M41T83RM6F [STMICROELECTRONICS]

Serial RTC with battery switchover; 串行实时时钟与电池切换
M41T83RM6F
型号: M41T83RM6F
厂家: ST    ST
描述:

Serial RTC with battery switchover
串行实时时钟与电池切换

计时器或实时时钟 电池 微控制器和处理器 外围集成电路 光电二极管
文件: 总58页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T82  
M41T83  
Serial RTC with battery switchover  
Features  
2.0 to 5.5V clock operating voltage  
Ultra-low battery supply current of 365nA  
Counters for tenths/hundredths of seconds,  
seconds, minutes, hours, day, date, month,  
year, and century  
QFN16, 4mm x 4mm (QA)  
(VFQFPN16)  
Programmable clock calibration (analog and  
digital)  
18  
Automatic switchover and reset output circuitry  
1
(fixed reference)  
– M41T83S  
SOX18 (MY, 18-pin, 300mil SOIC  
1
V
= 3.00V to 5.50V  
with Embedded Crystal)  
CC  
(2.85V V  
3.00V)  
RST  
– M41T83R  
V
= 2.70V to 5.50V  
CC  
(2.55V V  
2.70V)  
RST  
– M41T83Z  
V
= 2.38V to 5.50V  
CC  
SO8 (M)  
(2.25V V  
2.38V)  
RST  
2
Serial interface supports I C Bus (400kHz  
1. Contact local ST sales office for availability of SOX18  
package.  
protocol)  
Oscillator stop detection  
Programmable alarm with interrupt function  
(valid even during battery back-up mode)  
Battery or Super-cap™ back-up  
Operating temperature of –40°C to 85°C  
nd  
Optional 2 programmable alarm available  
Square wave output defaults to 32KHz on  
Package options include:  
power-up (M41T83 only)  
– a 16-lead QFN (M41T83),  
RESET (RST) output  
– an 18-lead embedded crystal SOIC  
(M41T83), or  
Watchdog timer  
– an 8-lead SOIC (M41T82)  
Programmable 8-bit counter/timer  
7 bytes of battery-backed user SRAM  
Battery low flag  
RoHS compliance: lead-free components are  
compliant with the RoHS directive.  
Power-down time stamp (HT bit)  
Low operating current of 80µA  
March 2007  
Rev 4  
1/58  
www.st.com  
1
Contents  
M41T82 M41T83  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
2-Wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.2  
2.3  
2.4  
2.5  
READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data retention and battery switchover (VSO = VRST) . . . . . . . . . . . . . . . . 20  
Power-on reset (trec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3
Clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.1  
3.2  
3.3  
3.4  
Power-down time-stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock/control register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Real Time Clock accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.4.1  
3.4.2  
Digital calibration (periodic counter correction) . . . . . . . . . . . . . . . . . . . 28  
Analog calibration (programmable load capacitance) . . . . . . . . . . . . . . 30  
3.5  
3.6  
3.7  
3.8  
Setting the alarm clock registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Optional second programmable alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8-bit (countdown) timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
Timer Interrupt/Timer Pulse (TI/TP, M41T83 only) . . . . . . . . . . . . . . . . . 38  
Timer Flag (TF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Timer Interrupt Enable (TIE, M41T83 only) . . . . . . . . . . . . . . . . . . . . . . 39  
Timer Enable (TE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
TD1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.9  
Square wave output (M41T83 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.10 Battery low warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.11 Century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2/58  
M41T82 M41T83  
Contents  
3.12 Output driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.13 Oscillator fail detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.14 Oscillator Fail Interrupt Enable (M41T83 only) . . . . . . . . . . . . . . . . . . . . . 43  
3.15 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.16 OTP bit operation (M41T83 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4
5
6
7
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DC and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package mechanical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3/58  
List of tables  
M41T82 M41T83  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
M41T82 clock/control register map (32 bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Key to Table 2 (M41T82 clock/control register map (32 bytes)) . . . . . . . . . . . . . . . . . . . . . 24  
M41T83 clock/control register map (32 bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Key to Table 4 (M41T83 clock/control register map (32 bytes)) . . . . . . . . . . . . . . . . . . . . . 26  
Digital calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Analog calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Alarm repeat modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Timer control register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt operation (bit TI/TP = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Timer source clock frequency selection (244.1µs to 4.25 hrs) . . . . . . . . . . . . . . . . . . . . . . 39  
Timer countdown value register bits (addr 11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Square wave output frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Century bits examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Initial power-on default values (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Initial power-up default values (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Operating and ac measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Power down/up trip points dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm mech. data . . . . . . . . . . . . . . . . 52  
SOX18 – 18-lead plastic small outline, 300mils, embedded crystal, package mech.. . . . . 54  
SO8 – 8-lead plastic small outline (150 mils body width), package mech. data. . . . . . . . . 55  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
4/58  
M41T82 M41T83  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
M41T82 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
M41T83 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SO8 (M) connections (M41T82) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
QFN16 (QA) connections (M41T83). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SOX18 (MY) connections (M41T83). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
M41T82 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
M41T82 hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M41T83 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
M41T83 hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 10. Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12. Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 13. READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 14. Alternative READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 15. WRITE mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 16. Internal load capacitance adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 17. Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Clock accuracy vs. on-chip load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 19. Clock divider chain and calibration circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 20. Crystal isolation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 21. Alarm interrupt reset waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 22. Back-up mode alarm waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 23. Measurement ac I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 24. Power down/up mode ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 25. Bus timing requirement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 26. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm body size outline . . . . . . . . . . . 52  
Figure 27. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm, recommended footprint . . . . . . 53  
Figure 28. 32KHz crystal + QFN16 vs. VSOJ20 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 29. SOX18 – 18-lead plastic small outline, 300mils, embedded crystal, outline. . . . . . . . . . . . 54  
Figure 30. SO8 – 8-lead plastic small package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5/58  
Description  
M41T82 M41T83  
1
Description  
2
The M41T8x are low power Serial I C Real Time Clocks with a built-in 32.768kHz oscillator  
(external crystal-controlled for the QFN16 and SO8 packages, embedded crystal for the  
SOX18 package). Eight bytes of the Register Map (see Table 2 on page 23) are used for  
the clock/calendar function and are configured in binary coded decimal (BCD) format. An  
additional 17 bytes of the Register Map provide status/control of the two Alarms, Watchdog,  
8-bit Counter, and Square Wave functions. An additional seven bytes are made available as  
user SRAM.  
2
Addresses and data are transferred serially via a two line, bi-directional I C interface. The  
built-in address register is incremented automatically after each WRITE or READ data byte.  
The M41T8x has a built-in power sense circuit which detects power failures and  
automatically switches to the battery supply when a power failure occurs. The energy  
needed to sustain the clock operations can be supplied by a small lithium button battery  
when a power failure occurs.  
Functions available to the user include a non-volatile, time-of-day clock/calendar, two Alarm  
interrupts, Watchdog Timer, programmable 8-bit Counter, and Square Wave outputs. The  
eight clock address locations contain the century, year, month, date, day, hour, minute,  
second, and tenths/hundredths of a second in 24 hour BCD format. Corrections for 28, 29  
(leap year), 30, and 31 day months are made automatically. The M41T83 is supplied in  
either a QFN16 (QA) or an SOX18 (MY), 300mil SOIC which includes an embedded 32KHz  
crystal. The SOX18 package requires only a user-supplied battery to provide non-volatile  
operation. The M41T82 is available only in an SO8 package.  
6/58  
M41T82 M41T83  
Figure 1.  
Description  
M41T82 logic diagram  
V
V
CC  
BAT  
XI  
XO  
(1)  
FT/RST  
SDA  
SCL  
V
SS  
AI11196  
1. Open drain  
Figure 2.  
M41T83 logic diagram  
V
V
BAT CC  
(2)  
(1)  
XI  
SQW  
(3)  
(1)  
IRQ1/OUT/FT  
XO  
(3)  
RST  
SDA  
SCL  
(3)  
IRQ2  
V
SS  
AI11195  
1. For QFN16 package only.  
2. Defaults to 32KHz on power-up.  
3. Open drain  
7/58  
Description  
M41T82 M41T83  
Table 1.  
Signal names  
Symbol  
Description  
XI(1)  
XO(1)  
32KHz oscillator input  
32KHz oscillator output  
IRQ1/OUT/FT  
SQW(2)  
RST  
Interrupt 1/Output driver/Frequency Test output (open drain)  
32KHz programmable Square Wave output  
Power-on Reset output (open drain)  
Frequency Test output/Power-on Reset (open drain - M41T82 only)  
Interrupt for alarm 2 (open drain)  
Serial Data Address input/output  
Serial Clock Input  
FT/RST  
IRQ2(3)  
SDA  
SCL  
VBAT  
Battery supply voltage (Tie VBAT to VSS if no battery is connected.)  
Do not use  
DU(4)  
VCC  
Supply voltage  
VSS  
Ground  
1. For SO8 and QFN16 packages only.  
2. Defaults to 32KHz on power-up.  
3. For SOX18 and QFN16 packages only.  
4. DU pin must be tied to VCC  
.
8/58  
M41T82 M41T83  
Figure 3.  
Description  
SO8 (M) connections (M41T82)  
XI  
XO  
VBAT  
VSS  
1
2
3
4
8
7
6
5
VCC  
FT/RST(1)  
SCL  
M41T82  
SDA  
AI11199  
1. Open drain output  
Figure 4.  
QFN16 (QA) connections (M41T83)  
16  
14  
15  
13  
(1)  
(1)  
RST  
IRQ2  
1
2
3
4
12  
11  
(1)  
NC  
IRQ1/FT/OUT  
M41T83  
NC  
(2)  
10 SCL  
SDA  
9
SQW  
6
7
5
8
AI11197  
1. Open drain output  
2. Defaults to 32KHz on Power-up.  
Figure 5.  
SOX18 (MY) connections (M41T83)  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
NC  
NF(1)  
NF(1)  
NC  
NC  
NF(1)  
NF(1)  
V
CC  
RST(2)  
IRQ2(2)  
NC  
M41T83  
DU(3)  
SQW(4)  
IRQ1/FT/OUT(2)  
V
V
BAT  
SS  
SCL  
SDA  
AI11198  
1. NF pins must be tied to VSS. Pins 2 and 3, and 16 and 17 are internally shorted together.  
2. Open drain output  
3. Do not use (must be tied to VCC  
)
4. Defaults to 32KHz on power-up.  
9/58  
Description  
M41T82 M41T83  
Figure 6.  
M41T82 block diagram  
REAL TIME CLOCK  
CALENDAR  
OSCILLATOR FAIL  
CIRCUIT  
XI  
32KHz  
OSCILLATOR  
XO  
CRYSTAL  
ALARM1  
ALARM2  
WATCHDOG  
SDA  
SCL  
2
I C  
FT  
INTERFACE  
FREQUENCY TEST  
OUTPUT DRIVER  
8-BIT COUNTER  
WRITE  
PROTECT  
V
< V  
CC  
RST  
USER SRAM (7 Bytes)  
INTERNAL  
POWER  
V
CC  
V
BAT  
COMPARE  
t
(1)  
RST SO  
rec  
V
/V  
(2)  
RST  
TIMER  
AI11812  
1. VRST = VSO = 2.93V (S), 2.63V (R), and 2.32V (Z).  
2. Open drain output  
10/58  
M41T82 M41T83  
Figure 7.  
Description  
M41T82 hardware hookup  
V
CC  
MCU  
M41T82  
V
V
CC  
CC  
XI  
(1)  
Reset Input  
FT/RST  
XO  
Serial Clock Line  
Serial Data Line  
SCL  
SDA  
V
V
BAT  
SS  
AI11813  
1. Open drain output  
11/58  
Description  
M41T82 M41T83  
Figure 8.  
M41T83 block diagram  
REAL TIME CLOCK  
CALENDAR  
OSCILLATOR FAIL  
CIRCUIT  
OFIE  
XI  
32KHz  
OSCILLATOR  
XO  
A1IE  
A2IE  
CRYSTAL  
ALARM1  
ALARM2  
(1)  
IRQ2  
(1)  
WATCHDOG  
IRQ1/FT/OUT  
SDA  
SCL  
2
I C  
FT  
INTERFACE  
FREQUENCY TEST  
OUT  
TIE  
OUTPUT DRIVER  
8-BIT COUNTER  
SQUARE WAVE  
WRITE  
PROTECT  
V
< V  
CC  
RST  
SQWE  
SQW  
8 BITS OF OTP  
USER SRAM (7 Bytes)  
INTERNAL  
POWER  
V
CC  
V
BAT  
COMPARE  
t
(2)  
RST SO  
rec  
V
/V  
(1)  
RST  
TIMER  
AI11800  
1. Open drain output  
2. VRST = VSO = 2.93V (S), 2.63V (R), and 2.32V (Z).  
12/58  
M41T82 M41T83  
Figure 9.  
Description  
M41T83 hardware hookup  
V
CC  
MCU  
M41T83  
V
V
CC  
CC  
INT  
(1)  
(1)  
(1)  
IRQ1/FT/OUT  
RST  
XI  
Reset Input  
Port  
XO  
V
IRQ2  
Serial Clock Line  
Serial Data Line  
32KHz CLKIN  
SCL  
BAT  
SDA  
V
SS  
SQW  
AI11801  
1. Open drain output  
13/58  
Operation  
M41T82 M41T83  
2
Operation  
The M41T8x clock operates as a slave device on the serial bus. Access is obtained by  
implementing a start condition followed by the correct slave address (D0h). The 32 bytes  
contained in the device can then be accessed sequentially in the following order:  
st  
1 byte: tenths/hundredths of a second register  
nd  
2
3
byte: seconds register  
byte: minutes register  
rd  
th  
4 byte: century/hours register  
th  
5 byte: day register  
th  
6 byte: date register  
th  
7 byte: month register  
th  
8 byte: year register  
th  
9 byte: digital calibration register  
th  
10 byte: watchdog register  
th  
th  
11 - 15 bytes: alarm 1 registers  
th  
16 byte: flags register  
th  
17 byte: timer value register  
th  
18 byte: timer control register  
th  
19 byte: analog calibration register  
th  
20 byte: square wave register  
st  
th  
21 - 25 bytes: alarm 2 registers  
th  
nd  
26 - 32 bytes: user RAM  
The M41T8x clock continually monitors V for an out-of-tolerance condition. Should V  
CC  
CC  
fall below V , the device terminates an access in progress and resets the device address  
RST  
counter. Inputs to the device will not be recognized at this time to prevent erroneous data  
from being written to the device from an out-of-tolerance system. The power input will also  
be switched from the V pin to the battery when V falls below the battery back-up  
CC  
CC  
switchover voltage (V = V  
). At this time the clock registers will be maintained by the  
SO  
RST  
attached battery supply. As system power returns and V rises above V , the battery is  
CC  
SO  
disconnected, and the power supply is switched to external V  
.
CC  
14/58  
M41T82 M41T83  
Operation  
2.1  
2-Wire bus characteristics  
The bus is intended for communication between different ICs. It consists of two lines: a bi-  
directional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be  
connected to a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy.  
During data transfer, the data line must remain stable whenever the clock line is High.  
Changes in the data line, while the clock line is High, will be interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined:  
2.1.1  
2.1.2  
Bus not busy  
Both data and clock lines remain High.  
Start data transfer  
A change in the state of the data line, from high to Low, while the clock is High, defines the  
START condition.  
2.1.3  
2.1.4  
Stop data transfer  
A change in the state of the data line, from Low to High, while the clock is High, defines the  
STOP condition.  
Data valid  
The state of the data line represents valid data when after a start condition, the data line is  
stable for the duration of the high period of the clock signal. The data on the line may be  
changed during the Low period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and stop conditions is not limited.  
The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.  
By definition a device that gives out a message is called transmitter,the receiving device  
that gets the message is called receiver.The device that controls the message is called  
master.The devices that are controlled by the master are called slaves.”  
15/58  
Operation  
M41T82 M41T83  
2.1.5  
Acknowledge  
Each byte of eight bits is followed by one Acknowledge bit. This Acknowledge bit is a low  
level put on the bus by the receiver whereas the master generates an extra acknowledge  
related clock pulse. A slave receiver which is addressed is obliged to generate an  
acknowledge after the reception of each byte that has been clocked out of the slave  
transmitter.  
The device that acknowledges has to pull down the SDA line during the acknowledge clock  
pulse in such a way that the SDA line is a stable Low during the High period of the  
acknowledge related clock pulse. Of course, setup and hold times must be taken into  
account. A master receiver must signal an end of data to the slave transmitter by not  
generating an acknowledge on the last byte that has been clocked out of the slave. In this  
case the transmitter must leave the data line High to enable the master to generate the  
STOP condition.  
Figure 10. Serial bus data transfer sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
AI00587  
Figure 11. Acknowledgement sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCL FROM  
1
2
8
9
MASTER  
DATA OUTPUT  
MSB  
LSB  
BY TRANSMITTER  
DATA OUTPUT  
BY RECEIVER  
AI00601  
16/58  
M41T82 M41T83  
Operation  
2.2  
READ mode  
In this mode the master reads the M41T8x slave after setting the slave address (see  
Figure 13 on page 18). Following the WRITE Mode control bit (R/W = 0) and the  
Acknowledge bit, the word address 'An' is written to the on-chip address pointer. Next the  
START condition and slave address are repeated followed by the READ Mode control bit  
(R/W = 1). At this point the master transmitter becomes the master receiver. The data byte  
which was addressed will be transmitted and the master receiver will send an Acknowledge  
bit to the slave transmitter. The address pointer is only incremented on reception of an  
Acknowledge clock. The M41T8x slave transmitter will now place the data byte at address  
An+1 on the bus, the master receiver reads and acknowledges the new byte and the  
address pointer is incremented to An+2.”  
This cycle of reading consecutive addresses will continue until the master receiver sends a  
STOP condition to the slave transmitter. The system-to-user transfer of clock data will be  
halted whenever the address being read is a clock address (00h to 07h). The update will  
resume due to a Stop Condition or when the pointer increments to any non-clock address  
(08h-1Fh).  
Note:  
This is true both in READ Mode and WRITE Mode.  
An alternate READ Mode may also be implemented whereby the master reads the M41T8x  
slave without first writing to the (volatile) address pointer. The first address that is read is the  
last one stored in the pointer (see Figure 14 on page 18).  
Figure 12. Slave address location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
17/58  
Operation  
M41T82 M41T83  
Figure 13. READ mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
Figure 14. Alternative READ mode sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
18/58  
M41T82 M41T83  
Operation  
2.3  
WRITE mode  
In this mode the master transmitter transmits to the M41T8x slave receiver. Bus protocol is shown in  
Figure 15. Following the START condition and slave address, a logic '0' (R/W = 0) is placed on the bus  
and indicates to the addressed device that word address Anwill follow and is to be written to the on-  
chip address pointer. The data word to be written to the memory is strobed in next and the internal  
address pointer is incremented to the next address location on the reception of an acknowledge clock.  
The M41T8x slave receiver will send an acknowledge clock to the master transmitter after it has received  
the slave address see Figure 12 on page 17 and again after it has received the word address and each  
data byte.  
Figure 15. WRITE mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
19/58  
Operation  
M41T82 M41T83  
2.4  
Data retention and battery switchover (VSO = VRST  
)
Once V falls below the switchover voltage (V = V ), the device automatically  
RST  
CC  
SO  
switches over to the battery and powers down into an ultra low current mode of operation to  
preserve battery life. If V is less than, or greater than V , the device power is switched  
BAT  
RST  
from V to V  
when V drops below V  
(see Figure 24 on page 49). At this time the  
CC  
BAT  
CC  
RST  
clock registers and user RAM will be maintained by the attached battery supply.  
When it is powered back up, the device switches back from battery to V at V  
+
SO  
CC  
hysteresis. When V rises above V , it will recognize the inputs. For more information  
CC  
RST  
on battery storage life refer to Application Note AN1012.  
2.5  
Power-on reset (trec)  
The M41T8x continuously monitors V . When V falls to the power fail detect trip point,  
CC  
CC  
the RST output pulls low (open drain) and remains low after power-up for t (210ms  
rec  
typical) after V rises above V  
(max).  
CC  
RST  
Note:  
The t period does not affect the RTC operation. Write protect only occurs when V is  
rec CC  
below V . When V rises above V , the RTC will be selectable immediately. Only  
RST  
CC  
RST  
the RST output is affected by the t period.  
rec  
The RST pin is an open drain output and an appropriate pull-up resistor to V should be  
CC  
chosen to control the rise time.  
20/58  
M41T82 M41T83  
Clock operation  
3
Clock operation  
The M41T8x is driven by a quartz-controlled oscillator with a nominal frequency of  
32.768kHz. The accuracy of the Real-Time Clock depends on the frequency of the quartz  
crystal that is used as the time-base for the RTC.  
The 8-byte clock register (see Table 2 on page 23 and Table 4 on page 25) is used to both  
set the clock and to read the date and time from the clock, in binary coded decimal format.  
Tenths/hundredths of seconds, seconds, minutes, and hours are contained within the first  
four registers.  
Bit D7 of register 01h contains the STOP bit (ST). Setting this bit to a '1' will cause the  
oscillator to stop. When reset to a '0' the oscillator restarts within one second (typical).  
Note:  
Upon initial power-up, the user should set the ST bit to a '1,' then immediately reset the ST  
bit to '0.' This provides an additional “kick-start” to the oscillator circuit.  
Bits D6 and D7 of clock register 03h (century/ hours register) contain the CENTURY bit 0  
(CB0) and CENTURY bit 1 (CB1). Bits D0 through D2 of register 04h contain the day (day of  
week). Registers 05h, 06h, and 07h contain the date (day of month), month, and years. The  
ninth clock register is the digital calibration register, while the analog calibration register is  
found at address 12h (these are both described in the clock calibration section). For the  
M41T83, bit D7 of register 09h (Watchdog register) contains the Oscillator Fail Interrupt  
Enable bit (OFIE). When the user sets this bit to '1,' any condition which sets the Oscillator  
Fail bit (OF) (see Section 3.13: Oscillator fail detection on page 43) will also generate an  
interrupt output.  
Note:  
A WRITE to ANY location within the first eight bytes of the clock register (00h-07h),  
including the ST bit and CB0-CB1 bits will result in an update of the system clock and a  
reset of the divider chain. This could result in an inadvertent change of the current time.  
These non-clock related bits should be written prior to setting the clock, and remain  
unchanged until such time as a new clock time is also written.  
The eight clock registers may be read one byte at a time, or in a sequential block. Provision  
has been made to assure that a clock update does not occur while any of the eight clock  
addresses are being read. If a clock address is being read, an update of the clock registers  
will be halted. This will prevent a transition of data during the READ.  
3.1  
Power-down time-stamp  
When a power failure occurs, the Halt Update bit (HT) will automatically be set to a “1”. This  
will prevent the clock from updating the clock registers, and will allow the user to read the  
exact time of the power-down event. Resetting the HT bit to a “0” will allow the clock to  
update the clock with the current time. For more information, see Application note AN1572.  
21/58  
Clock operation  
M41T82 M41T83  
3.2  
Clock/control register map  
The M41T8x offers 32 internal registers which contain clock, calibration (digital and analog),  
Alarm 1 and 2, Watchdog, Flags, Timer, and Square Wave (M41T83 only). The clock  
registers are memory locations which contain external (user accessible) and internal copies  
®
of the data (usually referred to as BiPORT™ TIMEKEEPER cells). The external copies are  
independent of internal functions except that they are updated periodically by the  
simultaneous transfer of the incremented internal copy. The internal divider (or clock) chain  
will be reset upon the completion of a WRITE to any clock address (00h to 07h). The  
system-to-user transfer of clock data will be halted whenever the address being read is a  
clock address (00h to 07h). The update will resume either due to a Stop Condition or when  
the pointer increments to a non-clock address. Clock and alarm registers store data in BCD  
format. Calibration, Timer, Watchdog, and Square Wave bits are written in a binary format.  
22/58  
M41T82 M41T83  
Clock operation  
(1)  
Table 2.  
Addr  
M41T82 clock/control register map (32 bytes)  
Function/range BCD  
format  
D7  
D6  
0.1 seconds  
10 seconds  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h-1Fh  
0.01 seconds  
seconds  
seconds  
seconds  
minutes  
00-99  
00-59  
00-59  
0-3/00-23  
01-7  
ST  
0
10 minutes  
minutes  
CB1  
0
CB0  
10 hours  
Hours (24 hour format)  
Day of week  
Date: day of month  
Month  
Century/hours  
Day  
0
0
0
0
0
0
0
10 date  
Date  
01-31  
01-12  
00-99  
0
0
10M  
Month  
10 years  
Year  
Year  
0
0
0
FT  
BMB4  
0
DCS  
BMB3  
ABE  
DC4  
BMB2  
DC3  
DC2  
DC1  
RB1  
DC0  
RB0  
Digital calibration  
Watchdog  
Al1 month  
Al1 date  
Al1 hour  
Al1 min  
BMB1 BMB0  
Al1 10M  
Alarm1 month  
Alarm1 date  
01-12  
01-31  
00-23  
00-59  
00-59  
RPT14 RPT15  
AI1 10 date  
AI1 10 hour  
RPT13  
RPT12  
RPT11  
WDF  
HT  
Alarm1 hour  
Alarm1 10 minutes  
Alarm1 10 seconds  
Alarm1 minutes  
Alarm1 seconds  
Al1 sec  
AF1  
AF2(2)  
BL  
TF  
OF  
0
0
Flags  
Timer countdown value  
Timer value  
Timer control  
TE  
ACS  
0
0
AC6  
0
0
AC5  
0
0
AC4  
0
0
AC3  
0
0
AC2  
0
TD1  
AC1  
TD0  
AC0 Analog calibration  
AL2E  
0
SQW  
0
0
0
Al2 10M  
Alarm2 month  
Alarm2 month  
Alarm2 date  
SRAM/Al2 month  
SRAM/Al2 date  
SRAM/Al2 hour  
SRAM/Al2 min  
SRAM/Al2 sec  
SRAM  
01-12  
01-31  
00-23  
00-59  
00-59  
RPT24 RPT25  
AI2 10 date  
AI2 10 hour  
RPT23  
RPT22  
RPT21  
0
Alarm2 10 minutes  
Alarm2 10 seconds  
Alarm2 minutes  
Alarm2 seconds  
User SRAM (7 bytes)  
1. See Table 3: Key to Table 2 (M41T82 clock/control register map (32 bytes))  
2. AF2 will always read ‘0’, if the AL2E bit is set to ‘0’.  
23/58  
Clock operation  
M41T82 M41T83  
Table 3.  
Key to Table 2 (M41T82 clock/control register map (32 bytes))  
Code Explanation  
Must be set to zero  
0
ABE  
Alarm in battery back-up Enable bit  
Analog Calibration bits  
Analog Calibration Sign bit  
Alarm Flag bits  
AC0-AC6  
ACS  
AF1, AF2  
AL2E  
Alarm 2 Enable bit  
Battery Low bit  
BL  
BMB0-BMB4  
CB0, CB1  
DC0-DC4  
DCS  
Watchdog Multiplier bits  
Century bits  
Digital Calibration bits  
Digital Calibration Sign bit  
Frequency test bit  
FT  
HT  
Halt Update bit  
OF  
Oscillator Fail bit  
RB0-RB2  
RPT11-RPT15  
RPT21-RPT25  
ST  
Watchdog Resolution bits  
Alarm 1 Repeat Mode bits  
Alarm 2 Repeat Mode bits  
Stop bit  
TD0, TD1  
TE  
Timer Frequency bits  
Timer Enable bit  
TF  
Timer Flag  
WDF  
Watchdog Flag  
24/58  
M41T82 M41T83  
Clock operation  
(1)  
Table 4.  
Addr  
M41T83 clock/control register map (32 bytes)  
Function/range BCD  
format  
D7  
D6  
0.1 seconds  
10 seconds  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0.01 seconds  
seconds  
seconds  
seconds  
Minutes  
Century/hours  
Day  
00-99  
00-59  
00-59  
0-3/00-23  
01-7  
ST  
0
10 minutes  
Minutes  
CB1  
0
CB0  
10 hours  
Hours (24 hour format)  
Day of week  
Date: day of month  
Month  
0
0
0
0
0
0
0
10 date  
Date  
01-31  
01-12  
00-99  
0
0
10M  
Month  
10 years  
Year  
Year  
OUT  
FT  
DCS  
DC4  
DC3  
DC2  
DC1  
RB1  
DC0 Digital calibration  
OFIE  
BMB4  
BMB3  
BMB2  
BMB1  
BMB0  
RB0  
Watchdog  
Al1 month  
Al1  
10M  
0Ah  
A1IE  
SQWE  
ABE  
Alarm 1month  
01-12  
0Bh RPT14 RPT15  
AI1 10 date  
AI1 10 hour  
Alarm1 date  
Alarm1 hour  
Al1 date  
Al1 hour  
Al1 min  
01-31  
00-23  
00-59  
00-59  
0Ch RPT13  
0Dh RPT12  
0Eh RPT11  
HT  
Alarm1 10 minutes  
Alarm1 10 seconds  
Alarm1 minutes  
Alarm1 seconds  
Al1 sec  
0Fh  
10h  
11h  
WDF  
AF1  
AF2(2)  
BL  
TF  
OF  
0
0
Flags  
Timer countdown value  
Timer value  
Timer control  
TE  
TI/TP  
AC6  
RS2  
0
TIE  
AC5  
RS1  
0
0
0
AC3  
0
0
AC2  
0
TD1  
AC1  
TD0  
AC0  
OTP  
Analog  
calibration  
12h  
13h  
14h  
ACS  
RS3  
A2IE  
AC4  
RS0  
AL2E  
SQW  
Al2  
10M  
Alarm2 month  
SRAM/Al2 month  
01-12  
15h RPT24 RPT25  
AI2 10 date  
AI2 10 hour  
Alarm2 date  
Alarm2 hour  
SRAM/Al2 date  
SRAM/Al2 hour  
SRAM/Al2 min  
SRAM/Al2 sec  
01-31  
00-23  
00-59  
00-59  
16h RPT23  
17h RPT22  
18h RPT21  
0
Alarm2 10 minutes  
Alarm2 10 seconds  
Alarm2 minutes  
Alarm2 seconds  
19h-  
1Fh  
User SRAM (7 bytes)  
SRAM  
1. See Table 5: Key to Table 4 (M41T83 clock/control register map (32 bytes)).  
2. AF2 will always read ‘0’, if the AL2E bit is set to ‘0’.  
25/58  
Clock operation  
M41T82 M41T83  
Table 5.  
Key to Table 4 (M41T83 clock/control register map (32 bytes))  
Code Explanation  
Must be set to zero  
0
ABE  
Alarm in battery back-up Enable bit  
Alarm Interrupt Enable bits  
Analog Calibration bits  
Analog Calibration Sign bit  
Alarm Flag  
A1IE, A2IE  
AC0-AC6  
ACS  
AF1, AF2  
AL2E  
Alarm 2 Enable bit  
Battery Low bit  
BL  
BMB0-BMB4  
CB0, CB1  
DC0-DC4  
DCS  
Watchdog Multiplier bits  
Century bits  
Digital Calibration bits  
Digital Calibration Sign bit  
Frequency Test bit  
Halt Update bit  
FT  
HT  
OF  
Oscillator Fail bit  
OUT  
Output level  
OFIE  
Oscillator Fail Interrupt Enable  
OTP Control bit  
OTP  
RB0-RB2  
RPT11-RPT15  
RPT21-RPT25  
RS0-RS3  
SQWE  
SRAM/ALM2  
ST  
Watchdog Resolution bits  
Alarm 1 Repeat Mode bits  
Alarm 2 Repeat Mode bits  
SQW frequency  
Square Wave Enable  
SRAM/Alarm 2 bit  
Stop bit  
TD0, TD1  
TE  
Timer Frequency bits  
Timer Enable bit  
TF  
Timer Flag  
TI/TP  
Timer Interrupt or Pulse  
Timer Interrupt Enable  
Watchdog Flag  
TIE  
WDF  
26/58  
M41T82 M41T83  
Clock operation  
3.3  
Real Time Clock accuracy  
The M41T8x is driven by a quartz controlled oscillator with a nominal frequency of  
32,768Hz. The accuracy of the Real Time Clock is dependent upon the accuracy of the  
crystal, and the match between the capacitive load of the oscillator circuit and the capacitive  
load for which the crystal was trimmed. Temperature also affects the crystal frequency,  
causing additional error (see Figure 17 on page 31).  
The M41T8x provides the option of clock correction through either manufacturing calibration  
or in-application calibration. The total possible compensation is typically –93 ppm to +156  
ppm. The two compensation circuits that are available are:  
1. An Analog Calibration register (12h) can be used to adjust internal (on-chip) load  
capacitors for oscillator capacitance trimming. The individual load capacitors C and  
XI  
C
(see Figure 16), are selectable from a range of –18pF to +9.75pF in steps of  
XO  
0.25pF. This translates to a calculated compensation of approximately 30 ppm (see  
Section 3.4.2: Analog calibration (programmable load capacitance) on page 30).  
2. A Digital Calibration register (08h) can also be used to adjust the clock counter by  
adding or subtracting a pulse at the 512Hz divider stage. This approach provides  
periodic compensation of approximately –63 ppm to +126 ppm (see Section 3.4.1:  
Digital calibration (periodic counter correction) on page 28).  
Figure 16. Internal load capacitance adjustment  
XI  
C
XI  
Crystal Oscillator  
XO  
C
XO  
AI11804  
27/58  
Clock operation  
M41T82 M41T83  
3.4  
Clock calibration  
The M41T8x oscillator is designed for use with a 12.5pF crystal load capacitance. When the  
calibration circuit is properly employed, accuracy improves to better than 1 ppm at 25°C.  
The M41T8x design provides the following two methods for clock error correction.  
3.4.1  
Digital calibration (periodic counter correction)  
This method employs the use of periodic counter correction by adjusting the ratio of the  
100Hz divider stage to the 512Hz divider stage. Under normal operation, the 100Hz divider  
stage outputs precisely 100 pulses for every 512 pulses of the 512Hz input stage to provide  
the input frequency to the Fraction of Seconds Clock register. By adjusting the number of  
512Hz input pulses used to generate 100 output pulses, the clock can be sped up or slowed  
down, as shown in Figure 19 on page 34.  
When a non-zero value is loaded into the five Calibration bits (DC4 – DC0) found in the  
Digital Calibration Register (08h) and the sign bit is ‘1’, (indicating positive calibration), the  
100Hz stage outputs 100 pulses for every 511 input pulses instead of the normal 512. Since  
the 100 pulses are now being output in a shorter window, this has the effect of speeding up  
the clock by 1/512 seconds for each second the circuit is active. Similarly, when the sign bit  
is ‘0’, indicating negative calibration, the block outputs 100 pulses for every 513 input  
pulses. Since the 100 pulses are then being output in a longer window, this has the effect of  
slowing down the clock by 1/512 seconds for each second the circuit is active.  
The amount of calibration is controlled by using the value in the calibration register (N) to  
generate the adjustment in one second increments. This is done N times per minute, for  
every minute, for positive calibration, and N times per minute every other minute for  
negative calibration (see Table 6 on page 29).  
For example, if the Calibration register is set to '100010,' then the adjustment will occur for  
two seconds in every minute. Similarly, if the calibration register is set to '000011,' then the  
adjustment will occur for 3 seconds in every alternating minute.  
The Digital Calibration bits (DC4 – DC0) occupy the five lower order bits in the Digital  
Calibration Register (08h). These bits can be set to represent any value between 0 and 31  
in binary form. The sixth bit (DCS) is a Sign bit; '1' indicates positive calibration, '0' indicates  
negative calibration. Calibration occurs within an 8-minute (positive) or 16-minute (negative)  
cycle. Therefore, each calibration step has an effect on clock accuracy of +4.068 or –2.034  
ppm. Assuming that the oscillator is running at exactly 32,768Hz, each of the 31 increments  
in the Calibration byte would represent +10.7 or –5.35 seconds per month, which  
corresponds to a total range of +5.5 or –2.75 minutes per month.  
Note:  
The modified pulses are not observable on the Frequency Test (FT) output, nor will the  
effect of the calibration be measurable real-time, due to the periodic nature of the error  
compensation.  
28/58  
M41T82 M41T83  
Clock operation  
Table 6.  
Digital calibration values  
Calibration value rounded to the nearest ppm  
Calibration value (binary)  
DC4 – DC0  
Negative calibration (DCS = 0) Positive calibration (DCS = 1)  
0 (00000)  
1 (00001)  
2 (00010)  
3 (00011)  
4 (00100)  
5 (00101)  
6 (00110)  
7 (00111)  
8 (01000)  
9 (01001)  
10 (01010)  
11 (01011)  
12 (01100)  
13 (01101)  
14 (01110)  
15 (01111)  
16 (10000)  
17 (10001)  
18 (10010)  
19 (10011)  
20 (10100)  
21 (10101)  
22 (10110)  
23 (10111)  
24 (11000)  
25 (11001)  
26 (11010)  
27 (11011)  
28 (11100)  
29 (11101)  
30 (11110)  
31 (11111)  
0
0
4
-2  
-4  
8
-6  
12  
16  
20  
24  
28  
33  
37  
41  
45  
49  
53  
57  
61  
65  
69  
73  
77  
81  
85  
90  
94  
98  
102  
106  
110  
114  
118  
122  
126  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-45  
-47  
-49  
-51  
-53  
-55  
-57  
-59  
-61  
-63  
N
N/491520 (per minute)  
N/245760 (per minute)  
29/58  
Clock operation  
M41T82 M41T83  
3.4.2  
Analog calibration (programmable load capacitance)  
A second method of calibration employs the use of programmable internal load capacitors  
to adjust (or trim) the oscillator frequency.  
By design, the oscillator is intended to be 0 ppm crystal accuracy at room temperature  
(25°C, see Figure 17 on page 31). For a 12.5pF crystal, the default loading on each side of  
the crystal will be 25pF. For incrementing or decrementing the calibration value,  
capacitance will be added or removed in increments of 0.25pF to each side of the crystal.  
Internally, C  
of the oscillator is changed via two digitally controlled capacitors, C and  
XI  
LOAD  
C
, connected from the XI and XO pins to ground (see Figure 16 on page 27). The  
XO  
effective on-chip series load capacitance, C  
nominal value of 12.5pF (AC0-AC6 = ‘0’).  
, ranges from 3.5pF to 17.4pF, with a  
LOAD  
The effective series load capacitance (C  
) is the combination of C and C  
:
XO  
LOAD  
XI  
C
= 1 ⁄ (1 C + 1 C  
)
XO  
LOAD  
XI  
Seven analog calibration bits, AC0 to AC6, are provided in order to adjust the on-chip load  
capacitance value for frequency compensation of the RTC. Each bit has a different weight  
for capacitance adjustment. An Analog Calibration Sign (ACS) bit determines if capacitance  
is added (ACS bit = ‘0’, negative calibration) or removed (ACS bit = ‘1’, positive calibration).  
The majority of the calibration adjustment is positive (i.e. to increase the oscillator frequency  
by removing capacitance) due to the typical characteristic of quartz crystals to slow down  
due to changes in temperature, but negative calibration is also available.  
Since the Analog Calibration Register adjustment is essentially “pulling” the frequency of the  
oscillator, the resulting frequency changes will not be linear with incremental capacitance  
changes. The equations which govern this mechanism indicate that smaller capacitor  
values of Analog Calibration adjustment will provide larger increments. Thus, the larger  
values of Analog Calibration adjustment will produce smaller incremental frequency  
changes. These values typically vary from 6-10 ppm/bit at the low end to <1 ppm/bit at the  
highest capacitance settings. The range provided by the Analog Calibration Register  
adjustment with a typical surface mount crystal is approximately 30 ppm around the AC6-  
AC0 = 0 default setting because of this property (see Table 7 on page 31).  
30/58  
M41T82 M41T83  
Clock operation  
Figure 17. Crystal accuracy across temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
2
ΔF  
F
= K x (T – TO)  
–80  
–100  
–120  
–140  
–160  
= –0.036 ppm/°C2 0.006 ppm/°C2  
TO = 25°C 5°C  
K
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI07888  
Table 7.  
Addr  
Analog calibration values  
Analog  
CXI,  
CXO  
(1)  
calibration  
value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CLOAD  
ACS  
( )  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
½(CXI, CXO  
)
(16pF) (8pF) (4pF) (2pF) (1pF) (0.5pF) (0.25pF)  
0pF  
3pF  
x
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
1
0
25pF  
28pF  
30pF  
18pF  
12.5pF  
14pF  
5pF  
15pF  
12h  
–7pF  
9pF  
9.75pF(2))  
–18pF(3)  
34.75pF  
7pF  
17.4pF  
3.5pF  
1. CLOAD = 1/(1/CXI + 1/CXO  
)
2. Maximum negative calibration value  
3. Maximum positive calibration value  
31/58  
Clock operation  
The on-chip capacitance can be calculated as follows:  
M41T82 M41T83  
1
2
--  
C
=
[( AC6AC0 value, decimal) × 0.25pF] + 25pF  
LOAD  
For example:  
C
C
C
(12h = x0000000) = 12.5pF,  
(12h =11001000) = 3.5pF, and  
(12h = 00100111) = 17.4pF.  
LOAD  
LOAD  
LOAD  
The oscillator sees a minimum of 3.5pF with no programmable load capacitance selected.  
Note:  
These are typical values, and the total load capacitance seen by the crystal will include  
approximately 1-2pF of package and board capacitance in addition to the Analog Calibration  
register value.  
Any invalid value of Analog Calibration will result in the default capacitance of 25pF.  
The combination of analog and digital trimming can give up to –93 to +156 ppm of the total  
adjustment.  
Figure 18 on page 33 represents a typical curve of clock ppm adjustment versus the Analog  
Calibration value. This curve may vary with different crystals, so it is good practice to  
evaluate the crystal to be used with an M41T8x device before establishing the adjustment  
values for the application in question.  
32/58  
M41T82 M41T83  
Clock operation  
Figure 18. Clock accuracy vs. on-chip load capacitance  
100.0  
80.0  
60.0  
40.0  
XI  
XO  
Crystal  
Oscillator  
CXI  
CXO  
CXI CXO  
*
=
CLOAD  
CXI + CXO  
20.0  
On-Chip  
FASTER  
DECREASING LOAD CAP.  
INCREASING LOAD CAP.  
0.0  
SLOWER  
-20.0  
OFFSET TO  
-18.0 -15.0  
3.5 5.0  
0xC8 0xBC  
-10.0  
7.5  
-5.0  
10  
0.0  
12.5  
0x00  
5.0  
15  
9.75  
C , C (pF)  
XI  
XO  
NET EQUIV. LOAD  
CAP., C , (pF)  
17.4  
LOAD  
Analog Calibration  
Value, AC,  
0xA8  
0x94  
0x14  
0x27  
register 0x12  
ai13906  
33/58  
Clock operation  
M41T82 M41T83  
Two methods are available for ascertaining how much calibration a given M41T8x may  
require:  
The first involves setting the clock, letting it run for a month and comparing it to a  
known accurate reference and recording deviation over a fixed period of time. This  
allows the designer to give the end user the ability to calibrate the clock as the  
environment requires, even if the final product is packaged in a non-user serviceable  
enclosure. The designer could provide a simple utility that accesses either or both of  
the Calibration bytes.  
The second approach is better suited to a manufacturing environment, and involves the  
use of the IRQ1/FT/OUT pin. The IRQ1/FT/ OUT pin will toggle at 512Hz when FT and  
OUT bits = '1' (M41T83 only) and ST = '0.' Any deviation from 512Hz indicates the  
degree and direction of oscillator frequency shift at the test temperature. For example,  
a reading of 512.010124Hz would indicate a +20 ppm oscillator frequency error,  
requiring either a –10 (xx001010) to be loaded into the Digital Calibration byte, or +6pF  
(00011000) into the Analog Calibration byte for correction.  
Note:  
Setting or changing the Digital Calibration byte does not affect the Frequency Test, Square  
Wave, or Watchdog Timer frequency, but changing the Analog Calibration byte DOES affect  
all functions derived from the low current oscillator (see Figure 19).  
Figure 19. Clock divider chain and calibration circuits  
512Hz Output  
Frequency Test  
Remainder of  
Divider Circuit  
Square Wave  
Watchdog Timer  
8-bit Timer  
÷2  
÷8  
÷2  
÷2  
÷2  
÷2  
C
XI  
Low Current  
Oscillator  
32KHz  
Digital Calibration Circuitry  
(divide by 511/512/513)  
Clock  
Registers  
C
XO  
1Hz Signal  
Analog Calibration  
Circuitry  
AI11806c  
34/58  
M41T82 M41T83  
Figure 20. Crystal isolation example  
Clock operation  
Crystal  
Local Grounding  
Plane (Layer 2)  
XO  
XI  
V
SS  
AI11814  
1. Substrate pad should be tied to VSS  
.
3.5  
Setting the alarm clock registers  
Address locations 0Ah-0Eh (Alarm 1) and 14h-18h (Alarm 2) contain the alarm settings.  
Either alarm can be configured independently to go off at a prescribed time on a specific  
month, date, hour, minute, or second, or repeat every year, month, day, hour, minute, or  
second. Bits RPT15–RPT11 and RPT25-RPT21 put the alarms in the repeat mode of  
operation. Table 8 on page 37 shows the possible bit configurations.  
Codes not listed in the table default to the once-per-second mode to quickly alert the user of  
an incorrect alarm setting. When the clock information matches the alarm clock settings  
based on the match criteria defined by RPT15–RPT11 and/or RPT25-RPT21, AF1 (Alarm 1  
Flag) or AF2 (Alarm 2 Flag) is set. If A1IE (Alarm 1 Interrupt Enable), or A2IE (Alarm 2  
Interrupt Enable) are also set, the alarm condition activates either the IRQ1/FT/OUT, or  
IRQ2 output pins. To disable either of the alarms, write a '0' to the Alarm Date Registers and  
to the RPTx5–RPTx1 bits.  
Note:  
If the address pointer is allowed to increment to the Flag Register address, or the last  
address written is “Alarm Seconds,the address pointer will increment to the Flag address,  
and an alarm condition will not cause the Interrupt/Flag to occur until the address pointer is  
moved to a different address.  
The IRQ output is cleared by a READ to the Flags Register (0Fh) as shown in Figure 21. A  
subsequent READ of the Flags Register is necessary to see that the value of the Alarm Flag  
has been reset to '0.'.  
35/58  
Clock operation  
M41T82 M41T83  
3.6  
Optional second programmable alarm  
When the Alarm 2 Enable (AL2E) bit (D1 of address 13h) is set to a logic ‘1’, registers 14h  
through 18h provide control for a second programmable alarm which operates in the same  
manner as the alarm function described above. The A2IE (Alarm 2 Interrupt Enable) bit  
allows the second alarm to trigger a separate interrupt output (IRQ2).  
The AL2E bit defaults on initial power-up to a logic ‘0’ (Alarm 2 disabled). In this mode, the  
five address bytes (14h-18h) function as additional user SRAM, for a total of 12 bytes of  
user SRAM.  
The IRQ1/FT/OUT pin can also be activated in the battery back-up mode (see Figure 22 on  
page 36).  
Figure 21. Alarm interrupt reset waveform  
0Eh  
0Fh  
00h  
ALARM FLAG BITS (AFx)  
HIGH-Z  
IRQ1/FT/OUT or  
IRQ2  
AI08898  
Figure 22. Back-up mode alarm waveform  
VCC  
VPFD  
VSO  
trec  
AF Bit in Flags  
Register  
IRQ1/FT/OUT or  
IRQ2  
HIGH-Z  
AI09164c  
1. ABE and A1IE bits = 1.  
36/58  
M41T82 M41T83  
Clock operation  
Table 8.  
Alarm repeat modes  
RPT5  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm setting  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per second  
Once per minute  
Once per hour  
Once per day  
Once per month  
Once per year  
3.7  
Watchdog timer  
The watchdog timer can be used to detect an out-of-control microprocessor. The user  
programs the watchdog timer by setting the desired amount of time-out into the Watchdog  
Register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the two lower order  
bits RB1-RB0 select the resolution, where 00 = 1/16 second, 01 = 1/4 second, 10 = 1  
second, and 11 = 4 seconds. The amount of time-out is then determined to be the  
multiplication of the five-bit multiplier value with the resolution. (For example: writing  
00001110 in the Watchdog Register = 3*1, or 3 seconds). If the processor does not reset  
the timer within the specified period, the M41T8x sets the WDF (Watchdog Flag) and  
generates a watchdog interrupt.  
The watchdog timer can be reset by having the microprocessor perform a WRITE of the  
Watchdog Register. The time-out period then starts over.  
Should the watchdog timer time-out, a value of 00h needs to be written to the Watchdog  
Register in order to clear the IRQ1/FT/OUT pin. This will also disable the watchdog function  
until it is again programmed correctly. A READ of the Flags Register will reset the Watchdog  
Flag (bit D7; Register 0Fh).  
The watchdog function is automatically disabled upon power-up and the Watchdog Register  
is cleared. If the watchdog function is set, the frequency test function is activated, and the  
SQWE bit is '0,' the watchdog function prevails and the frequency test function is denied.  
37/58  
Clock operation  
M41T82 M41T83  
3.8  
8-bit (countdown) timer  
The Timer Value Register is an 8-bit binary countdown timer. It is enabled and disabled via  
the Timer Control Register (11h) TE bit. Other timer properties such as the source clock, or  
interrupt generation are also selected in the Timer Control Register (see Table 9). For  
2
accurate read back of the countdown value, the I C-bus clock (SCL) must be operating at a  
frequency of at least twice the selected timer clock.  
The Timer Control register selects one of four source clock frequencies for the timer (4096,  
64, 1, or 1/60Hz), and enables/disables the timer. The timer counts down from a software-  
loaded 8-bit binary value. At the end of every countdown, the timer sets the Timer Flag (TF)  
bit. The TF bit can only be cleared by software. When asserted, the timer flag (TF) can also  
be used to generate an interrupt (IRQ1/FT/OUT) on the M41T83. The interrupt may be  
generated as a pulsed signal every countdown period or as a permanently active signal  
which follows the condition of TF. The Timer Interrupt/Timer Pulse (TI/TP) bit is used to  
control this mode selection. When reading the timer, the current countdown value is  
returned.  
(1)  
Table 9.  
Addr  
Timer control register map  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
0Fh  
10h  
11h  
WDF  
AF1  
AF2  
BL  
TF  
OF  
0
0
Flags  
Timer countdown value  
Timer value  
Timer control  
TE  
TI/TP  
TIE  
0
0
0
TD1  
TD0  
1. Bit positions labeled with ‘0’ should always be written with logic '0.'  
3.8.1  
Timer Interrupt/Timer Pulse (TI/TP, M41T83 only)  
TI/TP = 0  
IRQ1/FT/OUT is active when TF is logic '1' (subject to the status of the Timer Interrupt  
Enable bit (TIE).  
TI/TP = 1  
IRQ1/FT/OUT pulses are active when TF is logic '1' according to Table 10 (subject to  
the status of the TIE bit).  
Note:  
If an Alarm condition, Watchdog time-out, Oscillator Failure, or OUT = 0 causes  
IRQ1/FT/OUT to be asserted low, then IRQ1/FT/OUT will remain asserted even if TI/TP is  
set to '1'. When in pulse mode (TI/TP = 1), clearing the TF bit will not stop the pulses on  
IRQ1/FT/OUT. The output pulses will only stop if TE, TIE, or TI/TP are reset to '0'.  
38/58  
M41T82 M41T83  
Clock operation  
Table 10. Interrupt operation (bit TI/TP = 1)  
IRQ(1) periods  
Source clock (Hz)  
n(2) = 1  
n > 1  
4096  
64  
1/8192  
1/128  
1/64  
1/4096  
1/64  
1
1/64  
1/60  
1/64  
1/64  
1. TF and IRQ1/FT/OUT become active simultaneously.  
2. n = loaded countdown timer value. The timer is stopped when n = 0.  
3.8.2  
Timer Flag (TF)  
At the end of a timer countdown, TF is set to logic '1.' If both timer and alarm interrupts are  
required in the application, the source of the interrupt can be determined by reading the flag  
bits. The timer will auto-reload and continue to count down regardless of the state of TF bit  
(or TI/TP bit). The TF bit is cleared by reading the Flags Register.  
3.8.3  
3.8.4  
Timer Interrupt Enable (TIE, M41T83 only)  
In Level mode (TI/TP = 0), when TF is asserted, the interrupt is asserted (if TIE = 1). To  
clear the interrupt, the TF bit or the TIE bit must be reset.  
Timer Enable (TE)  
TE = 0  
When the Timer Register (10h) is set to ‘0’, the timer is disabled.  
TE = 1  
The timer is enabled. TE is reset (disabled) on power-down. When re-enabled, the  
counter will begin from the same value as when it was disabled.  
3.8.5  
TD1/0  
These are the timer source clock frequency selection bits (see Table 11). These bits  
determine the source clock for the countdown timer (see Table 12). When not in use, the  
TD1 and TD0 bits should be set to ‘11’ (1/60Hz) for power saving.  
Table 11. Timer source clock frequency selection (244.1µs to 4.25 hrs)  
TD1  
TD0  
Timer source clock frequency (Hz)  
0
0
1
1
0
1
0
1
4096 (244.1µs)  
64 (15.6ms)  
1 (1s)  
1/60 (60s)  
39/58  
Clock operation  
M41T82 M41T83  
(1)  
Table 12. Timer countdown value register bits (addr 11h)  
Bit  
Symbol  
Description  
This register holds the loaded countdown value ‘n’.  
Countdown period = n / source clock frequency.  
7 - 0  
<timer countdown value>  
1. Writing to the timer register will not reset the TF bit or clear the interrupt.  
40/58  
M41T82 M41T83  
Clock operation  
3.9  
Square wave output (M41T83 only)  
The M41T83 offers the user a programmable square wave function which is output on the  
SQW pin. RS3-RS0 bits located in 13h establish the square wave output frequency. These  
frequencies are listed in Table 13. Once the selection of the SQW frequency has been  
completed, the SQW pin can be turned on and off under software control with the Square  
Wave Enable bit (SQWE) located in Register 0Ah.  
Note:  
If the SQWE bit is set to '1' and V falls below the switchover (V ) voltage, the square  
CC SO  
wave output will be disabled.  
Table 13. Square wave output frequency  
Square wave bits  
Square wave  
RS3  
RS2  
RS1  
RS0  
Frequency  
Units  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
None  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
256  
128  
64  
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
Hz  
Hz  
Hz  
32  
Hz  
16  
Hz  
8
Hz  
4
Hz  
2
Hz  
1
Hz  
41/58  
Clock operation  
M41T82 M41T83  
3.10  
Battery low warning  
The M41T8x automatically performs battery voltage monitoring upon power-up and at  
factory-programmed time intervals of approximately 24 hours. The Battery Low (BL) bit, bit  
D4 of Flags Register 0Fh, will be asserted if the battery voltage is found to be less than  
approximately 2.5V. The BL bit will remain asserted until completion of battery replacement  
and subsequent battery low monitoring tests, either during the next power-up sequence or  
the next scheduled 24-hour interval.  
If a battery low is generated during a power-up sequence, this indicates that the battery is  
below approximately 2.5 volts and may not be able to maintain data integrity. Clock data  
should be considered suspect and verified as correct. A fresh battery should be installed.  
If a battery low indication is generated during the 24-hour interval check, this indicates that  
the battery is near end of life. However, data is not compromised due to the fact that a  
nominal V is supplied. In order to insure data integrity during subsequent periods of  
CC  
battery back-up mode, the battery should be replaced.  
The M41T8x only monitors the battery when a nominal V is applied to the device. Thus  
CC  
applications which require extensive durations in the battery back-up mode should be  
powered-up periodically (at least once every few months) in order for this technique to be  
beneficial. Additionally, if a battery low is indicated, data integrity should be verified upon  
power-up via a checksum or other technique.  
3.11  
Century bits  
These two bits will increment in a binary fashion at the turn of the century, and handle all  
leap years correctly. See Table 14 for additional explanation.  
Table 14. Century bits examples  
CB0  
CB1  
Leap Year?  
Example(1)  
0
0
1
1
0
1
0
1
Yes  
No  
No  
No  
2000  
2100  
2200  
2300  
1. Leap year occurs every four years (for years evenly divisible by four), except for years evenly divisible by  
100. The only exceptions are those years evenly divisible by 400 (the year 2000 was a leap year, year  
2100 is not).  
3.12  
Output driver pin  
When the OFIE bit, A1IE bit, and Watchdog Register are not set to generate an interrupt,  
the IRQ1/FT/OUT pin becomes an output driver that reflects the contents of D7 of register  
08h. In other words, when D7 (OUT bit) is a '0,' then the IRQ1/FT/OUT pin will be driven low.  
Note:  
The IRQ1/FT/OUT pin is an open drain which requires an external pull-up resistor.  
42/58  
M41T82 M41T83  
Clock operation  
3.13  
Oscillator fail detection  
If the Oscillator Fail (OF) bit is internally set to a '1,' this indicates that the oscillator has  
either stopped, or was stopped for some period of time. This bit can be used to judge the  
validity of the clock and date data. This bit will be set to '1' any time the oscillator stops.  
In the event the OF bit is found to be set to '1' at any time other than the initial power-up, the  
STOP bit (ST) should be written to a '1,' then immediately reset to '0.' This will restart the  
oscillator. The following conditions can cause the OF bit to be set:  
The first time power is applied (defaults to a '1' on power-up).  
Note:  
If the OF bit cannot be written to '1' 4 seconds after the initial power-up, the STOP bit (ST)  
should be written to a '1,' then immediately reset to '0.'  
The voltage present on VCC or battery is insufficient to support oscillation.  
The ST bit is set to '1.'  
External interference of the crystal  
For the M41T83, if the Oscillator Fail Interrupt Enable bit (OFIE) is set to a '1,' the  
IRQ1/FT/OUT pin will also be activated. The IRQ1/FT/OUT output is cleared by resetting  
the OFIE or OF bit to '0' (NOT by reading the Flag Register).  
The OF bit will remain set to '1' until written to logic '0.' The oscillator must start and have  
run for at least 4 seconds before attempting to reset the OF bit to '0.' If the trigger event  
occurs during a power down condition, this bit will be set correctly.  
3.14  
Oscillator Fail Interrupt Enable (M41T83 only)  
If the Oscillator Fail Interrupt Enable bit (OFIE) is set to a '1,' the IRQ1/FT/OUT pin will also  
be activated. The IRQ1/FT/OUT output is cleared by resetting the OFIE or OF bit to '0' (not  
by reading the Flags Register).  
43/58  
Clock operation  
M41T82 M41T83  
3.15  
Initial power-on defaults  
Upon initial application of power to the device, the register bits will initially power-on in the state indicated  
in Table 15 and Table 16.  
Table 15. Initial power-on default values (part 1)  
DCS Digital Analog OFIE Watchdog A1IE SQWE  
Condition(1)  
ST CB1 CB0 OUT FT  
ABE  
(2)  
(3)  
(2)  
(2)  
ACS calib. calib.  
Initial  
0
0
0
1
0
0
0
0
0
0
0
0
1
0
Power-up  
Subsequent  
UC UC UC UC  
UC  
UC  
UC  
UC  
0
UC  
UC  
UC  
Power-up(4) (5)  
1. All other control bits power-up in an undetermined state.  
2. M41T83 only.  
3. BMB0-BMB4, RB0, RB1.  
4. With battery back-up.  
5. UC = Unchanged.  
Table 16. Initial power-up default values (part 2)  
TI/TP TIE  
OTP A2IE RPT21-  
Condition(1) RPT11-15 HT OF TE  
TD1 TD0 RS0 RS1-3  
AL2E  
(2)  
(2)  
(2)  
(2)  
25  
Initial  
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
0
Power-up  
Subsequent  
UC  
UC  
UC UC UC UC UC  
UC  
UC UC  
UC  
UC  
Power-up(3) (4)  
1. All other control bits power-up in an undetermined state.  
2. M41T83 only.  
3. With battery back-up.  
4. UC = Unchanged.  
3.16  
OTP bit operation (M41T83 only)  
When the OTP (One Time Programmable) bit is set to a '1,' the value in the internal OTP registers will be  
transferred to the analog calibration register (12h) and are “Read only.” The OTP value is programmed  
by the manufacturer, and will contain the calibration value necessary to achieve 5 ppm at room  
temperature.  
If the OTP bit is set to '0,' the analog calibration register will become a WRITE/READ register and  
function like standard SRAM memory cells, allowing the user to implement any desired value of analog  
calibration.  
When the user sets the OTP bit, they need to wait for approximately 3 to 4ms before the analog registers  
transfer the value from the OTP to the analog registers due to the OTP Read operation.  
44/58  
M41T82 M41T83  
Maximum rating  
4
Maximum rating  
Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 17. Absolute maximum ratings  
Sym  
Parameter  
Value(1)  
Unit  
TSTG  
VCC  
Storage temperature (VCC off, Oscillator off)  
Supply voltage  
–55 to 125  
°C  
V
–0.3 to 7.0  
(2)  
TSLD  
VIO  
IO  
Lead solder temperature for 10 seconds  
Input or Output voltages  
Output current  
260  
°C  
V
–0.2 to Vcc+0.3  
20  
1
mA  
W
PD  
Power dissipation  
1. Data based on characterization results, not tested in production.  
2. Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C for greater than 30  
seconds).  
45/58  
DC and ac parameters  
M41T82 M41T83  
5
DC and ac parameters  
This section summarizes the operating and measurement conditions, as well as the dc and  
ac characteristics of the device. The parameters in the following dc and ac Characteristic  
tables are derived from tests performed under the Measurement Conditions listed in the  
relevant tables. Designers should check that the operating conditions in their projects match  
the measurement conditions when using the quoted parameters.  
(1)  
Table 18. Operating and ac measurement conditions  
Parameter  
M41T8x  
Supply voltage (VCC  
)
2.38V to 5.5V  
–40 to 85°C  
50pF  
Ambient operating temperature (TA)  
Load capacitance (CL)  
Input Rise and Fall times  
5ns  
Input Pulse voltages  
0.2VCC to 0.8 VCC  
0.3VCC to 0.7 VCC  
Input and Output timing ref. voltages  
1. Output Hi-Z is defined as the point where data is no longer driven.  
Figure 23. Measurement ac I/O waveform  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI02568  
Table 19. Capacitance  
Symbol  
Parameter(1,2)  
Min  
Max  
Unit  
CIN  
Input capacitance  
7
pF  
pF  
ns  
(3)  
COUT  
Output capacitance  
10  
50  
tLP  
Low-pass filter input time constant (SDA and SCL)  
1. Effective capacitance measured with power supply at 3.6V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
46/58  
M41T82 M41T83  
DC and ac parameters  
Table 20. DC characteristics  
Sym  
Parameter  
Test condition(1)  
Min  
Typ  
Max  
Unit  
Operating voltage (S)  
–40 to 85°C  
–40 to 85°C  
3.00  
2.70  
2.38  
5.50  
5.50  
5.50  
1
V
V
VCC Operating voltage (R)  
Operating voltage (Z)  
–40 to 85°C  
V
ILI Input leakage current  
ILO Output leakage current  
0V VIN VCC  
0V VOUT VCC  
μA  
μA  
µA  
µA  
µA  
µA  
µA  
µA  
V
1
5.5V  
3.0V  
125  
55  
45  
8
150  
SCL = 400kHz  
ICC1 Supply current  
(No load)  
2.5 (Z only)  
5.5V  
10  
SCL = 0Hz;  
ICC2 Supply current (standby)  
3.0V  
7
All inputs VCC – 0.2V or ≤  
VSS + 0.2V (SQWE bit = 0)  
2.5 (Z only)  
6
VIL Input Low voltage  
VIH Input High voltage  
–0.3  
0.3VCC  
0.7VCC  
VCC+0.3  
V
VCC/VBAT = 3.0V,  
IOL = 1.0mA  
RST, FT/RST  
SQW, IRQ1/FT/OUT  
SCL, SDA  
0.4  
0.4  
0.4  
V
V
V
CC = 3.0V,  
IOL = 1.0mA  
CC = 3.0V,  
IOL = 3.0mA  
VOL Output Low voltage  
VOH Output High voltage  
V
V
V
V
VCC = 3.0V, IOH = –1.0mA (push-pull)  
2.4  
Pull-up supply voltage  
(open drain)  
IRQ1/FT/OUT  
5.5  
5.5  
5.5  
450  
Battery back-up supply  
VBAT  
2.5  
2.0  
V
V
voltage(2)  
Capacitor back-up  
VCAP  
supply voltage  
25°C; VCC = 0V; OSC On;  
VBAT = 3V; 32KHz Off  
IBAT Battery supply current  
365  
nA  
1. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.38V to 5.5V (except where noted).  
2. For non-rechargeable Lithium battery.  
47/58  
DC and ac parameters  
M41T82 M41T83  
Table 21. Crystal electrical characteristics  
Symbol  
Parameter(1) (2)  
Min  
Typ  
Max  
Units  
fO  
RS  
CL  
Resonant frequency  
32.768  
kHz  
kΩ  
pF  
Series resistance  
Load capacitance  
65(3)  
12.5  
1. Externally supplied if using the QFN16 or SO8 package. STMicroelectronics recommends the Citizen CFS-  
145 (1.5x5mm) and the KDS DT-38 (3x8mm) for thru-hole, or the KDS DMX-26S (3.2x8mm) for surface-  
mount, tuning fork-type quartz crystals.  
KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp.  
Citizen can be contacted at csd@citizen-america.com or http://www.citizencrystal.com.  
2. Load capacitors are integrated within the M41T8x. Circuit board layout considerations for the 32.768kHz  
crystal of minimum trace lengths and isolation from RF generating signals should be taken into account.  
3. Guaranteed by design.  
Table 22. Oscillator characteristics  
Symbol  
Parameter(1) (2)  
Conditions Min Typ Max Units  
VSTA  
tSTA  
Oscillator start voltage  
4s  
2.0  
V
s
Oscillator start time  
VCC = VSO  
1
(1)  
CXI, CXO  
Capacitor Input, Capacitor Output  
IC-to-IC frequency variation(2) (3)  
25  
pF  
ppm  
–10  
+10  
1. With default analog calibration value ( = 0).  
2. Reference value.  
3. TA = 25°C, VCC = 5.0V.  
48/58  
M41T82 M41T83  
Figure 24. Power down/up mode ac waveforms  
DC and ac parameters  
V
CC  
SO  
V
tPD  
trec  
SDA  
SCL  
DON'T CARE  
AI00596  
Table 23. Power down/up trip points dc characteristics  
Sym  
Parameter(1) (2) (1,2)  
Min  
Typ  
Max  
Unit  
S
R
Z
2.85  
2.55  
2.25  
2.93  
2.63  
2.32  
VRST  
25  
3.0  
2.7  
V
V
VRST  
Reset threshold voltage  
2.38  
V
Battery back-up switchover  
Hysteresis  
V
VSO  
mV  
ms  
Reset Pulse width (VCC Rising)  
140  
280  
trec  
VCC to Reset Delay, VCC = (VRST + 100mV), falling to  
(VRST – 100mV; for VCC slew rate of 10mV/µs  
2.5  
µs  
1. All voltages referenced to VSS.  
2. Valid for Ambient Operating Temperature: TA = –40 to 85°C; VCC = 2.38 to 5.5V (except where noted).  
49/58  
DC and ac parameters  
Figure 25. Bus timing requirement sequence  
M41T82 M41T83  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:ST  
P
S
tLOW  
SR  
P
AI00589  
Table 24. AC characteristics  
Sym  
Parameter(1)  
Min  
Typ  
Max  
Units  
fSCL  
tLOW  
tHIGH  
tR  
SCL clock frequency  
0
400  
kHz  
µs  
Clock low period  
1.3  
600  
Clock high period  
ns  
SDA and SCL Rise time  
SDA and SCL Fall time  
START condition Hold time  
300  
300  
ns  
tF  
ns  
tHD:STA  
tSU:STA  
600  
600  
ns  
ns  
(after this period the first clock pulse is generated)  
START condition Setup time  
(only relevant for a repeated start condition)  
(2)  
tSU:DAT  
Data Setup time  
100  
0
ns  
µs  
ns  
tHD:DAT Data Hold time  
tSU:STO STOP condition Setup time  
600  
Time the bus must be free before a new transmission  
can start  
tBUF  
1.3  
µs  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = 2.38 to 5.5V (except where noted).  
2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max) of the falling  
edge of SCL.  
50/58  
M41T82 M41T83  
Package mechanical information  
6
Package mechanical information  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect . The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
51/58  
Package mechanical information  
M41T82 M41T83  
Figure 26. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm body size outline  
D
E
A3  
A
A1  
ddd C  
e
b
L
1
2
3
E2  
D2  
QFN16-A  
1. Drawing is not to scale.  
Table 25. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm mech. data  
mm  
Min  
inches  
Min  
Sym  
Typ  
Max  
Typ  
Max  
A
A1  
A3  
b
0.90  
0.02  
0.20  
0.30  
4.00  
0.80  
0.00  
1.00  
0.05  
0.035  
0.001  
0.008  
0.012  
0.157  
0.031  
0.000  
0.039  
0.002  
0.25  
3.90  
2.50  
3.90  
2.50  
0.35  
4.10  
2.80  
4.10  
2.80  
0.010  
0.154  
0.098  
0.154  
0.098  
0.014  
0.161  
0.110  
0.161  
0.110  
D
D2  
E
4.00  
0.157  
E2  
e
0.65  
0.40  
0.026  
0.016  
L
0.30  
0.08  
0.50  
0.012  
0.003  
0.020  
ddd  
52/58  
M41T82 M41T83  
Package mechanical information  
Figure 27. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm, recommended  
footprint  
2.70  
0.70  
0.20  
4.50  
2.70  
0.35  
0.325  
0.65  
AI11815  
1. Dimensions are shown in millimeters (mm).  
Figure 28. 32KHz crystal + QFN16 vs. VSOJ20 mechanical data  
6.0 0.2  
3.2  
VSOJ20  
SMT  
CRYSTAL  
1.5  
3.9  
7.0 0.3  
1
2
3
4
ST QFN16  
3.9  
AI11816  
1. Dimensions shown are in millimeters (mm).  
53/58  
Package mechanical information  
M41T82 M41T83  
Figure 29. SOX18 – 18-lead plastic small outline, 300mils, embedded crystal, outline  
1. Drawing is not to scale.  
Table 26. SOX18 – 18-lead plastic small outline, 300mils, embedded crystal,  
package mech.  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
2.57  
0.23  
2.34  
0.46  
0.25  
11.61  
7.62  
10.34  
1.27  
0.66  
2.44  
0.15  
2.29  
0.41  
0.20  
11.56  
7.57  
10.16  
2.69  
0.31  
2.39  
0.51  
0.31  
11.66  
7.67  
10.52  
0.101  
0.009  
0.092  
0.018  
0.010  
0.457  
0.300  
0.407  
0.050  
0.026  
0.096  
0.006  
0.090  
0.016  
0.008  
0.455  
0.298  
0.400  
0.106  
0.012  
0.094  
0.020  
0.012  
0.459  
0.302  
0.414  
c
D
E
E1  
e
L
0.51  
0.81  
0.020  
0.032  
54/58  
M41T82 M41T83  
Package mechanical information  
Figure 30. SO8 – 8-lead plastic small package outline  
h x 45˚  
c
A2  
A
ccc  
b
e
0.25 mm  
GAUGE PLANE  
D
k
8
1
E1  
E
L
A1  
L1  
SO-A  
A  
1. Drawing is not to scale.  
Table 27. SO8 – 8-lead plastic small outline (150 mils body width), package mech.  
data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
-
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
-
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
-
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
-
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
0.127  
0.016  
0.050  
L1  
1.04  
0.041  
55/58  
Part numbering  
M41T82 M41T83  
7
Part numbering  
Table 28. Ordering information  
Example:  
M41T  
83  
R
QA  
6
E
Device family  
M41T  
Device type  
82 (SO8 package only)  
83  
Operating voltage  
S = VCC = 3.00 to 5.5V  
R = VCC = 2.70 to 5.5V  
Z = VCC = 2.38 to 5.5V  
Package  
QA = QFN16 (4mm x 4mm)  
M
(1) = SO8  
MY(2) (3)= SOX18  
Temperature range  
6 = –40°C to 85°C  
Shipping method  
E = ECOPACK package, Tubes  
F = ECOPACK package, Tape & Reel  
1. M41T82.  
2. Contact local ST sales office for availability.  
3. The SOX18 package includes an embedded 32,768Hz crystal.  
For other options, or for more information on any aspect of this device, please contact the  
ST Sales Office nearest you.  
56/58  
M41T82 M41T83  
Revision history  
8
Revision history  
Date  
Revision  
Changes  
27-Jul-2006  
1
First edition  
Updated package mechanical data in Figure 30: SO8 – 8-lead plastic  
small package outline and Table 27: SO8 – 8-lead plastic small outline  
(150 mils body width), package mech. data; small text changes for  
entire document, amended footnotes in Table 1, Table 14 and  
Figure 5.  
17-Oct-2006  
2
Document status upgraded to full datasheet; added footnote to diagram  
in Features; amended footnotes in Figure 2 and updated footnotes in  
Table 28; updated ‘typical data’ for ICC1 and ICC2 in Table 20; Updated  
package mechanical data for the QFN16 and SOX18 in Section 6;  
changed kHz to KHz through document; made small text changes  
throughout document.  
19-Dec-2006  
08-Mar-2007  
3
4
Updated cover page (features and amended footnote concerning  
availability), Figure 18: Clock accuracy vs. on-chip load capacitance,  
and ordering information (Table 28).  
57/58  
M41T82 M41T83  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
58/58  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY