M40Z111MH6TR [STMICROELECTRONICS]

5V OR 3V NVRAM SUPERVISOR FOR UP TO TWO LPSRAMs; 5V或3V NVRAM主管长达两个LPSRAMs
M40Z111MH6TR
型号: M40Z111MH6TR
厂家: ST    ST
描述:

5V OR 3V NVRAM SUPERVISOR FOR UP TO TWO LPSRAMs
5V或3V NVRAM主管长达两个LPSRAMs

电源电路 电源管理电路 静态存储器 光电二极管
文件: 总15页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M40Z111  
M40Z111W  
5V OR 3V NVRAM SUPERVISOR FOR UP TO TWO LPSRAMs  
FEATURES SUMMARY  
CONVERT LOW POWER SRAMs INTO  
Figure 1. 28-pin SOIC Package  
NVRAMs  
PRECISION POWER MONITORING and  
POWER SWITCHING CIRCUITRY  
SNAPHAT (SH)  
Battery  
AUTOMATIC WRITE-PROTECTION WHEN  
V
IS OUT-OF-TOLERANCE  
CC  
CHOICE OF SUPPLY VOLTAGES and  
POWER-FAIL DESELECT VOLTAGES:  
– M40Z111: V = 4.5 to 5.5V  
CC  
THS = V ; 4.5 V  
4.75V  
4.5V  
PFD  
SS  
PFD  
THS = V  
; 4.2 V  
OUT  
– M40Z111W: V = 3.0 to 3.6V  
CC  
28  
THS = V ; 2.8 V  
3.0V  
PFD  
SS  
1
V
= 2.7 to 3.3V  
CC  
SOH28 (MH)  
THS = V  
; 2.5 V  
OUT  
2.7V  
PFD  
LESS THAN 15ns CHIP ENABLE ACCESS  
PROPAGATION DELAY (for 5.0V device)  
PACKAGING INCLUDES A 28-LEAD SOIC and  
®
SNAPHAT TOP (to be ordered separately)  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION FOR A SNAPHAT TOP WHICH  
CONTAINS THE BATTERY  
May 2002  
1/15  
M40Z111, M40Z111W  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Logic Diagram (Figure 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Signal Names (Table 1.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
SOIC28 Connections (Figure 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Hardware Hookup (Figure 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings (Table 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DC and AC Measurement Conditions (Table 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
AC Testing Load Circuit (Figure 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Capacitance (Table 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DC Characteristics (Table 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Retention Lifetime Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power Down Timing (Figure 6.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Up Timing (Figure 7.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Down/Up AC Characteristics (Table 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply Voltage Protection (Figure 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Battery Table (Table 8.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/15  
M40Z111, M40Z111W  
SUMMARY DESCRIPTION  
The M40Z111/W NVRAM SUPERVISOR is a self-  
contained device which converts a standard low-  
power SRAM into a non-volatile memory.  
nection to a separate SNAPHAT housing contain-  
ing the battery. The unique design allows the  
SNAPHAT battery package to be mounted on top  
of the SOIC package after the completion of the  
surface mount process.  
A precision voltage reference and comparator  
monitors the V input for an out-of-tolerance con-  
CC  
dition.  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery damage due to the high  
temperatures required for device surface-mount-  
ing. The SNAPHAT housing is keyed to prevent  
reverse insertion.  
When an invalid V  
tioned chip enable (E  
to write-protect the stored data in the SRAM.  
During a power failure, the SRAM is switched from  
condition occurs, the condi-  
CC  
) output is forced inactive  
CON  
The SOIC and battery packages are shipped sep-  
arately in plastic anti-static tubes or in Tape & Reel  
form. For the 28-lead SOIC, the battery package  
(e.g., SNAPHAT) part number is “M4Z28-  
BR00SH” or “M4Z32-BR00SH” (See Table 8,  
page 10).  
the  
V
pin to the lithium cell within the  
CC  
®
SNAPHAT to provide the energy required for  
data retention. On a subsequent power-up, the  
SRAM remains write protected until a valid power  
condition returns.  
The 28-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
Figure 2. Logic Diagram  
Table 1. Signal Names  
THS  
E
Threshold Select Input  
Chip Enable Input  
V
CC  
E
Conditioned Chip Enable Output  
Supply Voltage Output  
Supply Voltage  
CON  
V
OUT  
THS  
E
V
E
OUT  
M40Z111  
M40Z111W  
V
CC  
SS  
V
Ground  
CON  
NC  
Not Connected Internally  
Figure 3. SOIC28 Connections  
V
V
1
28  
V
E
SS  
OUT  
NC  
CC  
AI02238B  
2
27  
NC  
NC  
NC  
3
26  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
E
4
25  
5
24  
23  
V
V
6
CC  
NC  
7
M40Z111 22  
M40Z111W  
8
21  
20  
19  
18  
17  
16  
15  
CC  
NC  
9
NC  
NC  
NC  
10  
11  
12  
13  
14  
THS  
CON  
V
NC  
SS  
AI02239B  
3/15  
M40Z111, M40Z111W  
Figure 4. Hardware Hookup  
3.0, 3.3, or 5V  
V
V
V
CC  
CC  
OUT  
E2  
CMOS  
SRAM  
1N5817 or  
MBR5120T3  
0.1µF  
0.1µF  
M40Z111/W  
E
E
CON  
E
x8 or x16  
Thereshold  
THS  
V
SS  
AI02394  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
T
A
Ambient Operating Temperature  
Grade 6  
–40 to 85  
°C  
®
–40 to 85  
–55 to 125  
260  
°C  
°C  
°C  
SNAPHAT  
SOIC  
T
Storage Temperature (V Off)  
STG  
CC  
(1)  
SLD  
Lead Solder Temperature for 10 seconds  
T
V
–0.3 to V +0.3  
Input or Output Voltages  
Supply Voltage  
V
V
IO  
CC  
M40Z111  
–0.3 to 7.0  
V
CC  
M40Z111W  
–0.3 to 4.6  
V
I
Output Current  
20  
1
mA  
W
O
P
Power Dissipation  
D
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120  
seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
4/15  
M40Z111, M40Z111W  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. DC and AC Measurement Conditions  
Parameter  
M40Z111  
4.5 to 5.5V  
–40 to 85°C  
100pF  
M40Z111W  
2.7 to 3.6V  
–40 to 85°C  
50pF  
V
CC  
Supply Voltage  
Ambient Operating Temperature  
Load Capacitance (C )  
L
Input Rise and Fall Times  
5ns  
5ns  
0 to 3V  
0 to 3V  
Input Pulse Voltages  
1.5V  
1.5V  
Input and Output Timing Ref. Voltages  
Note: Note that Output Hi-Z is defined as the point where data is no longer driven.  
Figure 5. AC Testing Load Circuit  
645  
DEVICE  
UNDER  
TEST  
(1)  
1.75V  
C
= 100pF  
or 5pF  
L
C
includes JIG capacitance  
L
AI02326  
Note: 1. 50pF for M40Z111W.  
Table 4. Capacitance  
Symbol  
(1,2)  
Min  
Max  
8
Unit  
Parameter  
C
Input Capacitance  
Output Capacitance  
pF  
pF  
IN  
(3)  
10  
C
OUT  
Note: 1. Effective capacitance measured with power supply at 5V (M40Z111) or 3.3V (M40Z111W); sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected  
5/15  
M40Z111, M40Z111W  
Table 5. DC Characteristics  
M40Z111  
M40Z111W  
Test  
Sym  
Parameter  
Unit  
(1)  
Condition  
Min  
Typ  
Max  
Min  
Typ  
Max  
I
Supply Current  
Outputs open  
3
6
2
4
mA  
nA  
CC  
Data Retention Mode  
Current  
I
150  
±1  
150  
±1  
CCDR  
0V V V  
Input Leakage Current  
Output Leakage Current  
µA  
I
IN  
CC  
LI  
(2)  
0V V  
V  
CC  
±1  
±1  
100  
65  
µA  
mA  
mA  
I
OUT  
LO  
V
V
> V –0.3  
160  
100  
OUT  
OUT  
CC  
I
I
V
V
Current (Active)  
Current (Battery  
OUT1  
OUT  
> V –0.2  
CC  
OUT  
V
> V  
–0.3  
100  
100  
µA  
OUT2  
OUT  
BAT  
Back-up)  
V
Battery Voltage  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
2.0  
2.2  
3.0  
V
3.5  
2.0  
2.0  
3.0  
V
3.5  
V
V
V
V
V
V
V
BAT  
V
+ 0.3  
+ 0.3  
CC  
IH  
CC  
V
–0.3  
2.4  
0.8  
–0.3  
2.4  
0.8  
IL  
V
V
I
= –2.0mA  
= –1.0µA  
OH  
OH  
V
OH  
Battery Back-up  
I
OUT2  
2.0  
2.9  
3.6  
0.4  
2.0  
2.9  
3.6  
0.4  
OHB  
V
I
OL  
= 4.0mA  
Output Low Voltage  
OL  
V
V
OUT  
V
V
OUT  
THS Threshold Select Voltage  
Power-fail Deselect  
SS  
SS  
4.50  
4.20  
4.60  
4.35  
3.0  
4.75  
2.80  
2.50  
2.90  
2.60  
3.00  
V
V
V
Voltage (THS = V  
)
SS  
V
PFD  
Power-fail Deselect  
4.50  
2.70  
Voltage (THS = V  
)
OUT  
V
Battery Back-up  
Switchover Voltage  
PFD  
V
SO  
100mV  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V or 2.7 to 3.6V (except where noted).  
A
CC  
2. Outputs deselected.  
6/15  
M40Z111, M40Z111W  
OPERATION  
The M40Z111/W, as shown in Figure 4, page 4,  
can control up to two standard low-power SRAMs.  
These SRAMs must be configured to have the  
chip enable input disable all other input signals.  
Most slow, low-power SRAMs are configured like  
this, however many fast SRAMs are not. During  
normal operating conditions, the conditioned chip  
above V , V  
voltage. Output E  
is switched back to the supply  
SO  
OUT  
is held inactive for t  
ER  
CON  
(200ms maximum) after the power supply has  
reached V , independent of the E input, to allow  
PFD  
for processor stabilization (see Figure 7, page 8).  
Data Retention Lifetime Calculation  
Most low power SRAMs on the market today can  
be used with the M40Z111/W NVRAM SUPERVI-  
SOR. There are, however some criteria which  
should be used in making the final choice of which  
SRAM to use. The SRAM must be designed in a  
way where the chip enable input disables all other  
inputs to the SRAM. This allows inputs to the  
M40Z111/W and SRAMs to be “Don't Care” once  
enable (E  
) output pin follows the chip enable  
CON  
(E) input pin with timing shown in Table 6, page 9.  
An internal switch connects V to V . This  
CC  
OUT  
switch has a voltage drop of less than 0.3V  
(I ).  
OUT1  
When V degrades during a power failure, E  
CC  
CON  
is forced inactive independent of E. In this situa-  
tion, the SRAM is unconditionally write protected  
V
falls below V  
(min). The SRAM should  
CC  
PFD  
as V  
falls below an out-of-tolerance threshold  
). The power fail detection value associated  
CC  
also guarantee data retention down to V = 2.0V.  
CC  
(V  
PFD  
The chip enable access time must be sufficient to  
meet the system needs with the chip enable prop-  
agation delays included. If the SRAM includes a  
second chip enable pin (E2), this pin should be  
with V  
is selected by the THS pin and is shown  
PFD  
in Table 5, page 6.  
Note: The THS pin must be connected to either  
V
or V  
.
tied to V  
. If data retention lifetime is a critical  
SS  
OUT  
OUT  
parameter for the system, it is important to review  
the data retention current specifications for the  
particular SRAMs being evaluated. Most SRAMs  
specify a data retention current at 3.0V.  
If chip enable access is in progress during a power  
fail detection, that memory cycle continues to com-  
pletion before the memory is write protected. If the  
memory cycle is not terminated within time t  
,
WP  
E
is unconditionally driven high, write protect-  
Manufacturers generally specify a typical condi-  
tion for room temperature along with a worst case  
condition (generally at elevated temperatures).  
The system level requirements will determine the  
choice of which value to use. The data retention  
current value of the SRAMs can then be added to  
CON  
ing the SRAM.  
A power failure during a write cycle may corrupt  
data at the currently addressed location, but does  
not jeopardize the rest of the SRAM's contents. At  
voltages below V  
sured the memory will be write protected provided  
the V fall time exceeds t .  
As V  
disconnects V and connects the internal battery  
to V  
(min), the user can be as-  
PFD  
the I  
value of the M40Z111/W to determine  
CCDR  
the total current requirements for data retention.  
CC  
F
®
The available battery capacity for the SNAPHAT  
continues to degrade, the internal switch  
CC  
of your choice can then be divided by this current  
to determine the amount of data retention avail-  
able (see Table 8, page 10). For more information  
on Battery Storage Life refer to the Application  
Note AN1012.  
CC  
. This occurs at the switchover voltage  
OUT  
(V ). Below the V , the battery provides a volt-  
age V  
SO  
SO  
to the SRAM and can supply current  
OHB  
I
(see Table 5, page 6). When V  
rises  
OUT2  
CC  
7/15  
M40Z111, M40Z111W  
Figure 6. Power Down Timing  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
V
SO  
tF  
tFB  
E
E
tWPT  
V
OHB  
CON  
AI02396  
Figure 7. Power Up Timing  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
PFD  
V
SO  
tR  
tRB  
tER  
E
E
tEDH  
tEDL  
V
OHB  
CON  
AI02397  
8/15  
M40Z111, M40Z111W  
Table 6. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
µs  
Parameter  
(2)  
V
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
t
PFD  
PFD  
CC  
F
(3)  
V
Fall Time  
10  
10  
1
µs  
t
PFD  
PFD  
SS CC  
FB  
t
V
V
(min) to V  
(max) V Rise Time  
µs  
µs  
ns  
ns  
ns  
ns  
R
PFD CC  
t
to V  
(min) V Rise Time  
PFD CC  
RB  
SS  
M40Z111  
M40Z111W  
M40Z111  
15  
20  
10  
20  
t
Chip Enable Propagation Delay  
EDL  
t
Chip Enable Propagation Delay  
Chip Enable Recovery  
Write Protect Time  
EDH  
M40Z111W  
(4)  
40  
200  
ms  
t
ER  
M40Z111  
40  
40  
150  
250  
µs  
µs  
t
WPT  
M40Z111W  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.5 to 5.5V or 2.7 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after V  
PFD CC  
PFD  
passes V  
(min).  
PFD  
3. V  
(min) to V fall time of less than tFB may cause corruption of RAM data.  
PFD  
SS  
4. t (min) = 20ms for Industrial Temperature Range - Grade 6 device.  
ER  
V
Noise And Negative Going Transients  
Figure 8. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
8) is recommended in order to provide the needed  
filtering.  
V
CC  
V
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, STMicroelectronics recom-  
AI00622  
mends connecting a schottky diode from V  
to  
CC  
V
(cathode connected to V , anode to V ).  
SS  
CC SS  
Schottky diode 1N5817 is recommended for  
through hole and MBRS120T3 is recommended  
for surface mount.  
9/15  
M40Z111, M40Z111W  
PART NUMBERING  
Table 7. Ordering Information Scheme  
Example:  
M40Z  
111W  
MH  
6
TR  
Device Type  
M40Z  
Supply Voltage and Write Protect Voltage  
111 = V  
= 4.5 to 5.5V; V  
= 4.3 to 4.5V  
CC  
PFD  
PFD  
THS = V = 4.5 V  
4.75V  
SS  
THS = V  
= 4.2 V  
4.5V  
OUT  
PFD  
111W = V = 2.7 to 3.6V; V  
= 2.6 to 2.7V  
3.0V  
CC  
PFD  
THS = V = 2.8 V  
SS  
PFD  
V
= 2.7 to 3.3V  
CC  
THS = V  
= 2.5 V  
2.7V  
PFD  
OUT  
Package  
(1)  
MH = SOH28  
Temperature Range  
6 = –40 to 85°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
®
Note: 1. The SOIC package (SOH28) requires the battery package (SNAPHAT ) which is ordered separately under the part number  
“M4ZXX-BR00SHX” in plastic tube or “M4ZXX-BR00SHXTR” in Tape & Reel form.  
Caution: Do not place the SNAPHAT battery package “M4ZXX-BR00SH” in conductive foam as this will drain the lithium button-cell  
battery.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
Table 8. Battery Table  
Part Number  
M4Z28-BR00SH  
M4Z32-BR00SH  
Description  
Package  
SH  
SNAPHAT Housing for 48mAh Battery  
SNAPHAT Housing for 120mAh Battery  
SH  
10/15  
M40Z111, M40Z111W  
PACKAGE MECHANICAL INFORMATION  
Figure 9. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 9. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
11/15  
M40Z111, M40Z111W  
Figure 10. 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 10. 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
12/15  
M40Z111, M40Z111W  
Figure 11. 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline  
A2  
A3  
A1  
A
eA  
D
B
L
eB  
E
SHZP-A  
Note: Drawing is not to scale.  
Table 11. 4-pin SNAPHAT Housing for 120mAh Battery, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
13/15  
M40Z111, M40Z111W  
REVISION HISTORY  
Table 12. Document Revision History  
Date  
Revision Details  
September 2000 First Draft Issue  
Reformatted, TOC added, changed DC Characteristics (Table 5); changed battery, ind.  
temperature information (Tables 2, 6, 7, 8, Figures 10, 11); Corrected SOIC label (Figure 3); added  
E2 to Hookup (Figure 4)  
09/14/01  
05/13/02  
Modify reflow time and temperature footnote (Table 2)  
14/15  
M40Z111, M40Z111W  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia -  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
15/15  

相关型号:

M40Z111SH

NVRAM CONTROLLER for up to TWO LPSRAM
STMICROELECTR

M40Z111W

NVRAM CONTROLLER for up to TWO LPSRAM
STMICROELECTR

M40Z111WMH

NVRAM CONTROLLER for up to TWO LPSRAM
STMICROELECTR

M40Z111WMH6

5V OR 3V NVRAM SUPERVISOR FOR UP TO TWO LPSRAMs
STMICROELECTR

M40Z111WMH6E

5V or 3V NVRAM supervisor for up to two LPSRAMs
STMICROELECTR

M40Z111WMH6F

5V or 3V NVRAM supervisor for up to two LPSRAMs
STMICROELECTR

M40Z111WMH6TR

5V OR 3V NVRAM SUPERVISOR FOR UP TO TWO LPSRAMs
STMICROELECTR

M40Z111WSH

NVRAM CONTROLLER for up to TWO LPSRAM
STMICROELECTR

M40Z111_07

5V or 3V NVRAM supervisor for up to two LPSRAMs
STMICROELECTR

M40Z300

NVRAM CONTROLLER for up to EIGHT LPSRAM
STMICROELECTR

M40Z300AV

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR

M40Z300AVMH1E

3V NVRAM Supervisor for Up to 8 LPSRAMs
STMICROELECTR