV  
CE  
Output Enable Low to  
Output Valid  
t
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
t
t
G = V  
0
0
0
0
0
0
0
0
0
30  
t
DF  
DF  
IL  
EHQZ  
Output Enable High to  
Output Hi-Z  
(2)  
E = V  
30  
t
IL  
GHQZ  
Address Transition to  
Output Transition  
t
E = V , G = V  
IL IL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A18  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00724B  
System Considerations  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
The power switching characteristics of Advanced  
CMOS EPROMs requirecareful decoupling of the  
devices. The supply current, I , has three seg-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
CC  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point. The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
6/17  
M27C4001  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
0 V V  
Input Leakage Current  
Supply Current  
LI  
IN  
CC  
I
CC  
I
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
PP  
IL  
V
–0.3  
2
0.8  
IL  
V
V
V
+ 0.5  
CC  
V
IH  
I
= 2.1mA  
OL  
0.4  
V
OL  
V
OH  
I
= –400µA  
OH  
2.4  
V
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
t
t
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
AS  
t
t
2
µs  
QVEL  
DS  
t
t
V
V
High to Chip Enable Low  
High to Chip Enable Low  
2
µs  
VPHEL  
VPS  
VCS  
PP  
CC  
t
t
2
µs  
VCHEL  
t
t
PW  
Chip Enable Program Pulse Width  
95  
105  
µs  
ELEH  
Chip Enable High to Input  
Transition  
t
t
DH  
2
2
µs  
µs  
EHQX  
Input Transition to Output Enable  
Low  
t
t
QXGL  
OES  
t
t
OE  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
100  
130  
ns  
ns  
GLQV  
t
t
DFP  
0
0
GHQZ  
Output Enable High to Address  
Transition  
t
t
ns  
GHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
light (UV EPROM). The M27C4001 is in the pro-  
gramming mode when V input is at 12.75V, G is  
PP  
When delivered (and after each erasure for UV  
EPROM), all bits of the M27C4001 are in the ’1’  
state. Data is introduced by selectively program-  
ming ’0’s into the desired bit locations. Although  
only ’0’s will be programmed, both ’1’s and ’0’s can  
be present in the data word. The only way to  
change a ’0’ to a ’1’ is by die exposure to ultraviolet  
at V and E is pulsed to V . The data to be pro-  
IH  
IL  
grammed is applied to 8 bits in parallel to the data  
output pins. The levels required for the address  
and data inputs are TTL. V  
6.25V ± 0.25V.  
is specified to be  
CC  
7/17  
M27C4001  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A18  
tAVPL  
Q0-Q7  
DATA IN  
DATA OUT  
tQVEL  
tVPHEL  
tVCHEL  
tEHQX  
V
PP  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI00725  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 52.5 seconds. Pro-  
gramming with PRESTO II consists of applying a  
sequence of 100µs program pulses to each byte  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
since the verify in MARGIN MODE provides the  
necessary margin to each programmed cell.  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
E = 100µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Program Inhibit  
YES  
Programming of multiple M27C4001s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27C4001 may be common. A TTL low level  
Last  
Addr  
NO  
FAIL  
pulse applied to a M27C4001’s E input, with V  
PP  
YES  
at 12.75V, will program that M27C4001. A high  
level E input inhibits the other M27C4001s from  
being programmed.  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
AI00760B  
at V , E at V , V at 12.75V and V at 6.25V.  
IL  
IH  
PP  
CC  
8/17  
M27C4001  
Electronic Signature  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27C4001. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
The erasure characteristics of the M27C4001 are  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Data  
shows that constant exposure to room level fluo-  
rescent lighting could erase atypical M27C4001 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27C4001 is to be exposed to  
these types of lighting conditions for extended pe-  
riods of time, it is suggested that opaque labels be  
put over the M27C4001 window to prevent unin-  
tentional erasure. The recommended erasure pro-  
cedure for the M27C4001 is exposure to short  
wave ultraviolet light which has wavelength of  
2537 Å. The integrated dose (i.e. UV intensity x  
exposure time) for erasure should be a minimum  
M27C4001 with V = V = 5V. Two identifier  
PP  
CC  
bytes maythen be sequenced from the device out-  
puts by toggling address line A0 from V to V . All  
IL  
IH  
other address lines must be held at V during  
IL  
Electronic Signature mode. Byte 0 (A0 = V ) rep-  
IL  
resents the manufacturer code and byte 1  
(A0 = V ) the device identifier code. For the  
IH  
STMicroelectronics M27C4001, these two identifi-  
er bytes are given in Table 4 and can be read-out  
on outputs Q7 to Q0.  
2
of 15 W-sec/cm . The erasure time with this dos-  
age is approximately 15 to 20 minutes using an ul-  
2
traviolet lamp with 12000 µW/cm power rating.  
The M27C4001 should be placed within 2.5 cm (1  
inch) of the lamp tubes during the erasure. Some  
lamps have a filter on their tubes which should be  
removed before erasure.  
9/17  
M27C4001  
Table 11. Ordering Information Scheme  
Example:  
M27C4001  
-45  
X
C
1
TR  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
4001 = 4 Mbit (512Kb x 8)  
Speed  
(1)  
-35  
-45  
-55  
= 35 ns  
= 45 ns  
= 55 ns  
(1)  
(1)  
-70 = 70 ns  
-80 = 80 ns  
-90 = 90 ns  
-10 = 100 ns  
-12 = 120 ns  
-15 = 150 ns  
V
Tolerance  
CC  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP32W  
L = LCCC32W  
B = PDIP32  
K = PLCC32  
N = TSOP32: 8 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Options  
X = Additional Burn-in  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/17  
M27C4001  
Table 12. Revision History  
Date  
Revision Details  
July 1998  
09/25/00  
First Issue  
AN620 Reference removed  
11/17  
M27C4001  
Table 13. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
41.73  
0.30  
42.04  
0.009  
1.643  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
Ø
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
32  
32  
Figure 8. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
12/17  
M27C4001  
Table 14. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Mechanical Data  
millimeters  
inches  
Min  
Symbol  
Typ  
Min  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
41.78  
0.30  
42.04  
0.008  
1.645  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.600  
15.24  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.03  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.080  
10°  
S
α
N
32  
32  
Figure 9. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
13/17  
M27C4001  
Table 15. LCCC32W - 32 lead Leadless Ceramic Chip Carrier, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
2.80  
0.71  
11.63  
14.22  
Typ  
Max  
0.110  
0.028  
0.458  
0.560  
A
B
0.51  
11.53  
13.72  
0.020  
0.442  
0.540  
D
E
e
1.27  
0.050  
e1  
e2  
e3  
h
0.39  
0.015  
7.62  
10.16  
1.02  
0.300  
0.400  
0.040  
0.020  
j
0.51  
L
1.14  
1.96  
10.50  
8.03  
32  
1.40  
2.36  
10.80  
8.23  
0.045  
0.077  
0.413  
0.316  
32  
0.055  
0.093  
0.425  
0.324  
L1  
K
K1  
N
Figure 10. LCCC32W - 32 lead Leadless Ceramic Chip Carrier, Package Outline  
e2  
D
j x 45o  
e
N
1
L1  
B
e1  
K
E
e3  
K1  
A
h x 45o  
L
LCCCW-a  
Drawing is not to scale.  
14/17  
M27C4001  
Table 16. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
3.56  
2.41  
Typ  
Min  
Max  
0.140  
0.095  
A
A1  
A2  
B
2.54  
0.100  
0.060  
0.015  
0.013  
0.026  
0.485  
0.447  
0.390  
1.52  
0.38  
0.33  
0.53  
0.81  
0.021  
0.032  
0.495  
0.455  
0.430  
B1  
D
0.66  
12.32  
11.35  
9.91  
12.57  
11.56  
10.92  
D1  
D2  
e
1.27  
0.89  
0.050  
0.035  
E
14.86  
13.89  
12.45  
0.00  
15.11  
14.10  
13.46  
0.25  
0.585  
0.547  
0.490  
0.000  
0.595  
0.555  
0.530  
0.010  
E1  
E2  
F
R
N
32  
7
32  
7
Nd  
Ne  
CP  
9
9
0.10  
0.004  
Figure 11. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
15/17  
M27C4001  
Table 17. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.20  
0.17  
1.05  
0.27  
0.21  
20.20  
18.50  
8.10  
Typ  
Max  
0.047  
0.006  
0.041  
0.011  
0.008  
0.795  
0.728  
0.319  
A
A1  
A2  
B
0.05  
0.95  
0.15  
0.10  
19.80  
18.30  
7.90  
0.002  
0.037  
0.006  
0.004  
0.780  
0.720  
0.311  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
32  
32  
CP  
0.10  
0.004  
Figure 12. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
16/17  
M27C4001  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
17/17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY