M29W320DT90N1E [STMICROELECTRONICS]

32 Mbit 4Mb x8 or 2Mb x16, Boot Block 3V Supply Flash Memory; 32兆位4Mb的X8或X16的2Mb ,引导块3V电源快闪记忆体
M29W320DT90N1E
型号: M29W320DT90N1E
厂家: ST    ST
描述:

32 Mbit 4Mb x8 or 2Mb x16, Boot Block 3V Supply Flash Memory
32兆位4Mb的X8或X16的2Mb ,引导块3V电源快闪记忆体

闪存 存储 内存集成电路 光电二极管
文件: 总46页 (文件大小:853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W320DT  
M29W320DB  
32 Mbit (4Mb x8 or 2Mb x16, Boot Block)  
3V Supply Flash Memory  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V = 2.7V to 3.6V for Program, Erase and  
CC  
Read  
– V =12V for Fast Program (optional)  
PP  
ACCESS TIME: 70, 90ns  
PROGRAMMING TIME  
– 10µs per Byte/Word typical  
TSOP48 (N)  
12 x 20mm  
67 MEMORY BLOCKS  
– 1 Boot Block (Top or Bottom Location)  
– 2 Parameter and 64 Main Blocks  
PROGRAM/ERASE CONTROLLER  
– Embedded Byte/Word Program algorithms  
ERASE SUSPEND and RESUME MODES  
FBGA  
TFBGA63 (ZA)  
TFBGA48 (ZE)  
– Read and Program another Block during  
Erase Suspend  
UNLOCK BYPASS PROGRAM COMMAND  
– Faster Production/Batch Programming  
V /WP PIN for FAST PROGRAM and WRITE  
PP  
PROTECT  
TEMPORARY BLOCK UNPROTECTION  
MODE  
COMMON FLASH INTERFACE  
– 64 bit Security Code  
LOW POWER CONSUMPTION  
– Standby and Automatic Standby  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Top Device Code M29W320DT: 22CAh  
– Bottom Device Code M29W320DB: 22CBh  
August 2005  
1/46  
M29W320DT, M29W320DB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. TFBGA63 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. TFBGA48 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 6. Block Addresses (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 7. Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Address Inputs (A0-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Input/Output or Address Input (DQ15A–1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
V Write Protect (V WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PP/ PP/  
Reset/Block Temporary Unprotect (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
V
Supply Voltage (2.7V to 3.6V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CC  
SS  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 8. Bus Operations, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
IL  
Table 2. Bus Operations, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
IH  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2/46  
M29W320DT, M29W320DB  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Protect and Chip Unprotect Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 3. Commands, 16-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IH  
Table 4. Commands, 8-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
IL  
Table 5. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 18  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 6. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10.Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 8. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 9. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 10. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13.Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 11. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 12. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 13. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 16.Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 14. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 17.Accelerated Program Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 18.TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Bottom View Package Outline . . 28  
Table 15. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data . . . . . 28  
Figure 19.TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Outline. . . . . . . . . . . 29  
Table 16. TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Mechanical Data . . . 29  
3/46  
M29W320DT, M29W320DB  
Figure 20.TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline. . . . . . 30  
Table 17. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data. . . . . . . . . 30  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 18. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 19. Top Boot Block Addresses, M29W320DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 20. Bottom Boot Block Addresses, M29W320DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 21. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 22. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 23. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 24. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 25. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 26. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
APPENDIX C.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 27. Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 23.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 24.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 28. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4/46  
M29W320DT, M29W320DB  
SUMMARY DESCRIPTION  
The M29W320D is a 32 Mbit (4Mb x8 or 2Mb x16)  
non-volatile memory that can be read, erased and  
reprogrammed. These operations can be per-  
formed using a single low voltage (2.7 to 3.6V)  
supply. On power-up the memory defaults to its  
Read mode where it can be read in the same way  
as a ROM or EPROM.  
Figure 2. Logic Diagram  
V
V
/WP  
CC PP  
The memory is divided into blocks that can be  
erased independently so it is possible to preserve  
valid data while old data is erased. Each block can  
be protected independently to prevent accidental  
Program or Erase commands from modifying the  
memory. Program and Erase commands are writ-  
ten to the Command Interface of the memory. An  
on-chip Program/Erase Controller simplifies the  
process of programming or erasing the memory by  
taking care of all of the special operations that are  
required to update the memory contents. The end  
of a program or erase operation can be detected  
and any error conditions identified. The command  
set required to control the memory is consistent  
with JEDEC standards.  
21  
15  
A0-A20  
DQ0-DQ14  
DQ15A–1  
W
E
M29W320DT  
M29W320DB  
G
RB  
RP  
BYTE  
The blocks in the memory are asymmetrically ar-  
ranged, see Figure 6. and Figure 7., Table 19. and  
Table 20.The first or last 64 Kbytes have been di-  
vided into four additional blocks. The 16 Kbyte  
Boot Block can be used for small initialization code  
to start the microprocessor, the two 8 Kbyte Pa-  
rameter Blocks can be used for parameter storage  
and the remaining 32 Kbyte is a small Main Block  
where the application may be stored.  
Chip Enable, Output Enable and Write Enable sig-  
nals control the bus operation of the memory.  
They allow simple connection to most micropro-  
cessors, often without additional logic.  
V
SS  
AI90189B  
Table 1. Signal Names  
A0-A20  
DQ0-DQ7  
DQ8-DQ14  
DQ15A–1  
E
Address Inputs  
Data Inputs/Outputs  
Data Inputs/Outputs  
The memory is offered in TSOP48 (12 x 20mm)  
TFBGA63 (7x11mm, 0.8mm pitch) and TFBGA48  
(6x8mm, 0.8mm pitch) packages. The memory is  
supplied with all the bits erased (set to 1).  
Data Input/Output or Address Input  
Chip Enable  
G
Output Enable  
W
Write Enable  
RP  
Reset/Block Temporary Unprotect  
Ready/Busy Output  
RB  
BYTE  
Byte/Word Organization Select  
Supply Voltage  
V
CC  
V
/Write Protect  
V
V
/WP  
PP  
PP  
Ground  
SS  
NC  
Not Connected Internally  
5/46  
M29W320DT, M29W320DB  
Figure 3. TSOP Connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A19  
A20  
W
DQ12  
DQ4  
RP  
NC  
/WP  
RB  
A18  
A17  
A7  
12  
13  
37  
36  
V
M29W320DT  
M29W320DB  
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
V
PP  
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI90190  
6/46  
M29W320DT, M29W320DB  
Figure 4. TFBGA63 Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
A13  
RB  
W
A3  
A4  
A7  
A17  
A6  
A9  
A8  
C
D
V
/
WP  
RP  
NC  
A12  
A14  
PP  
E
F
A2  
A1  
A0  
E
A18  
A10  
A5  
A20  
A19  
A11  
A15  
DQ2  
DQ5  
G
H
J
DQ0  
DQ8  
DQ9  
DQ1  
DQ7  
DQ14  
DQ13  
DQ6  
A16  
BYTE  
DQ10  
DQ11  
DQ3  
DQ12  
DQ15  
A–1  
G
V
CC  
K
L
V
DQ4  
V
SS  
SS  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
NC(1)  
M
AI05525B  
Note: 1. Balls are shorted together via the substrate but not connected to the die.  
7/46  
M29W320DT, M29W320DB  
Figure 5. TFBGA48 Connections (Top view through package)  
1
2
3
4
5
6
RB  
W
A
B
A3  
A4  
A7  
A17  
A6  
A9  
A8  
A13  
A12  
V
/
WP  
RP  
NC  
PP  
A2  
A1  
A0  
E
A18  
A10  
A14  
C
D
A5  
A20  
A19  
A11  
A15  
DQ2  
DQ5  
DQ0  
DQ8  
DQ9  
DQ1  
DQ7  
DQ14  
DQ13  
DQ6  
A16  
E
F
BYTE  
DQ10  
DQ11  
DQ3  
DQ12  
DQ15  
A–1  
G
V
G
H
CC  
V
DQ4  
V
SS  
SS  
AI08084  
8/46  
M29W320DT, M29W320DB  
Figure 6. Block Addresses (x8)  
M29W320DT  
Top Boot Block Addresses (x8)  
M29W320DB  
Bottom Boot Block Addresses (x8)  
3FFFFFh  
16 KByte  
3FC000h  
3FBFFFh  
3FFFFFh  
64 KByte  
64 KByte  
3F0000h  
3EFFFFh  
8 KByte  
3FA000h  
3F9FFFh  
3E0000h  
Total of 63  
64 KByte Blocks  
8 KByte  
3F8000h  
3F7FFFh  
32 KByte  
3F0000h  
3EFFFFh  
01FFFFh  
64 KByte  
64 KByte  
32 KByte  
8 KByte  
8 KByte  
16 KByte  
3E0000h  
010000h  
00FFFFh  
008000h  
007FFFh  
Total of 63  
64 KByte Blocks  
006000h  
005FFFh  
01FFFFh  
64 KByte  
010000h  
00FFFFh  
004000h  
003FFFh  
64 KByte  
000000h  
000000h  
AI90192  
Note: Also see APPENDIX A., Table 19. and Table 20. for a full listing of the Block Addresses.  
9/46  
M29W320DT, M29W320DB  
Figure 7. Block Addresses (x16)  
M29W320DT  
M29W320DB  
Top Boot Block Addresses (x16)  
Bottom Boot Block Addresses (x16)  
1FFFFFh  
8 KWord  
1FE000h  
1FDFFFh  
1FFFFFh  
32 KWord  
32 KWord  
1F8000h  
1F7FFFh  
4 KWord  
1FD000h  
1FCFFFh  
1F0000h  
Total of 63  
32 KWord Blocks  
4 KWord  
1FC000h  
1FBFFFh  
16 KWord  
1F8000h  
1F7FFFh  
00FFFFh  
32 KWord  
32 KWord  
16 KWord  
4 KWord  
4 KWord  
8 KWord  
1F0000h  
008000h  
007FFFh  
004000h  
003FFFh  
Total of 63  
32 KWord Blocks  
003000h  
002FFFh  
00FFFFh  
32 KWord  
008000h  
007FFFh  
002000h  
001FFFh  
32 KWord  
000000h  
000000h  
AI90193  
Note: Also see Appendix APPENDIX A., Table 19. and Table 20. for a full listing of the Block Addresses.  
10/46  
M29W320DT, M29W320DB  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic Diagram, and Table 1., Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Inputs (A0-A20). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the internal state machine.  
When V /Write Protect is High, V , the memory  
PP IH  
reverts to the previous protection status of the 16  
Kbyte boot block. Program and Erase operations  
can now modify the data in the 16 Kbyte Boot  
Block unless the block is protected using Block  
Protection.  
When V /Write Protect is raised to V the mem-  
PP  
PP  
ory automatically enters the Unlock Bypass mode.  
When V /Write Protect returns to V or V nor-  
PP  
IH  
IL  
Data Inputs/Outputs (DQ0-DQ7). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation. During Bus Write  
operations they represent the commands sent to  
the Command Interface of the internal state ma-  
chine.  
mal operation resumes. During Unlock Bypass  
Program operations the memory draws I from  
PP  
the pin to supply the programming circuits. See the  
description of the Unlock Bypass command in the  
Command Interface section. The transitions from  
V
than t  
to V  
VHVPP  
and from V  
, see Figure 17..  
to V must be slower  
IH  
PP  
PP IH  
Data Inputs/Outputs (DQ8-DQ14). The Data I/O  
outputs the data stored at the selected address  
during a Bus Read operation when BYTE is High,  
Never raise V /Write Protect to V  
from any  
PP  
PP  
mode except Read mode, otherwise the memory  
may be left in an indeterminate state.  
A 0.1µF capacitor should be connected between  
V . When BYTE is Low, V , these pins are not  
IH  
IL  
used and are high impedance. During Bus Write  
operations the Command Register does not use  
these bits. When reading the Status Register  
these bits should be ignored.  
the V /Write Protect pin and the V Ground pin  
PP  
SS  
to decouple the current surges from the power  
supply. The PCB track widths must be sufficient to  
carry the currents required during Unlock Bypass  
Data Input/Output or Address Input (DQ15A–1).  
When BYTE is High, V , this pin behaves as a  
IH  
Program, I  
.
PP  
Data Input/Output pin (as DQ8-DQ14). When  
Reset/Block Temporary Unprotect (RP). The  
Reset/Block Temporary Unprotect pin can be  
used to apply a Hardware Reset to the memory or  
to temporarily unprotect all Blocks that have been  
protected.  
BYTE is Low, V , this pin behaves as an address  
IL  
pin; DQ15A–1 Low will select the LSB of the Word  
on the other addresses, DQ15A–1 High will select  
the MSB. Throughout the text consider references  
to the Data Input/Output to include this pin when  
BYTE is High and references to the Address In-  
puts to include this pin when BYTE is Low except  
when stated explicitly otherwise.  
Note that if V /WP is at V , then the 16 KByte  
PP  
IL  
outermost boot block will remain protect even if RP  
is at V .  
ID  
Chip Enable (E). The Chip Enable, E, activates  
the memory, allowing Bus Read and Bus Write op-  
erations to be performed. When Chip Enable is  
A Hardware Reset is achieved by holding Reset/  
Block Temporary Unprotect Low, V , for at least  
IL  
t
. After Reset/Block Temporary Unprotect  
PLPX  
High, V , all other pins are ignored.  
goes High, V , the memory will be ready for Bus  
IH  
IH  
Read and Bus Write operations after t  
or  
PHEL  
Output Enable (G). The Output Enable, G, con-  
trols the Bus Read operation of the memory.  
Write Enable (W). The Write Enable, W, controls  
the Bus Write operation of the memory’s Com-  
mand Interface.  
t
, whichever occurs last. See the Ready/Busy  
RHEL  
Output section, Table 14. and Figure 16., Reset/  
Temporary Unprotect AC Characteristics for more  
details.  
Holding RP at V will temporarily unprotect the  
ID  
V
Write Protect (V /WP). The  
V
PP  
/Write  
PP/  
PP  
protected Blocks in the memory. Program and  
Erase operations on all blocks will be possible.  
Protect pin provides two functions. The V func-  
PP  
tion allows the memory to use an external high  
voltage power supply to reduce the time required  
for Unlock Bypass Program operations. The  
Write Protect function provides a hardware meth-  
od of protecting the 16 Kbyte Boot Block. The  
The transition from V to V must be slower than  
IH  
ID  
t
.
PHPHH  
Ready/Busy Output (RB). The Ready/Busy pin  
is an open-drain output that can be used to identify  
when the device is performing a Program or Erase  
operation. During Program or Erase operations  
V
/Write Protect pin must not be left floating or  
PP  
unconnected.  
Ready/Busy is Low, V . Ready/Busy is high-im-  
OL  
When V /Write Protect is Low, V , the memory  
PP  
IL  
pedance during Read mode, Auto Select mode  
and Erase Suspend mode.  
protects the 16 Kbyte Boot Block; Program and  
Erase operations in this block are ignored while  
V
/Write Protect is Low.  
PP  
11/46  
M29W320DT, M29W320DB  
Note that if V /WP is at V , then the 16 KByte  
outermost boot block will remain protect even if RP  
V
Supply Voltage (2.7V to 3.6V). V  
CC  
pro-  
PP  
IL  
CC  
vides the power supply for all operations (Read,  
Program and Erase).  
is at V .  
ID  
After a Hardware Reset, Bus Read and Bus Write  
operations cannot begin until Ready/Busy be-  
comes high-impedance. See Table 14. and Figure  
Figure 16., Reset/Temporary Unprotect AC Char-  
acteristics.  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
The Command Interface is disabled when the V  
CC  
Supply Voltage is less than the Lockout Voltage,  
. This prevents Bus Write operations from ac-  
V
LKO  
cidentally damaging the data during power up,  
power down and power surges. If the Program/  
Erase Controller is programming or erasing during  
this time then the operation aborts and the memo-  
ry contents being altered will be invalid.  
A 0.1µF capacitor should be connected between  
the V  
Supply Voltage pin and the V Ground  
CC  
SS  
Byte/Word Organization Select (BYTE). The  
Byte/Word Organization Select pin is used to  
switch between the x8 and x16 Bus modes of the  
memory. When Byte/Word Organization Select is  
pin to decouple the current surges from the power  
supply. The PCB track widths must be sufficient to  
carry the currents required during Program and  
Erase operations, I  
.
CC3  
Low, V , the memory is in x8 mode, when it is  
IL  
High, V , the memory is in x16 mode.  
V
Ground. V is the reference for all voltage  
SS SS  
IH  
measurements.  
12/46  
M29W320DT, M29W320DB  
BUS OPERATIONS  
There are five standard bus operations that control  
the device. These are Bus Read, Bus Write, Out-  
put Disable, Standby and Automatic Standby. See  
Figure 8. and Table 2., Bus Operations, for a sum-  
mary. Typically glitches of less than 5ns on Chip  
Enable or Write Enable are ignored by the memory  
and do not affect bus operations.  
puts/Outputs pins are placed in the high-imped-  
ance state. To reduce the Supply Current to the  
Standby Supply Current, I  
, Chip Enable should  
CC2  
be held within V ± 0.2V. For the Standby current  
CC  
level see Table 10., DC Characteristics.  
During program or erase operations the memory  
will continue to use the Program/Erase Supply  
Bus Read. Bus Read operations read from the  
memory cells, or specific registers in the Com-  
mand Interface. A valid Bus Read operation in-  
volves setting the desired address on the Address  
Current, I  
til the operation completes.  
Automatic Standby. If CMOS levels (V ± 0.2V)  
are used to drive the bus and the bus is inactive for  
300ns or more the memory enters Automatic  
Standby where the internal Supply Current is re-  
duced to the Standby Supply Current, I  
Data Inputs/Outputs will still output data if a Bus  
Read operation is in progress.  
, for Program or Erase operations un-  
CC3  
CC  
Inputs, applying a Low signal, V , to Chip Enable  
IL  
and Output Enable and keeping Write Enable  
High, V . The Data Inputs/Outputs will output the  
IH  
. The  
CC2  
value, see Figure 13., Read Mode AC Waveforms,  
and Table 11., Read AC Characteristics, for de-  
tails of when the output becomes valid.  
Special Bus Operations  
Bus Write. Bus Write operations write to the  
Command Interface. A valid Bus Write operation  
begins by setting the desired address on the Ad-  
dress Inputs. The Address Inputs are latched by  
the Command Interface on the falling edge of Chip  
Enable or Write Enable, whichever occurs last.  
The Data Inputs/Outputs are latched by the Com-  
mand Interface on the rising edge of Chip Enable  
or Write Enable, whichever occurs first. Output En-  
Additional bus operations can be performed to  
read the Electronic Signature and also to apply  
and remove Block Protection. These bus opera-  
tions are intended for use by programming equip-  
ment and are not usually used in applications.  
They require V to be applied to some pins.  
ID  
Electronic Signature. The memory has two  
codes, the manufacturer code and the device  
code, that can be read to identify the memory.  
These codes can be read by applying the signals  
listed in Figure 8. and Table 2., Bus Operations.  
able must remain High, V , during the whole Bus  
IH  
Write operation. See Figure 14. and Figure 15.,  
Write AC Waveforms, and Table 12. and Table  
13., Write AC Characteristics, for details of the tim-  
ing requirements.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when Output Enable is  
Block Protect and Chip Unprotect. Each  
block  
can be separately protected against accidental  
Program or Erase. The whole chip can be unpro-  
tected to allow the data inside the blocks to be  
changed.  
High, V .  
IH  
Block Protect and Chip Unprotect operations are  
described in APPENDIX C..  
Standby. When Chip Enable is High, V , the  
memory enters Standby mode and the Data In-  
IH  
Figure 8. Bus Operations, BYTE = V  
IL  
Data Inputs/Outputs  
Address Inputs  
DQ15A–1, A0-A20  
Operation  
Bus Read  
E
G
W
DQ14-DQ8  
Hi-Z  
DQ7-DQ0  
Data Output  
Data Input  
Hi-Z  
V
IL  
V
V
IH  
Cell Address  
IL  
IH  
IH  
V
IL  
V
V
V
V
Bus Write  
Command Address  
Hi-Z  
IL  
Output Disable  
Standby  
X
X
Hi-Z  
IH  
V
X
X
X
Hi-Z  
Hi-Z  
IH  
A0 = V , A1 = V , A9 = V ,  
Read Manufacturer  
Code  
IL  
IL  
ID  
V
V
V
V
Hi-Z  
Hi-Z  
20h  
IL  
IL  
IL  
IL  
IH  
IH  
Others V or V  
IL  
IH  
A0 = V , A1 = V ,  
CAh (M29W320DT)  
CBh (M29W320DB)  
IH  
IL  
V
V
Read Device Code  
A9 = V , Others V or V  
IH  
ID  
IL  
Note: X = V or V  
.
IH  
IL  
13/46  
M29W320DT, M29W320DB  
Table 2. Bus Operations, BYTE = V  
IH  
Address Inputs  
A0-A20  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
Bus Read  
E
G
W
V
IL  
V
V
IH  
Cell Address  
Data Output  
Data Input  
Hi-Z  
IL  
IH  
IH  
V
IL  
V
V
V
V
Bus Write  
Command Address  
IL  
Output Disable  
Standby  
X
X
IH  
V
IH  
X
X
X
Hi-Z  
A0 = V , A1 = V , A9 = V ,  
Read Manufacturer  
Code  
IL  
IL  
ID  
V
V
V
V
0020h  
IL  
IL  
IL  
IL  
IH  
IH  
Others V or V  
IL  
IH  
A0 = V , A1 = V , A9 = V ,  
22CAh (M29W320DT)  
22CBh (M29W320DB)  
IH  
IL  
ID  
V
V
Read Device Code  
Others V or V  
IL  
IH  
Note: X = V or V  
IL  
.
IH  
14/46  
M29W320DT, M29W320DB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. Failure to observe a valid sequence of Bus  
Write operations will result in the memory return-  
ing to Read mode. The long command sequences  
are imposed to maximize data security.  
command is valid when the device is in the Read  
Array mode, or when the device is in Autoselected  
mode.  
One Bus Write cycle is required to issue the Read  
CFI Query Command. Once the command is is-  
sued subsequent Bus Read operations read from  
the Common Flash Interface Memory Area.  
The address used for the commands changes de-  
pending on whether the memory is in 16-bit or 8-  
bit mode. See either Table 3., or Table 4., depend-  
ing on the configuration that is being used, for a  
summary of the commands.  
Read/Reset Command. The Read/Reset com-  
mand returns the memory to its Read mode where  
it behaves like a ROM or EPROM, unless other-  
wise stated. It also resets the errors in the Status  
Register. Either one or three Bus Write operations  
can be used to issue the Read/Reset command.  
The Read/Reset Command can be issued, be-  
tween Bus Write cycles before the start of a pro-  
gram or erase operation, to return the device to  
read mode. Once the program or erase operation  
has started the Read/Reset command is no longer  
accepted. The Read/Reset command will not  
abort an Erase operation when issued while in  
Erase Suspend.  
Auto Select Command. The Auto Select com-  
mand is used to read the Manufacturer Code, the  
Device Code and the Block Protection Status.  
Three consecutive Bus Write operations are re-  
quired to issue the Auto Select command. Once  
the Auto Select command is issued the memory  
remains in Auto Select mode until a Read/Reset  
command is issued. Read CFI Query and Read/  
Reset commands are accepted in Auto Select  
mode, all other commands are ignored.  
The Read/Reset command must be issued to re-  
turn the device to the previous mode (the Read Ar-  
ray mode or Autoselected mode). A second Read/  
Reset command would be needed if the device is  
to be put in the Read Array mode from Autoselect-  
ed mode.  
See APPENDIX B., Table 21., Table 22., Table  
23., Table 24., Table 25. and Table 26. for details  
on the information contained in the Common Flash  
Interface (CFI) memory area.  
Program Command. The Program command  
can be used to program a value to one address in  
the memory array at a time. The command re-  
quires four Bus Write operations, the final write op-  
eration latches the address and data in the internal  
state machine and starts the Program/Erase Con-  
troller.  
If the address falls in a protected block then the  
Program command is ignored, the data remains  
unchanged. The Status Register is never read and  
no error condition is given.  
During the program operation the memory will ig-  
nore all commands. It is not possible to issue any  
command to abort or pause the operation. Typical  
program times are given in Table 5.. Bus Read op-  
erations during the program operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
After the program operation has completed the  
memory will return to the Read mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’. One of the Erase Com-  
mands must be used to set all the bits in a block or  
in the whole memory from ’0’ to ’1’.  
Unlock Bypass Command. The Unlock Bypass  
command is used in conjunction with the Unlock  
Bypass Program command to program the memo-  
ry. When the cycle time to the device is long (as  
with some EPROM programmers) considerable  
time saving can be made by using these com-  
mands. Three Bus Write operations are required  
to issue the Unlock Bypass command.  
From the Auto Select mode the Manufacturer  
Code can be read using a Bus Read operation  
with A0 = V and A1 = V . The other address bits  
IL  
IL  
may be set to either V or V . The Manufacturer  
IL  
IH  
Code for STMicroelectronics is 0020h.  
The Device Code can be read using a Bus Read  
operation with A0 = V and A1 = V . The other  
IH  
IL  
address bits may be set to either V or V . The  
IL  
IH  
Device Code for the M29W320DT is 22CAh and  
for the M29W320DB is 22CBh.  
The Block Protection Status of each block can be  
read using a Bus Read operation with A0 = V ,  
IL  
A1 = V , and A12-A20 specifying the address of  
IH  
the block. The other address bits may be set to ei-  
ther V or V . If the addressed block is protected  
IL  
IH  
then 01h is output on Data Inputs/Outputs DQ0-  
DQ7, otherwise 00h is output.  
Read CFI Query Command. The Read CFI  
Query Command is used to read data from the  
Common Flash Interface (CFI) Memory Area. This  
15/46  
M29W320DT, M29W320DB  
Once the Unlock Bypass command has been is-  
sued the memory will only accept the Unlock By-  
pass Program command and the Unlock Bypass  
Reset command. The memory can be read as if in  
Read mode.  
Register on the Data Inputs/Outputs. See the sec-  
tion on the Status Register for more details.  
After the Chip Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read Mode.  
The memory offers accelerated program opera-  
tions through the V /Write Protect pin. When the  
PP  
system asserts V on the V /Write Protect pin,  
PP  
PP  
the memory automatically enters the Unlock By-  
pass mode. The system may then write the two-  
cycle Unlock Bypass program command se-  
quence. The memory uses the higher voltage on  
The Chip Erase Command sets all of the bits in un-  
protected blocks of the memory to ’1’. All previous  
data is lost.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a list of one or more  
blocks. Six Bus Write operations are required to  
select the first block in the list. Each additional  
block in the list can be selected by repeating the  
sixth Bus Write operation using the address of the  
additional block. The Block Erase operation starts  
the Program/Erase Controller about 50µs after the  
last Bus Write operation. Once the Program/Erase  
Controller starts it is not possible to select any  
more blocks. Each additional block must therefore  
be selected within 50µs of the last block. The 50µs  
timer restarts when an additional block is selected.  
The Status Register can be read after the sixth  
Bus Write operation. See the Status Register sec-  
tion for details on how to identify if the Program/  
Erase Controller has started the Block Erase oper-  
ation.  
If any selected blocks are protected then these are  
ignored and all the other selected blocks are  
erased. If all of the selected blocks are protected  
the Block Erase operation appears to start but will  
terminate within about 100µs, leaving the data un-  
changed. No error condition is given when protect-  
ed blocks are ignored.  
During the Block Erase operation the memory will  
ignore all commands except the Erase Suspend  
command. Typical block erase times are given in  
Table 5.. All Bus Read operations during the Block  
Erase operation will output the Status Register on  
the Data Inputs/Outputs. See the section on the  
Status Register for more details.  
After the Block Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
The Block Erase Command sets all of the bits in  
the unprotected selected blocks to ’1’. All previous  
data in the selected blocks is lost.  
Erase Suspend Command. The Erase Suspend  
Command may be used to temporarily suspend a  
Block Erase operation and return the memory to  
Read mode. The command requires one Bus  
Write operation.  
the V /Write Protect pin, to accelerate the Unlock  
PP  
Bypass Program operation.  
Never raise V /Write Protect to V  
from any  
PP  
PP  
mode except Read mode, otherwise the memory  
may be left in an indeterminate state.  
Unlock Bypass Program Command. The Un-  
lock Bypass Program command can be used to  
program one address in the memory array at a  
time. The command requires two Bus Write oper-  
ations, the final write operation latches the ad-  
dress and data in the internal state machine and  
starts the Program/Erase Controller.  
The Program operation using the Unlock Bypass  
Program command behaves identically to the Pro-  
gram operation using the Program command. The  
operation cannot be aborted, the Status Register  
is read and protected blocks cannot be pro-  
grammed. Errors must be reset using the Read/  
Reset command, which leaves the device in Un-  
lock Bypass Mode. See the Program command for  
details on the behavior.  
Unlock Bypass Reset Command. The Unlock  
Bypass Reset command can be used to return to  
Read/Reset mode from Unlock Bypass Mode.  
Two Bus Write operations are required to issue the  
Unlock Bypass Reset command. Read/Reset  
command does not exit from Unlock Bypass  
Mode.  
Chip Erase Command. The Chip Erase com-  
mand can be used to erase the entire chip. Six Bus  
Write operations are required to issue the Chip  
Erase Command and start the Program/Erase  
Controller.  
If any blocks are protected then these are ignored  
and all the other blocks are erased. If all of the  
blocks are protected the Chip Erase operation ap-  
pears to start but will terminate within about 100µs,  
leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the erase operation the memory will ignore  
all commands, including the Erase Suspend com-  
mand. It is not possible to issue any command to  
abort the operation. Typical chip erase times are  
given in Table 5.. All Bus Read operations during  
the Chip Erase operation will output the Status  
16/46  
M29W320DT, M29W320DB  
The Program/Erase Controller will suspend within  
the Erase Suspend Latency Time (refer to Table 5.  
for value) of the Erase Suspend Command being  
issued. Once the Program/Erase Controller has  
stopped the memory will be set to Read mode and  
the Erase will be suspended. If the Erase Suspend  
command is issued during the period when the  
memory is waiting for an additional block (before  
the Program/Erase Controller starts) then the  
Erase is suspended immediately and will start im-  
mediately when the Erase Resume Command is  
issued. It is not possible to select any further  
blocks to erase after the Erase Resume.  
ing from blocks that are being erased will output  
the Status Register.  
It is also possible to issue the Auto Select, Read  
CFI Query and Unlock Bypass commands during  
an Erase Suspend. The Read/Reset command  
must be issued to return the device to Read Array  
mode before the Resume command will be ac-  
cepted.  
Erase Resume Command. The Erase Resume  
command must be used to restart the Program/  
Erase Controller after an Erase Suspend. The de-  
vice must be in Read Array mode before the Re-  
sume command will be accepted. An erase can be  
suspended and resumed more than once.  
Block Protect and Chip Unprotect Commands.  
Each block can be separately protected against  
accidental Program or Erase. The whole chip can  
be unprotected to allow the data inside the blocks  
to be changed.  
Block Protect and Chip Unprotect operations are  
described in APPENDIX C..  
During Erase Suspend it is possible to Read and  
Program cells in blocks that are not being erased;  
both Read and Program operations behave as  
normal on these blocks. If any attempt is made to  
program in a protected block or in the suspended  
block then the Program command is ignored and  
the data remains unchanged. The Status Register  
is not read and no error condition is given. Read-  
17/46  
M29W320DT, M29W320DB  
Table 3. Commands, 16-bit mode, BYTE = V  
IH  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
555  
555  
555  
555  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
555  
555  
555  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
555  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
55  
98  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don’t  
Care. DQ15A–1 is A–1 when BYTE is V or DQ15 when BYTE is V  
.
IH  
IL  
Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is  
ignored during algorithm execution.  
Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/  
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional  
Bus Write Operations until Timeout Bit is set.  
Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-  
mands on non-erasing blocks as normal.  
Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Pro-  
gram/Erase Controller completes and the memory returns to Read Mode.  
CFI Query. Command is valid when device is ready to read array data or when device is in autoselected mode.  
18/46  
M29W320DT, M29W320DB  
Table 4. Commands, 8-bit mode, BYTE = V  
IL  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
AAA  
AAA  
AAA  
AAA  
555  
555  
555  
555  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
AAA  
AAA  
AAA  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
AAA  
555  
555  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
BA  
10  
30  
Block Erase  
6+ AAA  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
AA  
98  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A20, DQ8-DQ14 and DQ15 are Don’t  
Care. DQ15A–1 is A–1 when BYTE is V or DQ15 when BYTE is V  
.
IH  
IL  
Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued. Read/Reset command is  
ignored during algorithm execution.  
Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/  
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional  
Bus Write Operations until Timeout Bit is set.  
Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-  
mands on non-erasing blocks as normal.  
Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Pro-  
gram/Erase Controller completes and the memory returns to Read Mode.  
CFI Query. Command is valid when device is ready to read array data or when device is in autoselected mode.  
19/46  
M29W320DT, M29W320DB  
Table 5. Program, Erase Times and Program, Erase Endurance Cycles  
(1, 2)  
(2)  
Parameter  
Min  
Unit  
s
Typ  
40  
Max  
(3)  
Chip Erase  
200  
(4)  
Block Erase (64 KBytes)  
0.8  
15  
10  
8
s
6
(4)  
Erase Suspend Latency Time  
Program (Byte or Word)  
µs  
µs  
µs  
s
25  
(3)  
(3)  
(3)  
(3)  
200  
150  
200  
100  
Accelerated Program (Byte or Word)  
Chip Program (Byte by Byte)  
40  
20  
Chip Program (Word by Word)  
Program/Erase Cycles (per Block)  
Data Retention  
s
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and V after 100,00 program/erase cycles.  
CC  
4. Maximum value measured at worst case conditions for both temperature and V  
.
CC  
STATUS REGISTER  
Bus Read operations from any address always  
read the Status Register during Program and  
Erase operations. It is also read during Erase Sus-  
pend when an address within a block being erased  
is accessed.  
The bits in the Status Register are summarized in  
Table 6., Status Register Bits.  
Address is the address being programmed or an  
address within the block being erased.  
Toggle Bit (DQ6). The Toggle Bit can be used to  
identify whether the Program/Erase Controller has  
successfully completed its operation or if it has re-  
sponded to an Erase Suspend. The Toggle Bit is  
output on DQ6 when the Status Register is read.  
Data Polling Bit (DQ7). The Data Polling Bit can  
be used to identify whether the Program/Erase  
Controller has successfully completed its opera-  
tion or if it has responded to an Erase Suspend.  
The Data Polling Bit is output on DQ7 when the  
Status Register is read.  
During Program and Erase operations the Toggle  
Bit changes from ’0’ to ’1’ to ’0’, etc., with succes-  
sive Bus Read operations at any address. After  
successful completion of the operation the memo-  
ry returns to Read mode.  
During Erase Suspend mode the Toggle Bit will  
output when addressing a cell within a block being  
erased. The Toggle Bit will stop toggling when the  
Program/Erase Controller has suspended the  
Erase operation.  
If any attempt is made to erase a protected block,  
the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 100µs. If any at-  
tempt is made to program a protected block or a  
suspended block, the operation is aborted, no er-  
ror is signalled and DQ6 toggles for approximately  
1µs.  
During Program operations the Data Polling Bit  
outputs the complement of the bit being pro-  
grammed to DQ7. After successful completion of  
the Program operation the memory returns to  
Read mode and Bus Read operations from the ad-  
dress just programmed output DQ7, not its com-  
plement.  
During Erase operations the Data Polling Bit out-  
puts ’0’, the complement of the erased state of  
DQ7. After successful completion of the Erase op-  
eration the memory returns to Read Mode.  
In Erase Suspend mode the Data Polling Bit will  
output a ’1’ during a Bus Read operation within a  
block being erased. The Data Polling Bit will  
change from a ’0’ to a ’1’ when the Program/Erase  
Controller has suspended the Erase operation.  
Figure Figure 9., Data Polling Flowchart, gives an  
example of how to use the Data Polling Bit. A Valid  
Figure Figure 10., Data Toggle Flowchart, gives  
an example of how to use the Data Toggle Bit.  
Error Bit (DQ5). The Error Bit can be used to  
identify errors detected by the Program/Erase  
Controller. The Error Bit is set to ’1’ when a Pro-  
gram, Block Erase or Chip Erase operation fails to  
write the correct data to the memory. If the Error  
Bit is set a Read/Reset command must be issued  
20/46  
M29W320DT, M29W320DB  
before other commands are issued. The Error bit  
is output on DQ5 when the Status Register is read.  
During Chip Erase and Block Erase operations the  
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations from addresses  
within the blocks being erased. A protected block  
is treated the same as a block not being erased.  
Once the operation completes the memory returns  
to Read mode.  
During Erase Suspend the Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive  
Bus Read operations from addresses within the  
blocks being erased. Bus Read operations to ad-  
dresses within blocks not being erased will output  
the memory cell data as if in Read mode.  
After an Erase operation that causes the Error Bit  
to be set the Alternative Toggle Bit can be used to  
identify which block or blocks have caused the er-  
ror. The Alternative Toggle Bit changes from ’0’ to  
’1’ to ’0’, etc. with successive Bus Read Opera-  
tions from addresses within blocks that have not  
erased correctly. The Alternative Toggle Bit does  
not change if the addressed block has erased cor-  
rectly.  
Note that the Program command cannot change a  
bit set to ’0’ back to ’1’ and attempting to do so will  
set DQ5 to ‘1’. A Bus Read operation to that ad-  
dress will show the bit is still ‘0’. One of the Erase  
commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’.  
Erase Timer Bit (DQ3). The Erase Timer Bit can  
be used to identify the start of Program/Erase  
Controller operation during a Block Erase com-  
mand. Once the Program/Erase Controller starts  
erasing the Erase Timer Bit is set to ’1’. Before the  
Program/Erase Controller starts the Erase Timer  
Bit is set to ’0’ and additional blocks to be erased  
may be written to the Command Interface. The  
Erase Timer Bit is output on DQ3 when the Status  
Register is read.  
Alternative Toggle Bit (DQ2). The Alternative  
Toggle Bit can be used to monitor the Program/  
Erase controller during Erase operations. The Al-  
ternative Toggle Bit is output on DQ2 when the  
Status Register is read.  
Table 6. Status Register Bits  
Operation  
Program  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Any Address  
DQ7  
Toggle  
0
0
Program During Erase  
Suspend  
Any Address  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
Toggle  
Erasing Block  
Toggle  
Toggle  
Block Erase before  
timeout  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
Toggle  
Block Erase  
Erase Suspend  
Erase Error  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
No Toggle  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
No Toggle  
Toggle  
1
Note: Unspecified data bits should be ignored.  
21/46  
M29W320DT, M29W320DB  
Figure 9. Data Polling Flowchart  
Figure 10. Data Toggle Flowchart  
START  
START  
READ DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
READ  
DQ5 & DQ6  
DQ7  
=
DATA  
YES  
DQ6  
NO  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
NO  
DQ5  
YES  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
READ DQ6  
TWICE  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
NO  
FAIL  
TOGGLE  
YES  
FAIL  
PASS  
PASS  
AI90194  
AI01370C  
22/46  
M29W320DT, M29W320DB  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 7. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
–50  
Max  
125  
150  
Unit  
°C  
°C  
V
T
Temperature Under Bias  
Storage Temperature  
BIAS  
T
–65  
STG  
(1,2)  
V
IO  
V
+0.6  
–0.6  
–0.6  
–0.6  
–0.6  
CC  
Input or Output Voltage  
Supply Voltage  
V
4
V
CC  
V
ID  
Identification Voltage  
Program Voltage  
13.5  
13.5  
V
V
PP  
V
Note: 1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to V +2V during transition and for less than 20ns during transitions.  
CC  
23/46  
M29W320DT, M29W320DB  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 8., Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 8. Operating and AC Measurement Conditions  
M29W320D  
Parameter  
70  
90  
Unit  
Min  
3.0  
Max  
3.6  
85  
Min  
2.7  
Max  
3.6  
85  
V
Supply Voltage  
V
°C  
pF  
ns  
V
CC  
Ambient Operating Temperature  
–40  
–40  
Load Capacitance (C )  
30  
30  
L
Input Rise and Fall Times  
10  
10  
0 to V  
0 to V  
Input Pulse Voltages  
CC  
CC  
V
CC  
/2  
V
/2  
CC  
Input and Output Timing Ref. Voltages  
V
Figure 11. AC Measurement I/O Waveform  
Figure 12. AC Measurement Load Circuit  
V
V
V
CC  
PP  
CC  
V
CC  
V
/2  
CC  
25k  
25kΩ  
0V  
DEVICE  
UNDER  
TEST  
AI90196  
C
L
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI90197  
Table 9. Device Capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
C
V
= 0V  
= 0V  
Input Capacitance  
Output Capacitance  
6
pF  
pF  
IN  
IN  
C
V
OUT  
12  
OUT  
Note: Sampled only, not 100% tested.  
24/46  
M29W320DT, M29W320DB  
Table 10. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Typ.  
Max  
±1  
Unit  
µA  
I
LI  
0V V V  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
I
LO  
0V V  
V  
OUT CC  
±1  
µA  
E = V , G = V ,  
IL  
IH  
I
Supply Current (Read)  
5
10  
100  
20  
mA  
µA  
mA  
mA  
CC1  
f = 6MHz  
E = V ±0.2V,  
CC  
I
Supply Current (Standby)  
35  
CC2  
RP = V ±0.2V  
CC  
V
V
/WP =  
or V  
IH  
PP  
Program/  
Erase  
IL  
Supply Current (Program/  
Erase)  
(1)  
I
CC3  
Controller  
active  
V
/WP =  
PP  
20  
V
PP  
V
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
IL  
V
IH  
0.7V  
V
+0.3  
CC  
CC  
Voltage for V /WP  
PP  
Program Acceleration  
V
V
V
= 3.0V ±10%  
11.5  
12.5  
V
PP  
PP  
CC  
CC  
Current for V /WP  
PP  
I
= 3.0V ±10%  
= 1.8mA  
10  
mA  
Program Acceleration  
Output Low Voltage  
Output High Voltage  
Identification Voltage  
Identification Current  
V
V
I
I
0.45  
V
V
OL  
OL  
V
–0.4  
= –100µA  
OH  
CC  
OH  
V
11.5  
1.8  
12.5  
100  
V
ID  
ID  
I
A9 = V  
ID  
µA  
Program/Erase Lockout  
Supply Voltage  
V
LKO  
2.3  
V
Note: 1. Sampled only, not 100% tested.  
25/46  
M29W320DT, M29W320DB  
Figure 13. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A20/  
A–1  
tAVQV  
tAXQX  
tEHQX  
E
tELQV  
tELQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI90198  
Table 11. Read AC Characteristics  
M29W320D  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
70  
90  
E = V ,  
IL  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid  
Min  
70  
70  
90  
90  
ns  
ns  
AVAV  
RC  
G = V  
IL  
E = V ,  
IL  
t
t
ACC  
Max  
AVQV  
G = V  
G = V  
G = V  
IL  
IL  
IL  
(1)  
t
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Min  
0
0
ns  
ns  
t
t
LZ  
ELQX  
t
t
Max  
70  
90  
ELQV  
CE  
Output Enable Low to Output  
Transition  
(1)  
t
E = V  
Min  
0
0
ns  
OLZ  
IL  
GLQX  
t
t
E = V  
G = V  
E = V  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Max  
Max  
Max  
30  
25  
25  
35  
30  
30  
ns  
ns  
ns  
GLQV  
OE  
IL  
(1)  
(1)  
t
t
t
HZ  
IL  
EHQZ  
t
DF  
IL  
GHQZ  
t
t
t
EHQX  
Chip Enable, Output Enable or  
Address Transition to Output Transition  
t
Min  
0
5
0
5
ns  
ns  
GHQX  
OH  
AXQX  
t
t
t
ELFL  
ELBL  
Chip Enable to BYTE Low or High  
Max  
t
ELBH  
ELFH  
t
t
BYTE Low to Output Hi-Z  
BYTE High to Output Valid  
Max  
Max  
25  
30  
30  
40  
ns  
ns  
BLQZ  
FLQZ  
t
t
FHQV  
BHQV  
Note: 1. Sampled only, not 100% tested.  
26/46  
M29W320DT, M29W320DB  
Figure 14. Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
tWHGL  
E
tELWL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI90199  
Table 12. Write AC Characteristics, Write Enable Controlled  
M29W320D  
Unit  
Symbol  
Alt  
Parameter  
70  
70  
0
90  
90  
0
t
t
WC  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
t
t
CS  
ELWL  
t
t
45  
45  
0
50  
50  
0
WLWH  
WP  
t
t
DVWH  
DS  
DH  
CH  
t
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
WHDX  
t
0
0
WHEH  
t
t
WPH  
30  
0
30  
0
WHWL  
t
t
AS  
AVWL  
t
t
45  
0
50  
0
WLAX  
AH  
t
GHWL  
t
t
OEH  
0
0
WHGL  
(1)  
t
30  
50  
35  
50  
t
BUSY  
WHRL  
t
t
V
CC  
High to Chip Enable Low  
VCHEL  
VCS  
Note: 1. Sampled only, not 100% tested.  
27/46  
M29W320DT, M29W320DB  
Figure 15. Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A20/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI90200  
Table 13. Write AC Characteristics, Chip Enable Controlled  
M29W320D  
Symbol  
Alt  
Parameter  
Unit  
70  
70  
0
90  
t
t
WC  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
AVAV  
t
t
WS  
WLEL  
t
t
45  
45  
0
50  
50  
0
ELEH  
CP  
DS  
t
t
t
DVEH  
t
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
EHDX  
DH  
t
t
WH  
0
0
EHWH  
t
t
30  
0
30  
0
EHEL  
CPH  
t
t
AS  
AVEL  
t
t
45  
0
50  
0
ELAX  
AH  
t
GHEL  
t
t
0
0
EHGL  
OEH  
(1)  
t
30  
50  
35  
50  
t
BUSY  
EHRL  
t
t
V
CC  
High to Write Enable Low  
VCHWL  
VCS  
Note: 1. Sampled only, not 100% tested.  
28/46  
M29W320DT, M29W320DB  
Figure 16. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPLPX  
RP  
tPHPHH  
tPLYH  
AI02931B  
Table 14. Reset/Block Temporary Unprotect AC Characteristics  
M29W320D  
Symbol  
Alt  
Parameter  
Unit  
70  
90  
(1)  
t
PHWL  
RP High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
t
t
Min  
Min  
50  
50  
0
ns  
PHEL  
RH  
(1)  
t
PHGL  
(1)  
(1)  
(1)  
t
t
RHWL  
RB High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
t
0
ns  
t
RB  
RHEL  
RHGL  
t
t
RP Pulse Width  
Min  
Max  
Min  
Min  
500  
10  
500  
10  
ns  
µs  
ns  
ns  
PLPX  
RP  
(1)  
t
RP Low to Read Mode  
t
READY  
PLYH  
(1)  
(1)  
t
RP Rise Time to V  
500  
250  
500  
250  
t
VIDR  
ID  
PHPHH  
V
PP  
Rise and Fall Time  
t
VHVPP  
Note: 1. Sampled only, not 100% tested.  
Figure 17. Accelerated Program Timing Waveforms  
V
PP  
V
/WP  
PP  
V
or V  
IH  
IL  
tVHVPP  
tVHVPP  
AI90202  
29/46  
M29W320DT, M29W320DB  
PACKAGE MECHANICAL  
Figure 18. TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Bottom View Package Outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
Note: Drawing not to scale.  
Table 15. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
Typ  
Max  
A
A1  
A2  
B
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
α
0
5
0
5
30/46  
M29W320DT, M29W320DB  
Figure 19. TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Outline  
D
D1  
SD  
FD  
e
ddd  
SE  
E
E1  
BALL "A1"  
FE  
e
b
A
A2  
A1  
BGA-Z33  
Note: Drawing is not to scale.  
Table 16. TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.250  
0.0098  
0.900  
0.0354  
0.350  
0.450  
0.0138  
0.0177  
D
7.000  
5.600  
6.900  
7.100  
0.2756  
0.2205  
0.2717  
0.2795  
D1  
ddd  
E
0.100  
0.0039  
11.000  
8.800  
0.800  
0.700  
1.100  
0.400  
0.400  
10.900  
11.100  
0.4331  
0.3465  
0.0315  
0.0276  
0.0433  
0.0157  
0.0157  
0.4291  
0.4370  
E1  
e
FD  
FE  
SD  
SE  
31/46  
M29W320DT, M29W320DB  
Figure 20. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
Note: Drawing not to scale.  
Table 17. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
4.000  
6.100  
0.2362  
0.1575  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.000  
1.200  
0.400  
0.400  
7.900  
8.100  
0.3150  
0.2205  
0.0315  
0.0394  
0.0472  
0.0157  
0.0157  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
32/46  
M29W320DT, M29W320DB  
PART NUMBERING  
Table 18. Ordering Information Scheme  
Example:  
M29W320DB  
90 N  
1
T
Device Type  
M29  
Operating Voltage  
W = V = 2.7 to 3.6V  
CC  
Device Function  
320D = 32 Mbit (x8/x16), Boot Block  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
70 = 70 ns  
90 = 90 ns  
Package  
N = TSOP48: 12 x 20 mm  
ZA = TFBGA63: 7x11mm, 0.80 mm pitch  
ZE = TFBGA48: 6 x 8mm, 0.8mm pitch  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-free Package, Standard Packing  
F = Lead-free Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
33/46  
M29W320DT, M29W320DB  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 19. Top Boot Block Addresses,  
M29W320DT  
34 64/32 220000h-22FFFFh 110000h-117FFFh  
33 64/32 210000h-21FFFFh 108000h-10FFFFh  
32 64/32 200000h-20FFFFh 100000h-107FFFh  
31 64/32 1F0000h-1FFFFFh 0F8000h-0FBFFFh  
30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh  
29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh  
28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh  
27 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh  
26 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh  
25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh  
24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh  
23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh  
22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh  
21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh  
20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh  
19 64/32 130000h-13FFFFh 098000h-09FFFFh  
18 64/32 120000h-12FFFFh 090000h-097FFFh  
17 64/32 110000h-11FFFFh 088000h-08FFFFh  
16 64/32 100000h-10FFFFh 080000h-087FFFh  
15 64/32 0F0000h-0FFFFFh 078000h-07FFFFh  
14 64/32 0E0000h-0EFFFFh 070000h-077FFFh  
13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh  
12 64/32 0C0000h-0CFFFFh 060000h-067FFFh  
11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh  
10 64/32 0A0000h-0AFFFFh 050000h-057FFFh  
Size  
(KByte/  
KWord)  
Address Range  
(x8)  
Address Range  
(x16)  
#
66  
65  
64  
16/8 3FC000h-3FFFFFh 1FE000h-1FFFFFh  
8/4  
8/4  
3FA000h-3FBFFFh 1FD000h-1FDFFFh  
3F8000h-3F9FFFh 1FC000h-1FCFFFh  
63 32/16 3F0000h-3F7FFFh 1F8000h-1FBFFFh  
62 64/32 3E0000h-3EFFFFh 1F0000h-1F7FFFh  
61 64/32 3D0000h-3DFFFFh 1E8000h-1EFFFFh  
60 64/32 3C0000h-3CFFFFh 1E0000h-1E7FFFh  
59 64/32 3B0000h-3BFFFFh 1D8000h-1DFFFFh  
58 64/32 3A0000h-3AFFFFh 1D0000h-1D7FFFh  
57 64/32 390000h-39FFFFh 1C8000h-1CFFFFh  
56 64/32 380000h-18FFFFh 1C0000h-1C7FFFh  
55 64/32 370000h-37FFFFh 1B8000h-1BFFFFh  
54 64/32 360000h-36FFFFh 1B0000h-1B7FFFh  
53 64/32 350000h-35FFFFh 1A8000h-1AFFFFh  
52 64/32 340000h-34FFFFh 1A0000h-1A7FFFh  
51 64/32 330000h-33FFFFh 198000h-19FFFFh  
50 64/32 320000h-32FFFFh 190000h-197FFFh  
49 64/32 310000h-31FFFFh 188000h-18FFFFh  
48 64/32 300000h-30FFFFh 180000h-187FFFh  
47 64/32 2F0000h-2FFFFFh 178000h-17FFFFh  
46 64/32 2E0000h-2EFFFFh 170000h-177FFFh  
45 64/32 2D0000h-2DFFFFh 168000h-16FFFFh  
44 64/32 2C0000h-2CFFFFh 160000h-167FFFh  
43 64/32 2B0000h-2BFFFFh 158000h-15FFFFh  
42 64/32 2A0000h-2AFFFFh 150000h-157FFFh  
41 64/32 290000h-29FFFFh 148000h-14FFFFh  
40 64/32 280000h-28FFFFh 140000h-147FFFh  
39 64/32 270000h-27FFFFh 138000h-13FFFFh  
38 64/32 260000h-26FFFFh 130000h-137FFFh  
37 64/32 250000h-25FFFFh 128000h-12FFFFh  
36 64/32 240000h-24FFFFh 120000h-127FFFh  
35 64/32 230000h-23FFFFh 118000h-11FFFFh  
9
8
7
6
5
4
3
2
1
0
64/32 090000h-09FFFFh 048000h-04FFFFh  
64/32 080000h-08FFFFh 040000h-047FFFh  
64/32 070000h-07FFFFh 038000h-03FFFFh  
64/32 060000h-06FFFFh 030000h-037FFFh  
64/32 050000h-05FFFFh 028000h-02FFFFh  
64/32 040000h-04FFFFh 020000h-027FFFh  
64/32 030000h-03FFFFh 018000h-01FFFFh  
64/32 020000h-02FFFFh 010000h-017FFFh  
64/32 010000h-01FFFFh 008000h-00FFFFh  
64/32 000000h-00FFFFh 000000h-007FFFh  
34/46  
M29W320DT, M29W320DB  
Table 20. Bottom Boot Block Addresses,  
M29W320DB  
34 64/32 1F0000h-1FFFFFh 0F8000h-0FBFFFh  
33 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh  
32 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh  
31 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh  
30 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh  
29 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh  
28 64/32 190000h-19FFFFh 0C8000h-0CFFFFh  
27 64/32 180000h-18FFFFh 0C0000h-0C7FFFh  
26 64/32 170000h-17FFFFh 0B8000h-0BFFFFh  
25 64/32 160000h-16FFFFh 0B0000h-0B7FFFh  
24 64/32 150000h-15FFFFh 0A8000h-0AFFFFh  
23 64/32 140000h-14FFFFh 0A0000h-0A7FFFh  
22 64/32 130000h-13FFFFh 098000h-09FFFFh  
21 64/32 120000h-12FFFFh 090000h-097FFFh  
20 64/32 110000h-11FFFFh 088000h-08FFFFh  
19 64/32 100000h-10FFFFh 080000h-087FFFh  
18 64/32 0F0000h-0FFFFFh 078000h-07FFFFh  
17 64/32 0E0000h-0EFFFFh 070000h-077FFFh  
16 64/32 0D0000h-0DFFFFh 068000h-06FFFFh  
15 64/32 0C0000h-0CFFFFh 060000h-067FFFh  
14 64/32 0B0000h-0BFFFFh 058000h-05FFFFh  
13 64/32 0A0000h-0AFFFFh 050000h-057FFFh  
12 64/32 090000h-09FFFFh 048000h-04FFFFh  
11 64/32 080000h-08FFFFh 040000h-047FFFh  
10 64/32 070000h-07FFFFh 038000h-03FFFFh  
Size  
(KByte/  
KWord)  
Address Range  
(x8)  
Address Range  
(x16)  
#
66 64/32 3F0000h-3FFFFFh 1F8000h-1FFFFFh  
65 64/32 3E0000h-3EFFFFh 1F0000h-1F7FFFh  
64 64/32 3D0000h-3DFFFFh 1E8000h-1EFFFFh  
63 64/32 3C0000h-3CFFFFh 1E0000h-1E7FFFh  
62 64/32 3B0000h-3BFFFFh 1D8000h-1DFFFFh  
61 64/32 3A0000h-3AFFFFh 1D0000h-1D7FFFh  
60 64/32 390000h-39FFFFh 1C8000h-1CFFFFh  
59 64/32 380000h-18FFFFh 1C0000h-1C7FFFh  
58 64/32 370000h-37FFFFh 1B8000h-1BFFFFh  
57 64/32 360000h-36FFFFh 1B0000h-1B7FFFh  
56 64/32 350000h-35FFFFh 1A8000h-1AFFFFh  
55 64/32 340000h-34FFFFh 1A0000h-1A7FFFh  
54 64/32 330000h-33FFFFh 198000h-19FFFFh  
53 64/32 320000h-32FFFFh 190000h-197FFFh  
52 64/32 310000h-31FFFFh 188000h-18FFFFh  
51 64/32 300000h-30FFFFh 180000h-187FFFh  
50 64/32 2F0000h-2FFFFFh 178000h-17FFFFh  
49 64/32 2E0000h-2EFFFFh 170000h-177FFFh  
48 64/32 2D0000h-2DFFFFh 168000h-16FFFFh  
47 64/32 2C0000h-2CFFFFh 160000h-167FFFh  
46 64/32 2B0000h-2BFFFFh 158000h-15FFFFh  
45 64/32 2A0000h-2AFFFFh 150000h-157FFFh  
44 64/32 290000h-29FFFFh 148000h-14FFFFh  
43 64/32 280000h-28FFFFh 140000h-147FFFh  
42 64/32 270000h-27FFFFh 138000h-13FFFFh  
41 64/32 260000h-26FFFFh 130000h-137FFFh  
40 64/32 250000h-25FFFFh 128000h-12FFFFh  
39 64/32 240000h-24FFFFh 120000h-127FFFh  
38 64/32 230000h-23FFFFh 118000h-11FFFFh  
37 64/32 220000h-22FFFFh 110000h-117FFFh  
36 64/32 210000h-21FFFFh 108000h-10FFFFh  
35 64/32 200000h-20FFFFh 100000h-107FFFh  
9
8
7
6
5
4
3
2
1
0
64/32 060000h-06FFFFh 030000h-037FFFh  
64/32 050000h-05FFFFh 028000h-02FFFFh  
64/32 040000h-04FFFFh 020000h-027FFFh  
64/32 030000h-03FFFFh 018000h-01FFFFh  
64/32 020000h-02FFFFh 010000h-017FFFh  
64/32 010000h-01FFFFh 008000h-00FFFFh  
32/16 008000h-00FFFFh 004000h-007FFFh  
8/4  
8/4  
006000h-007FFFh 003000h-003FFFh  
004000h-005FFFh 002000h-002FFFh  
000000h-003FFFh 000000h-001FFFh  
16/8  
35/46  
M29W320DT, M29W320DB  
APPENDIX B. COMMON FLASH INTERFACE (CFI)  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
is read from the memory. Table 21., Table 22., Ta-  
ble 23., Table 24., Table 25. and Table 26. show  
the addresses used to retrieve the data.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table 26., Security Code area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by ST. Issue a Read  
command to return to Read mode.  
When the CFI Query Command is issued the de-  
vice enters CFI Query mode and the data structure  
Table 21. Query Structure Overview  
Address  
Sub-section Name  
Description  
x16  
10h  
1Bh  
27h  
x8  
20h  
36h  
4Eh  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Primary Algorithm-specific Extended  
Query table  
Additional information specific to the Primary  
Algorithm (optional)  
40h  
80h  
61h  
C2h  
Security Code Area  
64 bit unique device number  
Note: Query data are always presented on the lowest order data outputs.  
Table 22. CFI Query Identification String  
Address  
Data  
Description  
Value  
x16  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
x8  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
0051h  
0052h  
0059h  
0002h  
0000h  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
“Q”  
"R"  
"Y"  
Query Unique ASCII String "QRY"  
Primary Algorithm Command Set and Control Interface ID code 16 bit  
ID code defining a specific algorithm  
AMD  
Compatible  
Address for Primary Algorithm extended Query table (see Table 24.)  
P = 40h  
NA  
Alternate Vendor Command Set and Control Interface ID Code second  
vendor - specified algorithm supported  
Address for Alternate Algorithm extended Query table  
NA  
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
36/46  
M29W320DT, M29W320DB  
Table 23. CFI Query System Interface Information  
Address  
Data  
Description  
Value  
x16  
x8  
V
V
V
V
Logic Supply Minimum Program/Erase voltage  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
CC  
1Bh  
36h  
0027h  
0036h  
00B5h  
00C5h  
2.7V  
3.6V  
Logic Supply Maximum Program/Erase voltage  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
CC  
1Ch  
1Dh  
1Eh  
38h  
3Ah  
3Ch  
[Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4HEX value in volts  
bit 3 to 0BCD value in 100 mV  
PP  
11.5V  
12.5V  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4HEX value in volts  
PP  
bit 3 to 0BCD value in 100 mV  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
16µs  
NA  
Typical timeout per single byte/word program = 2 µs  
n
Typical timeout for minimum size write buffer program = 2 µs  
n
1s  
Typical timeout per individual block erase = 2 ms  
n
NA  
Typical timeout for full chip erase = 2 ms  
n
512µs  
NA  
Maximum timeout for byte/word program = 2 times typical  
n
Maximum timeout for write buffer program = 2 times typical  
n
16s  
NA  
Maximum timeout per individual block erase = 2 times typical  
n
Maximum timeout for chip erase = 2 times typical  
Table 24. Device Geometry Definition  
Address  
Data  
Description  
Value  
x16  
x8  
n
27h  
4Eh  
0016h  
4 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
50h  
52h  
0002h  
0000h  
x8, x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
n
NA  
4
Maximum number of bytes in multi-byte program or page = 2  
Number of Erase Block Regions within the device.  
2Ch  
58h  
0004h  
It specifies the number of regions within the device containing  
contiguous Erase Blocks of the same size.  
2Dh  
2Eh  
5Ah  
5Ch  
0000h  
0000h  
Region 1 Information  
Number of identical size erase block = 0000h+1  
1
2Fh  
30h  
5Eh  
60h  
0040h  
0000h  
Region 1 Information  
Block size in Region 1 = 0040h * 256 byte  
16 Kbyte  
2
31h  
32h  
62h  
64h  
0001h  
0000h  
Region 2 Information  
Number of identical size erase block = 0001h+1  
33h  
34h  
66h  
68h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 byte  
8 Kbyte  
37/46  
M29W320DT, M29W320DB  
Address  
Data  
Description  
Value  
x16  
x8  
35h  
36h  
6Ah  
6Ch  
0000h  
0000h  
Region 3 Information  
Number of identical size erase block = 0000h+1  
1
37h  
38h  
6Eh  
70h  
0080h  
0000h  
Region 3 Information  
Block size in Region 3 = 0080h * 256 byte  
32 Kbyte  
63  
39h  
3Ah  
72h  
74h  
003Eh  
0000h  
Region 4 Information  
Number of identical-size erase block = 003Eh+1  
3Bh  
3Ch  
76h  
78h  
0000h  
0001h  
Region 4 Information  
Block size in Region 4 = 0100h * 256 byte  
64 Kbyte  
Table 25. Primary Algorithm-Specific Extended Query Table  
Address  
Data  
Description  
Value  
x16  
40h  
41h  
42h  
43h  
44h  
45h  
x8  
80h  
82h  
84h  
86h  
88h  
8Ah  
0050h  
0052h  
0049h  
0031h  
0030h  
0000h  
"P"  
"R"  
"I"  
Primary Algorithm extended Query table unique ASCII string “PRI”  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"0"  
Yes  
Address Sensitive Unlock (bits 1 to 0)  
00 = required, 01= not required  
Silicon Revision Number (bits 7 to 2)  
46h  
47h  
48h  
49h  
8Ch  
8Eh  
90h  
92h  
0002h  
0001h  
0001h  
0004h  
Erase Suspend  
00 = not supported, 01 = Read only, 02 = Read and Write  
2
1
Block Protection  
00 = not supported, x = number of blocks in per group  
Temporary Block Unprotect  
00 = not supported, 01 = supported  
Yes  
4
Block Protect /Unprotect  
04 = M29W400B  
4Ah  
4Bh  
4Ch  
4Dh  
94h  
96h  
98h  
9Ah  
0000h  
0000h  
0000h  
00B5h  
Simultaneous Operations, 00 = not supported  
No  
No  
Burst Mode, 00 = not supported, 01 = supported  
Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word  
No  
V
Supply Minimum Program/Erase voltage  
11.5V  
PP  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
4Eh  
4Fh  
9Ch  
9Eh  
00C5h  
000xh  
V
Supply Minimum Program/Erase voltage  
12.5V  
PP  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
Top/Bottom Boot Block Flag  
02h = Bottom Boot device, 03h = Top Boot device  
38/46  
M29W320DT, M29W320DB  
Table 26. Security Code Area  
Address  
Data  
Description  
x16  
61h  
62h  
63h  
64h  
x8  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
39/46  
M29W320DT, M29W320DB  
APPENDIX C. BLOCK PROTECTION  
Block protection can be used to prevent any oper-  
ation from modifying the data stored in the Flash.  
Each Block can be protected individually. Once  
protected, Program and Erase operations on the  
block fail to change the data.  
There are three techniques that can be used to  
control Block Protection, these are the Program-  
mer technique, the In-System technique and Tem-  
porary Unprotection. Temporary Unprotection is  
controlled by the Reset/Block Temporary Unpro-  
tection pin, RP; this is described in the Signal De-  
scriptions section.  
Unlike the Command Interface of the Program/  
Erase Controller, the techniques for protecting and  
unprotecting blocks change between different  
Flash memory suppliers. For example, the tech-  
niques for AMD parts will not work on STMicro-  
electronics parts. Care should be taken when  
changing drivers for one part to work on another.  
Programmer Technique Bus Operations, gives a  
summary of each operation.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not abort the procedure before reaching the end.  
Chip Unprotect can take several seconds and a  
user message should be provided to show that the  
operation is progressing.  
In-System Technique  
The In-System technique requires a high voltage  
level on the Reset/Blocks Temporary Unprotect  
pin, RP. This can be achieved without violating the  
maximum ratings of the components on the micro-  
processor bus, therefore this technique is suitable  
for use after the Flash has been fitted to the sys-  
tem.  
To protect a block follow the flowchart in Figure  
Figure 23., In-System Block Protect Flowchart. To  
unprotect the whole chip it is necessary to protect  
all of the blocks first, then all the blocks can be un-  
protected at the same time. To unprotect the chip  
follow Figure Figure 24., In-System Chip Unpro-  
tect Flowchart.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not allow the microprocessor to service interrupts  
that will upset the timing and do not abort the pro-  
cedure before reaching the end. Chip Unprotect  
can take several seconds and a user message  
should be provided to show that the operation is  
progressing.  
Programmer Technique  
The Programmer technique uses high (V ) volt-  
ID  
age levels on some of the bus pins. These cannot  
be achieved using a standard microprocessor bus,  
therefore the technique is recommended only for  
use in Programming Equipment.  
To protect a block follow the flowchart in Figure  
Figure 21., Programmer Equipment Block Protect  
Flowchart. To unprotect the whole chip it is neces-  
sary to protect all of the blocks first, then all blocks  
can be unprotected at the same time. To unprotect  
the chip follow Figure Figure 22., Programmer  
Equipment Chip Unprotect Flowchart. Table 27.,  
Table 27. Programmer Technique Bus Operations, BYTE = V or V  
IH  
IL  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
Block Protect  
E
G
W
A0-A20  
A9 = V , A12-A20 Block Address  
ID  
V
IL  
V
ID  
V
V
Pulse  
Pulse  
X
X
IL  
Others = X  
A9 = V , A12 = V , A15 = V  
ID  
IH  
IH  
V
ID  
V
ID  
Chip Unprotect  
IL  
Others = X  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IL  
ID  
Block Protection  
Verify  
Pass = XX01h  
Retry = XX00h  
V
V
V
V
A12-A20 Block Address  
Others = X  
IL  
IL  
IL  
IL  
IH  
A0 = V , A1 = V , A6 = V , A9 = V ,  
IL  
IH  
IH  
ID  
Block Unprotection  
Verify  
Retry = XX01h  
Pass = XX00h  
V
V
IH  
A12-A20 Block Address  
Others = X  
40/46  
M29W320DT, M29W320DB  
Figure 21. Programmer Equipment Block Protect Flowchart  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
E, G = V  
IH  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI03469  
FAIL  
41/46  
M29W320DT, M29W320DB  
Figure 22. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
IH  
A9 = V  
IH  
E, G = V  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI03470  
42/46  
M29W320DT, M29W320DB  
Figure 23. In-System Equipment Block Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
++n  
= 25  
NO  
RP = V  
IH  
YES  
ISSUE READ/RESET  
COMMAND  
RP = V  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI03471  
43/46  
M29W320DT, M29W320DB  
Figure 24. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI03472  
44/46  
M29W320DT, M29W320DB  
REVISION HISTORY  
Table 28. Document Revision History  
Date  
Version  
-01  
Revision Details  
March-2001  
08-Jun-2001  
First Issue (Brief Data)  
Document expanded to full Product Preview  
-02  
Minor text corrections to Read/Reset and Read CFI commands and Status Register Error  
and Toggle Bits.  
22-Jun-2001  
-03  
Document type: from Product Preview to Preliminary Data  
TFBGA connections and Block Addresses (x16) diagrams clarification  
Write Protect and Block Unprotect clarification  
27-Jul-2001  
-04  
CFI Primary Algorithm table, Block Protection change  
Added Block Protection Appendix  
“Write Protect/V ” pin renamed to “V /Write Protect” to be consistent with abbreviation.  
PP  
PP  
Changes to the V /WP pin description, Figure Figure 17. and Table 14.. I added to  
PP  
PP  
05-Oct-2001  
-05  
Table 10. and I  
clarified. Modified description of V /WP operation in Unlock Bypass  
PP  
CC3  
Command section. Added V /WP decoupling capacitor to Figure Figure 12..  
PP  
Clarified Read/Reset operation during Erase Suspend.  
07-Feb-2002  
05-Apr-2002  
-06  
-07  
TFBGA package changed from 48 ball to 63 ball  
Description of Ready/Busy signal clarified (and Figure 16 modified)  
Clarified allowable commands during block erase  
Clarified the mode the device returns to in the CFI Read Query command section  
Erase Suspend Latency Time (typical and maximum) added to Program, Erase Times  
and Program, Erase Endurance Cycles table.  
Typical values added for Icc1 and Icc2 in DC characteristics table.  
Logic Diagram and Data Toggle Flowchart corrected.  
19-Nov-2002  
7.1  
Revision numbering modified: a minor revision will be indicated by incrementing the digit  
after the dot, and a major revision, by incrementing the digit before the dot (revision  
version 07 equals 7.0). Document promoted to full datasheet.  
Data Retention added to Table 5., Program, Erase Times and Program, Erase Endurance  
Cycles, and Typical after 100k W/E Cycles column removed. TSOP48 package  
mechanical updated. Lead-free package options E and F added to Table 18., Ordering  
Information Scheme.  
26-May-2003  
16-Aug-2005  
7.2  
8.0  
TFBGA48 package added throughout document.  
45/46  
M29W320DT, M29W320DB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such  
information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication  
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support  
devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta  
- Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
46/46  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY