M34C02-WMB6TP [STMICROELECTRONICS]

2 Kbit Serial IC Bus EEPROM for DIMM serial presence detect; 2 Kbit的串行IC总线EEPROM用于DIMM串行存在检测
M34C02-WMB6TP
型号: M34C02-WMB6TP
厂家: ST    ST
描述:

2 Kbit Serial IC Bus EEPROM for DIMM serial presence detect
2 Kbit的串行IC总线EEPROM用于DIMM串行存在检测

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总31页 (文件大小:258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M34C02-W  
M34C02-L M34C02-R  
2 Kbit Serial I²C Bus EEPROM  
for DIMM serial presence detect  
Feature summary  
Software Data Protection for lower 128 Bytes  
2
Two Wire I C Serial Interface  
400kHz Transfer Rates  
Single Supply Voltage:  
– 2.5 to 5.5V for M34C02-W  
– 2.2 to 5.5V for M34C02-L  
– 1.8 to 5.5V for M34C02-R  
TSSOP8 (DW)  
169 mil width  
Byte and Page Write (up to 16 bytes)  
Random and Sequential Read modes  
Self-Timed Programming Cycle  
Automatic Address Incrementing  
Enhanced ESD/Latch-Up Protection  
More than 1 million Write cycles  
More than 40 Year Data Retention  
Packages  
UFDFPN8 (MB)  
2x3mm² (MLP)  
– ECOPACK® (RoHS compliant)  
April 2006  
Rev 9  
1/31  
www.st.com  
1
Contents  
M34C02-W, M34C02-L, M34C02-R  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5.1  
2.5.2  
2.5.3  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Internal device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the Software Write-Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.7.1  
3.7.2  
3.7.3  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . 16  
3.8  
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Use within a DRAM DIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
Programming the M34C02-W, M34C02-L and M34C02-R . . . . . . . . . . . . 19  
5
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/31  
M34C02-W, M34C02-L, M34C02-R  
Contents  
6
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7
8
9
10  
3/31  
List of tables  
M34C02-W, M34C02-L, M34C02-R  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DRAM DIMM Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Operating Conditions (M34C02-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operating Conditions (M34C02-L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operating Conditions (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC Characteristics (M34C02-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC Characteristics (M34C02-L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC Characteristics (M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
AC Characteristics M34C02-W, M34C02-L, M34C02-R) . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2x3mm², Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 28  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 16.  
Table 17.  
Table 18.  
4/31  
M34C02-W, M34C02-L, M34C02-R  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TSSOP and MLP connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chip Enable input connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Maximum R value versus bus parasitic capacitance (C) for an I²C Bus . . . . . . . . . . . . . . 9  
P
2
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Setting the Write Protection Register (WC = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Result of setting the write protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write mode sequences in a non write-protected area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Serial presence detect block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 14. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2x3mm², Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline . . . . . . . . . . . . . . . . . . . . . . 28  
5/31  
Summary description  
M34C02-W, M34C02-L, M34C02-R  
1
Summary description  
The M34C02-W, M34C02-L and M34C02-R are 2Kbit serial EEPROM memory able to lock  
permanently the data in its first half (from location 00h to 7Fh). This facility has been  
designed specifically for use in DRAM DIMMs (dual interline memory modules) with Serial  
Presence Detect. All the information concerning the DRAM module configuration (such as  
its access speed, its size, its organization) can be kept write protected in the first half of the  
memory.  
This bottom half of the memory area can be write-protected using a specially designed  
software write protection mechanism. By sending the device a specific sequence, the first  
128 Bytes of the memory become permanently write protected. Care must be taken when  
using this sequence as its effect cannot be reversed. In addition, the device allows the entire  
memory area to be write protected, using the WC input (for example by tieing this input to  
V
).  
CC  
2
These I C-compatible electrically erasable programmable memory (EEPROM) devices are  
organized as 256x8 bits.  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. ECOPACK® packages are Lead-free and RoHS compliant.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
2
I C uses a two wire serial interface, comprising a bi-directional data line and a clock line.  
The device carries a built-in 4-bit Device Type Identifier code (1010) in accordance with the  
2
I C bus definition to access the memory area and a second Device Type Identifier Code  
(0110) to access the Protection Register. These codes are used together with three chip  
enable inputs (E2, E1, E0) so that up to eight 2Kbit devices may be attached to the I²C bus  
and selected individually.  
2
The device behaves as a slave device in the I C protocol, with all memory operations  
synchronized by the serial clock. Read and Write operations are initiated by a START  
condition, generated by the bus master. The START condition is followed by a Device Select  
Code and RW bit (as described in Table 2), terminated by an acknowledge bit.  
th  
When writing data to the memory, the memory inserts an acknowledge bit during the 9 bit  
time, following the bus master’s 8-bit transmission. When data is read by the bus master, the  
bus master acknowledges the receipt of the data byte in the same way. Data transfers are  
terminated by a STOP condition after an Ack for WRITE, and after a NoAck for READ.  
6/31  
M34C02-W, M34C02-L, M34C02-R  
Summary description  
Figure 1.  
Logic diagram  
V
CC  
3
E0-E2  
SDA  
M34C02-W  
M34C02-L  
M34C02-R  
SCL  
WC  
V
SS  
AI01931b  
Figure 2.  
TSSOP and MLP connections (top view)  
M34C02-W  
M34C02-L  
M34C02-R  
E0  
E1  
E2  
1
2
3
4
8
7
6
5
V
CC  
WC  
SCL  
SDA  
V
SS  
AI01932d  
1. See Section 8: Package mechanical for package dimensions, and how to identify pin-1.  
Table 1.  
Signal names  
E0, E1, E2  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply Voltage  
Ground  
SDA  
SCL  
WC  
VCC  
VSS  
7/31  
Signal description  
M34C02-W, M34C02-L, M34C02-R  
2
Signal description  
2.1  
Serial Clock (SCL)  
This input signal is used to strobe all data in and out of the device. In applications where this  
signal is used by slave devices to synchronize the bus to a slower clock, the bus master  
must have an open drain output, and a pull-up resistor can be connected from Serial Clock  
(SCL) to V . (Figure 4 indicates how the value of the pull-up resistor can be calculated). In  
CC  
most applications, though, this method of synchronization is not employed, and so the pull-  
up resistor is not necessary, provided that the bus master has a push-pull (rather than open  
drain) output.  
2.2  
2.3  
Serial Data (SDA)  
This bi-directional signal is used to transfer data in or out of the device. It is an open drain  
output that may be wire-OR’ed with other open drain or open collector signals on the bus. A  
pull up resistor must be connected from Serial Data (SDA) to V . (Figure 4 indicates how  
CC  
the value of the pull-up resistor can be calculated).  
Chip Enable (E0, E1, E2)  
These input signals are used to set the value that is to be looked for on the three least  
significant bits (b3, b2, b1) of the 7-bit Device Select Code. These inputs must be tied to  
V
or V to establish the Device Select Code.  
CC  
SS  
Figure 3.  
Chip Enable input connection  
V
V
CC  
CC  
M34C02-W  
M34C02-L  
M34C02-R  
M34C02-W  
M34C02-L  
M34C02-R  
E
i
E
i
V
V
SS  
SS  
Ai12819  
2.4  
Write Control (WC)  
This input signal is provided for protecting the contents of the whole memory from  
inadvertent write operations. Write Control (WC) is used to enable (when driven Low) or  
disable (when driven High) write instructions to the entire memory area or to the Protection  
Register.  
When Write Control (WC) is tied Low or left unconnected, the write protection of the first half  
of the memory is determined by the status of the Protection Register.  
8/31  
M34C02-W, M34C02-L, M34C02-R  
Signal description  
2.5  
Supply voltage (VCC)  
2.5.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 6, Table 7 and  
CC  
CC  
Table 8). In order to secure a stable DC supply voltage, it is recommended to decouple the  
V
V
line with a suitable capacitor (usually of the order of 10nF to 100nF) close to the  
CC  
/V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
2.5.2  
2.5.3  
Internal device reset  
In order to prevent inadvertent Write operations during Power-up, a Power On Reset (POR)  
circuit is included. At Power-up (continuous rise of V ), the device will not respond to any  
CC  
instruction until V has reached the Power On Reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Table 6, Table 7 and Table 8).  
CC  
When V has passed the POR threshold, the device is reset and in the Standby Power  
CC  
mode.  
Power-down  
At Power-down (where V decreases continuously), as soon as V drops from the normal  
CC  
CC  
operating voltage to below the Power On Reset threshold voltage, the device stops  
responding to any instruction sent to it.  
During Power-down, the device must be deselected and in Standby Power mode (that is  
there should be no internal Write cycle in progress).  
Figure 4.  
Maximum R value versus bus parasitic capacitance (C) for an I²C Bus  
P
V
CC  
20  
16  
12  
8
RP  
RP  
SDA  
SCL  
MASTER  
C
fc = 100kHz  
4
fc = 400kHz  
C
0
10  
100  
C (pF)  
1000  
AI01665b  
9/31  
Signal description  
M34C02-W, M34C02-L, M34C02-R  
2
Figure 5.  
I C bus protocol  
SCL  
SDA  
SDA  
Input  
SDA  
Change  
START  
Condition  
STOP  
Condition  
1
2
3
7
8
9
SCL  
SDA  
ACK  
MSB  
START  
Condition  
1
2
3
7
8
9
SCL  
SDA  
MSB  
ACK  
STOP  
Condition  
AI00792B  
Table 2.  
Device Select Code  
Device Type Identifier(1)  
Chip Enable Address(2)  
RW  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
b1  
E0  
b0  
Memory Area Select Code  
(two arrays)  
E1  
RW  
RW  
Protection Register Select  
Code  
0
1
1
0
E2  
E1  
E0  
1. The most significant bit, b7, is sent first.  
2. E0, E1 and E2 are compared against the respective external pins on the memory device.  
10/31  
M34C02-W, M34C02-L, M34C02-R  
Device operation  
3
Device operation  
2
The device supports the I C protocol. This is summarized in Figure 5. Any device that sends  
data on to the bus is defined to be a transmitter, and any device that reads the data to be a  
receiver. The device that controls the data transfer is known as the bus master, and the  
other as the slave device. A data transfer can only be initiated by the bus master, which will  
also provide the serial clock for synchronization. The memory device is always a slave in all  
communication.  
3.1  
3.2  
Start Condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the High state. A Start condition must precede any data transfer command. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition, and will not respond unless one is given.  
Stop Condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable  
and driven High. A Stop condition terminates communication between the device and the  
bus master. A Read command that is followed by NoAck can be followed by a Stop condition  
to force the device into the Stand-by mode. A Stop condition at the end of a Write command  
triggers the internal EEPROM Write cycle.  
3.3  
3.4  
Acknowledge Bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) Low to  
acknowledge the receipt of the eight data bits.  
Data Input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven Low.  
11/31  
Device operation  
M34C02-W, M34C02-L, M34C02-R  
3.5  
Memory Addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the Device Select Code,  
shown in Table 2 (on Serial Data (SDA), most significant bit first).  
The Device Select Code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable  
“Address” (E2, E1, E0). To address the memory array, the 4-bit Device Type Identifier is  
1010b; to address the Protection Register, it is 0110b.  
2
Up to eight memory devices can be connected on a single I C bus. Each one is given a  
unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the Device Select Code is  
received, the device only responds if the Chip Enable Address is the same as the value on  
the Chip Enable (E0, E1, E2) inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
If a match occurs on the Device Select code, the corresponding device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the device does not match  
the Device Select code, it deselects itself from the bus, and goes into Stand-by mode.  
Table 3.  
Operating Modes  
Mode  
RW bit  
WC(1)  
Bytes  
Initial Sequence  
Current Address Read  
1
0
1
1
0
0
X
X
1
START, Device Select, RW = 1  
START, Device Select, RW = 0, Address  
reSTART, Device Select, RW = 1  
Similar to Current or Random Address Read  
START, Device Select, RW = 0  
Random Address  
Read  
1
X
Sequential Read  
Byte Write  
X
1  
1
VIL  
VIL  
Page Write  
16  
START, Device Select, RW = 0  
1. X = V or V .  
IH  
IL  
Figure 6.  
Setting the Write Protection Register (WC = 0)  
BUS ACTIVITY  
MASTER  
CONTROL  
BYTE  
WORD  
ADDRESS  
DATA  
SDA LINE  
BUS ACTIVITY  
ACK  
ACK  
ACK  
VALUE  
VALUE  
(DON'T CARE) (DON'T CARE)  
AI01935B  
12/31  
M34C02-W, M34C02-L, M34C02-R  
Device operation  
3.6  
Setting the Software Write-Protection  
The M34C02-W has a hardware write-protection feature, using the Write Control (WC)  
signal. This signal can be driven High or Low, and must be held constant for the whole  
instruction sequence. When Write Control (WC) is held Low, the whole memory array  
(addresses 00h to FFh) is write protected. When Write Control (WC) is held High, the write  
protection of the memory array is dependent on whether software write-protection has been  
set.  
Software write-protection allows the bottom half of the memory area (addresses 00h to 7Fh)  
to be permanently write protected irrespective of subsequent states of the Write Control  
(WC) signal.  
The write protection feature is activated by writing once to the Protection Register. The  
Protection Register is accessed with the device select code set to 0110b (as shown in  
Table 2), and the E2, E1 and E0 bits set according to the states being applied on the E2, E1  
and E0 signals. As for any other write command, Write Control (WC) needs to be held Low.  
Address and data bytes must be sent with this command, but their values are all ignored,  
and are treated as Don’t Care. Once the Protection Register has been written, the write  
protection of the first 128 Bytes of the memory is enabled, and it is not possible to unprotect  
these 128 Bytes, even if the device is powered off and on, and regardless the state of Write  
Control (WC).  
When the Protection Register has been written, the M34C02-W no longer responds to the  
device type identifier 0110b in either read or write mode.  
Figure 7.  
Result of setting the write protection  
FFh  
Standard  
Array  
FFh  
Standard  
Array  
Memory  
Area  
80h  
7Fh  
80h  
7Fh  
Write  
Protected  
Array  
Standard  
Array  
00h  
00h  
Default EEPROM memory area  
state before write access  
to the Protect Register  
State of the EEPROM memory  
area after write access  
to the Protect Register  
AI01936C  
13/31  
Device operation  
M34C02-W, M34C02-L, M34C02-R  
3.7  
Write Operations  
Following a Start condition the bus master sends a Device Select Code with the RW bit  
reset to 0. The device acknowledges this, as shown in Figure 8, and waits for an address  
byte. The device responds to the address byte with an acknowledge bit, and then waits for  
the data byte.  
th  
When the bus master generates a Stop condition immediately after the Ack bit (in the “10  
bit” time slot), either at the end of a Byte Write or a Page Write, the internal memory Write  
cycle is triggered. A Stop condition at any other time slot does not trigger the internal Write  
cycle.  
During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and  
the device does not respond to any requests.  
3.7.1  
3.7.2  
Byte Write  
After the Device Select Code and the address byte, the bus master sends one data byte. If  
the addressed location is hardware write-protected, the device replies to the data byte with  
NoAck, and the location is not modified. If, instead, the addressed location is not Write-  
protected, the device replies with Ack. The bus master terminates the transfer by generating  
a Stop condition, as shown in Figure 8.  
Page Write  
The Page Write mode allows up to 16 bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits are the same. If more bytes are sent than will fit up to the end of the  
page, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to  
become overwritten in an implementation dependent way.  
The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is Low. If the addressed location is hardware write-protected,  
the device replies to the data byte with NoAck, and the locations are not modified. After each  
byte is transferred, the internal byte address counter (the 4 least significant address bits  
only) is incremented. The transfer is terminated by the bus master generating a Stop  
condition.  
14/31  
M34C02-W, M34C02-L, M34C02-R  
Device operation  
Figure 8.  
Write mode sequences in a non write-protected area  
ACK  
ACK  
ACK  
ACK  
BYTE WRITE  
DEV SEL  
BYTE ADDR  
DATA IN  
R/W  
ACK  
ACK  
PAGE WRITE  
DEV SEL  
ACK  
BYTE ADDR  
DATA IN 1  
DATA IN 2  
R/W  
ACK  
DATA IN N  
AI01941  
15/31  
Device operation  
M34C02-W, M34C02-L, M34C02-R  
3.7.3  
Minimizing system delays by polling on ACK  
During the internal Write cycle, the device disconnects itself from the bus, and writes a copy  
of the data from its internal latches to the memory cells. The maximum Write time (tw) is  
shown in Table 14 and Table 16, but the typical time is shorter. To make use of this, a polling  
sequence can be used by the bus master.  
The sequence, as shown in Figure 9, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a Device Select Code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
Figure 9.  
Write cycle polling flowchart using ACK  
WRITE Cycle  
in Progress  
START Condition  
DEVICE SELECT  
with RW = 0  
ACK  
Returned  
NO  
First byte of instruction  
with RW = 0 already  
YES  
decoded by the device  
Next  
Operation is  
Addressing the  
Memory  
NO  
YES  
Send Address  
and Receive ACK  
ReSTART  
START  
NO  
YES  
STOP  
Condition  
DATA for the  
WRITE Operation  
DEVICE SELECT  
with RW = 1  
Continue the  
Continue the  
Random READ Operation  
WRITE Operation  
AI01847C  
16/31  
M34C02-W, M34C02-L, M34C02-R  
Device operation  
3.8  
Read Operations  
Read operations are performed independently of whether hardware or software protection  
has been set.  
The device has an internal address counter which is incremented each time a byte is read.  
3.8.1  
Random Address Read  
A dummy Write is first performed to load the address into this address counter (as shown in  
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start  
condition, and repeats the Device Select Code, with the RW bit set to 1. The device  
acknowledges this, and outputs the contents of the addressed byte. The bus master must  
not acknowledge the byte, and terminates the transfer with a Stop condition.  
3.8.2  
3.8.3  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a Device Select Code with the RW bit set to 1. The device acknowledges this, and  
outputs the byte addressed by the internal address counter. The counter is then  
incremented. The bus master terminates the transfer with a Stop condition, as shown in  
Figure 10, without acknowledging the byte.  
Sequential Read  
This operation can be used after a Current Address Read or a Random Address Read. The  
bus master does acknowledge the data byte output, and sends additional clock pulses so  
that the device continues to output the next byte in sequence. To terminate the stream of  
bytes, the bus master must not acknowledge the last byte, and must generate a Stop  
condition, as shown in Figure 10.  
The output data comes from consecutive addresses, with the internal address counter  
automatically incremented after each byte output. After the last memory address, the  
address counter ‘rolls-over’, and the device continues to output data from memory address  
00h.  
3.8.4  
Acknowledge in Read Mode  
For all Read commands, the device waits, after each byte read, for an acknowledgment  
th  
during the 9 bit time. If the bus master does not drive Serial Data (SDA) Low during this  
time, the device terminates the data transfer and switches to its Stand-by mode.  
17/31  
Device operation  
M34C02-W, M34C02-L, M34C02-R  
Figure 10. Read mode sequences  
ACK  
NO ACK  
DATA OUT  
CURRENT  
ADDRESS  
READ  
DEV SEL  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT  
RANDOM  
ADDRESS  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL *  
R/W  
R/W  
ACK  
ACK  
ACK  
NO ACK  
DATA OUT N  
SEQUENTIAL  
CURRENT  
READ  
DEV SEL  
DATA OUT 1  
R/W  
ACK  
ACK  
ACK  
ACK  
SEQUENTIAL  
RANDOM  
READ  
DEV SEL *  
BYTE ADDR  
DEV SEL * DATA OUT 1  
R/W  
R/W  
ACK  
NO ACK  
DATA OUT N  
AI01942  
1. The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 3rd bytes)  
must be identical.  
18/31  
M34C02-W, M34C02-L, M34C02-R  
Use within a DRAM DIMM  
4
Use within a DRAM DIMM  
In the application, the M34C02-W, M34C02-L and M34C02-R are soldered directly in the  
printed circuit module. The 3 Chip Enable inputs (pins 1, 2 and 3) are wired at V or V  
CC  
SS  
through the DIMM socket (see Table 4). The pull-up resistors needed for normal behavior of  
2
2
the I C bus are connected on the I C bus of the mother-board (as shown in Figure 11).  
The Write Control (WC) of the M34C02-W, M34C02-L and M34C02-R can be left  
unconnected. However, connecting it to V is recommended, to maintain full read and write  
SS  
access.  
4.1  
Programming the M34C02-W, M34C02-L and M34C02-R  
When the device is delivered, full read and write access is given to the whole memory array.  
It is recommended that the first step is to use the test equipment to write the module  
information (such as its access speed, its size, its organization) to the first half of the  
memory, starting from the first memory location. When the data has been validated, the test  
equipment can send a Write command to the Protection Register, using the device select  
code ’01100000b’ followed by an address and data byte (made up of Don’t Care values) as  
shown in Figure 6. The first 128 bytes of the memory area are then write-protected, and the  
M34C02-W, M34C02-L and M34C02-R will no longer respond to the specific device select  
code ’0110000xb’. It is not possible to reverse this sequence.  
Table 4.  
DRAM DIMM Connections  
DIMM Position E2  
E1  
E0  
0
1
2
3
4
5
6
7
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
19/31  
Initial delivery state  
M34C02-W, M34C02-L, M34C02-R  
5
Initial delivery state  
The device is delivered with all bits in the memory array set to 1 (each Byte contains FFh).  
Figure 11. Serial presence detect block diagram  
R = 4.7kΩ  
DIMM Position 7  
E2  
E1  
E0 SCL SDA  
V
CC  
DIMM Position 6  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
DIMM Position 5  
DIMM Position 4  
E2  
E1  
E0 SCL SDA  
V
V
V
CC  
CC  
SS  
E2  
E1  
E0 SCL SDA  
V
V
SS  
CC  
DIMM Position 3  
E2  
E1  
E1  
E0 SCL SDA  
V
V
CC  
SS  
DIMM Position 2  
DIMM Position 1  
E2  
E0 SCL SDA  
V
V
V
SS  
SS  
CC  
E2  
E1  
E0 SCL SDA  
V
V
CC  
SS  
DIMM Position 0  
E2  
E1  
E0 SCL SDA  
V
SS  
SCL line  
SDA line  
From the motherboard  
I2C master controller  
AI01937  
1. E0, E1 and E2 are wired at each DIMM socket in a binary sequence for a maximum of 8 devices.  
2. Common clock and common data are shared across all the devices.  
3. Pull-up resistors are required on all SDA and SCL bus lines (typically 4.7 k) because these lines are open  
drain when used as outputs.  
20/31  
M34C02-W, M34C02-L, M34C02-R  
Maximum rating  
6
Maximum rating  
Stressing the device above the rating listed in the Absolute Maximum Ratings" table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 5.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TA  
TSTG  
TLEAD  
VIO  
Ambient Operating Temperature  
Storage Temperature  
–40  
–65  
90  
°C  
°C  
°C  
V
150  
Lead Temperature during Soldering(1)  
See (1)  
Input or Output Voltage  
–0.50  
–0.50  
6.5  
6.5  
VCC  
Supply Voltage  
V
Electrostatic Discharge Voltage (Human Body  
model)(2)  
VESD  
–4000  
4000  
V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
21/31  
DC and AC parameters  
M34C02-W, M34C02-L, M34C02-R  
7
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC Characteristic tables that  
follow are derived from tests performed under the Measurement Conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 6.  
Symbol  
Operating Conditions (M34C02-W)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
2.5  
5.5  
85  
V
Ambient Operating Temperature  
–40  
°C  
Table 7.  
Symbol  
Operating Conditions (M34C02-L)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
2.2  
5.5  
85  
V
Ambient Operating Temperature  
–40  
°C  
Table 8.  
Symbol  
Operating Conditions (M34C02-R)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
1.8  
5.5  
85  
V
Ambient Operating Temperature  
–40  
°C  
Table 9.  
Symbol  
AC Measurement Conditions  
Parameter  
Min.  
Max.  
Unit  
CL  
Load Capacitance  
100  
pF  
ns  
V
Input Rise and Fall Times  
Input Levels  
50  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and Output Timing Reference Levels  
V
Figure 12. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
22/31  
M34C02-W, M34C02-L, M34C02-R  
DC and AC parameters  
Table 10. Input Parameters  
Symbol  
Parameter(1),(2)  
Test Condition  
Min.  
Max.  
Unit  
CIN  
CIN  
Input Capacitance (SDA)  
Input Capacitance (other pins)  
WC Input Impedance  
8
6
pF  
pF  
kΩ  
kΩ  
ZWCL  
ZWCH  
VIN < 0.3 V  
15  
70  
WC Input Impedance  
VIN > 0.7VCC  
500  
Pulse width ignored  
(Input Filter on SCL and SDA)  
tNS  
Single glitch  
100  
ns  
1. TA = 25°C, f = 400kHz  
2. Sampled only, not 100% tested.  
Table 11. DC Characteristics (M34C02-W)  
Test Condition  
(in addition to those in Table 6)  
Symbol  
Parameter  
Min.  
Max. Unit  
Input Leakage Current  
ILI  
VIN = VSS or VCC  
± 2  
± 2  
2
µA  
µA  
(SCL, SDA, E0, E1,and E2)  
ILO  
Output Leakage Current  
Supply Current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC=5V, fc=400kHz  
mA  
(rise/fall time < 30ns)  
ICC  
VCC =2.5V, fc=400kHz  
(rise/fall time < 30ns)  
1
1
mA  
µA  
VIN = VSS or VCC,  
ICC1  
Stand-by Supply Current  
for 2.5V < VCC = < 5.5V  
VIL  
VIH  
Input Low Voltage (1)  
Input High Voltage (1)  
–0.45 0.3VCC  
0.7VCC VCC+1  
V
V
IOL = 2.1mA when VCC = 2.5V or  
IOL = 3mA when VCC = 5.5V  
VOL  
Output Low Voltage  
0.4  
V
1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than  
1kOhm.  
23/31  
DC and AC parameters  
M34C02-W, M34C02-L, M34C02-R  
Table 12. DC Characteristics (M34C02-L)  
Test Condition  
(in addition to those in Table 7)  
Symbol  
Parameter  
Min.  
Max. Unit  
Input Leakage Current  
(SCL, SDA)  
ILI  
V
IN = VSS or VCC  
± 2  
± 2  
2
µA  
µA  
ILO  
Output Leakage Current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC =5V, fc=400kHz  
(rise/fall time < 30ns)  
mA  
V
CC =2.5V, fc=400kHz  
ICC  
Supply Current  
1
1
mA  
mA  
(rise/fall time < 30ns)  
VCC =2.2V, fc=400kHz  
(rise/fall time < 30ns)  
V
IN = VSS or VCC , VCC = 5 V  
1
µA  
µA  
ICC1 Stand-by Supply Current  
Input Low Voltage  
VIN = VSS or VCC , 2.2V VCC < 2.5V  
0.5  
–0.3 0.3VCC  
–0.3 0.5  
V
V
V
(E2, E1, E0, SCL, SDA)  
VIL  
Input Low Voltage (WC)  
Input High Voltage  
(E2, E1, E0, SCL, SDA, WC)  
VIH  
0.7VCC VCC+1  
I
OL = 3mA, VCC = 5V  
0.4  
0.4  
V
V
VOL Output Low Voltage  
IOL = 2.1mA, 2.2V VCC < 2.5V  
24/31  
M34C02-W, M34C02-L, M34C02-R  
DC and AC parameters  
Table 13. DC Characteristics (M34C02-R)  
Test Condition (in addition to  
Symbol  
Parameter  
Min.  
Max. Unit  
those in Table 8)  
Input Leakage Current  
(SCL, SDA, E0, E1 and E2)  
ILI  
VIN = VSS or VCC  
± 2  
± 2  
2
µA  
µA  
ILO  
Output Leakage Current  
VOUT = VSS or VCC, SDA in Hi-Z  
VCC =5V, fc=400kHz  
(rise/fall time < 30ns)  
mA  
VCC =2.5V, fc=400kHz  
(rise/fall time < 30ns)  
ICC  
Supply Current  
1
1
mA  
mA  
VCC =1.8V, fc=400kHz  
(rise/fall time < 30ns)  
VIN = VSS or VCC , VCC = 5V  
VIN = VSS or VCC , 1.8V VCC < 2.5V  
2.5V VCC 5.5V  
1
µA  
µA  
V
ICC1  
Stand-by Supply Current  
0.5  
– 0.3  
0.3VCC  
VIL  
VIH  
Input Low Voltage(1)  
Input High Voltage (1)  
1.8V VCC < 2.5V  
– 0.3 0.25VCC  
V
0.7VCC VCC+1  
V
I
OL = 3mA, VCC = 5V  
0.4  
0.4  
0.2  
V
VOL  
Output Low Voltage  
IOL = 2.1mA, 2.2V VCC < 2.5V  
V
IOL = 0.15mA, VCC = 1.8V  
V
1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1k.  
Table 14. AC Characteristics M34C02-W, M34C02-L, M34C02-R)  
Test conditions specified in Table 9 and Table 6 or Table 7  
Symbol  
Alt.  
Parameter  
Min.  
Max. Unit  
fC  
fSCL  
Clock Frequency  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tCHCL  
tCLCH  
tHIGH Clock Pulse Width High  
tLOW Clock Pulse Width Low  
600  
1300  
20  
(1)  
tDL1DL2  
tDXCX  
tCLDX  
tCLQX  
tF  
SDA Fall Time  
300  
tSU:DAT Data In Set Up Time  
tHD:DAT Data In Hold Time  
100  
0
tDH  
tAA  
Data Out Hold Time  
200  
200  
600  
600  
600  
(2)  
tCLQV  
Clock Low to Next Data Valid (Access Time)  
900  
(3)  
tCHDX  
tSU:STA Start Condition Set Up Time  
tHD:STA Start Condition Hold Time  
tSU:STO Stop Condition Set Up Time  
tDLCL  
tCHDH  
tDHDL  
tW  
tBUF  
tWR  
Time between Stop Condition and Next Start Condition 1300  
Write Time  
10  
1. Sampled only, not 100% tested.  
2. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the  
falling or rising edge of SDA.  
3. For a reSTART condition, or following a Write cycle.  
25/31  
DC and AC parameters  
M34C02-W, M34C02-L, M34C02-R  
Figure 13. AC Waveforms  
tCHCL  
tCLCH  
SCL  
tDLCL  
SDA In  
tCHDX  
tCLDX  
tDXCX  
SDA  
tCHDH tDHDL  
Change  
START  
Condition  
START  
Condition  
SDA  
Input  
STOP  
Condition  
SCL  
SDA In  
tCHDH  
tCHDX  
START  
Condition  
tW  
Write Cycle  
STOP  
Condition  
SCL  
tCLQV  
tCLQX  
Data Valid  
SDA Out  
AI00795C  
26/31  
M34C02-W, M34C02-L, M34C02-R  
Package mechanical  
8
Package mechanical  
Figure 14. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2x3mm², Package Outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
1. Drawing is not to scale.  
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be  
allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering  
process.  
Table 15. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2x3mm², Package Mechanical Data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
Typ.  
Max.  
A
A1  
b
0.55  
0.50  
0.00  
0.20  
0.60  
0.05  
0.30  
0.022  
0.020  
0.000  
0.008  
0.024  
0.002  
0.012  
0.25  
2.00  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
8
0.012  
8
27/31  
Package mechanical  
M34C02-W, M34C02-L, M34C02-R  
Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 16. TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
28/31  
M34C02-W, M34C02-L, M34C02-R  
Part numbering  
9
Part numbering  
Table 17. Ordering information scheme  
Example:  
M34C02-W –  
W MB 6 T P  
Device Type  
M34 = ASSP I2C serial access EEPROM  
Device Function  
02 = 2 Kbit (256 x 8)  
Operating Voltage  
W = VCC = 2.5 to 5.5V (400kHz)  
L = VCC = 2.2 to 5.5V (400kHz)  
R = VCC = 1.8 to 5.5V (400kHz)  
Package  
MB = UDFDFPN8 (MLP8)  
DW = TSSOP8 (169 mil width)  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
1 = Temperature range 0 to 70 °C.  
Device tested with standard test flow  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
P or G = ECOPACK® (RoHS compliant)  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
The category of second Level Interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
29/31  
Revision history  
M34C02-W, M34C02-L, M34C02-R  
10  
Revision history  
Table 18. Document revision history  
Date  
Revision  
Description of Revision  
Adjustments to the formatting. 0 to 70°C temperature range removed from  
DC and AC tables.  
27-Dec-1999  
2.0  
No change to description of device, or parameters  
New definition of lead soldering temperature absolute rating for certain  
packages  
07-Dec-2000  
2.1  
13-Mar-2001  
18-Jul-2002  
22-May-2002  
21-Jul-2003  
2.2  
2.3  
2.4  
3.0  
-R voltage range added  
TSSOP8 (3x3mm² body size) package (MSOP8) added  
VFDFPN8 package (MLP8) added  
Document reformatted. -F voltage range added.  
Table of Contents added. MLP package changed. Absolute Maximum  
Ratings for VIO(min) and VCC(min) changed. Soldering temperature  
information clarified for RoHS compliant devices. Device grade information  
clarified  
17-Mar-2004  
4.0  
14-Apr-2004  
26-Aug-2004  
30-Nov-2004  
5.0  
6.0  
7.0  
Typos corrected in Ordering Information example  
Device Grade clarified. Product List summary table added  
SO8 package removed.  
M34C02-R operating frequency upgraded to 400 kHz. Modified  
Section 1.1: Device Internal Reset, Figure 4: Maximum RP value versus  
bus parasitic capacitance (C) for an I²C Bus, Table 10: Input Parameters,  
ICC1 values in Table 11: DC Characteristics (M34C02-W), Table 13: DC  
Characteristics (M34C02-R), Table 15: DC Characteristics (M34C02-W-F)  
and moved M34C02-R to Table 14: AC Characteristics M34C02-W,  
M34C02-L, M34C02-R). Added Figure 3: Chip Enable input connection.  
Added EcoPack® and Ambient Operating Temperature information.  
14-Oct-2005  
8.0  
BN and DS (PDIP and TSSOP8) packages removed..  
M34C02-F part number removed.  
Test Conditions modified for ICC1 and VOL in Table 11: DC Characteristics  
(M34C02-W).  
11-Apr-2006  
9
Device Internal Reset removed and replaced by Section 2.5: Supply  
voltage (VCC).  
Blank option removed below Plating Technology in Table 17.  
30/31  
M34C02-W, M34C02-L, M34C02-R  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
31/31  

相关型号:

M34C02-WMM1

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, VFDFPN-8
STMICROELECTR

M34C02-WMM1G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM1P

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM1TG

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM1TP

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM6G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM6P

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM6TG

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMM6TP

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 2 X 3 MM, LEAD FREE, VFDFPN-8
STMICROELECTR

M34C02-WMN1

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, PLASTIC, SO-8
STMICROELECTR

M34C02-WMN1G

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SO-8
STMICROELECTR

M34C02-WMN1P

256X8 I2C/2-WIRE SERIAL EEPROM, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SO-8
STMICROELECTR