M27W201-80N6TR [STMICROELECTRONICS]

2 Mbit 256Kb x 8 Low Voltage UV EPROM and OTP EPROM; 2兆的256Kb ×8低压UV EPROM和OTP EPROM
M27W201-80N6TR
型号: M27W201-80N6TR
厂家: ST    ST
描述:

2 Mbit 256Kb x 8 Low Voltage UV EPROM and OTP EPROM
2兆的256Kb ×8低压UV EPROM和OTP EPROM

存储 内存集成电路 光电二极管 可编程只读存储器 OTP只读存储器 电动程控只读存储器
文件: 总16页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27W201  
2 Mbit (256Kb x 8) Low Voltage UV EPROM and OTP EPROM  
2.7V to 3.6V LOW VOLTAGE in READ  
OPERATION  
ACCESS TIME:  
32  
32  
– 70ns at V = 3.0V to 3.6V  
CC  
– 80ns at V = 2.7V to 3.6V  
CC  
1
1
PIN COMPATIBLE with M27C2001  
LOW POWER CONSUMPTION:  
– 15µA max Standby Current  
FDIP32W (F)  
PDIP32 (B)  
– 15mA max Active Current at 5MHz  
PROGRAMMING TIME 100µs/byte  
HIGH RELIABILITY CMOS TECHNOLOGY  
– 2,000V ESD Protection  
PLCC32 (K)  
TSOP32 (N)  
8 x 20 mm  
– 200mA Latchup Protection Immunity  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 61h  
DESCRIPTION  
TSOP32 (NZ)  
8 x 14 mm  
The M27W201 is a low voltage 2 Mbit EPROM of-  
fered in the two range UV (ultra violet erase) and  
OTP (one time programmable). It is ideally suited  
for microprocessor systems requiring large data or  
program storage and is organised as 262,144 by 8  
bits.  
The M27W201 operates in the read mode with a  
supply voltage as low as 2.7V at –40 to 85°C tem-  
perature range. The decrease in operating power  
allows either a reduction of the size of the battery  
or an increase in the time between battery re-  
charges.  
Figure 1. Logic Diagram  
V
V
PP  
CC  
18  
8
A0-A17  
Q0-Q7  
The FDIP32W (window ceramic frit-seal package)  
has a transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
P
E
M27W201  
G
For application where the content is programmed  
only one time and erasure is not required, the  
M27W201 is offered in PDIP32, PLCC32 and  
TSOP32 (8 x 20mm and 8 x 14mm) packages.  
V
SS  
AI01359  
October 2001  
1/16  
M27W201  
Figure 2A. DIP Connections  
Figure 2B. LCC Connections  
V
1
2
3
4
5
6
7
8
9
32  
31  
V
P
PP  
CC  
A16  
A15  
A12  
A7  
30 A17  
29 A14  
28 A13  
27 A8  
1 32  
A7  
A14  
A13  
A8  
A6  
A5  
A4  
A6  
A5  
26 A9  
A9  
A4  
25 A11  
M27W201  
A3  
A2  
A1  
A0  
Q0  
9
M27W201  
25 A11  
G
A3  
24  
23 A10  
22  
G
A2 10  
A1 11  
A0 12  
Q0 13  
Q1 14  
Q2 15  
A10  
E
E
21 Q7  
20 Q6  
19 Q5  
18 Q4  
17 Q3  
Q7  
17  
V
16  
SS  
AI01360  
AI02675  
Figure 2C. TSOP Connections  
Table 1. Signal Names  
A0-A17  
Address Inputs  
Q0-Q7  
Data Outputs  
Chip Enable  
Output Enable  
Program  
A11  
A9  
1
32  
G
A10  
E
E
G
P
A8  
A13  
A14  
A17  
P
Q7  
Q6  
Q5  
Q4  
Q3  
V
Program Supply  
Supply Voltage  
Ground  
PP  
V
8
9
25  
24  
CC  
M27W201  
V
CC  
V
V
SS  
PP  
A16  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A3  
V
SS  
A15  
A12  
A7  
A6  
A5  
A4  
16  
17  
AI01361  
2/16  
M27W201  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
P
A9  
X
Q7-Q0  
Data Out  
Hi-Z  
PP  
V
V
V
V
or V  
or V  
Read  
X
IL  
IL  
IL  
IL  
IL  
IH  
IH  
CC  
CC  
SS  
V
V
V
V
V
V
Output Disable  
Program  
X
X
SS  
V
IL  
Pulse  
V
X
Data In  
Data Out  
Hi-Z  
PP  
PP  
PP  
V
IL  
V
IH  
V
Verify  
X
V
Program Inhibit  
Standby  
X
X
X
IH  
IH  
V
V
or V  
CC SS  
X
X
X
Hi-Z  
V
V
IL  
V
IH  
V
ID  
V
CC  
Electronic Signature  
Codes  
IL  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
Q3  
0
Q2  
0
Q1  
Q0  
Hex Data  
20h  
V
0
0
0
0
0
1
IL  
V
0
1
1
0
0
61h  
IH  
3/16  
M27W201  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
6
Unit  
pF  
C
IN  
V
IN  
= 0V  
= 0V  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
DEVICE OPERATION  
(t  
(t  
of t  
) is equal to the delay from E to output  
). Data is available at the output after a delay  
AVQV  
ELQV  
The operating modes of the M27W201 are listed in  
the Operating Modes table. A single power supply  
is required in the read mode. All inputs are TTL  
from the falling edge of G, assuming that  
GLQV  
E has been low and the addresses have been sta-  
ble for at least t  
-t  
.
AVQV GLQV  
levels except for V and 12V on A9 for Electronic  
PP  
Signature.  
Standby Mode  
Read Mode  
The M27W201 has a standby mode which reduc-  
es the supply current from 15mA to 15µA with low  
The M27W201 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
voltage operation V 3.6V, see Read Mode DC  
CC  
Characteristics table for details.The M27W201 is  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the G input.  
4/16  
M27W201  
(1)  
Table 7. Read Mode DC Characteristics  
(T = –40 to 85 °C; V = 2.7V to 3.6V; V = V  
)
A
CC  
PP  
CC  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
µA  
I
LI  
Input Leakage Current  
Output Leakage Current  
±10  
±10  
0V V V  
IN  
CC  
I
0V V V  
OUT CC  
µA  
LO  
E = V , G = V ,  
IL  
IL  
I
I
= 0mA, f = 5MHz  
OUT  
Supply Current  
15  
mA  
CC  
V
CC  
≤ 3.6V  
I
I
1
2
E = V  
IH  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
1
mA  
µA  
CC  
CC  
I
E > V – 0.2V  
CC  
15  
V
≤ 3.6V  
CC  
V
= V  
Program Current  
10  
µA  
V
PP  
PP  
CC  
V
0.2 V  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
–0.6  
IL  
(2)  
CC  
0.7 V  
V
+ 0.5  
CC  
V
V
CC  
IH  
V
I
= 2.1mA  
0.4  
V
OL  
OL  
V
I
= –400µA  
2.4  
V
OH  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
Two Line Output Control  
System Considerations  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
For the most efficient use of these two control  
lines, E should be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and that the output pins are only active  
when data is required from a particular memory  
device.  
The power switching characteristics of Advanced  
CMOS EPROMs require careful decoupling of the  
devices. The supply current, I , has three seg-  
CC  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
the transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output.  
The associated transient voltage peaks can be  
suppressed by complying with the two line output  
control and by properly selected decoupling ca-  
pacitors. It is recommended that a 0.1µF ceramic  
capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
tor of low inherent inductance and should be  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point. The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
5/16  
M27W201  
(1)  
Table 8. Read Mode AC Characteristics  
(T = –40 to 85 °C; V = 2.7V to 3.6V; V = V  
)
A
CC  
PP  
CC  
M27W201  
-100  
(-120/-150/-200)  
(3)  
-80  
Test  
Condition  
Symbol Alt  
Parameter  
Unit  
V
= 3.0V to 3.6V V = 2.7V to 3.6V V = 2.7V to 3.6V  
CC CC  
CC  
Min  
Max  
Min  
Max  
Min  
Max  
E = V ,  
Address Valid to  
Output Valid  
IL  
t
t
ACC  
70  
80  
100  
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
G = V  
IL  
Chip Enable Low to  
Output Valid  
t
t
t
G = V  
70  
40  
40  
40  
80  
50  
50  
50  
100  
60  
ELQV  
CE  
IL  
Output Enable Low  
to Output Valid  
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
DF  
G = V  
0
0
0
0
0
0
0
0
0
60  
t
IL  
IL  
EHQZ  
Output Enable High  
to Output Hi-Z  
(2)  
t
DF  
E = V  
60  
t
GHQZ  
E = V ,  
Address Transition  
to Output Transition  
IL  
t
t
OH  
AXQX  
G = V  
IL  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
Figure 5. Read Mode AC Waveforms  
VALID  
VALID  
A0-A17  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00719B  
6/16  
M27W201  
(1)  
Table 9. Programming Mode DC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
LI  
0 V V  
Input Leakage Current  
Supply Current  
IN  
CC  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
V
+ 0.5  
V
IH  
CC  
V
I
OL  
= 2.1mA  
0.4  
V
OL  
V
I
= –400µA  
2.4  
V
OH  
OH  
V
11.5  
12.5  
V
ID  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
t
t
Address Valid to Program Low  
Input Valid to Program Low  
2
2
AVPL  
AS  
QVPL  
DS  
t
t
t
t
t
V
V
High to Program Low  
High to Program Low  
2
VPHPL  
VPS  
VCS  
CES  
PP  
CC  
2
VCHPL  
t
Chip Enable Low to Program Low  
Program Pulse Width  
2
ELPL  
t
t
PW  
95  
2
105  
PLPH  
t
t
DH  
Program High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
PHQX  
t
t
2
QXGL  
GLQV  
OES  
t
t
100  
130  
OE  
(2)  
t
0
0
ns  
ns  
t
DFP  
GHQZ  
Output Enable High to Address  
Transition  
t
t
GHAX  
AH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Programming  
ming '0's into the desired bit locations. Although  
only '0's will be programmed, both '1's and '0's can  
be present in the data word. The only way to  
change a ‘0’ to a ‘1’ is by die exposure to ultraviolet  
light (UV EPROM). The M27W201 is in the pro-  
The M27W201 has been designed to be fully com-  
patible with the M27C2001 and has the same elec-  
tronic signature. As a result the M27W201 can be  
programmed as the M27C2001 on the same pro-  
gramming mode when V input is at 12.75V, E is  
PP  
gramming equipment applying 12.75V on V and  
PP  
at V and P is pulsed to V . The data to be pro-  
IL  
IL  
6.25V on V  
algorithm.  
by the use of the same PRESTO II  
CC  
grammed is applied to 8 bits in parallel to the data  
output pins. The levels required for the address  
When delivered (and after each ‘1’s erasure for UV  
EPROM), all bits of the M27W201 are in the '1'  
state.Data is introduced by selectively program-  
and data inputs are TTL. V  
6.25V ± 0.25V.  
is specified to be  
CC  
7/16  
M27W201  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A17  
tAVPL  
Q0-Q7  
DATA IN  
DATA OUT  
tQVPL  
tVPHPL  
tVCHPL  
tELPL  
tPHQX  
V
PP  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
P
tPLPH  
tQXGL  
G
PROGRAM  
VERIFY  
AI00720  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows the  
whole array to be programmed with a guaranteed  
margin, in a typical time of 26.5 seconds. Pro-  
gramming with PRESTO II consists of applying a  
sequence of 100µs program pulses to each byte  
until a correct verify occurs (see Figure 7). During  
programming and verify operation, a MARGIN  
MODE circuit is automatically activated in order to  
guarantee that each cell is programmed with  
enough margin. No overprogram pulse is applied  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
P = 100µs Pulse  
NO  
since the verify in MARGIN MODE at V  
much  
CC  
higher than 3.6V, provides the necessary margin  
to each programmed cell.  
Program Inhibit  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
YES  
Programming of multiple M27W201s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27W201 may be common. A TTL low level pulse  
applied to a M27W201's P input, with E low and  
Last  
Addr  
NO  
FAIL  
YES  
V
at 12.75V, will program that M27W201. A high  
PP  
CHECK ALL BYTES  
level E input inhibits the other M27W201s from be-  
ing programmed.  
1st: V  
= 5V  
CC  
CC  
2nd: V  
= 2.7V  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with E  
AI00715D  
and G at V , P at V , V at 12.75V and V at  
IL  
IH  
PP  
CC  
6.25V.  
8/16  
M27W201  
Electronic Signature  
ERASURE OPERATION (applies to UV EPROM)  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming the M27W201. To activate the ES  
mode, the programming equipment must force  
11.5V to 12.5V on address line A9 of the  
The erasure characteristics of the M27W201 are  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Data  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27W201 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27W201 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27W201 window to prevent unintentional  
erasure. The recommended erasure procedure for  
the M27W201 is exposure to short wave ultraviolet  
light which has wavelength of 2537 Å. The inte-  
grated dose (i.e. UV intensity x exposure time) for  
M27W201 with V = V  
= 5V. Two identifier  
PP  
CC  
bytes may then be sequenced from the device out-  
puts by toggling address line A0 from V to V . All  
IL  
IH  
other address lines must be held at V during  
IL  
Electronic Signature mode. Byte 0 (A0 = V )  
IL  
repres ents the manufacturer code and byte 1  
(A0 = V ) the device identifier code. For the ST-  
IH  
2
Microelectronics M27W201, these two identifier  
bytes are given in Table 4 and can be read-out on  
outputs Q7 to Q0. Note that the M27W201 and  
M27C2001 have the same identifier byte.  
erasure should be a minimum of 15 W-sec/cm .  
The erasure time with this dosage is approximate-  
ly 15 to 20 minutes using an ultraviolet lamp with  
2
12000 µW/cm power rating. The M27W201  
should be placed within 2.5 cm (1 inch) of the lamp  
tubes during the erasure. Some lamps have a filter  
on their tubes which should be removed before  
erasure.  
9/16  
M27W201  
Table 11. Ordering Information Scheme  
Example:  
M27W201  
-80  
K
6
TR  
Device Type  
M27  
Supply Voltage  
W = 2.7V to 3.6V  
Device Function  
201 = 2 Mbit (256Kb x 8)  
Speed  
(1,2)  
-80  
= 80 ns  
-100 = 100 ns  
(3)  
Not For New Design  
-120 = 120 ns  
-150 = 150 ns  
-200 = 200 ns  
Package  
(4)  
F = FDIP32W  
B = PDIP32  
K = PLCC32  
(4)  
N = TSOP32: 8 x 20 mm  
(4)  
NZ = TSOP32: 8 x 14 mm  
Temperature Range  
6 = –40 to 85 °C  
Options  
TR = Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
2. This speed also guarantees 70ns access time at V  
3. These speeds are replaced by the 100ns.  
= 3.0V to 3.6V.  
CC  
4. Packages option available on request. Please contact STMicroelectronics local Sales Office.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
Table 12. Revision History  
Date  
July 1999  
Version  
Revision Details  
-01  
First Issue  
FDIP32W Package Dimension, L Max added (Table 13)  
TSOP32 Package Dimension changed (Table 16)  
0 to 70°C Temperature Range deleted, Programming Time changed  
19-Apr-2000  
24-Oct-2001  
-02  
-03  
TSOP32 8x14mm added  
10/16  
M27W201  
Table 13. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
41.73  
0.30  
42.04  
0.009  
1.643  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
4.10  
2.49  
0.637  
0.125  
0.060  
0.710  
0.161  
0.098  
S
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
32  
32  
Figure 8. FDIP32W - 32 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
11/16  
M27W201  
Table 14. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Mechanical Data  
millimeters  
inches  
Min  
Symbol  
Typ  
Min  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
41.78  
0.30  
42.04  
0.008  
1.645  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.600  
15.24  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.03  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.080  
10°  
S
α
N
32  
32  
Figure 9. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
12/16  
M27W201  
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
3.56  
2.41  
Typ  
Min  
Max  
0.140  
0.095  
A
A1  
A2  
B
2.54  
0.100  
0.060  
0.015  
0.013  
0.026  
0.485  
0.447  
0.390  
1.52  
0.38  
0.33  
0.53  
0.81  
0.021  
0.032  
0.495  
0.455  
0.430  
B1  
D
0.66  
12.32  
11.35  
9.91  
12.57  
11.56  
10.92  
D1  
D2  
e
1.27  
0.89  
0.050  
0.035  
E
14.86  
13.89  
12.45  
0.00  
15.11  
14.10  
13.46  
0.25  
0.585  
0.547  
0.490  
0.000  
0.595  
0.555  
0.530  
0.010  
E1  
E2  
F
R
N
32  
7
32  
7
Nd  
Ne  
CP  
9
9
0.10  
0.004  
Figure 10. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
13/16  
M27W201  
Table 16. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
20.200  
18.500  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
A
A1  
A2  
B
0.050  
0.950  
0.150  
0.100  
19.800  
18.300  
0.0020  
0.0374  
0.0059  
0.0039  
0.7795  
0.7205  
C
D
D1  
e
0.500  
0.0197  
E
7.900  
0.500  
0°  
8.100  
0.700  
5°  
0.3110  
0.0197  
0°  
0.3189  
0.0276  
5°  
L
α
CP  
N
0.100  
0.0039  
32  
32  
Figure 11. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
14/16  
M27W201  
Table 17. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 14 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
14.200  
12.500  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.5591  
0.4921  
A
A1  
A2  
B
0.050  
0.950  
0.170  
0.100  
13.800  
12.300  
0.0020  
0.0374  
0.0067  
0.0039  
0.5433  
0.4843  
C
D
D1  
e
0.500  
0.0197  
E
7.900  
0.500  
0°  
8.100  
0.700  
5°  
0.3110  
0.0197  
0°  
0.3189  
0.0276  
5°  
L
α
CP  
N
0.100  
0.0039  
32  
32  
Figure 12. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 14 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
Drawing is not to scale.  
A1  
α
L
15/16  
M27W201  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
16/16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY