M27V401-200N6 [STMICROELECTRONICS]

512KX8 OTPROM, 200ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32;
M27V401-200N6
型号: M27V401-200N6
厂家: ST    ST
描述:

512KX8 OTPROM, 200ns, PDSO32, 8 X 20 MM, PLASTIC, TSOP-32

可编程只读存储器 OTP只读存储器 光电二极管 内存集成电路
文件: 总15页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V401  
4 Mbit (512Kb x 8) Low Voltage UV EPROM and OTP EPROM  
NOT FOR NEW DESIGN  
M27V401 is replaced by the M27W401  
3V to 3.6V LOW VOLTAGE in READ  
OPERATION  
ACCESS TIME: 120ns  
32  
32  
LOW POWER CONSUMPTION:  
– Active Current 15mA at 5MHz  
– Standby Current 20µA  
1
1
FDIP32W (F)  
PDIP32 (B)  
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
PROGRAMMING TIME: 100µs/word  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 41h  
PLCC32 (K)  
TSOP32 (N)  
8 x 20 mm  
DESCRIPTION  
The M27V401 is a low voltage 4 Mbit EPROM of-  
fered in the two range UV (ultra violet erase) and  
OTP (one time programmable). It is ideally suited  
for microprocessor systems requiring large data or  
program storage and is organised as 524,288 by 8  
bits.  
Figure 1. Logic Diagram  
The M27V401 operates in the read mode with a  
supply voltage as low as 3V. The decrease in op-  
erating power allows either a reduction of the size  
of the battery or an increase in the time between  
battery recharges.  
V
V
PP  
CC  
The FDIP32W (window ceramic frit-seal package)  
has a transparent lid which allow the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
19  
8
A0-A18  
Q0-Q7  
E
M27V401  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27V401 is offered in PDIP32, PLCC32 and  
TSOP32 (8 x 20 mm) packages.  
G
V
SS  
AI00695B  
July 2000  
1/15  
This is information on a product still in production but not recommended for new designs.  
M27V401  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
V
1
2
3
4
5
6
7
8
9
32  
V
CC  
PP  
A16  
A15  
A12  
A7  
31 A18  
30 A17  
29 A14  
28 A13  
27 A8  
1 32  
A7  
A14  
A13  
A8  
A6  
A5  
A4  
A6  
A5  
26 A9  
A9  
A4  
25 A11  
M27V401  
A3  
A2  
A1  
A0  
Q0  
9
M27V401  
25 A11  
G
A3  
24  
23 A10  
22  
G
A2 10  
A1 11  
A0 12  
Q0 13  
Q1 14  
Q2 15  
A10  
E
E
21 Q7  
20 Q6  
19 Q5  
18 Q4  
17 Q3  
Q7  
17  
V
SS  
16  
AI00696  
AI01861  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A18  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
Output Enable  
A11  
A9  
1
32  
G
A10  
E
A8  
G
A13  
A14  
A17  
A18  
Q7  
Q6  
Q5  
Q4  
Q3  
V
Program Supply  
Supply Voltage  
Ground  
PP  
V
CC  
V
SS  
V
8
9
M27V401  
(Normal)  
25  
24  
CC  
V
PP  
V
SS  
A16  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A3  
A15  
A12  
A7  
A6  
A5  
A4  
16  
17  
AI01156B  
2/15  
M27V401  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V +2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
A9  
X
Q7-Q0  
Data Out  
Hi-Z  
PP  
V
V
V
V
or V  
Read  
IL  
IL  
IL  
IH  
IH  
CC  
CC  
SS  
SS  
Output Disable  
Program  
V
V
V
X
or V  
V
Pulse  
V
X
Data In  
Data Out  
Hi-Z  
IL  
PP  
PP  
PP  
Verify  
V
V
IL  
V
IH  
X
V
IH  
IH  
IH  
V
V
V
Program Inhibit  
Standby  
X
V
or V  
SS  
X
X
Hi-Z  
CC  
V
V
V
V
CC  
Electronic Signature  
Codes  
IL  
IL  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
IL  
V
0
1
0
0
0
0
0
1
41h  
IH  
3/15  
M27V401  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
IN  
IN  
C
OUT  
V
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
(t  
(t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
GLQV  
AVQV  
ELQV  
of t  
The operating modes of the M27V401 are listed in  
the Operating Modes table. A single power supply  
is required in the read mode. All inputs are TTL  
from the falling edge of G, assuming that  
E has been low and the addresses have been sta-  
ble for at least t  
-t  
.
AVQV GLQV  
levels except for V and 12V on A9 for Electronic  
PP  
Signature.  
Standby Mode  
Read Mode  
The M27V401 has a standby mode which reduces  
the supply current from 15mA to 20µA with low  
The M27V401 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable(G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
voltage operation V 3.6V, see Read Mode DC  
CC  
Characteristics Table for details. The M27V401 is  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the G input.  
4/15  
M27V401  
(1)  
Table 7. Read Mode DC Characteristics  
(T = 0 to 70 °C or –40 to 85°C; V = 3.3V ± 10%; V = V  
)
CC  
A
CC  
PP  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±10  
±10  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
µA  
LO  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
I
Supply Current  
15  
mA  
CC  
f = 5MHz, V 3.6V  
CC  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
20  
10  
0.8  
E > V – 0.2V, V 3.6V  
CC2  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
OH  
OH  
V
OH  
I
V
–0.7V  
CC  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85°C; V = 3.3V ± 10%; V = V )  
A
CC  
PP  
CC  
M27V401  
Symbol  
Alt  
Parameter  
Test Condition  
-120  
-150  
Unit  
Min Max Min  
Max  
150  
150  
80  
t
t
E = V , G = V  
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
120  
120  
60  
ns  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
G = V  
ELQV  
CE  
IL  
IL  
t
t
E = V  
GLQV  
OE  
(2)  
(2)  
t
DF  
G = V  
0
0
50  
50  
0
0
50  
50  
t
IL  
EHQZ  
t
DF  
E = V  
Output Enable High to Output Hi-Z  
ns  
ns  
t
IL  
GHQZ  
Address Transition to Output  
Transition  
t
t
E = V , G = V  
IL IL  
0
0
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Two Line Output Control  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
5/15  
M27V401  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70°C or –40 to 85°C; V = 3.3V ± 10%; V = V  
A
CC  
PP  
CC  
M27V401  
Unit  
Symbol  
Alt  
Parameter  
Test Condition  
-180  
Max  
-200  
Min  
Min  
Max  
200  
200  
100  
t
t
E = V , G = V  
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
180  
180  
90  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
G = V  
ELQV  
CE  
IL  
t
t
E = V  
GLQV  
OE  
IL  
(2)  
(2)  
t
t
G = V  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
0
0
50  
50  
0
0
70  
70  
ns  
ns  
t
t
DF  
DF  
IL  
IL  
EHQZ  
E = V  
GHQZ  
Address Transition to Output  
Transition  
t
t
E = V , G = V  
IL IL  
0
0
ns  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A18  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00724B  
System Considerations  
output control and by properly selected decoupling  
capacitors. It is recommended that a 0.1µF ceram-  
The power switching characteristics of Advanced  
CMOS EPROMs requirecareful decoupling of the  
devices. The supply current, I , has three seg-  
ic capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
CC  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output. The associated transient voltage peaks  
can be suppressed by complying with the two line  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point. The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
6/15  
M27V401  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Parameter  
Symbol  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
V
V V  
Input Leakage Current  
Supply Current  
LI  
IL  
IN  
IH  
I
CC  
I
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
PP  
IL  
V
–0.3  
2
0.8  
IL  
V
V
V
+ 0.5  
CC  
V
IH  
I
= 2.1mA  
OL  
0.4  
V
OL  
V
I
= –400µA  
2.4  
V
OH  
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
t
Address Valid to Program Low  
Input Valid to Program Low  
AVPL  
AS  
t
2
QVPL  
DS  
t
t
V
V
High to Program Low  
High to Program Low  
2
VPHPL  
VPS  
VCS  
CES  
PP  
CC  
t
t
t
2
VCHPL  
t
Chip Enable Low to Program Low  
Program Pulse Width  
2
ELPL  
t
t
95  
2
105  
PLPH  
PW  
t
t
DH  
Program High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
PHQX  
t
t
2
QXGL  
GLQV  
OES  
t
t
100  
130  
OE  
(2)  
t
Output Enable High to Output Hi-Z  
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
AH  
GHAX  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
Although only ’0’s will be programmed, both ’1’s  
and ’0’s can be present in the data word. The only  
way to change a ’0’ to a ’1’ is by die exposure to ul-  
traviolet light (UV EPROM). The M27V401 is in the  
The M27V401 has been designed to be fully com-  
patible withthe M27C4001 and hasthe same elec-  
tronic signature. As a result the M27V401 can be  
programmed as the M27C4001 on the same pro-  
gramming equipments applying 12.75V on V  
and 6.25V on V by the use of the same PRES-  
TO II algorithm. When delivered (and after each  
erasure for UV EPROM), all bits of the M27V401  
are in the ’1’ state. Data is introduced by selective-  
ly programming ’0’s into the desired bit locations.  
programming mode when V input is at 12.75V,  
PP  
G at V and E is pulsed to V . The data to be pro-  
IH  
IL  
PP  
grammed is applied to 8 bits in parallel to the data  
CC  
output pins. The levels required for the address  
and data inputs are TTL. V  
6.25V ± 0.25V.  
is specified to be  
CC  
7/15  
M27V401  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A18  
tAVPL  
Q0-Q7  
DATA OUT  
DATA IN  
tQVEL  
tEHQX  
V
PP  
tVPHEL  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
tVCHEL  
tELEH  
E
tQXGL  
G
PROGRAM  
VERIFY  
AI00725  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows the  
whole array to be programmed, with a guaranteed  
margin, in a typical time of 52.5 seconds. Pro-  
gramming with PRESTO II involves in applying a  
sequence of 100µs program pulses to each byte  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
E = 100µs Pulse  
since the verify in MARGIN MODE at V  
much  
CC  
NO  
higher than 3.6V provides necessary margin to  
each programmed cell.  
Program Inhibit  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Programming of multiple M27V401s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27V401 may be common. A TTL low level pulse  
YES  
Last  
NO  
FAIL  
Addr  
applied to a M27V401’s E input with V  
at  
PP  
YES  
12.75V, will program that M27V401. A high level E  
input inhibits the other M27V401s from being pro-  
grammed.  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
AI00760B  
at V , E at V , V at 12.75V and V at 6.25V.  
IL  
IH  
PP  
CC  
8/15  
M27V401  
Electronic Signature  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming theM27V401. To activate the ES mode,  
the programming equipment must force 11.5V to  
12.5V on address line A9 of the M27V401, with  
The erasure characteristics of the M27V401 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000Å. Itshould be noted that sunlight  
and some type of fluorescent lamps have wave-  
lengths in the 3000-4000Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27V401 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27V401 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27V401 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
the M27V401 is exposure to short wave ultraviolet  
light which has a wavelength of 2537Å. The inte-  
grated dose (i.e. UV intensity x exposure time) for  
V
= V = 5V. Two identifier bytes may then be  
PP  
CC  
sequenced from the device outputs by toggling ad-  
dress line A0 from V to V . All other address  
IL  
IH  
lines must be held at V during Electronic Signa-  
IL  
ture mode.  
Byte 0 (A0 = V ) represents the manufacturer  
IL  
code and byte 1 (A0 = V ) the device identifier  
IH  
2
erasure should be a minimum of 15 W-sec/cm .  
code. Forthe STMicroelectronics M27V401, these  
two identifier bytes are given inTable 4 and can be  
read-out on outputs Q7 to Q0. Note that the  
M27V401 and M27C4001 have thesame identifier  
bytes.  
The erasure time with this dosage is approximate-  
ly 15 to 20 minutes using an ultraviolet lamp with  
2
12000µW/cm power rating. The M27V401 should  
be placed within 2.5 cm (1 inch) of the lamp tubes  
during the erasure. Some lamps have a filter on  
their tubes which should be removed before era-  
sure.  
9/15  
M27V401  
Table 11. Ordering Information Scheme  
Example:  
M27V401  
-120 K  
6
TR  
Device Type  
M27  
Supply Voltage  
V = 3V to 3.6V  
Device Function  
401 = 4 Mbit (512Kb x 8)  
Speed  
-120 = 120 ns  
-150 = 150 ns  
-180 = 180 ns  
-200 = 200 ns  
Package  
F = FDIP32W  
B = PDIP32  
K = PLCC32  
N = TSOP32: 8 x 20 mm  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
M27V401 is replaced by the M27W401  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
10/15  
M27V401  
Table 12. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
41.73  
0.30  
42.04  
0.009  
1.643  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
32  
32  
Figure 8. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
11/15  
M27V401  
Table 13. PDIP32 - 32 pin lead Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
41.78  
0.30  
42.04  
0.008  
1.645  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.600  
15.24  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.03  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.080  
10°  
S
α
N
32  
32  
Figure 9. PDIP32 - 32 pin lead Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
12/15  
M27V401  
Table 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
mm  
Min  
2.54  
1.52  
0.38  
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
inches  
Symb  
Typ  
Max  
3.56  
2.41  
Typ  
Min  
Max  
0.140  
0.095  
A
A1  
A2  
B
0.100  
0.060  
0.015  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 10. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
13/15  
M27V401  
Table 15. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
8.10  
Typ  
Max  
0.047  
0.007  
0.041  
0.011  
0.008  
0.795  
0.728  
0.319  
A
A1  
A2  
B
0.05  
0.95  
0.15  
0.10  
19.80  
18.30  
7.90  
0.002  
0.037  
0.006  
0.004  
0.780  
0.720  
0.311  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
32  
32  
CP  
0.10  
0.004  
Figure 11. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale  
A1  
α
L
14/15  
M27V401  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
2000 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY