M41T83_12 [STMICROELECTRONICS]

Serial I2C bus real-time clock (RTC) with battery switchover; 串行I2C总线的实时时钟( RTC )与电池切换
M41T83_12
型号: M41T83_12
厂家: ST    ST
描述:

Serial I2C bus real-time clock (RTC) with battery switchover
串行I2C总线的实时时钟( RTC )与电池切换

电池 时钟
文件: 总62页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T82  
M41T83  
Serial I2C bus real-time clock (RTC) with battery switchover  
Datasheet production data  
Features  
Ultra-low battery supply current of 365 nA  
Factory-calibrated accuracy of 5 ppm typical  
after 2 reflows (SOX18)  
QFN16 (4 mm x 4 mm)  
– Much better accuracies achievable using  
built-in programmable analog and digital  
calibration circuits  
2.0 V to 5.5 V clock operating voltage  
Counters for tenths/hundredths of seconds,  
seconds, minutes, hours, day, date, month,  
year, and century  
SO8 (150 mil)  
Automatic switchover and reset output circuitry  
(fixed reference)  
18  
– M41T83S  
V
= 3.00 V to 5.50 V  
CC  
(2.85 V V  
– M41T83R  
3.00 V)  
RST  
1
V
= 2.70 V to 5.50 V  
CC  
SOX18, embedded crystal (300 mil)  
(2.55 V V  
2.70 V)  
RST  
– M41T83Z  
V
= 2.38 V to 5.50 V  
CC  
Oscillator stop detection  
(2.25 V V  
2.38 V)  
RST  
Battery or SuperCap™ backup  
Operating temperature of –40 °C to 85 °C  
2
Serial interface supports I C bus (400 kHz  
protocol)  
Package options  
Programmable alarm with interrupt function  
– a 16-lead QFN (M41T83),  
– an 8-lead SOIC (M41T82), or  
(valid even during battery backup mode)  
nd  
Optional 2 programmable alarm available  
– an 18-lead embedded crystal SOIC  
(M41T83)  
Square wave output defaults to 32 KHz on  
power-up (M41T83 only)  
RoHS compliance: lead-free components are  
RESET (RST) output  
compliant with the RoHS directive  
Watchdog timer  
Programmable 8-bit counter/timer  
7 bytes of battery-backed user SRAM  
Battery low flag  
Low operating current of 80 µA  
October 2012  
Doc ID 12578 Rev 15  
1/62  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
M41T82-M41T83  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2-wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.2  
2.3  
2.4  
2.5  
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data retention and battery switchover (VSO = VRST) . . . . . . . . . . . . . . . . 18  
Power-on reset (trec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3
Clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
3.2  
Clock data coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1.1  
3.1.2  
Example of incoherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Accessing the device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Halt bit (HT) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.2.1  
Power-down time-stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.3  
3.4  
Real-time clock accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.4.1  
3.4.2  
Digital calibration (periodic counter correction) . . . . . . . . . . . . . . . . . . . 28  
Analog calibration (programmable load capacitance) . . . . . . . . . . . . . . 31  
3.5  
3.6  
3.7  
3.8  
Setting the alarm clock registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Optional second programmable alarm and user SRAM . . . . . . . . . . . . . . 36  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8-bit (countdown) timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
M41T83 timer interrupt/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Timer flag (TF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Timer interrupt enable (TIE, M41T83 only) . . . . . . . . . . . . . . . . . . . . . . 39  
Timer enable (TE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
TD1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Contents  
3.9  
Square wave output (M41T83 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.10 Battery low warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.11 Century bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.12 Oscillator fail detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.13 Oscillator fail interrupt enable (M41T83 only) . . . . . . . . . . . . . . . . . . . . . . 43  
3.14 IRQ1/FT/OUT pin, frequency test, interrupts and the OUT bit  
(M41T83 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.14.1 Active mode operation on V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CC  
3.14.2 Backup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.15 FT/RST pin, frequency test and reset output pin (M41T82 only) . . . . . . . 46  
3.16 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.17 OTP bit operation (M41T83 in SOX18 package only) . . . . . . . . . . . . . . . 47  
4
5
6
7
8
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Doc ID 12578 Rev 15  
3/62  
List of tables  
M41T82-M41T83  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
M41T82 clock/control register map (32 bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Key to Table 2: M41T82 clock/control register map (32 bytes). . . . . . . . . . . . . . . . . . . . . . 24  
M41T83 clock/control register map (32 bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Key to Table 4: M41T83 clock/control register map (32 bytes). . . . . . . . . . . . . . . . . . . . . . 26  
Digital calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Analog calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Alarm repeat modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Watchdog register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Timer control register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Timer interrupt operation in free-running mode (with TI/TP = 1). . . . . . . . . . . . . . . . . . . . . 38  
Timer source clock frequency selection (244.1 µs to 4.25 hrs). . . . . . . . . . . . . . . . . . . . . . 39  
Square wave output frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Century bits examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Priority for IRQ1/FT/OUT pin when operating on V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Priority for IRQ1/FT/OUT pin when operating in backup mode . . . . . . . . . . . . . . . . . . . . . 45  
Initial power-on default values (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Initial power-up default values (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Power down/up trip points DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm pack. mech. data . . . . . . . . . . . 55  
SOX18 – 18-lead plastic small outline, 300 mils, embedded crystal, package mech. data 57  
SO8 – 8-lead plastic small outline (150 mils body width), package mech. data . . . . . . . . . 58  
Carrier tape dimensions for QFN16, SOX18, and SO8 packages . . . . . . . . . . . . . . . . . . . 59  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
M41T82 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
M41T83 logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SO8 (M) connections (M41T82) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
QFN16 (QA) connections (M41T83). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SOX18 (MY) connections (M41T83). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
M41T82 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
M41T82 hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
M41T83 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
M41T83 hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 10. Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 11. Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12. Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 14. Alternative read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 15. Write mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 16. Clock data coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17. Internal load capacitance adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 18. Crystal accuracy across temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19. Clock accuracy vs. on-chip load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20. Clock divider chain and calibration circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 21. Crystal isolation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 22. Timer output waveform in free-running mode (with TI/TP = 1) . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 23. Battery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 24. IRQ1/FT/OUT output pin circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 25. Measurement AC I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 26.  
I
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
CC2  
Figure 27. Power down/up mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 28. Bus timing requirement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 29. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm body size outline . . . . . . . . . . . 55  
Figure 30. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm, recommended footprint . . . . . . 56  
Figure 31. 32 KHz crystal + QFN16 vs. VSOJ20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 32. SOX18 – 18-lead plastic small outline, 300 mils, embedded crystal, outline . . . . . . . . . . . 57  
Figure 33. SO8 – 8-lead plastic small package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 34. Carrier tape for QFN16, SOX18, and SO8 packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Doc ID 12578 Rev 15  
5/62  
Description  
M41T82-M41T83  
1
Description  
2
The M41T8x are low-power serial I C real-time clocks (RTCs) with a built-in 32.768 kHz  
oscillator (external crystal-controlled for the QFN16 and SO8 packages, embedded crystal  
for the SOX18 package). Eight bytes of the register map (see Table 2 on page 23) are used  
for the clock/calendar function and are configured in binary-coded decimal (BCD) format. An  
additional 17 bytes of the register map provide status/control of the two alarms, watchdog,  
8-bit counter, and square wave functions. An additional seven bytes are made available as  
user SRAM.  
2
Addresses and data are transferred serially via a two-line, bidirectional I C interface. The  
built-in address register is incremented automatically after each WRITE or READ data byte.  
The M41T8x has a built-in power sense circuit which detects power failures and  
automatically switches to the battery supply when a power failure occurs. The energy  
needed to sustain the clock operations can be supplied by a small lithium button battery  
when a power failure occurs.  
Functions available to the user include a non-volatile, time-of-day clock/calendar, two alarm  
interrupts, watchdog timer, programmable 8-bit counter, and square wave outputs. The eight  
clock address locations contain the century, year, month, date, day, hour, minute, second,  
and tenths/hundredths of a second in 24-hour BCD format. Corrections for 28, 29 (leap  
year), 30, and 31 day months are made automatically. The M41T83 is supplied in either a  
QFN16 or an SOX18, 300 mil SOIC which includes an embedded 32 KHz crystal. The  
SOX18 package requires only a user-supplied battery to provide non-volatile operation. The  
M41T82 is available only in an SO8 package.  
6/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Figure 1.  
Description  
M41T82 logic diagram  
V
V
CC  
BAT  
XI  
XO  
(1)  
FT/RST  
SDA  
SCL  
V
SS  
AI11196  
1. Open drain  
Figure 2.  
M41T83 logic diagram  
V
V
BAT CC  
(2)  
(1)  
XI  
SQW  
(3)  
(1)  
IRQ1/OUT/FT  
XO  
(3)  
RST  
SDA  
SCL  
(3)  
IRQ2  
V
SS  
AI11195  
1. For QFN16 package only  
2. Defaults to 32 KHz on power-up  
3. Open drain  
Doc ID 12578 Rev 15  
7/62  
Description  
M41T82-M41T83  
Table 1.  
Signal names  
Symbol  
Description  
XI(1)  
XO(1)  
32 KHz oscillator input  
32 KHz oscillator output  
IRQ1/OUT/FT(2)  
SQW(3)  
RST  
Interrupt 1/output driver/frequency test output (open drain)  
32 KHz programmable square wave output  
Power-on reset output (open drain)  
Frequency test output/power-on reset (open drain - M41T82 only)  
Interrupt for alarm 2 (open drain)  
Serial data address input/output  
Serial clock input  
FT/RST  
IRQ2(2)  
SDA  
SCL  
VBAT  
Battery supply voltage (tie VBAT to VSS if no battery is connected.)  
Do not use  
DU(4)  
VCC  
Supply voltage  
VSS  
Ground  
1. For SO8 and QFN16 packages only.  
2. For SOX18 and QFN16 packages only.  
3. Defaults to 32 KHz on power-up.  
4. DU pin must be tied to VCC  
.
8/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Figure 3.  
Description  
SO8 (M) connections (M41T82)  
XI  
XO  
VBAT  
VSS  
1
2
3
4
8
7
6
5
VCC  
FT/RST(1)  
SCL  
M41T82  
SDA  
AI11199  
1. Open drain output  
Figure 4.  
QFN16 (QA) connections (M41T83)  
16  
14  
15  
13  
(1)  
(1)  
IRQ2  
RST  
1
2
3
4
12  
11  
(1)  
NC  
IRQ1/FT/OUT  
M41T83  
NC  
(2)  
10 SCL  
SDA  
9
SQW  
6
7
5
8
AI11197  
1. Open drain output.  
2. Defaults to 32 KHz on power-up.  
Figure 5.  
SOX18 (MY) connections (M41T83)  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
NC  
NF(1)  
NF(1)  
NC  
NC  
NF(1)  
NF(1)  
V
CC  
RST(2)  
IRQ2(2)  
NC  
M41T83  
DU(3)  
SQW(4)  
IRQ1/FT/OUT(2)  
V
V
BAT  
SS  
SCL  
SDA  
AI11198  
1. NF pins must be tied to VSS. Pins 2 and 3, and 16 and 17 are internally shorted together.  
2. Open drain output.  
3. Do not use (must be tied to VCC).  
4. Defaults to 32 KHz on power-up.  
Doc ID 12578 Rev 15  
9/62  
Description  
M41T82-M41T83  
Figure 6.  
M41T82 block diagram  
REAL TIME CLOCK  
CALENDAR  
OSCILLATOR FAIL  
XI  
CIRCUIT  
32KHz  
OSCILLATOR  
XO  
CRYSTAL  
ALARM1  
ALARM2  
WATCHDOG  
SDA  
SCL  
2
I C  
FT  
INTERFACE  
FREQUENCY TEST  
OUTPUT DRIVER  
WRITE  
PROTECT  
8-BIT COUNTER  
V
< V  
CC  
RST  
USER SRAM (7 Bytes)  
INTERNAL  
POWER  
V
CC  
V
BAT  
COMPARE  
t
(1)  
rec  
V
/V  
RST SO  
(2)  
RST  
TIMER  
AI11812  
1. VRST = VSO = 2.93 V (S), 2.63 V (R), and 2.32 V (Z).  
2. Open drain output.  
Figure 7.  
M41T82 hardware hookup  
V
CC  
MCU  
M41T82  
V
V
CC  
CC  
XI  
(1)  
Reset Input  
FT/RST  
XO  
Serial Clock Line  
Serial Data Line  
SCL  
SDA  
V
V
BAT  
SS  
AI11813  
1. Open drain output.  
10/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Figure 8.  
Description  
M41T83 block diagram  
REAL TIME CLOCK  
CALENDAR  
OSCILLATOR FAIL  
OFIE  
XI  
CIRCUIT  
32KHz  
OSCILLATOR  
XO  
A1IE  
A2IE  
CRYSTAL  
ALARM1  
ALARM2  
(1)  
IRQ2  
(1)  
WATCHDOG  
IRQ1/FT/OUT  
SDA  
SCL  
2
I C  
FT  
INTERFACE  
FREQUENCY TEST  
OUT  
TIE  
OUTPUT DRIVER  
8-BIT COUNTER  
SQUARE WAVE  
WRITE  
PROTECT  
V
< V  
CC  
RST  
SQWE  
SQW  
8 BITS OF OTP  
USER SRAM (7 Bytes)  
INTERNAL  
POWER  
V
CC  
V
BAT  
COMPARE  
t
(2)  
rec  
V
/V  
RST SO  
(1)  
RST  
TIMER  
AI11800  
1. Open drain output.  
2. VRST = VSO = 2.93 V (S), 2.63 V (R), and 2.32 V (Z).  
Figure 9.  
M41T83 hardware hookup  
V
CC  
MCU  
M41T83  
V
V
CC  
CC  
INT  
(1)  
IRQ1/FT/OUT  
XI  
(1)  
Reset Input  
Port  
RST  
(1)  
XO  
V
IRQ2  
Serial Clock Line  
Serial Data Line  
32KHz CLKIN  
SCL  
BAT  
SDA  
V
SS  
SQW  
AI11801  
1. Open drain output.  
Doc ID 12578 Rev 15  
11/62  
Operation  
M41T82-M41T83  
2
Operation  
The M41T8x clock operates as a slave device on the serial bus. Access is obtained by  
implementing a start condition followed by the correct slave address (D0h). The 32 bytes  
contained in the device can then be accessed sequentially in the following order:  
st  
1 byte: tenths/hundredths of a second register  
nd  
2
3
byte: seconds register  
byte: minutes register  
rd  
th  
4 byte: century/hours register  
th  
5 byte: day register  
th  
6 byte: date register  
th  
7 byte: month register  
th  
8 byte: year register  
th  
9 byte: digital calibration register  
th  
10 byte: watchdog register  
th  
th  
11 - 15 bytes: alarm 1 registers  
th  
16 byte: flags register  
th  
17 byte: timer value register  
th  
18 byte: timer control register  
th  
19 byte: analog calibration register  
th  
20 byte: square wave register  
st  
th  
21 - 25 bytes: alarm 2 registers  
th  
nd  
26 - 32 bytes: user RAM  
The M41T8x clock continually monitors V for an out-of-tolerance condition. Should V  
CC  
CC  
fall below V , the device terminates an access in progress and resets the device address  
RST  
counter. Inputs to the device will not be recognized at this time to prevent erroneous data  
from being written to the device from an out-of-tolerance system. The power input will also  
be switched from the V pin to the battery when V falls below the battery back-up  
CC  
CC  
switchover voltage (V = V  
). At this time the clock registers will be maintained by the  
SO  
RST  
attached battery supply. As system power returns and V rises above V , the battery is  
CC  
SO  
disconnected, and the power supply is switched to external V  
.
CC  
12/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Operation  
2.1  
2-wire bus characteristics  
The bus is intended for communication between different ICs. It consists of two lines: a bi-  
directional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be  
connected to a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy.  
During data transfer, the data line must remain stable whenever the clock line is high.  
Changes in the data line, while the clock line is high, will be interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined:  
2.1.1  
2.1.2  
Bus not busy  
Both data and clock lines remain high.  
Start data transfer  
A change in the state of the data line, from high to low, while the clock is high, defines the  
START condition.  
2.1.3  
2.1.4  
Stop data transfer  
A change in the state of the data line, from low to high, while the clock is high, defines the  
STOP condition.  
Data valid  
The state of the data line represents valid data when after a start condition, the data line is  
stable for the duration of the high period of the clock signal. The data on the line may be  
changed during the low period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and stop conditions is not limited.  
The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.  
By definition a device that gives out a message is called transmitter,the receiving device  
that gets the message is called receiver.The device that controls the message is called  
master.The devices that are controlled by the master are called slaves.”  
Doc ID 12578 Rev 15  
13/62  
Operation  
M41T82-M41T83  
2.1.5  
Acknowledge  
Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low  
level put on the bus by the receiver whereas the master generates an extra acknowledge  
related clock pulse. A slave receiver which is addressed is obliged to generate an  
acknowledge after the reception of each byte that has been clocked out of the slave  
transmitter.  
The device that acknowledges has to pull down the SDA line during the acknowledge clock  
pulse in such a way that the SDA line is a stable low during the high period of the  
acknowledge related clock pulse. Of course, setup and hold times must be taken into  
account. A master receiver must signal an end of data to the slave transmitter by not  
generating an acknowledge on the last byte that has been clocked out of the slave. In this  
case the transmitter must leave the data line high to enable the master to generate the  
STOP condition.  
Figure 10. Serial bus data transfer sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
AI00587  
Figure 11. Acknowledgement sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCL FROM  
1
2
8
9
MASTER  
DATA OUTPUT  
MSB  
LSB  
BY TRANSMITTER  
DATA OUTPUT  
BY RECEIVER  
AI00601  
14/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Operation  
2.2  
Read mode  
In this mode the master reads the M41T8x slave after setting the slave address (see  
Figure 13 on page 16). Following the WRITE mode control bit (R/W = 0) and the  
acknowledge bit, the word address 'An' is written to the on-chip address pointer. Next the  
START condition and slave address are repeated followed by the READ mode control bit  
(R/W = 1). At this point the master transmitter becomes the master receiver. The data byte  
which was addressed will be transmitted and the master receiver will send an acknowledge  
bit to the slave transmitter. The address pointer is only incremented on reception of an  
acknowledge clock. The M41T8x slave transmitter will now place the data byte at address  
An+1 on the bus, the master receiver reads and acknowledges the new byte and the  
address pointer is incremented to An+2.  
This cycle of reading consecutive addresses will continue until the master receiver sends a  
STOP condition to the slave transmitter. Most of the registers and memory locations are  
accessed directly, but the RTC counters are accessed via a set of buffer/transfer registers at  
addresses 00h to 07h. The counters are not directly read nor written. Instead, at the start of  
a read or write cycle, the counters are copied into the eight buffer/transfer registers so that  
the user can read them out sequentially, receiving a coherent set of data, copied from the  
same instant in time.  
An alternate READ mode may also be implemented whereby the master reads the M41T8x  
slave without first writing to the (volatile) address pointer. The first address that is read is the  
last one stored in the pointer (see Figure 14 on page 16).  
Figure 12. Slave address location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
Doc ID 12578 Rev 15  
15/62  
 
 
Operation  
M41T82-M41T83  
Figure 13. Read mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
Figure 14. Alternative read mode sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
16/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Operation  
2.3  
Write mode  
In this mode the master transmitter transmits to the M41T8x slave receiver. Bus protocol is  
shown in Figure 15. Following the START condition and slave address, a logic 0 (R/W = 0) is  
placed on the bus and indicates to the addressed device that word address Anwill follow  
and is to be written to the on-chip address pointer. The data word to be written to the  
memory is strobed in next and the internal address pointer is incremented to the next  
address location on the reception of an acknowledge clock. The M41T8x slave receiver will  
send an acknowledge clock to the master transmitter after it has received the slave address  
see Figure 12 on page 15 and again after it has received the word address and each data  
byte.  
Figure 15. Write mode sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
As in the case of reading, some registers and memory locations are written directly, but the  
RTC counters are written via a set of eight buffer/transfer registers at addresses 00h to 07h.  
2
The user will write the date and time information sequentially, and then, at the end of the I C  
write cycle or when the address pointer increments beyond 07h, the buffer/transfer registers  
will be copied into the RTC counters. All the time parameters - fractions, seconds, minutes,  
hours, day, date, month, year, and century bits - are copied simultaneously.  
Whatever value is in the buffer/transfer registers will be copied to the counters, so if the user  
only changes one of the eight bytes, the remaining seven bytes will receive the unchanged  
contents of the buffer/transfer registers, which will contain whatever was in the counters at  
the start of the write access.  
For example, if the user starts a write cycle on Monday, November 16, 2009, at 17:52:27.03,  
and writes a 22 to the minutes registers, the value Monday, November 16, 2009,  
17:52:22.03 will be written back into the counters. At the start of the write cycle, the eight  
bytes of counters were copied into the buffer/transfer registers. Then, the seconds register  
was overwritten. Finally, the eight bytes were copied back into the counters with the result  
that the seconds value was changed.  
Doc ID 12578 Rev 15  
17/62  
 
 
Operation  
M41T82-M41T83  
2.4  
Data retention and battery switchover (VSO = VRST  
)
Once V falls below the switchover voltage (V = V ), the device automatically  
RST  
CC  
SO  
switches over to the battery and powers down into an ultra low current mode of operation to  
preserve battery life. If V is less than, or greater than V , the device power is switched  
BAT  
RST  
from V to V  
when V drops below V  
(see Figure 27 on page 52). At this time the  
CC  
BAT  
CC  
RST  
clock registers and user RAM will be maintained by the attached battery supply.  
When it is powered back up, the device switches back from battery to V at V  
+
SO  
CC  
hysteresis. When V rises above V , it will recognize the inputs. For more information  
CC  
RST  
on battery storage life refer to Application Note AN1012.  
2.5  
Power-on reset (trec)  
The M41T8x continuously monitors V . When V falls to the power fail detect trip point,  
CC  
CC  
the RST output pulls low (open drain) and remains low after power-up for t (210 ms  
rec  
typical) after V rises above V  
(max).  
CC  
RST  
Note:  
The t period does not affect the RTC operation. Write protect only occurs when V is  
rec CC  
below V . When V rises above V , the RTC will be selectable immediately. Only the  
RST  
CC  
RST  
RST output is affected by the t period.  
rec  
The RST pin is an open drain output and an appropriate pull-up resistor to V should be  
CC  
chosen to control the rise time.  
18/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Clock operation  
3
Clock operation  
The M41T8x is driven by a quartz-controlled oscillator with a nominal frequency of  
32.768 kHz. The accuracy of the real-time clock depends on the frequency of the quartz  
crystal that is used as the time-base for the RTC.  
The 8-byte clock register (see Table 2 on page 23 and Table 4 on page 25) is used to both  
set the clock and to read the date and time from the clock, in binary coded decimal format.  
Tenths/hundredths of seconds, seconds, minutes, and hours are contained within the first  
four registers.  
Bit D7 of register 01h contains the STOP bit (ST). Setting this bit to a '1' will cause the  
oscillator to stop. When reset to a 0 the oscillator restarts within one second (typical).  
Note:  
Upon initial power-up, the user should set the ST bit to a '1,' then immediately reset the ST  
bit to 0. This provides an additional “kick-start” to the oscillator circuit.  
Bits D6 and D7 of clock register 03h (century/ hours register) contain the CENTURY bit 0  
(CB0) and CENTURY bit 1 (CB1). Bits D0 through D2 of register 04h contain the day (day of  
week). Registers 05h, 06h, and 07h contain the date (day of month), month, and years. The  
ninth clock register is the digital calibration register, while the analog calibration register is  
found at address 12h (these are both described in Section 3.4: Clock calibration). The RTC  
includes an oscillator fail detect circuit which sets the OF bit in the flags register (bit 2,  
register 0fh). For the M41T83, bit D7 of register 09h (watchdog register) contains the  
oscillator fail interrupt enable bit (OFIE) which can be used to enable an interrupt when the  
OF bit is set (see Section 3.12: Oscillator fail detection on page 42) will also generate an  
interrupt output.  
Note:  
A WRITE to ANY location within the first eight bytes of the clock register (00h-07h),  
including the ST bit and CB0-CB1 bits will result in an update of the RTC counters and a  
reset of the divider chain. This could result in an inadvertent change of the current time. For  
example, the ST bit is in the seconds register (address 01h) and the century bits (CB0-CB1)  
are in the hours register (address 03h), so the user should take care to not alter these other  
parameters when changing the ST bit or the century bits.  
The eight clock registers may be read one byte at a time or in a sequential block. At the start  
of a read cycle, a copy of the time/date counters is placed in the buffer/transfer registers and  
can then be transferred out sequentially without concern that the time/date increments  
during the transfer and thus yields a corrupt value. For example, if the user were to read the  
seconds register, then start another bus cycle to read the minutes register, the minutes  
counter could have incremented during the time between the two read cycles. The seconds  
and minutes values would not be from the same instant in time; they would not be coherent.  
By using the sequential read feature, the values shifted out are from the same instant in time  
and are thus coherent.  
Similarly, when writing to the RTC registers, during one write cycle, the user can  
sequentially transfer all eight bytes of time/date into the buffer/transfer registers whereupon  
they will be loaded simultaneously into the RTC counters thus ensuring a coherent update  
of the time/date.  
Doc ID 12578 Rev 15  
19/62  
 
Clock operation  
M41T82-M41T83  
3.1  
Clock data coherency  
In order to synchronize the data during reads and writes of the real-time clock device, a set  
2
of buffer transfer registers resides between the I C serial interface on the user side, and the  
clock/calendar counters in the part. While the read/write data is transferred in and out of the  
device one bit at a time to the user, the transfers between the buffer registers and counters  
occur such that all the bits are copied simultaneously. This keeps the data coherent and  
ensures that none of the counters are incremented while the data is being transferred.  
Figure 16. Clock data coherency  
32KHz  
OSC  
RTC  
AT START OF READ OR WRITE,  
DATA IN COUNTERS IS COPIED TO  
BUFFER/TRANSFER REGISTERS.  
COUNTERS  
DIVIDE BY 32768  
1 Hz  
COUNTER  
READ / WRITE  
BUFFER-TRANSFER  
REGISTERS  
COUNTER  
COUNTER  
SECONDS  
MINUTES  
HOURS  
DAY-OF-WEEK  
DATE  
2
2
I C  
COUNTER  
2
I C  
COUNTER  
INTERFACE  
MONTHS  
YEARS  
CENTURIES  
COUNTER  
COUNTER  
COUNTER  
AFTER A WRITE, DATA IS TRANSFERRED  
FROM BUFFERS TO COUNTERS  
NON-CLOCK  
REGISTERS  
SQUAREWAVE  
CALIBRATION  
HALT BIT SET AT POWER-DOWN  
ALARM / HALT  
WATCHDOG  
3.1.1  
Example of incoherency  
Without having the intervening buffer/transfer registers, if the user began directly reading the  
counters at 23:59:59, a read of the seconds register would return 59 seconds. After the  
address pointer incremented, the next read would return 59 minutes. Then the next read  
should return 23 hours, but if the clock happened to increment between the reads, the user  
would see 00 hours. When the time was re-assembled, it would appear as 00:59:59, and  
thus be incorrect by one hour.  
By using the buffer/transfer registers to hold a copy of the time, the user is able to read the  
entire set of registers without any values changing during the read.  
Similarly, when the application needs to change the time in the counters, it is necessary that  
all the counters be loaded simultaneously. Thus, the user writes sequentially to the various  
buffer/transfer registers, then they are copied to the counters in a single transfer thereby  
coherently loading the counters.  
20/62  
Doc ID 12578 Rev 15  
 
 
M41T82-M41T83  
Clock operation  
3.1.2  
Accessing the device  
The M41T82/83 is comprised of 32 addresses which provide access to registers for time  
and date, digital and analog calibration, two alarms, watchdog, flags, timer, squarewave  
(M41T83 only) and NVRAM. The clock and alarm parameters are in binary coded decimal  
(BCD) format. The calibration, timer, watchdog, and squarewave parameters are in a binary  
format.  
In the case of the M41T82 and M41T83, at the start of each read or write serial transfer, the  
counters are automatically copied to the buffer registers. In the event of a write to any  
register in the range 0-7, at the end of the serial transfer, the buffer registers are copied back  
into the counters thus revising the date/time. Any of the eight clock registers (addresses 0-  
7) not updated during the transfer will have its old value written back into the counters. For  
example, if only the seconds value is revised, the other seven counters will end up with the  
same values they had at the start of the serial transfer.  
However, writes which do not affect the clock registers - that is, a write only to the non-clock  
registers (addresses 0x08 to 0x1F) - will not cause the buffer registers to be copied back to  
the counters. The counters are only updated if a register in the range 0-7 was written.  
Whenever the RTC registers (addresses 0-7) are written, the divider chain from the  
oscillator is reset.  
3.2  
Halt bit (HT) operation  
When the part is powered down into battery backup mode, a control bit, called the Halt or  
HT bit, is set automatically. This inhibits any subsequent transfers from the counters to the  
buffer registers thereby freezing in the buffer registers the time/date of the last access of the  
part.  
Repeated reads of the clock registers will return the same value. After the HT bit is cleared,  
by writing bit 6 of address 0x0C to 0, the next read of the RTC will return the present time.  
Note:  
Writes to the RTC registers (addresses 0-7) with the HT bit set can cause time corruption.  
Since the buffer registers contain the time of the last access prior to the HT bit being set, any  
write in the address range 0-7 will result in the time of the last access being copied back into  
the counters.  
Example: The last access was November 17, 2009, at 16:15:07.77. The system later  
powered down thus setting the HT bit and freezing that value in the buffers. Later, on  
December 18, 2009, at 03:22:43.35, the system is powered up and the user writes the  
seconds to 46 without first clearing the HT bit. At the end of the serial transfer, the old  
time/date, with the seconds modified to 46, will be written back into the clock registers  
thereby corrupting them. The new, wrong time will be November 17, 2009, at 16:15:46.77.  
This makes it appear the RTC lost time during the power outage.  
Thus, at power-up, the user should always clear the HT bit (write bit 6 to 0 at address 0x0C)  
before writing to any address in the range 0-7.  
A typical power-up flow is to read the time of last access, then clear the HT bit, then read the  
current time.  
Doc ID 12578 Rev 15  
21/62  
 
Clock operation  
M41T82-M41T83  
3.2.1  
Power-down time-stamp  
Some applications may need to determine the amount of time spent in backup mode. That  
can be calculated if the time of power-down and the time of power-up are known. The latter  
is straightforward to obtain. But the time of power-down is only available if an access  
occurred just prior to power-down. That is, if there was an access of the device just prior to  
power-down, the time of the access would have been frozen in the buffer transfer registers  
and thus the approximate time of power-down could be obtained.  
If an application requires the time of power-down, the best way to implement it is to set up  
the software to do frequent reads of the clock, such as once every 1 or 5 seconds. That  
way, at power-up, the buffer-transfer registers will contain a time value within 1 (or 5)  
seconds of the actual time of power-down. For more information, please refer to AN1572,  
“Power-down time-stamp function in serial real-time clocks (RTCs)”.  
22/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Clock operation  
(1)  
Table 2.  
Addr  
M41T82 clock/control register map (32 bytes)  
Function/range BCD  
format  
D7  
D6  
0.1 seconds  
10 seconds  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h-1Fh  
0.01 seconds  
seconds  
seconds  
seconds  
minutes  
00-99  
00-59  
00-59  
0-3/00-23  
01-7  
ST  
0
10 minutes  
minutes  
CB1  
0
CB0  
10 hours  
Hours (24 hour format)  
Day of week  
Date: day of month  
Month  
Century/hours  
Day  
0
0
0
0
0
0
0
10 date  
Date  
01-31  
01-12  
00-99  
0
0
10M  
Month  
10 years  
Year  
Year  
0
0
0
FT  
BMB4  
0
DCS  
BMB3  
ABE  
DC4  
BMB2  
DC3  
DC2  
DC1  
RB1  
DC0  
RB0  
Digital calibration  
Watchdog  
Al1 month  
Al1 date  
Al1 hour  
Al1 min  
BMB1 BMB0  
Al1 10M  
Alarm1 month  
Alarm1 date  
01-12  
01-31  
00-23  
00-59  
00-59  
RPT14 RPT15  
AI1 10 date  
AI1 10 hour  
RPT13  
RPT12  
RPT11  
WDF  
HT  
Alarm1 hour  
Alarm1 10 minutes  
Alarm1 10 seconds  
Alarm1 minutes  
Alarm1 seconds  
Al1 sec  
AF1  
AF2(2)  
Timer countdown value  
BL  
TF  
OF  
0
0
Flags  
Timer value  
Timer control  
TE  
ACS  
0
0
AC6  
0
0
AC5  
0
0
AC4  
0
0
AC3  
0
0
AC2  
0
TD1  
AC1  
TD0  
AC0 Analog calibration  
AL2E  
0
SQW  
0(3)  
0(3)  
0(3)  
Al2 10M  
Alarm2 month  
Alarm2 month  
Alarm2 date  
SRAM/Al2 month  
SRAM/Al2 date  
SRAM/Al2 hour  
SRAM/Al2 min  
SRAM/Al2 sec  
SRAM  
01-12  
01-31  
00-23  
00-59  
00-59  
RPT24 RPT25  
AI2 10 date  
AI2 10 hour  
RPT23  
RPT22  
RPT21  
0(3)  
Alarm2 10 minutes  
Alarm2 10 seconds  
Alarm2 minutes  
Alarm2 seconds  
User SRAM (7 bytes)  
1. See Table 3: Key to Table 2: M41T82 clock/control register map (32 bytes)  
2. AF2 will always read 0, if the AL2E bit is set to 0.  
3. As indicated in Table 3, the 0 bits should be written to 0. But in the case of these four bits, when AL2E is 0, registers 14-18h  
are SRAM locations and these bits become SRAM cells which are thus excluded from that restriction.  
Doc ID 12578 Rev 15  
23/62  
 
Clock operation  
M41T82-M41T83  
Table 3.  
Key to Table 2: M41T82 clock/control register map (32 bytes)  
Code Explanation  
Must be set to zero  
0
ABE  
Alarm in battery backup enable bit  
Analog calibration bits  
Analog calibration sign bit  
Alarm flag bits  
AC0-AC6  
ACS  
AF1, AF2  
AL2E  
Alarm 2 enable bit  
Battery low bit  
BL  
BMB0-BMB4  
CB0, CB1  
DC0-DC4  
DCS  
Watchdog multiplier bits  
Century bits  
Digital calibration bits  
Digital calibration sign bit  
Frequency test bit  
Halt update bit  
FT  
HT  
OF  
Oscillator fail bit  
RB0-RB2  
RPT11-RPT15  
RPT21-RPT25  
ST  
Watchdog resolution bits  
Alarm 1 repeat mode bits  
Alarm 2 repeat mode bits  
Stop bit  
TD0, TD1  
TE  
Timer frequency bits  
Timer enable bit  
TF  
Timer flag  
WDF  
Watchdog flag  
24/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Clock operation  
(1)  
Table 4.  
Addr  
M41T83 clock/control register map (32 bytes)  
Function/range BCD  
format  
D7  
D6  
0.1 seconds  
10 seconds  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0.01 seconds  
seconds  
seconds  
seconds  
Minutes  
Century/hours  
Day  
00-99  
00-59  
00-59  
0-3/00-23  
01-7  
ST  
0
10 minutes  
Minutes  
CB1  
0
CB0  
10 hours  
Hours (24 hour format)  
Day of week  
Date: day of month  
Month  
0
0
0
0
0
0
0
10 date  
Date  
01-31  
01-12  
00-99  
0
0
10M  
Month  
10 years  
Year  
Year  
OUT  
FT  
DCS  
DC4  
DC3  
DC2  
DC1  
RB1  
DC0 Digital calibration  
OFIE  
BMB4  
BMB3  
BMB2  
BMB1  
BMB0  
RB0  
Watchdog  
Al1 month  
Al1  
10M  
0Ah  
A1IE  
SQWE  
ABE  
Alarm 1month  
01-12  
0Bh RPT14 RPT15  
AI1 10 date  
AI1 10 hour  
Alarm1 date  
Alarm1 hour  
Al1 date  
Al1 hour  
Al1 min  
01-31  
00-23  
00-59  
00-59  
0Ch RPT13  
0Dh RPT12  
0Eh RPT11  
HT  
Alarm1 10 minutes  
Alarm1 10 seconds  
Alarm1 minutes  
Alarm1 seconds  
Al1 sec  
0Fh  
10h  
11h  
WDF  
AF1  
AF2(2)  
BL  
TF  
OF  
0
0
Flags  
Timer countdown value  
Timer value  
Timer control  
TE  
TI/TP  
AC6  
RS2  
0(3)  
TIE  
AC5  
RS1  
0(3)  
0
0
AC3  
0
0
AC2  
0
TD1  
AC1  
TD0  
AC0  
OTP  
Analog  
calibration  
12h  
13h  
14h  
ACS  
RS3  
A2IE  
AC4  
RS0  
AL2E  
SQW  
Al2  
10M  
Alarm2 month  
SRAM/Al2 month  
01-12  
15h RPT24 RPT25  
AI2 10 date  
AI2 10 hour  
Alarm2 date  
Alarm2 hour  
SRAM/Al2 date  
SRAM/Al2 hour  
SRAM/Al2 min  
SRAM/Al2 sec  
01-31  
00-23  
00-59  
00-59  
16h RPT23  
17h RPT22  
18h RPT21  
0(3)  
Alarm2 10 minutes  
Alarm2 10 seconds  
Alarm2 minutes  
Alarm2 seconds  
19h-  
1Fh  
User SRAM (7 bytes)  
SRAM  
1. See Table 5: Key to Table 4: M41T83 clock/control register map (32 bytes).  
2. AF2 will always read 0, if the AL2E bit is set to 0.  
3. As indicated in Table 5, the 0 bits should be written to 0. But in the case of these three bits, when AL2E is 0, registers  
14-18h are SRAM locations and these bits become SRAM cells which are thus excluded from that restriction.  
Doc ID 12578 Rev 15  
25/62  
 
Clock operation  
M41T82-M41T83  
Table 5.  
Key to Table 4: M41T83 clock/control register map (32 bytes)  
Code Explanation  
Must be set to zero  
0
ABE  
Alarm in battery back-up enable bit  
Alarm interrupt enable bits  
Analog calibration bits  
Analog calibration sign bit  
Alarm flag  
A1IE, A2IE  
AC0-AC6  
ACS  
AF1, AF2  
AL2E  
Alarm 2 enable bit  
Battery low bit  
BL  
BMB0-BMB4  
CB0, CB1  
DC0-DC4  
DCS  
Watchdog multiplier bits  
Century bits  
Digital calibration bits  
Digital calibration Sign bit  
Frequency test bit  
Halt update bit  
FT  
HT  
OF  
Oscillator fail bit  
OUT  
Output level  
OFIE  
Oscillator fail interrupt enable  
OTP control bit  
OTP  
RB0-RB2  
RPT11-RPT15  
RPT21-RPT25  
RS0-RS3  
SQWE  
SRAM/ALM2  
ST  
Watchdog resolution bits  
Alarm 1 repeat mode bits  
Alarm 2 repeat mode bits  
SQW frequency  
Square wave enable  
SRAM/alarm 2 bit  
Stop bit  
TD0, TD1  
TE  
Timer frequency bits  
Timer enable bit  
TF  
Timer flag  
TI/TP  
Timer interrupt or pulse  
Timer interrupt enable  
Watchdog flag  
TIE  
WDF  
26/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Clock operation  
3.3  
Real-time clock accuracy  
The M41T8x is driven by a quartz controlled oscillator with a nominal frequency of  
32,768 Hz. The accuracy of the real-time clock is dependent upon the accuracy of the  
crystal, and the match between the capacitive load of the oscillator circuit and the capacitive  
load for which the crystal was trimmed. Temperature also affects the crystal frequency,  
causing additional error (see Figure 18 on page 32).  
The M41T8x provides the option of clock correction through either manufacturing calibration  
or in-application calibration. The total possible compensation is typically –93 ppm to  
+156 ppm. The two compensation circuits that are available are:  
1. An analog calibration register (12h) can be used to adjust internal (on-chip) load  
capacitors for oscillator capacitance trimming. The individual load capacitors C and  
XI  
C
(see Figure 17), are selectable from a range of –18 pF to +9.75 pF in steps of  
XO  
0.25 pF. This translates to a calculated compensation of approximately 30 ppm (see  
Section 3.4.2: Analog calibration (programmable load capacitance) on page 31).  
2. A digital calibration register (08h) can also be used to adjust the clock counter by  
adding or subtracting a pulse at the 512 Hz divider stage. This approach provides  
periodic compensation of approximately –63 ppm to +126 ppm (see Section 3.4.1:  
Digital calibration (periodic counter correction) on page 28).  
Figure 17. Internal load capacitance adjustment  
XI  
C
XI  
Crystal Oscillator  
XO  
C
XO  
AI11804  
Doc ID 12578 Rev 15  
27/62  
 
Clock operation  
M41T82-M41T83  
3.4  
Clock calibration  
The M41T8x oscillator is designed for use with a 12.5 pF crystal load capacitance. When  
the calibration circuit is properly employed, accuracy improves to better than 1 ppm at  
25 °C.  
The M41T8x design provides the following two methods for clock error correction.  
3.4.1  
Digital calibration (periodic counter correction)  
This method employs the use of periodic counter correction by adjusting the ratio of the  
100 Hz divider stage to the 512 Hz divider stage. Under normal operation, the 100 Hz  
divider stage outputs precisely 100 pulses for every 512 pulses of the 512 Hz input stage to  
provide the input frequency to the fraction of seconds clock register. By adjusting the  
number of 512 Hz input pulses used to generate 100 output pulses, the clock can be sped  
up or slowed down, as shown in Figure 20 on page 34.  
When a non-zero value is loaded into the five calibration bits (DC4 – DC0) found in the  
digital calibration register (08h) and the sign bit is 1, (indicating positive calibration), the  
100 Hz stage outputs 100 pulses for every 511 input pulses instead of the normal 512.  
Since the 100 pulses are now being output in a shorter window, this has the effect of  
speeding up the clock by 1/512 seconds for each second the circuit is active. Similarly, when  
the sign bit is 0, indicating negative calibration, the block outputs 100 pulses for every 513  
input pulses. Since the 100 pulses are then being output in a longer window, this has the  
effect of slowing down the clock by 1/512 seconds for each second the circuit is active.  
The amount of calibration is controlled by using the value in the calibration register (N) to  
generate the adjustment in one second increments. This is done for the first N seconds once  
every eight minutes for positive calibration, and for N seconds once every sixteen minutes  
for negative calibration (see Table 6 on page 30).  
For example, if the calibration register is set to 100010, then the adjustment will occur for  
two seconds in every minute. Similarly, if the calibration register is set to 000011, then the  
adjustment will occur for 3 seconds in every alternating minute.  
The digital calibration bits (DC4 – DC0) occupy the five lower order bits in the digital  
calibration register (08h). These bits can be set to represent any value between 0 and 31 in  
binary form. The sixth bit (DCS) is a sign bit; 1 indicates positive calibration, 0 indicates  
negative calibration. Calibration occurs within an 8-minute (positive) or 16-minute (negative)  
cycle. Therefore, each calibration step has an effect on clock accuracy of +4.068 or  
–2.034 ppm. Assuming that the oscillator is running at exactly 32,768 Hz, each of the 31  
increments in the calibration byte would represent +10.7 or –5.35 seconds per month, which  
corresponds to a total range of +5.5 or –2.75 minutes per month.  
One method of determining the amount of digital calibration required is to use the frequency  
test output (FT) of the device (see Section 3.14: IRQ1/FT/OUT pin, frequency test,  
interrupts and the OUT bit (M41T83 only) on page 43 for more information on enabling the  
FT output).  
When FT is enabled, a 512 Hz signal is output in the IRQ1/FT/OUT pin on the M41T83, and  
on the FT/RST pin on the M41T82. This signal can be measured using a highly accurate  
timing device such as a frequency counter. The measured value is then compared to 512 Hz  
and the oscillator error in ppm is then determined.  
The user should keep in mind that changes in the digital calibration value will not affect the  
signal measured on the FT pin. While the analog calibration circuit does affect the oscillator,  
28/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Clock operation  
the digital calibration circuitry uses periodic counter correction which occurs downstream of  
the 512 Hz divider chain and hence has no effect on the FT pin.  
Note:  
1
2
The modified pulses are not observable on the frequency test (FT) output, nor will the effect  
of the calibration be measurable real-time, due to the periodic nature of the error  
compensation.  
Positive digital calibration is performed on an eight minute cycle, therefore the value in the  
calibration register should not be modified more frequently than once every eight minutes for  
positive values of calibration. Negative digital calibration is performed on a sixteen minute  
cycle, therefore negative values in the calibration register should not be modified more  
frequently than once every sixteen minutes.  
Doc ID 12578 Rev 15  
29/62  
Clock operation  
M41T82-M41T83  
Table 6.  
Digital calibration values  
Calibration value rounded to the nearest ppm  
Calibration value (binary)  
Negative calibration (DCS = 0)  
to slow a fast clock  
Positive calibration (DCS = 1)  
to speed up a slow clock  
DC4 – DC0  
0 (00000)  
1 (00001)  
2 (00010)  
3 (00011)  
4 (00100)  
5 (00101)  
6 (00110)  
7 (00111)  
8 (01000)  
9 (01001)  
10 (01010)  
11 (01011)  
12 (01100)  
13 (01101)  
14 (01110)  
15 (01111)  
16 (10000)  
17 (10001)  
18 (10010)  
19 (10011)  
20 (10100)  
21 (10101)  
22 (10110)  
23 (10111)  
24 (11000)  
25 (11001)  
26 (11010)  
27 (11011)  
28 (11100)  
29 (11101)  
30 (11110)  
31 (11111)  
0
0
4
–2  
–4  
8
–6  
12  
16  
20  
24  
28  
33  
37  
41  
45  
49  
53  
57  
61  
65  
69  
73  
77  
81  
85  
90  
94  
98  
102  
106  
110  
114  
118  
122  
126  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–31  
–33  
–35  
–37  
–39  
–41  
–43  
–45  
–47  
–49  
–51  
–53  
–55  
–57  
–59  
–61  
–63  
N
N/491520 (per minute)  
N/245760 (per minute)  
30/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Clock operation  
3.4.2  
Analog calibration (programmable load capacitance)  
A second method of calibration employs the use of programmable internal load capacitors to  
adjust (or trim) the oscillator frequency. As discussed in Section 3.4.1, the 512 Hz frequency  
test output can be used to determine the amount of frequency error in the oscillator.  
Changes in the analog calibration value will affect the frequency test output, thus the user  
can immediately see the effects of these changes (see Section 3.14 on page 43 for more  
information on enabling the FT output).  
By design, the oscillator is intended to be 0 ppm crystal accuracy at room temperature  
(25 °C, see Figure 18 on page 32). For a 12.5 pF crystal, the default loading on each side of  
the crystal will be 25 pF. For incrementing or decrementing the calibration value,  
capacitance will be added or removed in increments of 0.25 pF to each side of the crystal.  
Internally, C  
of the oscillator is changed via two digitally controlled capacitors, C and  
XI  
LOAD  
C
, connected from the XI and XO pins to ground (see Figure 17 on page 27). The  
XO  
effective on-chip series load capacitance, C  
nominal value of 12.5 pF (AC0 – AC6 = 0).  
, ranges from 3.5 pF to 17.4 pF, with a  
LOAD  
The effective series load capacitance (C  
) is the combination of C and C  
:
XO  
LOAD  
XI  
C
= 1 ⁄ (1 C + 1 C  
)
XO  
LOAD  
XI  
Seven analog calibration bits, AC0 to AC6, are provided in order to adjust the on-chip load  
capacitance value for frequency compensation of the RTC. Each bit has a different weight  
for capacitance adjustment. An analog calibration sign (ACS) bit determines if capacitance  
is added (ACS bit = 0, negative calibration) or removed (ACS bit = 1, positive calibration).  
The majority of the calibration adjustment is positive (i.e. to increase the oscillator frequency  
by removing capacitance) due to the typical characteristic of quartz crystals to slow down  
due to changes in temperature, but negative calibration is also available.  
Since the analog calibration register adjustment is essentially pulling the frequency of the  
oscillator, the resulting frequency changes will not be linear with incremental capacitance  
changes. The equations which govern this mechanism indicate that smaller capacitor values  
of analog calibration adjustment will provide larger increments. Thus, the larger values of  
analog calibration adjustment will produce smaller incremental frequency changes. These  
values typically vary from 6-10 ppm/bit at the low end to <1 ppm/bit at the highest  
capacitance settings. The range provided by the analog calibration register adjustment with  
a typical surface mount crystal is approximately 30 ppm around the AC6-AC0 = 0 default  
setting because of this property (see Table 7 on page 32).  
Pre-programmed calibration value  
Users of the M41T83 in the embedded crystal package have the option of using the factory  
programmed analog calibration value (refer to Section 3.17: OTP bit operation (M41T83 in  
SOX18 package only) on page 47).  
Doc ID 12578 Rev 15  
31/62  
 
Clock operation  
M41T82-M41T83  
Figure 18. Crystal accuracy across temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
2
ΔF  
F
= K x (T – TO)  
80  
–100  
–120  
–140  
–160  
= –0.036 ppm/°C2 0.006 ppm/°C2  
TO = 25°C 5°C  
K
–40  
30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI07888  
Table 7.  
Analog calibration values  
Analog  
(1)  
calibration D7  
value  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CXI, CXO  
CLOAD  
Addr  
ACS  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
AC0  
½(CXI, CXO  
)
( ) (16 pF) (8 pF) (4 pF) (2 pF) (1 pF) (0.5 pF) (0.25 pF)  
0 pF  
3 pF  
x
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
1
0
25 pF  
28 pF  
30 pF  
18 pF  
34.75 pF  
7 pF  
12.5 pF  
14 pF  
15 pF  
9 pF  
5 pF  
12h  
–7 pF  
9.75 pF(2)  
–18 pF(3)  
17.4 pF  
3.5 pF  
1. CLOAD = 1/(1/CXI + 1/CXO).  
2. Maximum negative calibration value.  
3. Maximum positive calibration value.  
32/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
The on-chip capacitance can be calculated as follows:  
Clock operation  
where ACS is the sign.  
For example:  
C
C
C
(12h = x0000000) = 12.5 pF  
LOAD  
LOAD  
LOAD  
(12h =11001000) = 3.5 pF (sign is negative)  
(12h = 00100111) = 17.4 pF  
With the analog calibration adjusted to its lowest value, the oscillator will see a minimum of  
3.5 pF load capacitance as shown on the bottom row of Table 7.  
Note:  
These are typical values, and the total load capacitance seen by the crystal will include  
approximately 1-2 pF of package and board capacitance in addition to the analog calibration  
register value.  
Any invalid value of analog calibration will result in the default capacitance of 25 pF.  
The combination of analog and digital trimming can give up to –93 to +156 ppm of the total  
adjustment.  
Figure 19 represents a typical curve of clock ppm adjustment versus the analog calibration  
value. This curve may vary with different crystals, so it is good practice to evaluate the  
crystal to be used with an M41T8x device before establishing the adjustment values for the  
application in question.  
Figure 19. Clock accuracy vs. on-chip load capacitance  
100.0  
XI  
XO  
80.0  
60.0  
40.0  
Crystal  
Oscillator  
CXI  
CXO  
CXI CXO  
*
CLOAD  
=
C
XI + CXO  
20.0  
On-Chip  
FASTER  
DECREASING LOAD CAP.  
INCREASING LOAD CAP.  
0.0  
SLOWER  
-20.0  
OFFSET TO  
-18.0 -15.0  
3.5 5.0  
0xC8 0xBC  
-10.0  
7.5  
-5.0  
10  
0.0  
12.5  
0x00  
5.0  
15  
9.75  
C , C (pF)  
XI  
XO  
NET EQUIV. LOAD  
CAP., C , (pF)  
17.4  
LOAD  
Analog Calibration  
Value, AC,  
0xA8  
0x94  
0x14  
0x27  
ai13906  
register 0x12  
Doc ID 12578 Rev 15  
33/62  
 
Clock operation  
M41T82-M41T83  
Two methods are available for ascertaining how much calibration a given M41T8x may  
require:  
The first involves setting the clock, letting it run for a month and comparing it to a known  
accurate reference and recording deviation over a fixed period of time. This allows the  
designer to give the end user the ability to calibrate the clock as the environment  
requires, even if the final product is packaged in a non-user serviceable enclosure. The  
designer could provide a simple utility that accesses either or both of the calibration  
bytes.  
The second approach is better suited to a manufacturing environment, and uses the  
512 Hz frequency test output. This is the IRQ1/FT/OUT pin on the M41T83, and the  
FT/RST pin on the M41T82 (see Section 3.14 and Section 3.15 for more information on  
enabling the FT output). The 512 Hz frequency test signal can be measured using a  
highly accurate timing device such as a frequency counter. The measured value is then  
compared to 512 Hz and the oscillator error in ppm is then determined.  
Any deviation from 512 Hz indicates the degree and direction of oscillator frequency  
shift at the test temperature. For example, a reading of 512.010124 Hz would indicate a  
+20 ppm oscillator frequency error, requiring either a –10 (xx001010) to be loaded into  
the digital calibration byte, or +6 pF (00011000) into the analog calibration byte for  
correction.  
Note:  
Setting or changing the digital calibration byte does not affect the frequency test, square  
wave, or watchdog timer frequency, but changing the analog calibration byte DOES affect all  
functions derived from the low current oscillator (see Figure 20).  
Figure 20. Clock divider chain and calibration circuits  
512Hz Output  
Frequency Test  
Remainder of  
Divider Circuit  
Square Wave  
Watchdog Timer  
8-bit Timer  
÷64  
÷64  
÷2  
C
XI  
Low Current  
Oscillator  
32KHz  
Digital Calibration Circuitry  
(divide by 511/512/513)  
Clock  
Counters  
C
XO  
1Hz Signal  
Analog Calibration  
Circuitry  
AI11806c  
34/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Figure 21. Crystal isolation example  
Clock operation  
Crystal  
Local Grounding  
Plane (Layer 2)  
XO  
XI  
V
SS  
AI11814  
1. Substrate pad should be tied to VSS  
.
3.5  
Setting the alarm clock registers  
Codes not listed in the table default to the once-per-second mode to quickly alert the user of  
an incorrect alarm setting. When the clock information matches the alarm clock settings  
based on the match criteria defined by RPTx5–RPTx1 (x = 1 for alarm 1 or 2 for alarm 2),  
the alarm flag, AFx, is set. Reading the flags register clears the alarm flags. A subsequent  
read of the flags register is necessary to see that the value of the alarm flag has been reset  
to 0.  
M41T83 interrupts on alarm  
In the M41T83, for alarm 1, setting the alarm interrupt enable, A1IE, allows an interrupt  
output to be asserted upon AF1 being set provided that other configuration bits are set  
accordingly (see Section 3.14 for more information on the IRQ/FT/OUT output).  
Likewise for alarm 2, with A2IE set, IRQ2 will be asserted upon AF2 going high. To disable  
either of the alarms, write a 0 to the alarm date registers and to the RPTx5–RPTx1 bits.  
Note:  
If the address pointer is allowed to increment to the flag register address, or the last address  
written is “Alarm Seconds,the address pointer will increment to the flag address, and an  
alarm condition will not cause the interrupt/flag to occur until the address pointer is moved to  
a different address.  
Alarm IRQ outputs are de-asserted when the alarm flags are cleared by reading the flags  
register (0Fh).  
The IRQ1/FT/OUT pin can also be activated in the battery backup mode. This requires the  
ABE bit (alarm in backup enable) to be set (see Section 3.14.2: Backup mode for additional  
conditions which apply). Once an interrupt is asserted in backup mode, it will remain true  
until V is restored and a subsequent read of the flags register occurs.  
CC  
Doc ID 12578 Rev 15  
35/62  
 
Clock operation  
M41T82-M41T83  
3.6  
Optional second programmable alarm and user SRAM  
When the alarm 2 enable (AL2E) bit (D1 of address 13h) is set to a logic 1, registers 14h  
through 18h provide control for a second programmable alarm which operates in the same  
manner as the alarm function described in Section 3.5. The AL2E bit defaults on initial  
power-up to a logic 0 (alarm 2 disabled). In this mode, the five alarm 2 bytes (14h-18h)  
function as additional user SRAM, for a total of 12 bytes of user SRAM.  
With AL2E set to 1, the alarm is enabled, and will cause the AF2 bit to be set when the  
alarm condition is met. On the M41T83, if the A2IE (alarm 2 interrupt enable) bit is set, an  
interrupt will be asserted on IRQ2. The interrupt is de-asserted when the alarm flags are  
cleared by reading the flags register (0Fh).  
IRQ2 can be enabled in backup mode by setting ABE to 1 (in conjuction with setting A2IE).  
Table 8.  
RPT5  
Alarm repeat modes  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm setting  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per second  
Once per minute  
Once per hour  
Once per day  
Once per month  
Once per year  
3.7  
Watchdog timer  
The watchdog timer can be used to detect an out-of-control microprocessor. The user  
programs the watchdog timer by setting the desired amount of time-out into the watchdog  
register, address 09h. Bits BMB4-BMB0 store a binary multiplier and the two lower order bits  
RB1-RB0 select the resolution, where 00 = 1/16 second, 01 = 1/4 second, 10 = 1 second,  
and 11 = 4 seconds. The amount of time-out is then determined to be the multiplication of  
the five-bit multiplier value with the resolution. (For example: writing 00001110 in the  
watchdog register = 3*1, or 3 seconds). If the processor does not reset the timer within the  
specified period, the M41T8x sets the WDF (watchdog flag).  
The watchdog timer is reset by writing to the watchdog register. The time-out period then  
starts over.  
M41T83 watchdog interrupt  
On the M41T83, provided that the necessary configuration bits are set, the IRQ/FT/OUT  
output will be asserted when the watchdog times out (see Section 3.14 for additional  
conditions which apply).  
Should the watchdog time out, to de-assert the IRQ1/FT/OUT output, the lower seven bits of  
the watchdog register (09h) must be written. This will de-assert the output and re-initialize  
the watchdog. Writing these seven bits to 0 will de-assert the output and disable the  
watchdog.  
36/62  
Doc ID 12578 Rev 15  
 
 
M41T82-M41T83  
Clock operation  
A READ of the flags register will reset the watchdog flag (bit D7; register 0Fh) but not de-  
assert the IRQ1/FT/OUT output. The watchdog function is automatically disabled upon  
power-up and the watchdog register is cleared.  
Table 9.  
Watchdog register  
Addr  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
09h  
OFIE  
BMB4  
BMB3  
BMB2  
BMB1  
BMB0  
RB1  
RB0  
Watchdog  
3.8  
8-bit (countdown) timer  
The timer value register is an 8-bit binary countdown timer. It is enabled and disabled via the  
timer control register (11h) TE bit. Other timer properties such as the source clock, or  
interrupt generation are also selected in the timer control register (see Table 10). For  
2
accurate read back of the countdown value, the I C-bus clock (SCL) must be operating at a  
frequency of at least twice the selected timer clock.  
The timer control register selects one of four source clock frequencies for the timer (4096,  
64, 1, or 1/60 Hz), and enables/disables the timer. The timer counts down from a software-  
loaded 8-bit binary value (register 10h) and decrements to 1. On the next tick of the counter,  
it reloads the timer countdown value and sets the timer flag (TF) bit. The TF bit can only be  
cleared by software. When asserted, the timer flag (TF) can also be used to generate an  
interrupt (IRQ1/FT/OUT) on the M41T83. Writing the timer countdown value (10h) has no  
effect on the TF bit or the IRQ1/FT/OUT output.  
3.8.1  
M41T83 timer interrupt/output  
On the M41T83, there are two choices for the output depending on the TI/TP configuration  
bit (timer interrupt/timer pulse, bit 6, register 11h).  
Normal interrupt mode  
With TI/TP = 0, the output will assert like a normal interrupt, staying low until the TF bit is  
cleared by software by reading the flags register (0Fh).  
Free-running mode  
When TI/TP is a 1, the output is a free-running waveform as depicted in Figure 22. After  
being low for the specified time (as shown in Table 11), the output automatically goes high  
without need of software clearing any bits. The TF bit will still be set each time the timer  
reloads, but it is not necessary for the software to clear it in this mode. Furthermore, clearing  
the TF bit has no effect on the output in this mode.  
While writes to the timer countdown register (10h) control the reload value, reads of this  
register return the current countdown timer value.  
Doc ID 12578 Rev 15  
37/62  
 
 
 
Clock operation  
M41T82-M41T83  
Function  
(1)  
Table 10. Timer control register map  
Addr  
D7  
D6  
D5  
D4  
D3  
TF  
D2  
D1  
D0  
0Fh  
10h  
11h  
WDF  
AF1  
AF2  
BL  
OF  
0
0
Flags  
Timer countdown value(2)  
Timer value  
Timer control  
TE  
TI/TP  
TIE  
0
0
0
TD1  
TD0  
1. Bit positions labeled with 0 should always be written with logic 0.  
2. Writing to the timer register will not reset the TF bit nor clear the interrupt.  
When the timer is in the free-running mode, with a value of n programmed into the timer  
countdown value, the output will nominally be low for one cycle of the specified clock source  
and high for n-1 cycles with an overal period of n cycles. Thus, the countdown period is  
n/source clock frequency.  
For the special case of n = 1, as shown in Table 11, when the clock source is 4096 or 64 Hz,  
the low time (T ) is half the clock period instead of a full clock period.  
L
Table 11. Timer interrupt operation in free-running mode (with TI/TP = 1)  
IRQ low time – TL (seconds)(1)  
IRQ period – TIRQ (seconds)  
Source clock (Hz)  
n = 1(2)  
n > 1  
n = 1  
n > 1  
4096  
64  
1/8192 = 122 µs 1/4096 = 244 µs  
1/128 = 7.8 ms 1/64 = 15.6 ms  
1/4096 = 244 µs  
1/64 = 15.6 ms  
1
n / 4096  
n / 64  
1
1/64  
1/64  
1/64  
1/64  
n
1/60  
1 minute  
n minutes  
1. IRQ1/FT/OUT is asserted coincident with TF going true.  
2. n = loaded countdown timer value (0 < n < 255). The timer is stopped when n = 0.  
Figure 22. Timer output waveform in free-running mode (with TI/TP = 1)  
T
IRQ  
T
L
IRQ1/FT/OUT  
AM03012v1  
38/62  
Doc ID 12578 Rev 15  
 
 
 
M41T82-M41T83  
Clock operation  
3.8.2  
Timer flag (TF)  
At the end of a timer countdown, when the timer reloads, TF is set to logic '1.' Regardless of  
the state of TF bit (or TI/TP bit), the timer will continue decrementing and reloading.  
If both timer and alarm interrupts are used in the application, the source of the interrupt can  
be determined by reading the flag bits. Refer to Section 3.14 for more information on the  
interaction of these bits. The TF bit is cleared by reading the flags register. This will de-  
assert an interrupt output due to the timer.  
3.8.3  
3.8.4  
Timer interrupt enable (TIE, M41T83 only)  
In normal interrupt mode (TI/TP = 0), when TF is asserted, the interrupt output is asserted (if  
TIE = 1). To de-assert the interrupt, the TF bit or the TIE bit must be reset. Disabling the  
interrupt by clearing the TIE bit will de-assert the output, but does not clear the TF bit. Thus,  
if TIE is re-enabled prior to clearing TF, the interrupt will assert immediately.  
Timer enable (TE)  
TE = 0  
When the timer register (10h) is set to 0, the timer is disabled.  
TE = 1  
The timer is enabled. TE is reset (disabled) on power-down. When re-enabled, the  
counter will begin counting from the same value as when it was disabled.  
3.8.5  
TD1/0  
These are the timer source clock frequency selection bits (see Table 12). These bits  
determine the source clock for the countdown timer (see Table 10 on page 38). When not in  
use, the TD1 and TD0 bits should be set to 11 (1/60 Hz) for power saving.  
Table 12. Timer source clock frequency selection (244.1 µs to 4.25 hrs)  
TD1  
TD0  
Timer source clock frequency (Hz)  
0
0
1
1
0
1
0
1
4096 (244.1 µs)  
64 (15.6 ms)  
1 (1 s)  
1/60 (60 s)  
3.9  
Square wave output (M41T83 only)  
The M41T83 offers the user a programmable square wave function which is output on the  
SQW pin. RS3-RS0 bits located in 13h establish the square wave output frequency. These  
frequencies are listed in Table 13. Once the selection of the SQW frequency has been  
completed, the SQW pin can be turned on and off under software control with the square  
wave enable bit (SQWE) located in register 0Ah.  
Note:  
If the SQWE bit is set to '1' and V falls below the switchover (V ) voltage, the square  
CC SO  
wave output will be disabled.  
Doc ID 12578 Rev 15  
39/62  
 
 
 
 
 
Clock operation  
M41T82-M41T83  
Table 13. Square wave output frequency  
Square wave bits  
Square wave  
RS3  
RS2  
RS1  
RS0  
Frequency  
Units  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
None  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
256  
128  
64  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
Hz  
Hz  
Hz  
32  
Hz  
16  
Hz  
8
Hz  
4
Hz  
2
Hz  
1
Hz  
40/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Clock operation  
3.10  
Battery low warning  
The M41T8x automatically checks the battery each time V powers up and each time the  
CC  
clock rolls over at midnight.  
V
is compared to V (approximately 2.5 V), then the battery low (BL) bit, D4 of flags  
BL  
BAT  
register 0Fh, is set if the battery voltage is found to be less than V . Similarly, if V  
is  
BL  
BAT  
greater than V , the BL bit is cleared during battery check.  
BL  
The BL bit retains its state until the next battery check occurs. This means the BL bit will not  
clear immediately upon battery replacement, but only after the next battery check occurs at  
the next power-up or midnight rollover.  
If a battery low is generated during a power-up sequence, this indicates that the battery is  
below approximately 2.5 volts and may not be able to maintain data integrity. Clock data  
should be considered suspect and verified as correct. A fresh battery should be installed.  
If a battery low indication is generated during the 24-hour interval check, this indicates that  
the battery is near end of life. However, data is not compromised due to the fact that a  
nominal V is supplied. In order to ensure data integrity during subsequent periods of  
CC  
battery backup mode, the battery should be replaced.  
Midnight rollover check  
As shown in Figure 23, during the midnight rollover check, the M41T8x applies a load to the  
battery, then compares V  
to V and updates the BL bit accordingly. Because a load is  
BAT  
BL  
present, an open condition on the V  
pin will result in the BL bit being set. After the check  
BAT  
is performed, the RTC removes the load.  
Power-up battery check  
During the power-up check, no load is applied to the battery under the assumption the  
battery has already been stressed to its working level by having powered the RTC in backup  
mode. If no battery is present, V  
indeterminate.  
will be floating and the battery check result will be  
BAT  
Figure 23. Battery check  
At power-up  
and at rollover  
VBAT  
Only at  
rollover  
VBL=2.5V  
BL  
S
Q
FF  
R
L
R
AM03009v1  
Doc ID 12578 Rev 15  
41/62  
 
Clock operation  
M41T82-M41T83  
The M41T8x only checks the battery when powered by V . It does not check the battery  
CC  
while in backup mode. Thus, users are advised that during long periods in backup mode,  
the battery can drop to a level at which timekeeping may fail or data becomes corrupted. If,  
at power-up, a battery low is indicated, data integrity should be verified.  
Forcing a battery check  
If it is desired to check the battery at an arbitrary time, one common technique is for the  
application software to write the time to just before midnight, 23:59:59, and then wait two  
seconds thereby letting the clock rollover and causing the BL bit to update. The application  
then restores the time back to its previous value plus two seconds.  
3.11  
Century bits  
These two bits will increment in a binary fashion at the turn of the century, and handle all  
leap years correctly. See Table 14 for additional explanation.  
Table 14. Century bits examples  
CB0  
CB1  
Leap Year?  
Example(1)  
0
0
1
1
0
1
0
1
Yes  
No  
No  
No  
2000  
2100  
2200  
2300  
1. Leap year occurs every four years (for years evenly divisible by four), except for years evenly divisible by  
100. The only exceptions are those years evenly divisible by 400 (the year 2000 was a leap year, year  
2100 is not).  
3.12  
Oscillator fail detection  
If the oscillator fail (OF) bit is internally set to a '1,' this indicates that the oscillator has either  
stopped, or was stopped for some period of time. This bit can be used to judge the validity of  
the clock and date data. This bit will be set to '1' any time the oscillator stops.  
In the event the OF bit is found to be set to '1' at any time other than the initial power-up, the  
STOP bit (ST) should be written to a '1,' then immediately reset to 0. This will restart the  
oscillator. The following conditions can cause the OF bit to be set:  
The first time power is applied (defaults to a '1' on power-up).  
Note:  
If the OF bit cannot be written to '0' four seconds after the initial power-up, the STOP bit (ST)  
should be written to a '1,' then immediately reset to 0.  
The voltage present on VCC or battery is insufficient to support oscillation.  
The ST bit is set to '1.'  
External interference of the crystal  
For the M41T83, if the oscillator fail interrupt enable bit (OFIE) is set to a '1,' the  
IRQ1/FT/OUT pin will also be asserted (see Section 3.13 and Section 3.14 for additional  
conditions which apply). The IRQ1/FT/OUT output is de-asserted by resetting the OF bit to  
0, NOT by reading the flags register. The OF bit will remain a '1' until written to 0. Reading  
the flags register has no effect on OF.  
42/62  
Doc ID 12578 Rev 15  
 
 
M41T82-M41T83  
Clock operation  
The oscillator must start and have run for at least 4 seconds before attempting to reset the  
OF bit to 0.  
The oscillator fail detect circuit funtions during backup mode. If a triggering event occurs to  
disrupt the oscillator during a power-down condition, the OF bit will be set accordingly.  
3.13  
Oscillator fail interrupt enable (M41T83 only)  
With the OFIE bit set, the OF bit will cause the IRQ1/FT/OUT output to be asserted (see  
Section 3.14.1 and 3.14.2 for additional conditions that apply). The IRQ1/FT/OUT output is  
cleared by resetting the OF bit to 0 (NOT by reading the flags register). Clearing the OFIE bit  
will also cause the IRQ1/FT/OUT output to de-assert, but if OFIE is subsequently set prior to  
clearing OF, the IRQ1/FT/OUT output will assert immediately upon setting OFIE. Clearing  
the OF bit is necessary to prevent such an inadvertent interrupt.  
If the alarm in backup enable bit, ABE, is set (along with OFIE), the oscillator fail detect will  
cause an interrupt in the IRQ1/FT/OUT pin during backup mode. For additional information  
on this, refer to Section 3.14.2.  
3.14  
IRQ1/FT/OUT pin, frequency test, interrupts and the OUT bit  
(M41T83 only)  
Four interrupt sources, the frequency test function, and the discrete output bit OUT all share  
the IRQ1/FT/OUT pin. Priority is built into the part such that some functions dominate  
others. Additionally, the priority depends on configuration bits such as OUT and ABE, and  
on whether the part is operating on V or is in the backup mode. This pin is an open drain  
CC  
output and requires an external pull-up resistor.  
Figure 24 shows the various signal sources and controlling bits for the IRQ1/FT/OUT output  
pin.  
Figure 24. IRQ1/FT/OUT output pin circuit  
TIMER  
TI/TP  
reload  
TE  
TF  
TIE  
IRQ1/OUT/FT  
LOGIC  
OUT  
FT  
IRQ1/OUT/FT  
ABE  
A1IE  
OFIE  
TIE  
OF  
AF1  
Write OF to 0  
to clear  
OFIE  
AI1E  
w-dog running  
Read FLAGS register  
to clear  
WDF  
PRE  
Q
Write watchdog register  
to clear  
WDOG  
AM03013v1  
Doc ID 12578 Rev 15  
43/62  
 
 
 
Clock operation  
M41T82-M41T83  
The timer, oscillator fail detect circuit, alarm 1, and watchdog are ORed together as the  
primary interrupt sources. The frequency test signal, FT, is used to enable a 512 Hz output  
on the IRQ1/FT/OUT pin for calibrating the RTC. When not used as an interrupt or  
frequency test output, the pin can be used as a discrete logic output controlled by the OUT  
bit. The ABE bit is used to enable interrupts during backup mode.  
Operating on V , all four interrupt sources are available. During backup, the timer and  
CC  
watchdog are disabled, and the only interrupt sources are alarm 1 and the oscillator fail  
detect circuit.  
3.14.1  
Active mode operation on V  
CC  
On V , the operation of the output circuit is as shown in Table 15.  
CC  
Table 15. Priority for IRQ1/FT/OUT pin when operating on V  
CC  
A1IE(3)  
+ OFIE(4)  
OUT(1)  
FT(2)  
+ TIE(5)  
+ watchdog(6)  
running  
Pin  
Comment  
When OUT is 0 and FT is not enabled, OUT dominates  
and none of the interrupt sources have any effect.  
0
0
x
0
0
x
1
1
x
When FT = 1 and OUT = 1 and no interrupts are enabled,  
the output will be the 512 Hz frequency test (FT) signal.  
512 Hz  
0
When one or more interrupts are enabled, and OUT is a 1,  
the pin stays high until one of the interrupts is asserted.  
1
1
x
1
0
IRQ  
1
When OUT is 1, FT is 0 and no interrupts are enabled, the  
pin is high.  
0
1. OUT is bit 7 of register 08h (digital calibration).  
2. FT is bit 6 of register 08h (digital calibration).  
3. A1IE is bit 7 of register 0Ah (alarm 1, month).  
4. OFIE is bit 7 of register 09h (watchdog).  
5. TIE is bit 5 of register 11h (timer control).  
6. The watchdog is controlled by register 09h (watchdog).  
When OUT is 0 and FT is 0, the pin will be 0 regardless of whether any interrupts are  
enabled.  
When FT is a 1, the 512 Hz signal will be output if OUT is 0 or if no interrupts are enabled.  
The interrupt sources control the pin when OUT is 1 and one or more of the interrupts are  
enabled.  
If OUT is 1, FT is 0 and no interrupts are enabled, then the pin will be 1.  
44/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Clock operation  
3.14.2  
Backup mode  
In backup mode, the operation of the output circuit is as shown in Table 16.  
Table 16. Priority for IRQ1/FT/OUT pin when operating in backup mode  
A1IE(3)  
OUT(1)  
ABE(2)  
Pin  
Comment  
+ OFIE(4)  
When ABE is 0, the pin is 1 regardless of OUT or  
the interrupt sources.  
x
0
x
1
When OUT is 1 and no interrupts are enabled,  
the pin is 1. (A1IE and OFIE are the only  
interrupts applicable in this mode).  
1
0
1
x
1
1
0
x
1
1
0
When ABE is 1 and OUT is 0, OUT dominates  
and regardless of the interrupt sources.  
When one or more interrupts are enabled, ABE is  
a 1, and OUT is a 1, the pin stays high until one of  
the interrupts is asserted.  
IRQ  
1. OUT is bit 7 of register 08h (digital calibration).  
2. ABE is bit 5 of register 0Ah (alarm 1, month).  
3. A1IE is bit 7 of register 0Ah (alarm 1, month).  
4. OFIE is bit 7 of register 09h (watchdog).  
In backup mode, frequency test is disabled. Thus, the FT bit is a ‘don’t care’.  
ABE enables interrupts in backup. If it is 0, the output pin is a 1 regardless of the other bits.  
The pin is also a 1 when OUT is a 1 and no interrupts are enabled.  
When OUT is 0 and ABE is a 1, the pin is 0 regardless of the interrupts.  
Thus, in order to enable interrupts in backup mode, OUT must be a 1 and ABE must be a 1,  
and one or more of the interrupt enables must be a 1.  
Simultaneous interrupts  
Since more than one interrupt source can cause the IRQ1/FT/OUT pin to go low, more than  
one interrupt may be pending when the microprocessor services the interrupt. Therefore,  
the application software should read the flags register (0Fh) to discern which condition or  
conditions are causing the pin to be asserted.  
Also be aware that once a flag causes the pin to assert, other flags could subsequently also  
go true. Since the pin is already low due to the first, no additional output transition will occur.  
That is why the software must check the flags register.  
Example: If the watchdog is in use and the oscillator fail detect interrupt is enabled, and the  
watchdog times out, the IRQ1/FT/OUT pin will go low. If, in the intervening time before the  
processor services the interrupt, something disturbs the oscillator, such as a drop of  
moisture landing on the crystal pins, the OF bit will also be set. Thus, when the software  
services the interrupt, it must service both sources: it must re-initialize the watchdog and  
clear the OF bit in order to de-assert the IRQ1/FT/OUT pin. By reading the flags register, the  
software will know both flags were set and that both need service.  
Doc ID 12578 Rev 15  
45/62  
 
Clock operation  
M41T82-M41T83  
3.15  
FT/RST pin, frequency test and reset output pin (M41T82  
only)  
On the M41T82, the 512 Hz frequency test signal and the reset output share the same pin,  
FT/RST. When the FT bit (bit 6 of register 08h) is a 1, the 512 Hz test signal is activated on  
the pin. With FT a 0 and V good (above V  
), the output will be high. If the 512 Hz is  
CC  
RST  
enabled when V fails, the FT bit will be cleared and the output will go low to assert reset.  
CC  
At power-up, FT will be 0 leaving the pin functioning as the reset output.  
3.16  
Initial power-on defaults  
Upon initial application of power to the device, the register bits will initially power-on in the  
state indicated in Table 17 and Table 18.  
Table 17. Initial power-on default values (part 1)  
DCS Digital Analog  
ACS calib. calib.  
Watch-  
dog(3)  
Condition(1) ST CB1 CB0 OUT FT  
OFIE(2)  
A1IE (2) SQWE(2) ABE  
Initial  
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
power-up  
Subsequent  
UC UC UC UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
power-up(4)(5)  
1. All other control bits power-up in an undetermined state.  
2. M41T83 only  
3. BMB0-BMB4, RB0, RB1  
4. With battery backup  
5. UC = unchanged  
Table 18. Initial power-up default values (part 2)  
RPT11  
-15  
TI/TP  
OTP  
RPT21-  
25  
Condition(1)  
HT OF TE  
TIE(2) TD1 TD0 RS0 RS1-3  
A2IE(2)  
AL2E  
(2)  
(2)  
Initial  
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
0
power-up  
Subsequent  
UC  
UC  
UC  
UC  
UC UC UC  
UC  
UC  
UC  
UC  
UC  
power-up(3)(4)  
1. All other control bits power-up in an undetermined state.  
2. M41T83 only  
3. With battery backup  
4. UC = unchanged  
46/62  
Doc ID 12578 Rev 15  
 
 
 
M41T82-M41T83  
Clock operation  
3.17  
OTP bit operation (M41T83 in SOX18 package only)  
When the OTP (one time programmable) bit is set to a '1,' the value in the internal OTP  
registers will be transferred to the analog calibration register (12h) and are “Read only.” The  
OTP value is programmed by the manufacturer, and will contain the calibration value  
necessary to achieve typically 5 ppm (V only) at room temperature after two SMT  
CC  
reflows. This clock accuracy can then be guaranteed to drift no more than 3 ppm the first  
year, and 1 ppm for each following year due to crystal aging.  
If the OTP bit is set to 0, the analog calibration register will become a WRITE/READ register  
and function like standard SRAM memory cells, allowing the user to implement any desired  
value of analog calibration.  
When the user sets the OTP bit, they need to wait for approximately 8 ms before the analog  
registers transfer the value from the OTP to the analog registers due to the OTP read  
operation.  
Doc ID 12578 Rev 15  
47/62  
 
Maximum ratings  
M41T82-M41T83  
4
Maximum ratings  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 19. Absolute maximum ratings  
Sym  
Parameter  
Value(1)  
Unit  
TSTG  
VCC  
TSLD  
VIO  
IO  
Storage temperature (VCC off, oscillator off)  
Supply voltage  
–55 to 125  
°C  
V
–0.3 to 7.0  
Lead solder temperature for 10 seconds  
Input or output voltages  
Output current  
260(2)  
°C  
V
–0.2 to VCC+0.3  
20  
1
mA  
W
PD  
Power dissipation  
QFN16  
SO8  
35.7  
128.4  
θJA  
Thermal resistance, junction to ambient  
°C/W  
SOX18  
1. Data based on characterization results, not tested in production.  
2. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.  
48/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
DC and AC parameters  
5
DC and AC parameters  
This section summarizes the operating and measurement conditions, as well as the dc and  
ac characteristics of the device. The parameters in the following DC and AC Characteristic  
tables are derived from tests performed under the measurement conditions listed in the  
relevant tables. Designers should check that the operating conditions in their projects match  
the measurement conditions when using the quoted parameters.  
Table 20. Operating and AC measurement conditions  
Parameter(1)  
M41T8x  
Supply voltage (VCC  
)
2.38 V to 5.5 V  
–40 to 85 °C  
50 pF  
Ambient operating temperature (TA)  
Load capacitance (CL)  
Input rise and fall times  
5 ns  
Input pulse voltages  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing ref. voltages  
1. Output Hi-Z is defined as the point where data is no longer driven.  
Figure 25. Measurement AC I/O waveform  
0.8V  
CC  
0.7V  
CC  
CC  
0.3V  
0.2V  
CC  
AI02568  
Table 21. Capacitance  
Symbol  
Parameter(1)(2)  
Min  
Max  
Unit  
CIN  
Input capacitance  
7
pF  
pF  
ns  
(3)  
COUT  
Output capacitance  
10  
50  
tLP  
Low-pass filter input time constant (SDA and SCL)  
1. Effective capacitance measured with power supply at 3.6 V; sampled only, not 100% tested.  
2. At 25 °C, f = 1 MHz  
3. Outputs deselected  
Doc ID 12578 Rev 15  
49/62  
DC and AC parameters  
M41T82-M41T83  
Table 22. DC characteristics  
Sym  
Parameter  
Test condition(1)  
Min  
Typ  
Max  
Unit  
Operating voltage (S)  
–40 to 85 °C  
–40 to 85 °C  
3.00  
2.70  
2.38  
5.50  
5.50  
5.50  
1
V
VCC Operating voltage (R)  
Operating voltage (Z)  
V
–40 to 85 °C  
V
ILI Input leakage current  
ILO Output leakage current  
0V VIN VCC  
0V VOUT VCC  
µA  
µA  
µA  
µA  
µA  
µA  
1
5.5 V  
3.0 V  
125  
55  
45  
8
150  
SCL = 400 kHz  
ICC1 Supply current  
(No load)  
2.5 (Z only)  
5.5 V  
SCL = 0 Hz;  
10  
All inputs VCC – 0.2 V or  
VSS + 0.2 V  
ICC2 Supply current (standby)  
3.0 V  
6.5  
µA  
(SQWE bit = 0)  
VIL Input low voltage  
VIH Input high voltage  
–0.3  
0.3VCC  
V
V
0.7VCC  
VCC+0.3  
VCC/VBAT = 3.0 V,  
IOL = 1.0 mA  
RST, FT/RST  
SQW, IRQ1/FT/OUT, IRQ2  
SCL, SDA  
0.4  
0.4  
0.4  
V
V
VCC = 3.0 V,  
IOL = 1.0 mA  
VOL Output low voltage  
VOH Output high voltage  
VCC = 3.0 V,  
V
V
V
IOL = 3.0 mA  
VCC = 3.0 V, IOH = –1.0 mA (push-pull)  
IRQ1/FT/OUT, IRQ2, FT/RST, RST  
2.4  
2.0  
Pull-up supply voltage  
(open drain)  
5.5  
5.5  
Backup supply voltage  
VBAT  
V
V
(battery or capacitor)  
Battery low (BL bit)  
threshold  
VBL  
2.5  
25 °C; VCC = 0 V; OSC on;  
VBAT = 3 V; SQW off  
IBAT Battery supply current  
365  
450  
nA  
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 2.38 V to 5.5 V (except where noted)  
50/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Figure 26. I  
DC and AC parameters  
vs. temperature  
CC2  
10.000  
9.000  
8.000  
7.000  
6.000  
5.000  
4.000  
3.000  
2.000  
(3.0V)  
(5.0V)  
-40  
-20  
0
20  
40  
60  
80  
Temperature (°C)  
ai 13909  
Table 23. Crystal electrical characteristics  
Symbol  
Parameter(1)(2)  
Min  
Typ  
Max  
Units  
fO  
RS  
CL  
Resonant frequency  
32.768  
kHz  
kΩ  
pF  
Series resistance  
Load capacitance  
65(3)  
12.5  
1. Externally supplied if using the QFN16 or SO8 package. STMicroelectronics recommends the Citizen CFS-  
145 (1.5 x 5 mm) and the KDS DT-38 (3 x 8 mm) for thru-hole, or the KDS DMX-26S (3.2 x 8 mm) or Micro  
Crystal MS3V-T1R (1.5 x 5 mm) for surface-mount, tuning fork-type quartz crystals.  
2. Load capacitors are integrated within the M41T8x. Circuit board layout considerations for the 32.768 kHz  
crystal of minimum trace lengths and isolation from RF generating signals should be taken into account.  
3. Guaranteed by design.  
Table 24. Oscillator characteristics  
Symbol  
Parameter(1)(2)  
Conditions Min Typ Max Units  
VSTA  
tSTA  
Oscillator start voltage  
4 s  
2.0  
V
s
Oscillator start time  
VCC = VSO  
1
(1)  
C
XI, CXO  
Capacitor input, capacitor output  
IC-to-IC frequency variation(2)(3)  
25  
pF  
–10  
+10 ppm  
1. With default analog calibration value ( = 0)  
2. Reference value  
3. TA = 25 °C, VCC = 5.0 V  
Doc ID 12578 Rev 15  
51/62  
 
DC and AC parameters  
Figure 27. Power down/up mode AC waveforms  
M41T82-M41T83  
V
CC  
V
V
SO  
RST  
t
rec  
SDA, SCL  
RST  
DON'T CARE  
tRD  
AI00596  
Table 25. Power down/up trip points DC characteristics  
Sym  
Parameter(1)(2)  
Min  
Typ  
Max  
Unit  
S
R
Z
2.85  
2.55  
2.25  
2.93  
2.63  
2.32  
VRST  
25  
3.0  
2.7  
V
V
VRST  
Reset threshold voltage  
2.38  
V
Battery backup switchover  
Hysteresis  
V
VSO  
mV  
ms  
µs  
trec  
tRD  
RST duration after VCC high  
VCC to reset delay(3)  
140  
280  
2.5  
1. All voltages referenced to VSS  
2. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 2.38 to 5.5 V (except where noted)  
3. Measured with VCC falling slew rate of 10 mV/µs for VCC in the range VRST + 100 mV to VRST – 100 mV  
52/62  
Doc ID 12578 Rev 15  
 
 
M41T82-M41T83  
Figure 28. Bus timing requirement sequence  
DC and AC parameters  
SDA  
SCL  
t
t
t
BUF  
HD:STA  
HD:STA  
t
t
R
F
t
HIGH  
t
t
t
SU:STO  
SU:DAT  
HD:DAT  
SU:STA  
P
S
t
t
SR  
P
LOW  
AI00589  
Table 26. AC characteristics  
Sym  
Parameter(1)  
Min  
Typ  
Max  
Units  
fSCL  
tLOW  
tHIGH  
tR  
SCL clock frequency  
0
400  
kHz  
µs  
Clock low period  
1.3  
600  
Clock high period  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
300  
300  
ns  
tF  
ns  
tHD:STA  
tSU:STA  
600  
600  
ns  
ns  
(after this period the first clock pulse is generated)  
START condition setup time  
(only relevant for a repeated start condition)  
(2)  
tSU:DAT  
Data setup time  
100  
0
ns  
µs  
ns  
tHD:DAT Data hold time  
tSU:STO STOP condition setup time  
600  
Time the bus must be free before a new transmission  
can start  
tBUF  
1.3  
µs  
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 2.38 to 5.5 V (except where noted).  
2. Transmitter must internally provide a hold time to bridge the undefined region (300 ns max) of the falling  
edge of SCL.  
Doc ID 12578 Rev 15  
53/62  
 
Package mechanical data  
M41T82-M41T83  
6
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
54/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Package mechanical data  
Figure 29. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm body size outline  
D
E
A3  
A
A1  
ddd C  
e
b
L
1
2
3
E2  
D2  
QFN16-A  
Note:  
Drawing is not to scale.  
Table 27. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm pack. mech. data  
mm  
Min  
inches  
Min  
Sym  
Typ  
Max  
Typ  
Max  
A
A1  
A3  
b
0.90  
0.02  
0.20  
0.30  
4.00  
0.80  
0.00  
1.00  
0.05  
0.035  
0.001  
0.008  
0.012  
0.157  
0.031  
0.000  
0.039  
0.002  
0.25  
3.90  
2.50  
3.90  
2.50  
0.35  
4.10  
2.80  
4.10  
2.80  
0.010  
0.154  
0.098  
0.154  
0.098  
0.014  
0.161  
0.110  
0.161  
0.110  
D
D2  
E
4.00  
0.157  
E2  
e
0.65  
0.40  
0.026  
0.016  
L
0.30  
0.08  
0.50  
0.012  
0.003  
0.020  
ddd  
Doc ID 12578 Rev 15  
55/62  
Package mechanical data  
M41T82-M41T83  
Figure 30. QFN16 – 16-lead, quad, flat package, no lead, 4 x 4 mm, recommended  
footprint  
2.70  
0.70  
0.20  
4.50  
2.70  
0.35  
0.325  
0.65  
AI11815  
Note:  
Dimensions are shown in millimeters (mm).  
Figure 31. 32 KHz crystal + QFN16 vs. VSOJ20 mechanical data  
6.0 0.2  
3.2  
VSOJ20  
SMT  
CRYSTAL  
1.5  
7.0 0.3  
1
2
3
4
3.9  
ST QFN16  
3.9  
AI11816  
Note:  
Dimensions shown are in millimeters (mm).  
56/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Package mechanical data  
Figure 32. SOX18 – 18-lead plastic small outline, 300 mils, embedded crystal, outline  
SOX18  
Note:  
Drawing is not to scale.  
Table 28. SOX18 – 18-lead plastic small outline, 300 mils, embedded crystal,  
package mech. data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
2.57  
0.23  
2.34  
0.46  
0.25  
11.61  
7.62  
10.34  
1.27  
0.66  
2.44  
0.15  
2.29  
0.41  
0.20  
11.56  
7.57  
10.16  
2.69  
0.31  
2.39  
0.51  
0.31  
11.66  
7.67  
10.52  
0.101  
0.009  
0.092  
0.018  
0.010  
0.457  
0.300  
0.407  
0.050  
0.026  
0.096  
0.006  
0.090  
0.016  
0.008  
0.455  
0.298  
0.400  
0.106  
0.012  
0.094  
0.020  
0.012  
0.459  
0.302  
0.414  
c
D
E
E1  
e
L
0.51  
0.81  
0.020  
0.032  
Doc ID 12578 Rev 15  
57/62  
Package mechanical data  
Figure 33. SO8 – 8-lead plastic small package outline  
M41T82-M41T83  
h x 45°  
c
A2  
A
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
E1  
E
L
1
A1  
L1  
SO-A  
Note:  
Drawing is not to scale.  
Table 29. SO8 – 8-lead plastic small outline (150 mils body width), package mech.  
data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
-
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
-
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
-
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
-
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
0.127  
0.016  
0.050  
L1  
1.04  
0.041  
58/62  
Doc ID 12578 Rev 15  
M41T82-M41T83  
Package mechanical data  
Figure 34. Carrier tape for QFN16, SOX18, and SO8 packages  
P
0
E
P
D
2
T
A
0
F
TOP COVER  
TAPE  
W
B
0
P
1
CENTER LINES  
OF CAVITY  
K
0
USER DIRECTION OF FEED  
AM03073v1  
Table 30. Carrier tape dimensions for QFN16, SOX18, and SO8 packages  
Bulk  
Qty  
Package  
W
D
E
P0  
P2  
F
A0  
B0  
K0  
P1  
T
Unit  
1.50  
+0.10/  
–0.00  
12.00  
0.30  
1.75  
0.10  
4.00  
0.10  
2.00  
0.10  
5.50  
0.05  
4.30  
0.10  
4.30  
0.10  
1.10  
0.10  
8.00  
0.10  
0.30  
0.05  
QFN16  
mm 1000  
mm 1000  
mm 2500  
1.50  
+0.10/  
–0.00  
24.00  
0.30  
1.75  
0.10  
4.00  
0.10  
2.00 11.50 12.70 11.90 3.20 16.00 0.30  
0.10  
SOX18  
SO8  
0.10  
0.10  
0.10  
0.10  
0.10  
0.05  
1.50  
+0.10/  
–0.00  
12.00  
0.30  
1.75  
0.10  
4.00  
0.10  
2.00  
0.10  
5.50  
0.05  
6.50  
0.10  
5.30  
0.10  
2.20  
0.10  
8.00  
0.10  
0.30  
0.05  
Doc ID 12578 Rev 15  
59/62  
 
 
Part numbering  
M41T82-M41T83  
7
Part numbering  
Table 31. Ordering information  
Example:  
M41T  
83  
S
QA  
6
F
Device family  
M41T  
Device type  
82 (SO8 package only)  
83  
Operating voltage  
S = VCC = 3.00 to 5.5 V  
R = VCC = 2.70 to 5.5 V  
Z = VCC = 2.38 to 5.5 V  
Package  
QA = QFN16 (4 mm x 4 mm)  
M(1) = SO8  
MY(2)= SOX18  
Temperature range  
6 = –40 °C to 85 °C  
Shipping method  
F = ECOPACK® package, tape & reel  
1. M41T82 only  
2. The SOX18 package includes an embedded 32,768 Hz crystal.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
60/62  
Doc ID 12578 Rev 15  
 
M41T82-M41T83  
Revision history  
8
Revision history  
Table 32. Document revision history  
Date  
Revision  
Changes  
Updated Table 1, 2, 4, 6, 10, 11, 22, Figure 20, 27, Section 3, Section 3.4.1,  
Section 3.4.2, Section 3.5, Section 3.6, Section 3.7, Section 3.8,  
Section 3.8.2, Section 3.8.3, Section 3.8.4, Section 3.8.5, Section 3.12,  
Section 3.13, Section 6; added Section 3.8.1, Section 3.14, Section 3.15,  
Table 9, 15, 16, Figure 22, 24; removed “output driver pin” section, “alarm  
interrupt reset waveform” figure, “backup mode alarm waveform” figure, “timer  
countdown value register bits (addr 11h)” table; added tape and reel  
information Figure 34, Table 30.  
09-Apr-2009  
9
Updated Section 2.2: Read mode, Section 2.3: Write mode, Section 3: Clock  
operation, Section 3.1, Section 3.2, Table 26.  
05-Jan-2010  
10  
25-Mar-2010  
19-Oct-2010  
11  
12  
Updated Figure 27; Table 25.  
Updated Note in Section 3.12: Oscillator fail detection.  
Updated Features, title, Section 3.1: Clock data coherency, Section 3.2: Halt  
bit (HT) operation; added Figure 16, added footnote 3 to Table 31: Ordering  
information.  
12-Oct-2011  
13  
Added reference to AN1572 in Section 3.2.1: Power-down time-stamp; textual  
update to Section 3.17: OTP bit operation (M41T83 in SOX18 package only);  
updated test condition for IBAT in Table 22: DC characteristics; removed  
shipping method in tubes from Table 31: Ordering information.  
16-May-2012  
26-Oct-2012  
14  
15  
Textual update concerning reflow (Features, Section 3.17); removed footnote  
3 of Table 19; updated footnote 1 of Table 23; removed Section 8: References.  
Doc ID 12578 Rev 15  
61/62  
M41T82-M41T83  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
62/62  
Doc ID 12578 Rev 15  

相关型号:

M41T93

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93RMY6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93RMY6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93RQA6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93RQA6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93SMY6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93SMY6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93SQA6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93SQA6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZMY6E

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZMY6F

Serial SPI bus RTC with battery switchover
STMICROELECTR

M41T93ZQA6E

Serial SPI bus RTC with battery switchover
STMICROELECTR