M28C16B-90K6TR [STMICROELECTRONICS]

2KX8 EEPROM 5V, 90ns, PQCC32, PLASTIC, LCC-32;
M28C16B-90K6TR
型号: M28C16B-90K6TR
厂家: ST    ST
描述:

2KX8 EEPROM 5V, 90ns, PQCC32, PLASTIC, LCC-32

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 内存集成电路
文件: 总17页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28C16B  
M28C17B  
16 Kbit (2K x 8) Parallel EEPROM  
With Software Data Protection  
NOT FOR NEW DESIGN  
Fast Access Time: 90 ns at V =5V  
CC  
Single Supply Voltage:  
– 4.5 V to 5.5 V for M28CxxB  
– 2.7 V to 3.6 V for M28CxxB-W  
Low Power Consumption  
Fast BYTE and PAGE WRITE (up to 64 Bytes)  
– 3 ms at V =4.5 V  
CC  
– 5 ms at V =2.7 V  
CC  
Enhanced Write Detection and Monitoring:  
– Data Polling  
PLCC32 (K)  
– Toggle Bit  
– Page Load Timer Status  
JEDEC Approved Bytewide Pin-Out  
Software Data Protection  
100000 Erase/Write Cycles (minimum)  
Data Retention (minimum): 40 Years  
DESCRIPTION  
The M28C16B and M28C17B devices consist of  
2048x8 bits of low power, parallel EEPROM, fabri-  
cated with STMicroelectronics’ proprietary single  
polysilicon CMOS technology. The devices offer  
fast access time, with low power dissipation, and  
require a single voltage supply.  
Figure 1. Logic Diagram  
V
CC  
Table 1. Signal Names  
11  
8
A0-A10  
Address Input  
A0-A10  
DQ0-DQ7  
DQ0-DQ7  
Data Input / Output  
Write Enable  
W
E
W
E
M28C16B  
M28C17B  
Chip Enable  
RB  
G
Output Enable  
Ready/Busy (M28C17B only)  
Supply Voltage  
Ground  
(M28C17B only)  
G
RB  
V
CC  
V
SS  
V
SS  
AI02816  
April 2001  
1/17  
This is information on a product still in production but not recommended for new designs.  
M28C16B, M28C17B  
Figure 2A. PLLC Connections  
Figure 2B. PLLC Connections  
1 32  
1 32  
A6  
A8  
A6  
A8  
A5  
A4  
A3  
A9  
A5  
A4  
A3  
A9  
NC  
NC  
G
NC  
NC  
G
A2  
A1  
9
M28C16B  
25  
A2  
A1  
9
M28C17B  
25  
A10  
E
A10  
E
A0  
A0  
NC  
DQ7  
DQ6  
NC  
DQ7  
DQ6  
DQ0  
DQ0  
17  
17  
AI02817  
AI02830  
Note: 1. NC = Not Connected  
Note: 1. NC = Not Connected  
The M28C17B is like the M28C16B in every way,  
except that it has an extra ready/busy (RB) output.  
DEVICE OPERATION  
In order to prevent data corruption and inadvertent  
write operations, an internal V comparator in-  
The device has been designed to offer a flexible  
microcontroller interface, featuring software hand-  
shaking, with Data Polling and Toggle Bit. The de-  
vice supports a 64 byte Page Write operation.  
Software Data Protection (SDP) is also supported,  
using the standard JEDEC algorithm.  
CC  
hibits the Write operations if the V  
voltage is  
CC  
lower than V (see Table 4A). Once the voltage  
WI  
applied on the V  
pin goes over the V thresh-  
CC  
WI  
old (V >V ), write access to the memory is al-  
CC  
WI  
lowed after a time-out t  
4A.  
Further protection against data corruption is of-  
fered by the E and W low pass filters: any glitch,  
on the E and W inputs, with a pulse width less than  
10 ns (typical) is internally filtered out to prevent  
inadvertent write operations to the memory.  
, as specified in Table  
PUW  
SIGNAL DESCRIPTION  
The external connections to the device are sum-  
marized in Table 1, and their use in Table 3.  
Addresses (A0-A10). The address inputs are  
used to select one byte from the memory array  
during a read or write operation.  
Read  
Data In/Out (DQ0-DQ7). The contents of the data  
byte are written to, or read from, the memory array  
through the Data I/O pins.  
Chip Enable (E). The chip enable input must be  
held low to enable read and write operations.  
When Chip Enable is high, power consumption is  
reduced.  
Output Enable (G). The Output Enable input con-  
trols the data output buffers, and is used to initiate  
read operations.  
Write Enable (W). The Write Enable input controls  
whether the addressed location is to be read, from  
or written to.  
The device is accessed like a static RAM. When E  
and G are low, and W is high, the contents of the  
addressed location are presented on the I/O pins.  
Otherwise, when either G or E is high, the I/O pins  
revert to their high impedance state.  
Write  
Write operations are initiated when both W and E  
are low and G is high. The device supports both  
W-controlled and E-controlled write cycles (as  
shown in Figure 11 and Figure 12). The address is  
latched during the falling edge of W or E (which  
ever occurs later) and the data is latched on the  
rising edge of W or E (which ever occurs first). Af-  
ter a delay, t  
, that cannot be shorter than the  
WLQ5H  
Ready/Busy (RB). Ready/Busy (on the M28C17B  
only) is an open drain output that can be used to  
detect the end of the internal write cycle.  
value specified in Table 10A, the internal write cy-  
cle starts. It continues, under internal timing con-  
trol, until the write operation is complete. The  
commencement of this period can be detected by  
reading the Page Load Timer Status on DQ5. The  
2/17  
M28C16B, M28C17B  
1
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
-40 to 125  
-65 to 150  
-0.3 to 6.5  
-0.6 to VCC+0.6  
-0.3 to 6.5  
4000  
Unit  
°C  
°C  
V
TA  
TSTG  
VCC  
VIO  
Ambient Operating Temperature  
Storage Temperature  
Supply Voltage  
Input or Output Voltage  
Input Voltage  
V
VI  
V
2
VESD  
V
Electrostatic Discharge Voltage (Human Body model)  
Note: 1. Except for the rating “Operating Temperature Range”, stresses above those listed in the Table “Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality documents.  
2. MIL-STD-883C, 3015.7 (100 pF, 1500 )  
Figure 3. Block Diagram  
E
G
W
V
GEN  
RESET  
CONTROL LOGIC  
PP  
ADDRESS  
LATCH  
A6-A10  
(Page Address)  
16K ARRAY  
ADDRESS  
LATCH  
A0-A5  
Y
DECODE  
SENSE AND DATA LATCH  
I/O BUFFERS  
PAGE LOAD  
TIMER STATUS  
TOGGLE BIT  
DATA POLLING  
DQ0-DQ7  
AI02818  
3/17  
M28C16B, M28C17B  
1
Table 3. Operating Modes  
Mode  
E
1
X
X
0
0
0
G
X
1
W
X
X
1
DQ0-DQ7  
Hi-Z  
Stand-by  
Output Disable  
Write Disable  
Read  
Hi-Z  
X
0
Hi-Z  
1
Data Out  
Data In  
Hi-Z  
Write  
1
0
Chip Erase  
V
0
Note: 1. 0=VIL; 1=VIH; X = VIH or VIL; V=12V ± 5%.  
end of the cycle can be detected by reading the  
status of the Data Polling and the Toggle Bit func-  
tions on DQ7 and DQ6.  
Otherwise, the Page Write operation is not execut-  
ed.  
As with the single byte Write operation, described  
above, the DQ5, DQ6 and DQ7 lines can be used  
to detect the beginning and end of the internally  
controlled phase of the Page Write cycle.  
Page Write  
The Page Write mode allows up to 64 bytes to be  
written on a single page in a single go. This is  
achieved through a series of successive Write op-  
erations, no two of which are separated by more  
Software Data Protection (SDP)  
The device offers a software-controlled write-pro-  
tection mechanism that allows the user to inhibit all  
write operations to the device. This can be useful  
for protecting the memory from inadvertent write  
cycles that may occur during periods of instability  
(uncontrolled bus conditions when excessive  
noise is detected, or when power supply levels are  
outside their specified values).  
By default, the device is shipped in the “unprotect-  
ed” state: the memory contents can be freely  
changed by the user. Once the Software Data Pro-  
tection Mode is enabled, all write commands are  
than the t  
value (as specified in Table 10A).  
WLQ5H  
The page write can be initiated during any byte  
write operation. Following the first byte write in-  
struction the host may send another address and  
data with a minimum data transfer rate of:  
1/t  
.
WLQ5H  
The internal write cycle can start at any instant af-  
ter t . Once initiated, the write operation is in-  
WLQ5H  
ternally timed, and continues, uninterrupted, until  
completion.  
All bytes must be located on the same page ad-  
dress (A10-A6 must be the same for all bytes).  
1
Table 4A. Power-Up Timing for M28CxxB (5V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
Parameter  
Time Delay to Read Operation  
Symbol  
Min.  
Max.  
1
Unit  
µs  
t
PUR  
t
Time Delay to Write Operation (once VCC VWI  
)
10  
ms  
V
PUW  
VWI  
Write Inhibit Threshold  
3.0  
4.2  
Note: 1. Sampled only, not 100% tested.  
1
Table 4B. Power-Up Timing for M28CxxB-W (3V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Parameter  
Time Delay to Read Operation  
Symbol  
Min.  
Max.  
1
Unit  
µs  
t
PUR  
t
Time Delay to Write Operation (once VCC VWI  
)
15  
ms  
V
PUW  
VWI  
Write Inhibit Threshold  
1.5  
2.5  
Note: 1. Sampled only, not 100% tested.  
4/17  
M28C16B, M28C17B  
Figure 4. Software Data Protection Enable Algorithm and Memory Write  
Write AAh in  
Write AAh in  
Address 555h  
Address 555h  
Page Write  
Timing  
(see note 1)  
Page Write  
Timing  
(see note 1)  
Write 55h in  
Address 2AAh  
Write 55h in  
Address 2AAh  
Write A0h in  
Write A0h in  
Address 555h  
Address 555h  
Write  
is Enabled  
SDP is set  
Physical  
Page Write  
Instruction  
Page Write  
(1 up to 64 bytes)  
SDP Enable Algorithm  
Write to Memory  
When SDP is SET  
AI02819  
Note: 1. The most significant address bits (A10 to A6) differ during these specific Page Write operations.  
ignored, and have no effect on the memory con-  
tents.  
The device remains in this mode until a valid Soft-  
ware Data Protection disable sequence is re-  
ceived. The device reverts to its “unprotected”  
state.  
ferent locations, as shown in Figure 6. This com-  
plex series of operations protects against the  
chance of inadvertent enabling or disabling of the  
Software Data Protection mechanism.  
The status of the Software Data Protection (en-  
abled or disabled) is represented by a non-volatile  
latch, and is remembered across periods of the  
power being off.  
Figure 6. Software Data Protection Disable  
Algorithm  
The Software Data Protection Enable command  
consists of the writing of three specific data bytes  
to three specific memory locations (each location  
being on a different page), as shown in Figure 4.  
Similarly to disable the Software Data Protection,  
the user has to write specific data bytes into six dif-  
Write AAh in  
Address 555h  
Write 55h in  
Address 2AAh  
Write 80h in  
Address 555h  
Page Write  
Figure 5. Status Bit Assignment  
Timing  
Write AAh in  
Address 555h  
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0  
Write 55h in  
Address 2AAh  
DP  
TB  
PLTS Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Write 20h in  
Address 555h  
DP  
TB  
= Data Polling  
= Toggle Bit  
PLTS = Page Load Timer Status  
Hi-Z = High impedance  
Unprotected State  
AI02815  
AI02820  
5/17  
M28C16B, M28C17B  
Figure 7. Chip Erase AC Waveforms  
tWHEH  
E
G
tGLWH  
W
tELWL  
tWLWH2  
tWHRH  
AI01484B  
1
Table 5. Chip Erase AC Characteristics  
(T = 0 to 70 °C or -40 to 85 °C; V = 4.5 to 5.5 V or 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
G = VCC + 7V  
Min.  
Max.  
Unit  
t
Chip Enable Low to Write Enable Low  
Write Enable High to Chip Enable High  
Write Enable Low to Write Enable High  
Output Enable Low to Write Enable High  
Write Enable High to Write Enable Low  
1
0
µs  
ns  
ELWL  
t
WHEH  
t
10  
1
ms  
µs  
WLWH2  
t
GLWH  
t
3
ms  
WHRH  
Note: 1. Sampled only, not 100% tested.  
When SDP is enabled, the memory array can still  
have data written to it, but the sequence is more  
complex (and hence better protected from inad-  
vertent use). The sequence is as shown in Figure  
4. This consists of an unlock key, to enable the  
write action, at the end of which the SDP continues  
to be enabled. This allows the SDP to be enabled,  
and data to be written, within a single Write cycle  
once a byte or more has been latched into the  
memory).  
Data Polling bit (DQ7). The internally timed write  
cycle starts after t  
(defined in Table 10A)  
WLQ5H  
has elapsed since the previous byte was latched in  
to the memory. The value of the DQ7 bit of this last  
byte, is used as a signal throughout this write op-  
eration: it is inverted while the internal write oper-  
ation is underway, and is inverted back to its  
original value once the operation is complete.  
(t ).  
WC  
Software Chip Erase  
The contents of the entire memory are erased (set  
to FFh) by holding Chip Enable (E) low, and hold-  
Toggle bit (DQ6). The device offers another way  
for determining when the internal write cycle is  
completed. During the internal Erase/Write cycle,  
DQ6 toggles from ’0’ to ’1’ and ’1’ to ’0’ (the first  
read value being ’0’) on subsequent attempts to  
read any byte of the memory. When the internal  
write cycle is complete, the toggling is stopped,  
and the values read on DQ7-DQ0 are those of the  
addressed memory byte. This indicates that the  
device is again available for new Read and Write  
operations.  
ing Output Enable (G) at V +7.0V. The chip is  
CC  
cleared when a 10 ms low pulse is applied to the  
Write Enable (W) signal (see Figure 7 and Table 5  
for details).  
Status Bits  
The devices provide three status bits (DQ7, DQ6  
and DQ5), for use during write operations. These  
allow the application to use the write time latency  
of the device for getting on with other work. These  
signals are available on the I/O port bits DQ7, DQ6  
and DQ5 (but only during programming cycle,  
Page Load Timer Status bit (DQ5). An internal  
timer is used to measure the period between suc-  
6/17  
M28C16B, M28C17B  
Table 6A. Read Mode DC Characteristics for M28CxxB (5V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
0 V VIN VCC  
Min.  
Max.  
10  
10  
30  
25  
1
Unit  
µA  
ILI  
ILO  
0 V VOUT VCC  
µA  
Supply Current (TTL inputs)  
Supply Current (CMOS inputs)  
Supply Current (Stand-by) TTL  
E = VIL, G = VIL , f = 5 MHz  
E = VIL, G = VIL , f = 5 MHz  
mA  
mA  
mA  
1
ICC  
1
E = V  
IH  
ICC1  
1
Supply Current (Stand-by) CMOS  
Input Low Voltage  
E > VCC - 0.3V  
100  
0.8  
µA  
V
ICC2  
VIL  
VIH  
-0.3  
2
V
CC + 0.5  
Input High Voltage  
V
VOL  
VOH  
I
OL = 2.1 mA  
Output Low Voltage  
0.4  
V
I
OH = -400 µA  
Output High Voltage  
2.4  
V
Note: 1. All inputs and outputs open circuit.  
Table 6B. Read Mode DC Characteristics for M28CxxB-W (3V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
0 V VIN VCC  
Min.  
Max.  
10  
Unit  
µA  
µA  
mA  
mA  
µA  
V
ILI  
ILO  
0 V VOUT VCC  
10  
E = VIL, G = VIL , f = 5 MHz, VCC = 3.3V  
E = VIL, G = VIL , f = 5 MHz, VCC = 3.6V  
8
1
Supply Current (CMOS inputs)  
ICC  
10  
1
Supply Current (Stand-by) CMOS  
Input Low Voltage  
E > VCC - 0.3V  
20  
ICC2  
VIL  
VIH  
-0.3  
2
0.6  
Input High Voltage  
VCC + 0.5  
0.2 VCC  
V
VOL  
VOH  
I
OL = 1.6 mA  
Output Low Voltage  
V
I
OH = -400 µA  
0.8 VCC  
Output High Voltage  
V
Note: 1. All inputs and outputs open circuit.  
cessive Write operations, up to t  
(defined in  
WLQ5H  
Table 10A). The DQ5 line is held low to show  
when this timer is running (hence showing that the  
device has received one write operation, and is  
waiting for the next). The DQ5 line is held high  
when the counter has overflowed (hence showing  
that the device is now starting the internal write to  
the memory array).  
7/17  
M28C16B, M28C17B  
1
Table 7. Input and Output Parameters (T = 25 °C, f = 1 MHz)  
A
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min.  
Max.  
6
Unit  
pF  
VIN = 0 V  
COUT  
VOUT = 0 V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
Table 8. AC Measurement Conditions  
Input Rise and Fall Times  
20 ns  
Input Pulse Voltages  
0.4 V to 2.4 V  
0.8 V to 2.0 V  
Input and Output Timing Reference Voltages  
Figure 8. AC Testing Input Output Waveforms  
Figure 9. AC Testing Equivalent Load Circuit  
I
OL  
2.4V  
DEVICE  
UNDER  
TEST  
2.0V  
0.8V  
OUT  
0.4V  
I
OH  
C
= 100pF  
L
AI02821  
C
includes JIG capacitance  
L
AI02102B  
8/17  
M28C16B, M28C17B  
Table 9A. Read Mode AC Characteristics for M28CxxB (5V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28CxxB  
Test  
Condition  
Symbol  
Alt.  
Parameter  
-90  
-12  
Unit  
Min  
Max  
Min  
Max  
E = V ,  
IL  
t
t
ACC  
Address Valid to Output Valid  
90  
120  
ns  
AVQV  
G = V  
G = V  
E = V  
IL  
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
90  
40  
40  
120  
45  
ns  
ns  
ns  
ELQV  
CE  
IL  
t
t
GLQV  
OE  
IL  
1
t
DF  
G = V  
0
0
0
0
45  
t
IL  
IL  
EHQZ  
1
t
DF  
E = V  
Output Enable High to Output Hi-Z  
40  
45  
ns  
ns  
t
GHQZ  
E = V ,  
IL  
t
t
Address Transition to Output Transition  
0
0
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
Table 9B. Read Mode AC Characteristics for M28CxxB-W (3V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28CxxB-W  
Test  
Condition  
Symbol  
Alt.  
Parameter  
-12  
-15  
Unit  
Min  
Max  
Min  
Max  
E = V ,  
IL  
t
t
ACC  
Address Valid to Output Valid  
120  
150  
ns  
AVQV  
G = V  
G = V  
E = V  
IL  
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
120  
80  
150  
80  
ns  
ns  
ns  
ELQV  
CE  
IL  
t
t
GLQV  
OE  
IL  
1
t
DF  
G = V  
0
0
45  
0
0
50  
t
IL  
IL  
EHQZ  
1
t
DF  
E = V  
Output Enable High to Output Hi-Z  
45  
50  
ns  
ns  
t
GHQZ  
E = V ,  
IL  
t
t
Address Transition to Output Transition  
0
0
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
9/17  
M28C16B, M28C17B  
Table 10A. Write Mode AC Characteristics for M28CxxB (5V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28C17B  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
Min  
Max  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W = V  
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
OES  
OES  
IH  
t
t
t
t
E = V  
0
GHWL  
IL  
t
W = V  
0
GHEL  
IL  
t
G = V  
0
WLEL  
WES  
IH  
t
t
AH  
50  
50  
WLAX  
t
t
AH  
ELAX  
t
t
E = V , G = V  
IH  
1
WLDV  
DV  
IL  
t
t
G = V , W = V  
IH IL  
Chip Enable Low to Input Valid  
1
ELDV  
DV  
t
t
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out After the Last Byte Write  
Write Cycle Time  
50  
0
ELEH  
WP  
t
t
WHEH  
CEH  
OEH  
OEH  
t
t
t
t
0
WHGL  
t
0
EHGL  
t
0
EHWH  
WEH  
t
t
0
WHDX  
DH  
t
t
0
EHDX  
DH  
t
t
WPH  
50  
50  
100  
WHWL  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
t
t
WC  
3
Q5HQ5X  
t
t
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
50  
50  
DVWH  
DS  
DS  
t
t
DVEH  
10/17  
M28C16B, M28C17B  
Table 10B. Write Mode AC Characteristics for M28CxxB-W (3V range)  
(T = 0 to 70 °C or -40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28C17B-xxW  
Unit  
Symbol  
Alt.  
Parameter  
Test Condition  
Min  
Max  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Write Enable Low to Input Valid  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W = V  
0
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
OES  
OES  
IH  
t
t
t
t
E = V  
0
GHWL  
IL  
t
W = V  
0
GHEL  
IL  
t
G = V  
0
WLEL  
WES  
IH  
t
t
AH  
100  
100  
WLAX  
t
t
AH  
ELAX  
t
t
E = V , G = V  
IH  
1
1
WLDV  
DV  
IL  
t
t
G = V , W = V  
IH IL  
Chip Enable Low to Input Valid  
ELDV  
DV  
t
t
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after the last byte write  
100  
0
1000  
ELEH  
WP  
t
t
WHEH  
CEH  
OEH  
OEH  
t
t
t
t
0
WHGL  
t
0
EHGL  
t
0
EHWH  
WEH  
t
t
0
WHDX  
DH  
t
t
0
EHDX  
DH  
t
t
WPH  
50  
100  
100  
1000  
WHWL  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
t
t
WC  
Write Cycle Time  
5
Q5HQ5X  
t
t
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
50  
50  
DVWH  
DS  
t
t
DVEH  
DS  
11/17  
M28C16B, M28C17B  
Figure 10. Read Mode AC Waveforms (with Write Enable, W, high)  
A0-A10  
E
VALID  
tAVQV  
tAXQX  
tGLQV  
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
DQ0-DQ7  
DATA OUT  
AI02822  
Note: 1. Write Enable (W) = V  
IH  
Figure 11. Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A10  
VALID  
tAVWL  
tELWL  
tGHWL  
tWLAX  
E
tWHEH  
G
tWLWH  
tWHGL  
W
tWLDV  
tWHWL  
DATA IN  
tDVWH  
DQ0-DQ7  
tWHDX  
RB  
tWHRL  
AI02823  
12/17  
M28C16B, M28C17B  
Figure 12. Write Mode AC Waveforms (Chip Enable, E, controlled)  
A0-A10  
VALID  
tAVEL  
tGHEL  
tWLEL  
tELAX  
E
tELEH  
G
tEHGL  
W
tELDV  
tEHWH  
DATA IN  
tDVEH  
DQ0-DQ7  
tEHDX  
RB  
tEHRL  
AI02824  
Figure 13. Page Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A10  
Addr 0  
Addr 1  
Addr 2  
Addr n  
E
G
tWHWL  
W
tWLWH  
Byte 0  
Byte 1  
Byte 2  
Byte n  
DQ0-DQ7 (in)  
DQ5 (out)  
tWHRL  
tWLQ5H  
tQ5HQ5X  
RB  
AI02825  
13/17  
M28C16B, M28C17B  
Figure 14. Software Protected Write Cycle Waveforms  
G
E
tWLWH  
tWHWL  
tWHWH  
W
tAVEL  
tWLAX  
2AAh  
A0-A5  
Byte Address  
Page Address  
Byte 0  
tWHDX  
555h  
A6-A10  
DQ0-DQ7  
555h  
tDVWH  
AAh  
55h  
A0h  
Byte 62  
Byte 63  
AI02826  
Note: 1. A10 to A6 must specify the same page address during each high-to-low transition of W (or E). G must be high only when W and E  
are both low.  
Figure 15. Data Polling Sequence Waveforms  
A0-A10  
Address of the last byte of the Page Write instruction  
E
G
W
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
Last WRITE  
Internal Write Sequence  
Ready  
AI02827  
14/17  
M28C16B, M28C17B  
Figure 16. Toggle Bit Sequence Waveforms  
A0-A10  
E
G
W
DQ6  
(1)  
Last WRITE  
TOGGLE  
Internal Write Sequence  
Ready  
AI02828  
Note: 1. The Toggle Bit is first set to ‘0’.  
Table 11. Ordering Information Scheme  
Example:  
M28C16  
– 120  
W
K
6
TR  
Ready/Busy  
Option  
16  
17  
Pin 1 = Not Connected  
Pin 1 = Ready/Busy  
TR Tape and Reel Packing  
Speed  
Temperature Range  
90  
90 ns (5V range only)  
120 ns  
1
6
0 °C to 70 °C  
120  
150  
–40 °C to 85 °C  
150 ns (3V range only)  
Operating Voltage  
Package  
blank 4.5 V to 5.5 V  
2.7 V to 3.6 V  
K
PLCC32  
W
ORDERING INFORMATION  
Devices are shipped from the factory with the  
memory content set at all ‘1’s (FFh).  
The notation used for the device number is as  
shown in Table 11. For a list of available options  
(speed, package, etc.) or for further information on  
any aspect of this device, please contact the ST  
Sales Office nearest to you.  
15/17  
M28C16B, M28C17B  
Table 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular  
mm  
inches  
Min.  
0.100  
0.060  
Symbol  
Typ.  
Min.  
2.54  
1.52  
Max.  
3.56  
2.41  
0.38  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ.  
Max.  
0.140  
0.095  
0.015  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
A2  
B
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 17. PLCC (K)  
D
A1  
D1  
A2  
1
N
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Note: 1. Drawing is not to scale.  
16/17  
M28C16B, M28C17B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
© 2001 STMicroelectronics - All Rights Reserved  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore -  
Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
17/17  

相关型号:

M28C17

16K 2K x 8 PARALLEL EEPROM with SOFTWARE DATA PROTECTION
STMICROELECTR

M28C17-120K1

2KX8 EEPROM 5V, 120ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28C17-120K1T

16K 2K x 8 PARALLEL EEPROM with SOFTWARE DATA PROTECTION
STMICROELECTR

M28C17-120K1TR

16 Kbit 2K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28C17-120K6T

16K 2K x 8 PARALLEL EEPROM with SOFTWARE DATA PROTECTION
STMICROELECTR

M28C17-120K6TR

16 Kbit 2K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28C17-120MS1

2KX8 EEPROM 5V, 120ns, PDSO28, 0.300 INCH, PLASTIC, SO-28
STMICROELECTR

M28C17-120MS1T

16K 2K x 8 PARALLEL EEPROM with SOFTWARE DATA PROTECTION
STMICROELECTR

M28C17-120MS6

2KX8 EEPROM 5V, 120ns, PDSO28, 0.300 INCH, PLASTIC, SO-28
STMICROELECTR

M28C17-120MS6T

16K 2K x 8 PARALLEL EEPROM with SOFTWARE DATA PROTECTION
STMICROELECTR

M28C17-120N1

IC,EEPROM,2KX8,CMOS,TSSOP,28PIN,PLASTIC
STMICROELECTR

M28C17-120N6

IC,EEPROM,2KX8,CMOS,TSSOP,28PIN,PLASTIC
STMICROELECTR