M58BW016BB100ZA6F [STMICROELECTRONICS]

暂无描述;
M58BW016BB100ZA6F
型号: M58BW016BB100ZA6F
厂家: ST    ST
描述:

暂无描述

闪存 存储 内存集成电路
文件: 总63页 (文件大小:843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58BW016BT, M58BW016BB  
M58BW016DT, M58BW016DB  
16 Mbit (512Kb x32, Boot Block, Burst)  
3V Supply Flash Memories  
PE4FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V  
= 2.7V to 3.6V for Program, Erase and  
DD  
Read  
– V  
= V  
= 2.4V to 3.6V for I/O Buffers  
DDQIN  
DDQ  
– V = 12V for fast Program (optional)  
PP  
HIGH PERFORMANCE  
– Access Time: 80, 90 and 100ns  
PQFP80 (T)  
– 56MHz Effective Zero Wait-State Burst Read  
– Synchronous Burst Reads  
– Asynchronous Page Reads  
HARDWARE BLOCK PROTECTION  
– WP pin Lock Program and Erase  
SOFTWARE BLOCK PROTECTION  
BGA  
– Tuning Protection to Lock Program and  
Erase with 64 bit User Programmable Pass-  
word (M58BW016B version only)  
LBGA80 (ZA)  
10 x 8 ball array  
OPTIMIZED for FDI DRIVERS  
– Fast Program / Erase suspend latency  
time < 6µs  
– Common Flash Interface  
MEMORY BLOCKS  
– 8 Parameters Blocks (Top or Bottom)  
– 31 Main Blocks  
LOW POWER CONSUMPTION  
– 5µA Typical Deep Power Down  
– 60µA Typical Standby  
– Automatic Standby after Asynchronous Read  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Top Device Code M58BW016xT: 8836h  
– Bottom Device Code M58BW016xB: 8835h  
May 2003  
1/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. LBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. PQFP Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Tuning Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2. Top Boot Block Addresses, M58BW016BT, M58BW016DT . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3. Bottom Boot Block Addresses, M58BW016BB, M58BW016DB . . . . . . . . . . . . . . . . . . . 12  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Inputs/Outputs (DQ0-DQ31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Disable (GD).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Burst Clock (K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Burst Address Advance (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Supply Voltage (V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DD)  
Output Supply Voltage (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DDQ  
Input Supply Voltage (V  
DDQIN  
Program/Erase Supply Voltage (V ).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PP  
Ground (V and V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SSQ  
SS  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Asynchronous Read Electronic Signature Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
X-Latency Bits (M14-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Wrap Burst Bit (M3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Burst Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 8. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Tuning Protection Unlock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Tuning Protection Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 9. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . 27  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Program Status, Tuning Protection Unlock Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
V
PP  
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Tuning Protection Status (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 11. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 7. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 14. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 9. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 34  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics . . . . . . . . . . . . . . . . . . . 34  
Figure 11. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 18. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 12. Asynchronous Write AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 13. Asynchronous Latch Controlled Write AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics . . . . . . . . . . . . . . 38  
Figure 14. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge) . . . . . . . . . . . . . . . 39  
Table 20. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 15. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge) . . . . . . . . . . . . . . . 40  
Figure 16. Synchronous Burst Read - Continuous - Valid Data Ready Output . . . . . . . . . . . . . . . 41  
Figure 17. Synchronous Burst Read - Burst Address Advance. . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 18. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 21. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 19. LBGA80 10x12mm - 8x10 ball array, 1mm pitch, Bottom View Package Outline . . . . 43  
Table 22. LBGA80 10x12mm - 8x10 ball array, 1mm pitch, Package Mechanical Data . . . . . . . . 43  
Figure 20. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Outline. . . . . . . . . . . . . . . . . . . . 44  
Table 23. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Mechanical Data. . . . . . . . . . . . . 44  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
APPENDIX A. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 25. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 27. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 28. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 29. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
APPENDIX B. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 21. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 22. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 50  
Figure 23. Block Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 24. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 25. Unlock Device and Change Tuning Protection Code Flowchart . . . . . . . . . . . . . . . . . 53  
4/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 26. Unlock Device and Program a Tuning Protected Block Flowchart. . . . . . . . . . . . . . . . 54  
Figure 27. Unlock Device and Erase a Tuning Protected Block Flowchart . . . . . . . . . . . . . . . . . . 55  
Figure 28. Power-up Sequence to Burst the Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. Command Interface and Program Erase Controller Flowchart (a) . . . . . . . . . . . . . . . . 57  
Figure 30. Command Interface and Program Erase Controller Flowchart (b) . . . . . . . . . . . . . . . . 58  
Figure 31. Command Interface and Program Erase Controller Flowchart (c) . . . . . . . . . . . . . . . . 59  
Figure 32. Command Interface and Program Erase Controller Flowchart (d) . . . . . . . . . . . . . . . . 60  
Figure 33. Command Interface and Program Erase Controller Flowchart (e) . . . . . . . . . . . . . . . . 61  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
5/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
SUMMARY DESCRIPTION  
The M58BW016B/D is a 16Mbit non-volatile Flash  
memory that can be erased electrically at the block  
level and programmed in-system on a Double-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 100,000 cy-  
cles.  
Word basis using a 2.7V to 3.6V V supply for the  
DD  
circuit and a V  
supply down to 2.4V for the In-  
DDQ  
put and Output buffers. Optionally a 12V V sup-  
PP  
ply can be used to provide fast program and erase  
for a limited time and number of program/erase cy-  
cles.  
All blocks are protected during power-up. The  
M58BW016B features four different levels of block  
protection to avoid unwanted program/erase oper-  
ations. The WP pin offers an hardware protection  
on two of the parameter blocks and all of the main  
blocks. The Program and Erase commands can  
be password protected by the Tuning Protection  
command. All Program or Erase operations are  
blocked when Reset, RP, is held low. The  
M58BW016D offers the same protection features  
with the exception of the Tuning Block Protection  
which is disabled in the factory.  
A Reset/Power-down mode is entered when the  
RP input is Low. In this mode the power consump-  
tion is lower than in the normal standby mode, the  
device is write protected and both the Status and  
the Burst Configuration Registers are cleared. A  
recovery time is required when the RP input goes  
High.  
The devices support Asynchronous (Latch Con-  
trolled and Page Read) and Synchronous Bus op-  
erations. The Synchronous Burst Read Interface  
allows a high data transfer rate controlled by the  
Burst Clock, K, signal. It is capable of bursting  
fixed or unlimited lengths of data. The burst type,  
latency and length are configurable and can be  
easily adapted to a large variety of system clock  
frequencies and microprocessors. All Writes are  
Asynchronous. On power-up the memory defaults  
to Read mode with an Asynchronous Bus.  
The device has a boot block architecture with an  
array of 8 parameter block of 64Kb each and 31  
main blocks of 512Kb each. The parameter blocks  
can be located at the top of the address space,  
M58BW016BT, M58BW016DT or at the bottom,  
M58BW016BB, M58BW016DB.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Program or Erase operation can be detected and  
any error conditions identified in the Status Regis-  
The memory is offered in PQFP80 (14 x 20mm)  
and LBGA80 (1.0mm pitch) packages and it is  
supplied with all the bits erased (set to ’1’).  
6/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 1. Signal Names  
Figure 2. Logic Diagram  
A0-A18  
Address inputs  
DQ0-DQ7  
Data Input/Output, Command Input  
V
V
V
Data Input/Output, Burst Configuration  
Register  
V
DD DDQ DDQIN  
PP  
DQ8-DQ15  
DQ16-DQ31 Data Input/Output  
B
Burst Address Advance  
Chip Enable  
A0-A18  
DQ0-DQ31  
E
K
L
G
Output Enable  
K
Burst Clock  
M58BW016BT  
M58BW016BB  
M58BW016DT  
M58BW016DB  
E
L
Latch Enable  
RP  
G
R
R
Valid Data Ready (open drain output)  
Reset/Power-down  
Write Enable  
RP  
W
GD  
WP  
GD  
W
Output Disable  
Write Protect  
WP  
B
V
Supply Voltage  
DD  
V
Power Supply for Output Buffers  
Power Supply for Input Buffers only  
DDQ  
V
V
DDQIN  
PP  
V
V
SSQ  
SS  
Optional Supply Voltage for Fast  
Program and Fast Erase Operations  
AI04155  
V
V
Ground  
SS  
Input/Output Ground  
Not Connected Internally  
Don’t Use as Internally Connected  
SSQ  
NC  
DU  
7/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 3. LBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A15  
A14  
V
V
V
A6  
A3  
A2  
DD  
PP  
SS  
A16  
A17  
DQ3  
A13  
A18  
A12  
A11  
DU  
A9  
A10  
DU  
A8  
NC  
A5  
A7  
A4  
DU  
A1  
A0  
DQ0  
DQ4  
DQ7  
DQ8  
DQ12  
DQ14  
RP  
DU  
DQ31  
DQ28  
DQ25  
DQ21  
DQ19  
G
DQ30  
DQ26  
DQ24  
DQ23  
DQ18  
R
DQ29  
V
DQ2  
DQ6  
DQ10  
DQ11  
L
DQ1  
DQ5  
DQ9  
WP  
B
DQ27  
NC  
V
DDQ  
DDQ  
V
V
SSQ  
SSQ  
G
H
J
V
DQ22  
DQ17  
E
V
DDQ  
DDQ  
DQ13  
DQ15  
DQ20  
DQ16  
DU  
K
V
K
V
V
W
GD  
DDQIN  
SS  
DD  
AI04151b  
8/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 4. PQFP Connections (Top view through package)  
DQ16  
DQ17  
DQ18  
DQ19  
1
DQ15  
DQ14  
DQ13  
DQ12  
64  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ20  
DQ11  
DQ10  
DQ9  
DQ8  
DQ7  
DQ6  
DQ5  
DQ4  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
M58BW016BT  
M58BW016BB  
M58BW016DT  
12  
53  
M58BW016DB  
V
V
V
DDQ  
SSQ  
DDQ  
V
SSQ  
DQ28  
DQ3  
DQ2  
DQ1  
DQ0  
NC  
DQ29  
DQ30  
DQ31  
DU  
A0  
A18  
A17  
A16  
A1  
A2  
41  
24  
AI04152b  
9/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Block Protection  
blocks from program or erase operations. It allows  
the user to lock program and erase operations with  
a user definable 64 bit code. It is only available on  
the M58BW016B version.  
The M58BW016B features four different levels of  
block protection. The M58BW016D has the same  
block protection with the exception of the Tuning  
Block Protection, which is disabled in the factory.  
The code is written once in the Tuning Protection  
Register and cannot be erased. When shipped the  
flash memory will have the Tuning Protection  
Code bits set to ‘1'. The user can program a ‘0’ in  
any of the 64 positions. Once programmed it is not  
possible to reset a bit to ‘1’ as the cells cannot be  
erased. The Tuning Protection Register can be  
programmed at any moment (after providing the  
correct code), however once all bits are set to ‘0’  
the Tuning Protection Code can no longer be al-  
tered.  
Write Protect Pin, WP, - When WP is low, V ,  
IL  
all the lockable parameter blocks (two upper  
(Top ) or lower (Bottom)) and all the main blocks  
are protected. When WP is high (V ) all the  
lockable parameter blocks and all the main  
blocks are unprotected.  
IH  
Reset/Power-Down Pin, RP, - If the device is  
held in reset mode (RP at V ), no program or  
IL  
erase operations can be performed on any  
block.  
The Tuning Protection Code locks the program  
and erase operations of 2 parameter and 24 main  
blocks, blocks 0, 1 and 15-38 for the bottom con-  
figuration and the blocks 0-23, 37 and 38 for the  
top configuration.  
The tuning blocks are "locked" if the tuning protec-  
tion code has not been provided, and “unlocked"  
once the correct code has been provided. The tun-  
ing blocks are locked after reset or power-up. The  
tuning protection status can be monitored in the  
Status Register. Refer to the Status Register sec-  
tion.  
Refer to the Command Interface section for the  
Tuning Protection Block Unlock and Tuning Pro-  
tection Program commands. See Appendix B, Fig-  
ure 25, 26 and 27 for suggested flowcharts for  
using the Tuning Block Protection commands. For  
further information on the Tuning Block Protection  
refer to Application Note, AN1361.  
Tuning Block Protection: M58BW016B  
features a 64 bit password protection for  
program and erase operations for a fixed  
number of blocks After power-up or reset the  
device is tuning protected. An Unlock command  
is provided to allow program or erase operations  
in all the blocks.  
After a device reset the first two kinds of block pro-  
tection (WP, RP) can be combined to give a flexi-  
ble block protection. They do not affect the Tuning  
Block Protection. When the two protections are  
disabled, WP and RP at V , the blocks locked by  
IH  
the Tuning Block Protection cannot be modified.  
All blocks are protected during power-up.  
Tuning Block Protection. The Tuning Block  
Protection is a software feature to protect certain  
10/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 2. Top Boot Block Addresses,  
M58BW016BT, M58BW016DT  
(1)  
#
Size (Kbit)  
Address Range  
TP  
yes  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
00000h-03FFFh  
(1)  
#
Size (Kbit)  
64  
Address Range  
7F800h-7FFFFh  
7F000h-7F7FFh  
7E800h-7EFFFh  
7E000h-7E7FFh  
7D800h-7DFFFh  
7D000h-7D7FFh  
7C800h-7CFFFh  
7C000h-7C7FFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
TP  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
64  
yes  
no  
64  
64  
no  
64  
no  
64  
no  
64  
no  
64  
no  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
no  
no  
8
no  
7
no  
6
no  
5
no  
4
no  
3
yes  
yes  
yes  
yes  
2
1
0
Note: 1. TP = Tuning Protected Block, only available for the  
M58BW016B.  
11/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 3. Bottom Boot Block Addresses,  
(1)  
#
Size (Kbit)  
Address Range  
TP  
yes  
M58BW016BB, M58BW016DB  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
64  
30000h-33FFFh  
2C000h-2FFFFh  
28000h-2BFFFh  
24000h-27FFFh  
20000h-23FFFh  
1C000h-1FFFFh  
18000h-1BFFFh  
14000h-17FFFh  
10000h-13FFFh  
0C000h-0FFFFh  
08000h-0BFFFh  
04000h-07FFFh  
03800h-03FFFh  
03000h-037FFh  
02800h-02FFFh  
02000h-027FFh  
01800h-01FFFh  
01000h-017FFh  
00800h-00FFFh  
00000h-007FFh  
(1)  
#
Size (Kbit)  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
Address Range  
7C000h-7FFFFh  
78000h-7BFFFh  
74000h-77FFFh  
70000h-73FFFh  
6C000h-6FFFFh  
68000h-6BFFFh  
64000h-67FFFh  
60000h-63FFFh  
5C000h-5FFFFh  
58000h-5BFFFh  
54000h-57FFFh  
50000h-53FFFh  
4C000h-4FFFFh  
48000h-4BFFFh  
44000h-47FFFh  
40000h-43FFFh  
3C000h-3FFFFh  
38000h-3BFFFh  
34000h-37FFFh  
TP  
yes  
yes  
yes  
yes  
yes  
no  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
no  
no  
no  
no  
no  
8
no  
7
no  
6
64  
no  
5
64  
no  
4
64  
no  
3
64  
no  
2
64  
no  
1
64  
yes  
yes  
0
64  
Note: 1. TP = Tuning Protected Block, only available for the  
M58BW016B.  
12/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
ly of Output Enable. The Output Disable pin must  
be connected to an external pull-up resistor as  
there is no internal pull-up resistor to drive the pin.  
Address Inputs (A0-A18). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable must be low when selecting the ad-  
dresses.  
Write Enable (W). The Write Enable, W, input  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
Reset/Power-Down (RP). The  
Reset/Power-  
Down, RP, is used to apply a hardware reset to the  
memory. A hardware reset is achieved by holding  
The address inputs are latched on the rising edge  
of Latch Enable L or Burst Clock K, whichever oc-  
curs first, in a read operation.The address inputs  
are latched on the rising edge of Chip Enable,  
Write Enable or Latch Enable, whichever occurs  
first in a Write operation. The address latch is  
Reset/Power-Down Low, V , for at least t  
.
IL  
PLPH  
Writing is inhibited to protect data, the Command  
Interface and the Program/Erase Controller are re-  
set. The Status Register information is cleared and  
power consumption is reduced to deep power-  
down level. The device acts as deselected, that is  
the data outputs are high impedance.  
transparent when Latch Enable is low, V . The ad-  
IL  
dress is internally latched in an Erase or Program  
operation.  
After Reset/Power-Down goes High, V , the  
memory will be ready for Bus Read operations af-  
IH  
Data Inputs/Outputs (DQ0-DQ31). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
ter a delay of t  
or Bus Write operations after  
PHEL  
t
.
PHWL  
If Reset/Power-Down goes low, V , during a Block  
Erase, a Program or a Tuning Protection Program  
the operation is aborted, in a time of t  
mum, and data is altered and may be corrupted.  
IL  
maxi-  
PLRH  
During Power-up power should be applied simulta-  
neously to V  
and V  
with RP held at V .  
DDQ(IN) IL  
DD  
When the supplies are stable RP is taken to V .  
Output Enable, G, Chip Enable, E, and Write En-  
able, W, should be held at V during power-up.  
IH  
When Chip Enable and Output Enable are both  
IH  
low, V , and Output Disable is at V the data bus  
IL  
IH,  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
erase or program operation, the memory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
outputs data from the memory array, the Electron-  
ic Signature, the CFI Information or the contents of  
the Status Register. The data bus is high imped-  
ance when the device is deselected with Chip En-  
able at V , Output Enable at V , Output Disable  
IH  
IH  
at V or Reset/Power-Down at V . The Status  
IL  
IL  
Register content is output on DQ0-DQ7 and DQ8-  
DQ31 are at V .  
IL  
See Table 21 and Figure 18, Reset, Power-Down  
and Power-up Characteristics, for more details.  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
Latch Enable (L). The Bus Interface can be con-  
figured to latch the Address Inputs on the rising  
edge of Latch Enable, L, for Asynchronous Latch  
Enable Controlled Read or Write or Synchronous  
Burst Read operations. In Synchronous Burst  
Read operations the address is latched on the ac-  
tive edge of the Clock when Latch Enable is Low,  
V
deselects the memory and reduces the power  
IH  
consumption to the Standby level.  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation, when Output Disable GD is at  
V . When Output Enable G is at V , the outputs  
IH  
IH  
V . Once latched, the addresses may change  
IL  
are high impedance independently of Output Dis-  
able.  
Output Disable (GD). The Output Disable, GD,  
without affecting the address used by the memory.  
When Latch Enable is Low, V , the latch is trans-  
parent. Latch Enable, L, can remain at V for  
Asynchronous Random Read and Write opera-  
tions.  
Burst Clock (K). The Burst Clock, K, is used to  
synchronize the memory with the external bus dur-  
IL  
IL  
deactivates the data output buffers. When Output  
Disable, GD, is at V , the outputs are driven by  
IH  
the Output Enable. When Output Disable, GD, is at  
V , the outputs are high impedance independent-  
IL  
13/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
ing Synchronous Burst Read operations. Bus sig-  
nals are latched on the active edge of the Clock.  
The Clock can be configured to have an active ris-  
ing or falling edge. In Synchronous Burst Read  
mode the address is latched on the first active  
top configuration) parameter blocks and all main  
blocks are locked. When Write Protect WP is at  
all the blocks can be programmed or erased, if  
V
IH  
no other protection is used.  
Supply Voltage (V ). The Supply Voltage, V  
,
DD  
DD  
clock edge when Latch Enable is low, V , or on  
IL  
is the core power supply. All internal circuits draw  
the rising edge of Latch Enable, whichever occurs  
first.  
their current from the V  
pin, including the Pro-  
DD  
gram/Erase Controller.  
During Asynchronous bus operations the Clock is  
not used.  
Output Supply Voltage (V  
). The Output Sup-  
DDQ  
ply Voltage, V  
, is the output buffer power supply  
DDQ  
Burst Address Advance (B). The Burst Address  
Advance, B, controls the advancing of the address  
by the internal address counter during Synchro-  
nous Burst Read operations.  
for all operations (Read, Program and Erase) used  
for DQ0-DQ31 when used as outputs.  
Input Supply Voltage (V  
). The Input Sup-  
DDQIN  
ply Voltage, V  
, is the power supply for all input  
DDIN  
Burst Address Advance, B, is only sampled on the  
active clock edge of the Clock when the X-latency  
time has expired. If Burst Address Advance is  
signal. Input signals are: K, B, L, W, GD, G, E, A0-  
A18 and D0-D31, when used as inputs.  
Program/Erase Supply Voltage (V ). The Pro-  
PP  
Low, V , the internal address counter advances. If  
IL  
gram/Erase Supply Voltage, V , is used for pro-  
PP  
Burst Address Advance is High, V , the internal  
IH  
gram and erase operations. The memory normally  
address counter does not change; the same data  
remains on the Data Inputs/Outputs and Burst Ad-  
dress Advance is not sampled until the Y-latency  
expires.  
executes program and erase operations at V  
PP1  
voltage levels. In a manufacturing environment,  
programming may be speeded up by applying a  
higher voltage level, V  
, to the V pin.  
PPH  
PP  
The Burst Address Advance, B, may be tied to V .  
IL  
The voltage level V  
may be applied for a total  
PPH  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be  
used, during Synchronous Burst Read operations,  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output can be config-  
ured to be active on the clock edge of the invalid  
data read cycle or one cycle before. Valid Data  
of 80 hours over a maximum of 1000 cycles.  
Stressing the device beyond these limits could  
damage the device.  
Ground (V and V  
). The Ground V is the  
SS  
SS  
SSQ  
reference for the internal supply voltage V . The  
DD  
Ground V  
input supplies V  
is the reference for the output and  
SSQ  
and V  
. It is essential to  
DDQ,  
DDQIN  
Ready, at V , indicates that new data is or will be  
IH  
connect V and V  
together.  
SS  
SSQ  
available. When Valid Data Ready is Low, V , the  
IL  
Note: A 0.1µF capacitor should be connected  
between the Supply Voltages, V , V and  
previous data outputs remain active.  
DD  
DDQ  
In all Asynchronous operations, Valid Data Ready  
is high-impedance. It may be tied to other compo-  
nents with the same Valid Data Ready signal to  
create a unique system Ready signal. The Valid  
Data Ready output has an internal pull-up resistor  
V
and the Grounds, V and V  
to decou-  
DDIN  
SS  
SSQ  
ple the current surges from the power supply.  
The PCB track widths must be sufficient to car-  
ry the currents required during all operations  
of the parts, see Table 15, DC Characteristics,  
for maximum current supply requirements.  
of around 1 Mpowered from V  
, designers  
DDQ  
should use an external pull-up resistor of the cor-  
rect value to meet the external timing require-  
Don’t Use (DU). This pin should not be used as it  
is internally connected. Its voltage level can be be-  
ments for Valid Data Ready going to V .  
IH  
tween V and V  
or leave it unconnected.  
SS  
DDQ  
Write Protect (WP). The Write Protect, WP, pro-  
vides protection against program or erase opera-  
Not Connected (NC). This pin is not physically  
connected to the device.  
tions. When Write Protect, WP, is at V the first  
IL  
two (in the bottom configuration) or last two (in the  
14/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
BUS OPERATIONS  
Each bus operations that controls the memory is  
described in this section, see Tables 4, 5 and 6  
Bus Operations, for a summary. The bus operation  
is selected through the Burst Configuration Regis-  
ter; the bits in this register are described at the end  
of this section.  
Note that, since the Latch Enable input is transpar-  
ent when set Low, V , Asynchronous Bus Read  
IL  
operations can be performed when the memory is  
configured for Asynchronous Latch Enable bus  
operations by holding Latch Enable Low, V  
throughout the bus operation.  
IL  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Bus Read and Asyn-  
chronous Bus Write, no other bus operation can  
be performed until the Burst Control Register has  
been configured.  
Asynchronous Page Read. Asynchronous  
Page Read operations are used to read from sev-  
eral addresses within the same memory page.  
Each memory page is 4 Double-Words and is ad-  
dressed by the address inputs A0 and A1.  
The Electronic Signature, CFI or Status Register  
will be read in asynchronous mode regardless of  
the Burst Control Register settings.  
Data is read internally and stored in the Page Buff-  
er. Valid bus operations are the same as Asyn-  
chronous Bus Read operations but with different  
timings. The first read operation within the page  
has identical timings, subsequent reads within the  
same page have much shorter access times. If the  
page changes then the normal, longer timings ap-  
ply again. Page Read does not support Latched  
Controlled Read.  
See Figure 11, Asynchronous Page Read AC  
Waveforms and Table 18, Asynchronous Page  
Read AC Characteristics for details on when the  
outputs become valid.  
Asynchronous Bus Write. Asynchronous Bus  
Write operations write to the Command Interface  
in order to send commands to the memory or to  
latch addresses and input data to program. Bus  
Write operations are asynchronous, the clock, K,  
is don’t care during Bus Write operations.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Asynchronous Bus Operations  
For asynchronous bus operations refer to Table 4  
together with the following text.  
Asynchronous Bus Read. Asynchronous Bus  
Read operations read from the memory cells, or  
specific registers (Electronic Signature, Status  
Register, CFI and Burst Configuration Register) in  
the Command Interface. A valid bus operation in-  
volves setting the desired address on the Address  
Inputs, applying a Low signal, V , to Chip Enable  
IL  
and Output Enable and keeping Write Enable and  
Output Disable High, V . The Data Inputs/Out-  
IH  
puts will output the value, see Figure 9, Asynchro-  
nous Bus Read AC Waveforms, and Table 16,  
Asynchronous Bus Read AC Characteristics, for  
details of when the output becomes valid.  
Asynchronous Read is the default read mode  
which the device enters on power-up or on return  
from Reset/Power-Down.  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
puts, and setting Chip Enable, Write Enable and  
Latch Enable Low, V , and Output Enable High,  
IL  
V , or Output Disable Low, V . The Address In-  
IH  
IL  
puts are latched by the Command Interface on the  
rising edge of Chip Enable or Write Enable, which-  
ever occurs first. Commands and Input Data are  
latched on the rising edge of Chip Enable, E, or  
Write Enable, W, whichever occurs first. Output  
Enable must remain High, and Output Disable  
Low, during the whole Asynchronous Bus Write  
operation.  
See Figure 12, Asynchronous Write AC Wave-  
forms, and Table 19, Asynchronous Write and  
Latch Controlled Write AC Characteristics, for de-  
tails of the timing requirements.  
Asynchronous Latch Controlled Bus Read.  
Asynchronous Latch Controlled Bus Read opera-  
tions read from the memory cells or specific regis-  
ters in the Command Interface. The address is  
latched in the memory before the value is output  
on the data bus, allowing the address to change  
during the cycle without affecting the address that  
the memory uses.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
able and Latch Enable Low, V and keeping Write  
IL  
Asynchronous Latch Controlled Bus Write.  
Enable High, V ; the address is latched on the ris-  
IH  
Asynchronous Latch Controlled Bus Write opera-  
tions write to the Command Interface in order to  
send commands to the memory or to latch ad-  
dresses and input data to program. Bus Write op-  
erations are asynchronous, the clock, K, is don’t  
care during Bus Write operations.  
ing edge of Latch Enable. Once latched, the Ad-  
dress Inputs can change. Set Output Enable Low,  
V , to read the data on the Data Inputs/Outputs;  
IL  
see Figure 1, Asynchronous Latch Controlled Bus  
Read AC Waveforms and Table 17, Asynchro-  
nous Latch Controlled Bus Read AC Characteris-  
tics for details on when the output becomes valid.  
A valid Asynchronous Latch Controlled Bus Write  
operation begins by setting the desired address on  
15/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
the Address Inputs and pulsing Latch Enable Low,  
enters Auto Low Power mode where the internal  
V . The Address Inputs are latched by the Com-  
Supply Current is reduced to the Auto-Standby  
Supply Current. The Data Inputs/Outputs will still  
output data if a Bus Read operation is in progress.  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
IL  
mand Interface on the rising edge of Latch Enable,  
Write Enable or Chip Enable, whichever occurs  
first. Commands and Input Data are latched on the  
rising edge of Chip Enable, E, or Write Enable, W,  
whichever occurs first. Output Enable must remain  
High, and Output Disable Low, during the whole  
Asynchronous Bus Write operation.  
See Figure 13, Asynchronous Latch Controlled  
Write AC Waveforms, and Table 19, Asynchro-  
nous Write and Latch Controlled Write AC Charac-  
teristics, for details of the timing requirements.  
Power-Down. The memory is in Power-down  
when Reset/Power-Down, RP, is at V . The pow-  
IL  
er consumption is reduced to the power-down lev-  
el and the outputs are high impedance,  
independent of the Chip Enable, E, Output Enable,  
G, Output Disable, GD, or Write Enable, W, inputs.  
Electronic Signature. Two codes identifying the  
manufacturer and the device can be read from the  
memory allowing programming equipment or ap-  
plications to automatically match their interface to  
the characteristics of the memory. The Electronic  
Signature is output by giving the Read Electronic  
Signature command. The manufacturer code is  
Output Disable. The data outputs are high im-  
pedance when the Output Enable, G, is at V or  
IH  
Output Disable, GD, is at V .  
IL  
Standby. When Chip Enable is High, V , and the  
IH  
Program/Erase Controller is idle, the memory en-  
ters Standby mode, the power consumption is re-  
duced to the standby level and the Data Inputs/  
Outputs pins are placed in the high impedance  
state regardless of Output Enable, Write Enable or  
Output Disable inputs.  
Automatic Low Power. If there is no change in  
the state of the bus for a short period of time during  
Asynchronous Bus Read operations the memory  
output when all the Address inputs are at V . The  
IL  
device code is output when A1 is at V and all the  
IH  
other address pins are at V . See Table 5. Issue  
IL  
a Read Memory Array command to return to Read  
mode.  
Table 4. Asynchronous Bus Operations  
Bus Operation  
Step  
E
G
GD  
W
RP  
L
A0-A18  
Address  
Address  
X
DQ0-DQ31  
Data Output  
High Z  
V
V
IL  
V
IH  
V
V
IH  
V
IL  
Asynchronous Bus Read  
IL  
IL  
IL  
IH  
V
V
V
V
IH  
V
V
V
IH  
V
V
Address Latch  
Read  
IH  
IL  
IL  
Asynchronous Latch  
Controlled Bus Read  
V
V
V
V
IH  
V
IH  
Data Output  
IL  
IH  
IH  
IH  
Asynchronous Page  
Read  
V
V
IH  
V
V
IH  
X
Address  
Data Output  
IL  
IL  
V
V
V
V
V
V
V
V
V
IH  
V
IL  
Asynchronous Bus Write  
X
Address  
Data Input  
High Z  
IL  
IL  
IL  
IL  
IL  
IH  
IL  
V
V
IH  
V
IH  
V
V
Address Latch  
Write  
Address  
IL  
IH  
IH  
IH  
IL  
Asynchronous Latch  
Controlled Bus Write  
V
V
V
V
IH  
X
X
X
X
X
X
Data Input  
High Z  
IL  
IH  
IH  
IH  
V
IH  
V
V
V
IH  
Output Disable, G  
Output Disable, GD  
Standby  
X
V
IL  
V
V
IH  
X
X
X
High Z  
IL  
V
IH  
X
X
X
X
High Z  
IH  
V
IL  
Reset/Power-Down  
Note: X = Don’t Care  
X
X
X
High Z  
16/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 5. Asynchronous Read Electronic Signature Operation  
Code  
Device  
E
G
GD  
W
A18-A0  
00000h  
00001h  
DQ31-DQ0  
00000020h  
00008836h  
V
V
V
V
Manufacturer  
All  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
(1)  
(1)  
V
V
V
V
V
V
V
IH  
M58BW016xT  
Device  
V
00001h  
00005h  
00008835h  
IH  
M58BW016xB  
Burst Configuration  
Register  
(2)  
V
V
IL  
V
V
IL  
IH  
IH  
BCR  
Note: 1. x= B or D version of the device.  
2. BCR= Burst Configuration Register.  
Synchronous Bus Operations  
For synchronous bus operations refer to Table 6  
together with the following text.  
When Valid Data Ready is Low on the active clock  
edge, no new data is available and the memory  
does not increment the internal address counter at  
the active clock edge even if Burst Address Ad-  
vance, B, is Low.  
Synchronous Burst Read. Synchronous Burst  
Read operations are used to read from the memo-  
ry at specific times synchronized to an external ref-  
erence clock. The burst type, length and latency  
can be configured. The different configurations for  
Synchronous Burst Read operations are de-  
scribed in the Burst Configuration Register sec-  
tion. Refer to Figures 5 and 6 for examples of  
synchronous burst operations.  
Valid Data Ready may be configured (by bit M8 of  
Burst Configuration Register) to be valid immedi-  
ately at the valid clock edge or one data cycle be-  
fore the valid clock edge.  
Synchronous Burst Read will be suspended if  
Burst Address Advance, B, goes High, V .  
IH  
In continuous burst read, one burst read operation  
can access the entire memory sequentially by  
If Output Enable is at V and Output Disable is at  
IL  
V , the last data is still valid.  
IH  
keeping the Burst Address Advance B at V for  
IL  
If Output Enable, G, is at V or Output Disable,  
IH  
the appropriate number of clock cycles. At the end  
of the memory address space the burst read re-  
starts from the beginning at address 000000h.  
A valid Synchronous Burst Read operation begins  
when the Burst Clock is active and Chip Enable  
GD, is at V , but the Burst Address Advance, B, is  
IL  
at V the internal Burst Address Counter is incre-  
IL  
mented at each Burst Clock K valid edge.  
The Synchronous Burst Read timing diagrams  
and AC Characteristics are described in the AC  
and DC Parameters section. See Figures 14, 15,  
16 and 17, and Table 20.  
and Latch Enable are Low, V . The burst start ad-  
IL  
dress is latched and loaded into the internal Burst  
Address Counter on the valid Burst Clock K edge  
(rising or falling depending on the value of M6) or  
on the rising edge of Latch Enable, whichever oc-  
curs first.  
After an initial memory latency time, the memory  
outputs data each clock cycle (or two clock cycles  
depending on the value of M9). The Burst Address  
Advance B input controls the memory burst output.  
The second burst output is on the next clock valid  
edge after the Burst Address Advance B has been  
pulled Low.  
Synchronous Burst Read Suspend. During  
a
Synchronous Burst Read operation it is possible to  
suspend the operation, freeing the data bus for  
other higher priority devices.  
A valid Synchronous Burst Read operation is sus-  
pended when both Output Enable and Burst Ad-  
dress Advance are High, V . The Burst Address  
IH  
Advance going High, V , stops the burst counter  
IH  
and the Output Enable going High, V , inhibits the  
IH  
data outputs. The Synchronous Burst Read oper-  
ation can be resumed by setting Output Enable  
Low.  
Valid Data Ready, R, monitors if the memory burst  
boundary is exceeded and the Burst Controller of  
the microprocessor needs to insert wait states.  
17/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 6. Synchronous Burst Read Bus Operations  
A0-A18  
DQ0-DQ31  
(3)  
Bus Operation  
Step  
Address Latch  
E
G
GD RP  
L
B
K
V
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
IH  
V
X
T
X
Address Input  
Data Output  
High Z  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
V
V
V
V
V
V
V
V
IH  
V
V
V
V
V
Read  
T
X
T
T
X
X
IL  
IL  
V
IH  
Read Suspend  
Read Resume  
Burst Address Advance  
Read Abort, E  
Read Abort, RP  
X
IH  
Synchronous Burst  
Read  
V
IL  
V
IH  
V
V
Data Output  
High Z  
IL  
IL  
V
IH  
X
X
X
X
X
X
High Z  
IH  
V
IL  
X
X
X
X
High Z  
Note: 1. X = Don't Care, V or V  
.
IH  
IL  
2. M15 = 0, Bit M15 is in the Burst Configuration Register.  
3. T = transition, see M6 in the Burst Configuration Register for details on the active edge of K.  
18/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Burst Configuration Register  
Burst Type Bit (M7). The Burst Type bit is used  
to configure the sequence of addresses read as  
The Burst Configuration Register is used to config-  
ure the type of bus access that the memory will  
perform.  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Tables 8,  
Burst Type Definition, for the sequence of ad-  
dresses output from a given starting address in  
each mode.  
Valid Clock Edge Bit (M6). The Valid Clock  
Edge bit, M6, is used to configure the active edge  
of the Clock, K, during Synchronous Burst Read  
operations. When the Valid Clock Edge bit is ’0’  
the falling edge of the Clock is the active edge;  
when the Valid Clock Edge bit is ’1’ the rising edge  
of the Clock is active.  
Wrap Burst Bit (M3). The burst reads can be  
confined inside the 4 or 8 Double-Word boundary  
(wrap) or overcome the boundary (no wrap). The  
Wrap Burst bit is used to select between wrap and  
no wrap. When the Wrap Burst bit is set to ‘0’ the  
burst read wraps; when it is set to ‘1’ the burst read  
does not wrap.  
The Burst Configuration Register is set through  
the Command Interface and will retain its informa-  
tion until it is re-configured, the device is reset, or  
the device goes into Reset/Power-Down mode.  
The Burst Configuration Register bits are de-  
scribed in Table 7. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation. Refer to Figures 5  
and 6 for examples of synchronous burst configu-  
rations.  
Read Select Bit (M15). The Read Select bit,  
M15, is used to switch between asynchronous and  
synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous accesses.  
X-Latency Bits (M14-M11). The X-Latency bits  
are used during Synchronous Bus Read opera-  
tions to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table 7,  
Burst Configuration Register. The X-Latency bits  
should also be selected in conjunction with Table ,  
Burst Performance to ensure valid settings.  
Burst Length Bit (M2-M0). The Burst Length bits  
set the maximum number of Double-Words that  
can be output during a Synchronous Burst Read  
operation before the address wraps. Burst lengths  
of 4 or 8 are available for both the Sequential and  
Interleaved burst types, and a continuous burst is  
available for the Sequential type.  
Table 7, Burst Configuration Register gives the  
valid combinations of the Burst Length bits that the  
memory accepts; Table 8, Burst Type Definition,  
gives the sequence of addresses output from a  
given starting address for each length.  
If either a Continuous or a No Wrap Burst Read  
has been initiated the device will output data syn-  
chronously. Depending on the starting address,  
the device activates the Valid Data Ready output  
to indicate that a delay is necessary before the  
data is output. If the starting address is aligned to  
an 8 Double Word boundary, the continuous burst  
mode will run without activating the Valid Data  
Ready output. If the starting address is not aligned  
to an 8 Double Word boundary, Valid Data Ready  
is activated to indicate that the device needs an in-  
ternal delay to read the successive words in the ar-  
ray.  
Y-Latency Bit (M9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in M9.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table 7,  
Burst Configuration Register and Table , Burst  
Performance, for valid combinations of the Y-La-  
tency, the X-Latency and the Clock frequency.  
Valid Data Ready Bit (M8). The  
Valid  
Data  
Ready bit controls the timing of the Valid Data  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ the Valid Data Ready output pin is driven Low  
one clock cycle prior to invalid data being output  
on the bus.  
M10, M5 and M4 are reserved for future use.  
19/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 7. Burst Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Burst Read  
M15  
M14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
Reserved  
001  
010  
011  
100  
101  
110  
(1)  
4, 4-1-1-1  
5, 5-1-1-1, 5-2-2-2  
6, 6-1-1-1, 6-2-2-2  
7, 7-1-1-1, 7-2-2-2  
8, 8-1-1-1, 8-2-2-2  
Reserved  
(2)  
M13-M11  
X-Latency  
M10  
M9  
0
1
0
1
0
1
0
1
One Burst Clock cycle  
Two Burst Clock cycles  
R valid Low during valid Burst Clock edge  
R valid Low one data cycle before valid Burst Clock edge  
Interleaved  
(3)  
Y-Latency  
M8  
M7  
Valid Data Ready  
Burst Type  
Sequential  
Falling Burst Clock edge  
Rising Burst Clock edge  
Reserved  
M6  
M5-M4  
M3  
Valid Clock Edge  
0
Wrap  
Wrapping  
1
No wrap  
001  
010  
111  
4 Double-Words  
M2-M0  
Burst Length  
8 Double-Words  
Continuous  
Note: 1. 4 - 2 - 2 - 2 is not allowed.  
2. X latencies can be calculated as: (t  
is the clock period).  
– t  
+ t  
) + t  
QVKH  
< (X -1) t (X is an integer number from 4 to 8 and t  
SYSTEM MARGIN K. K  
AVQV  
LLKH  
3. Y latencies can be calculated as: t  
+ t  
+ t  
< Y t  
QVKH K.  
KHQV  
SYSTEM MARGIN  
4. t  
is the time margin required for the calculation.  
SYSTEM MARGIN  
20/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 8. Burst Type Definition  
Starting  
x4  
x4  
x8  
x8  
M 3  
Continuous  
Address Sequential Interleaved  
Sequential  
Interleaved  
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
2
3
4
5
6
7
8
0
1
2
3
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
0-1-2-3-4-5-6-7-8-9-10..  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-11-2-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
0-1-2-3-4-5-6-7-8-9-10..  
1-0-3-2  
1-0-3-2-5-4-7-6  
2-3-0-1  
2-3-0-1-6-7-4-5  
3-2-1-0  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
1-2-3-4-5-6-7-8-9-10-11..  
2-3-4-5-6-7-8-9-10-11-12..  
3-4-5-6-7-8-9-10-11-12-13..  
4-5-6-7-8-9-10-  
11  
1
1
1
1
1
4
5
6
7
8
4-5-6-7  
5-6-7-8  
4-5-6-7-8-9-10-11-12-13-14..  
5-6-7-8-9-10-11-12-13-14..  
6-7-8-9-10-11-12-13-14-15..  
7-8-9-10-11-12-13-14-15-16..  
8-9-10-11-12-13-14-15-16-17..  
5-6-7-8-9-10-11-  
12  
6-7-8-9-10-11-  
12-13  
6-7-8-9  
7-8-9-10-11-12-  
13-14  
7-8-9-10  
8-9-10-11  
8-9-10-11-12-13-  
14-15  
21/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 5. Example Burst Configuration X-1-1-1  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
4-1-1-1  
5-1-1-1  
DQ  
VALID  
VALID  
VALID  
VALID  
DQ  
DQ  
DQ  
VALID  
VALID  
VALID  
VALID  
VALID  
6-1-1-1  
7-1-1-1  
8-1-1-1  
VALID  
VALID  
AI03841  
Figure 6. Example Burst Configuration X-2-2-2  
0
1
2
3
4
5
6
7
8
9
K
ADD  
VALID  
L
DQ  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
5-2-2-2  
DQ  
DQ  
DQ  
NV  
VALID  
NV  
VALID  
NV  
NV  
VALID  
NV  
VALID  
NV  
6-2-2-2  
7-2-2-2  
8-2-2-2  
VALID  
NV=NOT VALID  
AI04406b  
22/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
9, Commands. Refer to Table 9 in conjunction with  
the text descriptions below.  
able and Output Enable at V and Output Disable  
IL  
at V .  
IH  
The content of the Status Register may also be  
read at the completion of a Program, Erase or  
Suspend operation. During a Block Erase, Pro-  
gram, Tuning Protection Program or Tuning Pro-  
tection Unlock command, DQ7 indicates the  
Program/Erase Controller status. It is valid until  
the operation is completed or suspended.  
See the section on the Status Register and Table  
11 for details on the definitions of the Status Reg-  
ister bits  
Read Memory Array Command  
The Read Memory Array command returns the  
memory to Read mode. One Bus Write cycle is re-  
quired to issue the Read Memory Array command  
and return the memory to Read mode. Subse-  
quent read operations will output the addressed  
memory array data. Once the command is issued  
the memory remains in Read mode until another  
command is issued. From Read mode Bus Read  
commands will access the memory array.  
Clear Status Register Command  
The Clear Status Register command can be used  
to reset bits 1, 3, 4 and 5 in the Status Register to  
‘0’. One Bus Write is required to issue the Clear  
Status Register command. Once the command is  
issued the memory returns to its previous mode,  
subsequent Bus Read operations continue to out-  
put the same data.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Pro-  
gram, Erase, Block Protect or Block Unprotect  
command is issued. If any error occurs then it is  
essential to clear any error bits in the Status Reg-  
ister by issuing the Clear Status Register com-  
mand before attempting a new Program, Erase or  
Resume command.  
Read Electronic Signature Command  
The Read Electronic Signature command is used  
to read the Manufacturer Code, the Device Code  
or the Burst Configuration Register. One Bus Write  
cycle is required to issue the Read Electronic Sig-  
nature command. Once the command is issued  
subsequent Bus Read operations, depending on  
the address specified, read the Manufacturer  
Code, the Device Code or the Burst Configuration  
Register until another command is issued; see Ta-  
ble 5, Read Electronic Signature.  
Read Query Command.  
The Read Query Command is used to read data  
from the Common Flash Interface (CFI) Memory  
Area. One Bus Write cycle is required to issue the  
Read Query Command. Once the command is is-  
sued subsequent Bus Read operations, depend-  
ing on the address specified, read from the  
Common Flash Interface Memory Area. See Ap-  
pendix A, Tables 25, 26, 27, 28 and 29 for details  
on the information contained in the Common Flash  
Interface (CFI) memory area.  
Block Erase Command  
The Block Erase command can be used to erase  
a block. It sets all of the bits in the block to ‘1’. All  
previous data in the block is lost. If the block is pro-  
tected then the Erase operation will abort, the data  
in the block will not be changed and the Status  
Register will output the error.  
Two Bus Write operations are required to issue the  
command; the first write cycle sets up the Block  
Erase command, the second write cycle confirms  
the Block erase command and latches the block  
address in the internal state machine and starts  
the Program/Erase Controller. The sequence is  
aborted if the Confirm command is not given and  
the device will output the Status Register Data with  
bits 4 and 5 set to '1'.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits. During the  
Erase operation the memory will only accept the  
Read Status Register command and the Program/  
Erase Suspend command. All other commands  
will be ignored.  
Read Status Register Command  
The Read Status Register command is used to  
read the Status Register. One Bus Write cycle is  
required to issue the Read Status Register com-  
mand. Once the command is issued subsequent  
Bus Read operations read the Status Register un-  
til another command is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when Chip Enable E  
and Output Enable G are at V and Output Dis-  
IL  
able is at V .  
IH  
An interactive update of the Status Register bits is  
possible by toggling Output Enable or Output Dis-  
able. It is also possible during a Program or Erase  
operation, by disactivating the device with Chip  
The command can be executed using either V  
DD  
Enable at V and then reactivating it with Chip En-  
(for a normal erase operation) or V  
(for a fast  
IH  
PP  
erase operation). If V is in the V  
range when  
23/63  
PP  
PPH  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
the command is issued then a fast erase operation  
will be executed, otherwise the operation will use  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 10.  
V
V
. If V goes below the V Lockout Voltage,  
DD  
PP PP  
, during a fast erase the operation aborts,  
PPLK  
the Status Register V Status bit is set to ‘1’ and  
PP  
the command must be re-issued.  
Typical Erase times are given in Table 10.  
See Appendix B, Figure 23, Block Erase Flowchart  
and Pseudo Code, for a suggested flowchart on  
using the Block Erase command.  
Program Command.  
The Program command is used to program the  
memory array. Two Bus Write operations are re-  
quired to issue the command; the first write cycle  
sets up the Program command, the second write  
cycle latches the address and data to be pro-  
grammed in the internal state machine and starts  
the Program/Erase Controller. A program opera-  
tion can be aborted by writing FFFFFFFFh to any  
address after the program set-up command has  
been given.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Program and the  
Program Suspend commands will also be accept-  
ed. When a program operation is completed inside  
a Block Erase Suspend the Read Memory Array  
command must be issued to reset the device in  
Read mode, then the Erase Resume command  
can be issued to complete the whole sequence.  
Only the blocks not being erased may be read or  
programmed correctly.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits. During the  
Program operation the memory will only accept  
the Read Status Register command and the Pro-  
gram/Erase Suspend command. All other com-  
mands will be ignored.  
If Reset/Power-down, RP, falls to V during pro-  
IL  
gramming the operation will be aborted.  
The command can be executed using either V  
DD  
(for a normal program operation) or V (for a fast  
PP  
program operation). If V  
is in the V  
range  
PP  
PPH  
See Appendix B, Figure 22, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
24, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
when the command is issued then a fast program  
operation will be executed, otherwise the opera-  
tion will use V . If V goes below the V Lock-  
DD  
PP  
PP  
out Voltage, V  
, during a fast program the  
PPLK  
operation aborts and the Status Register V Sta-  
PP  
tus bit is set to ‘1’. As data integrity cannot be guar-  
anteed when the program operation is aborted, the  
memory block must be erased and repro-  
grammed.  
See Appendix B, Figure 21, Program Flowchart  
and Pseudo Code, for a suggested flowchart on  
using the Program command.  
Program/Erase Resume Command  
The Program/Erase Resume command can be  
used to restart the Program/Erase Controller after  
a Program/Erase Suspend operation has paused  
it. One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command.  
See Appendix B, Figure 22, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
24, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Resume command.  
Program/Erase Suspend Command  
The Program/Erase Suspend command is used to  
pause a Program or Erase operation. The com-  
mand will only be accepted during a Program or  
Erase operation. It can be issued at any time dur-  
ing a program or erase operation. The command  
is ignored if the device is already in suspend  
mode.  
Set Burst Configuration Register Command.  
The Set Burst Configuration Register command is  
used to write a new value to the Burst Configura-  
tion Control Register which defines the burst  
length, type, X and Y latencies, Synchronous/  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
24/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Asynchronous Read mode and the valid Clock  
edge configuration.  
Device locked means that the 64 bit password is  
wrong. If the unlock operation is attempted using a  
wrong code on an already unlocked device, the  
device becomes locked. Status register bit 4 is set  
to '1' if there has been a verify failure.  
Two Bus Write cycles are required to issue the Set  
Burst Configuration Register command. The first  
cycle writes the setup command and the address  
corresponding to the Set Burst Configuration Reg-  
ister content. The second cycle writes the Burst  
Configuration Register data and the confirm com-  
mand. Once the command is issued the memory  
returns to Read mode as if a Read Memory Array  
command had been issued.  
Unlocking aborts if V drops out of the allowed  
PP  
range or RP goes to V .  
IL  
Once the device is successfully unlocked, a Read  
Memory Array command must be issued to return  
the memory to read mode before issuing any other  
commands. The user can then program or erase  
The value for the Burst Configuration Register is  
always presented on A0-A15. M0 is on A0, M1 on  
A1, etc.; the other address bits are ignored.  
all blocks, depending on WP status and V level.  
PP  
At this point, it is also possible to configure a new  
protection code. To write a new protection code  
into the device tuning register, the user must per-  
form the Tuning Protection Program sequence.  
The device can be re-locked with a reset or power-  
down.  
Tuning Protection Unlock Command  
The Tuning Protection Unlock command unlocks  
the tuning protected blocks by writing the 64bit  
Tuning Protection Code (M58BW016B only). After  
a reset or power-up the blocks are locked and so  
a Tuning Protection Unlock command must be is-  
sued to allow program or erase operations on tun-  
ing protected block or to program a new Tuning  
Protection Code. Read operations output the Sta-  
tus Register content after the unlock operation has  
started.  
See Appendix B, Figure 25, 26 and 27 for suggest-  
ed flowcharts for using the Tuning Protection Un-  
lock command.  
Tuning Protection Program Command.  
The Tuning Protection Program command is used  
to program a new Tuning Protection Code which  
can be configured by the designer of the applica-  
tion (M58BW016B only). The device should be un-  
locked by the Tuning Protection Unlock command  
before issuing the Tuning Protection Program  
command.  
The Tuning Protection Code is composed of 64  
bits, but the data bus is 32 bits wide so four (2 x 2)  
write cycles are required to unlock the device.  
The first write cycle issues the Tuning  
Read operations output the Status Register con-  
tent after the program operation has started.  
The Tuning Protection Code is composed of 64  
bits, but the data bus is 32 bits wide so four (2 x 2)  
write cycles are required to program the code.  
Protection Unlock Setup command (0x78).  
The second write cycle inputs the first 32 bits of  
the tuning protection code on the data bus, at  
address 0x00000.  
Bit 7 of the Status Register should now be  
checked to verify that the device has successfully  
stored the first part of the code in the internal reg-  
ister. If b7 = ‘1’, the device is ready to accept the  
second part of the code. This does not mean that  
the first 32 bits match the tuning protection code,  
simply that it was correctly stored for the compar-  
ing. If b7 = ‘0’, the user must wait for this bit setting  
(refer to write cycle AC timings).  
The first write cycle issues the Tuning  
Protection Program Setup command (0x48).  
The second write cycle inputs the first 32 bits of  
the new tuning protection code on the data bus,  
at address 0x00000.  
Bit 7 of the Status Register should now be  
checked to verify that the device has successfully  
stored the first part of the code in the internal reg-  
ister. If b7 = ‘1’, the device is ready to accept the  
second part of the code. If b7 = ‘0’, the user must  
wait for this bit setting (refer to write cycle AC tim-  
ings).  
The third write cycle re-issues the Tuning  
Protection Unlock Setup command (0x78).  
The fourth write cycle inputs the second 32 bits  
of the code at address 0x00001.  
The third write cycle re-issues the Tuning  
Bit 7 of the Status Register should again be  
checked to verify that the device has successfully  
stored the second part of the code. When the de-  
vice is ready (b7 = ‘1’), the tuning protection status  
can be monitored on Status Register bit0. If b0 =  
‘0’ the device is locked; b0 = ‘1’ the device is un-  
locked. If the device is still locked a Read Memory  
Array command must be issued before re-issuing  
the Tuning Protection Unlock command.  
Protection Program Setup command (0x48).  
The fourth write cycle inputs the second 32 bits  
of the new code at address 0x00001.  
Bit 7 of the Status Register should again be  
checked to verify that the device has successfully  
stored the second part of the code. When the de-  
vice is ready (b7 = ‘1’). After completion Status  
25/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Register bit 4 is set to '1' if there has been a pro-  
gram failure.  
any other commands. Once the code has been  
changed a device reset or power-down will make  
the protection active with the new code.  
Programming aborts if V  
drops out of the al-  
PP  
lowed range or RP goes to V .  
A Read Memory Array command must be issued  
to return the memory to read mode before issuing  
See Appendix B, Figure 25, 26 and 27 for suggest-  
ed flowcharts for using the Tuning Protection Pro-  
gram command.  
IL  
Table 9. Commands  
Bus Operations  
Command  
1st Cycle  
2nd Cycle  
Addr. Data Op. Addr. Data Op. Addr. Data  
FFh Read RA RD  
3rd Cycle  
4th Cycle  
Op. Addr. Data Op.  
Read Memory Array  
2 Write  
2 Write  
X
X
Read Electronic Signature  
(Manufacturer Code)  
90h Read 00000h 20h  
90h Read 00001h IDh  
Read Electronic Signature  
(Device Code)  
2 Write  
2 Write  
X
X
Read Electronic Signature  
(Burst Configuration  
Register)  
90h Read 00005h BCRh  
Read Status Register  
Read Query  
2
Write  
X
X
X
X
70h Read  
X
SRDh  
QDh  
2 Write  
98h Read QAh  
Clear Status Register  
Block Erase  
1
2
Write  
Write  
50h  
20h Write BAh  
D0h  
PD  
40h  
Program  
2
Write  
X
Write  
PA  
10h  
B0h  
D0h  
Program/Erase Suspend  
Program/Erase Resume  
1
1
Write  
Write  
X
X
Set Burst Configuration  
Register  
2
Write  
X
60h Write BCRh 03h  
(2)  
Tuning Protection  
Program  
4
4
Write  
Write  
X
X
48h Write TPAh TPCh Write  
78h Write TPAh TPCh Write  
X
X
48h Write TPAh TPCh  
78h Write TPAh TPCh  
(2)  
Tuning Protection Unlock  
Note: 1. X Don’t Care; RA Read Address, RD Read Data, ID Device Code, SRD Status Register Data, PA Program Address; PD Program  
Data, QA Query Address, QD Query Data, BA Any address in the Block, BCR Burst Configuration Register value, TPA = Tuning  
Protection Address, TPC = Tuning Protection Code.  
2. Cycles 1 and 2 input the first 32 bits of the code, cycles 3 and 4 the second 32 bits of the code.  
26/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 10. Program, Erase Times and Program Erase Endurance Cycles  
M58BW016B/D  
Parameters  
Unit  
Min  
Typ  
Max  
V
PP  
= V  
V
= 12V  
V
PP  
= V  
V
PP  
= 12V  
DD  
PP  
DD  
Parameter Block (64Kb) Program  
Main Block (512Kb) Program  
Parameter Block Erase  
0.030  
0.23  
0.8  
0.016  
0.060  
0.46  
1.8  
0.032  
s
0.13  
0.64  
0.9  
0.26  
1.5  
s
s
Main Block Erase  
1.5  
3
1.8  
s
Program Suspend Latency Time  
Erase Suspend Latency Time  
Program/Erase Cycles (per Block)  
3
10  
30  
µs  
10  
µs  
100,000  
cycles  
Note: T = –40 to 125°C, V = 2.7V to 3.6V, V  
= 2.4V to V  
DD  
A
DD  
DDQ  
27/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Tuning Protection operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Program/Erase Resume commands. The  
Status Register can be read from any address.  
and the memory is waiting for a Program/Erase  
Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns to ‘0’.  
Erase Status (Bit 5)  
The Erase Status bit can be used to identify if the  
memory has failed to verify that the block has  
erased correctly. The Erase Status bit should be  
read once the Program/Erase Controller Status bit  
is High (Program/Erase Controller inactive).  
When the Erase Status bit is set to ‘0’, the memory  
has successfully verified that the block has erased  
correctly. When the Erase Status bit is set to ‘1’,  
the Program/Erase Controller has applied the  
maximum number of pulses to the block and still  
failed to verify that the block has erased correctly.  
Once set to ‘1’, the Erase Status bit can only be re-  
set to ‘0’ by a Clear Status Register command or a  
hardware reset. If set to ‘1’ it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status, Tuning Protection Unlock  
Status (Bit 4)  
The Program Status and Tuning Protection Unlock  
Status bit is used to identify a Program failure or a  
Tuning Protection Code verify failure. Bit4 should  
be read once the Program/Erase Controller Status  
bit is High (Program/Erase Controller inactive).  
When bit4 is set to ‘0’ the memory has successful-  
ly verified that the device has programmed cor-  
rectly or that the correct Tuning Protection Code  
has been written. When bit4 is set to ‘1’ the device  
has failed to verify that the data has been pro-  
grammed correctly or that the correct Tuning Pro-  
tection code has been written.  
Once set to 1’, the Program Status bit can only be  
reset to ‘0’ by a Clear Status Register command or  
a hardware reset. If set to ‘1’ it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
The contents of the Status Register can be updat-  
ed during an erase or program operation by tog-  
gling the Output Enable or Output Disable pins or  
by dis-activating (Chip Enable, V ) and then reac-  
IH  
tivating (Chip Enable and Output Enable, V , and  
IL  
Output Disable, V .) the device.  
IH  
The Status Register bits are summarized in Table  
11, Status Register Bits. Refer to Table 11 in con-  
junction with the following text descriptions.  
Program/Erase Controller Status (Bit 7)  
The Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive. When the Program/Erase Controller Sta-  
tus bit is set to ‘0’, the Program/Erase Controller is  
active; when bit7 is set to ‘1’, the Program/Erase  
Controller is inactive.  
The Program/Erase Controller Status is set to ‘0’  
immediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is set to ‘1’.  
During Program and Erase operations the Pro-  
gram/Erase Controller Status bit can be polled to  
find the end of the operation. The other bits in the  
Status Register should not be tested until the Pro-  
gram/Erase Controller completes the operation  
and the bit is set to ‘1’.  
After the Program/Erase Controller completes its  
operation the Erase Status (bit5), Program Status  
and Tuning Protection Unlock status (bit4) bits  
should be tested for errors.  
V
Status (Bit 3)  
PP  
Erase Suspend Status (Bit 6)  
The V Status bit can be used to identify an in-  
PP  
The Erase Suspend Status bit indicates that an  
Erase operation has been suspended and is wait-  
ing to be resumed. The Erase Suspend Status  
should only be considered valid when the Pro-  
gram/Erase Controller Status bit is set to ‘1’ (Pro-  
gram/Erase Controller inactive); after a Program/  
Erase Suspend command is issued the memory  
may still complete the operation rather than enter-  
ing the Suspend mode.  
When the Erase Suspend Status bit is set to ‘0’,  
the Program/Erase Controller is active or has com-  
pleted its operation; when the bit is set to ‘1’, a Pro-  
gram/Erase Suspend command has been issued  
valid voltage on the V pin during fast program  
PP  
and erase operations. The V pin is only sampled  
PP  
at the beginning of a program or erase operation.  
Indeterminate results can occur if V becomes in-  
PP  
valid during a fast Program or Erase operation.  
When the V Status bit is set to ‘0’, the voltage on  
PP  
the V pin was sampled at a valid voltage; when  
PP  
the V Status bit is set to ‘1’, the V pin has a  
PP  
PP  
voltage that is below the V Lockout Voltage, V  
PP  
P-  
.
PLK  
Once set to ‘1’, the V Status bit can only be reset  
PP  
to ‘0’ by a Clear Status Register command or a  
hardware reset. If set to ‘1’ it should be reset be-  
28/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
When the Block Protection Status bit is set to ‘0’,  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
when the Block Protection Status bit is set to ‘1’, a  
Program or Erase operation has been attempted  
on a protected block.  
Once set to ‘1’, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set to ‘1’ it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
Program Suspend Status (Bit 2)  
The Program Suspend Status bit indicates that a  
Program operation has been suspended and is  
waiting to be resumed. The Program Suspend  
Status should only be considered valid when the  
Program/Erase Controller Status bit is set to ‘1’  
(Program/Erase Controller inactive); after a Pro-  
gram/Erase Suspend command is issued the  
memory may still complete the operation rather  
than entering the Suspend mode.  
When the Program Suspend Status bit is set to ‘0’,  
the Program/Erase Controller is active or has com-  
pleted its operation; when the bit is set to ‘1’, a Pro-  
gram/Erase Suspend command has been issued  
and the memory is waiting for a Program/Erase  
Resume command.  
Tuning Protection Status (Bit 0)  
The Tuning Protection Status bit indicates if the  
device is locked (Tuning Protection is enabled) or  
unlocked (Tuning Protection is disabled).  
When the Tuning Protection Status bit is set to ‘0’  
the device is locked, when it is set to ‘1’ the device  
is unlocked. After a reset or power-up the device is  
locked and so bit0 is set to ‘0’.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns to  
‘0’.  
Block Protection Status (Bit 1)  
The Tuning Protection Status bit is set to ‘1’ for the  
M58BW016D version.  
The Block Protection Status bit can be used to  
identify if a Program or Erase operation has tried  
to modify the contents of a protected block.  
Table 11. Status Register Bits  
Bit  
Name  
Logic Level  
Definition  
7
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
’1’  
’0’  
Ready  
Program/Erase Controller Status  
Busy  
6
5
4
3
Suspended  
Erase Suspend Status  
Erase Status  
In Progress or Completed  
Erase Error  
Erase Success  
Program Error  
Program Status,  
Tuning Protection Unlock Status  
Program Success  
V
V
Invalid, Abort  
OK  
PP  
V
PP  
Status  
PP  
2
1
Suspended  
Program Suspend Status  
In Progress or Completed  
Program/Erase on Protected Block,  
Abort  
’1’  
Erase/Program in a Protected  
Block  
’0’  
’1’  
’0’  
No Operations to Protected Sectors  
(1)  
0
Tuning Protection Disabled  
Tuning Protection Status  
Tuning Protection Enabled  
Note: 1. For the M58BW016D version the Tuning Protection Status bit is always set to ‘1’.  
29/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 12, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice reliability. Refer also to the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 12. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–40  
–55  
Max  
125  
155  
T
Temperature Under Bias  
°C  
°C  
BIAS  
T
Storage Temperature  
Input or Output Voltage  
STG  
V
V
+0.6  
DDQ  
V
–0.6  
V
IO  
+0.6  
DDQIN  
V
, V  
V
Supply Voltage  
–0.6  
–0.6  
4.2  
V
V
DD DDQ, DDQIN  
(1)  
V
Program Voltage  
PP  
13.5  
Note: Cumulative time at a high voltage level of 13.5V should not exceed 80 hours on V pin.  
PP  
30/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 13,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 13. Operating and AC Measurement Conditions  
Parameter  
Value  
Units  
Min  
2.7  
Max  
Supply Voltage (V  
)
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
DD  
2.4  
DDQ  
Grade 6  
Grade 3  
–40  
–40  
90  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
125  
Load Capacitance (C )  
60  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
4
4
0 to V  
DDQ  
V
/2  
DDQ  
Input and Output Timing Ref. Voltages  
V
Figure 7. AC Measurement Input Output  
Waveform  
Figure 8. AC Measurement Load Circuit  
1.3V  
V
DDQ  
V
1N914  
DDQIN  
V
/2  
/2  
DDQ  
V
DDQIN  
0V  
3.3kΩ  
AI04153  
DEVICE  
UNDER  
TEST  
OUT  
Note: V = V  
.
DDQ  
DD  
C
L
C
includes JIG capacitance  
L
AI04154  
Table 14. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
C
IN  
V
= 0V  
= 0V  
IN  
C
OUT  
V
OUT  
8
12  
pF  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
31/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 15. DC Characteristics  
Symbol  
Parameter  
Input Leakage Current  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
I
0VV V  
DDQ  
LI  
IN  
I
0VV  
V  
Output Leakage Current  
Supply Current (Random Read)  
±5  
µA  
LO  
OUT DDQ  
I
E = V , G = V , f  
= 6MHz  
20  
mA  
DD  
IL  
IH add  
E = V , G = V , f  
=
IL  
IH clock  
I
Supply Current (Burst Read)  
Supply Current (Standby)  
30  
60  
60  
60  
30  
mA  
µA  
µA  
µA  
mA  
DDB  
56MHz  
E = RP = V ± 0.2V  
DD  
I
DD1  
E = V ± 0.2V,  
SS  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-down)  
RP = V ± 0.2V  
DD  
I
I
RP = V ± 0.2V  
DD2  
SS  
Supply Current (Program or Erase,  
Set Lock Bit, Erase Lock Bit)  
Program, Block Erase in  
progress  
DD3  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
40  
µA  
DD4  
IH  
I
V
V  
V  
Program Current (Read or Standby)  
Program Current (Read or Standby)  
Program Current (Power-down)  
± 30  
± 30  
± 5  
200  
20  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
V
PP  
PP  
PP1  
I
V
PP  
PP1  
PP2  
PP1  
I
RP = V  
IL  
Program Current (Program)  
Program in Progress  
V
= V  
= V  
= V  
= V  
PP  
PP1  
PPH  
PP1  
PPH  
I
PP3  
PP4  
V
PP  
V
V
200  
20  
PP  
Program Current (Erase)  
Erase in Progress  
I
PP  
V
V
0.2V  
DDQIN  
Input Low Voltage  
–0.5  
IL  
0.8V  
V +0.3  
DDQ  
Input High Voltage (for DQ lines)  
V
IH  
IH  
DDQIN  
DDQIN  
Input High Voltage (for Input only  
lines)  
V
V
0.8V  
3.6  
V
I
= 100µA  
OL  
Output Low Voltage  
0.1  
V
V
OL  
V
I
= –100µA  
V
–0.1  
Output High Voltage CMOS  
OH  
OH  
DDQ  
Program Voltage  
(Program or Erase operations)  
V
V
2.7  
11.4  
3.6  
12.6  
2.2  
V
V
V
V
PP1  
Program Voltage  
(Program or Erase operations)  
PPH  
V
DD  
Supply Voltage (Erase and  
V
LKO  
Program lockout)  
V
PP  
Supply Voltage (Erase and  
V
PPLK  
11.4  
Program lockout)  
32/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 9. Asynchronous Bus Read AC Waveforms  
tAVAV  
A0-A18  
VALID  
tAVQV  
tEHLX  
tLLEL  
L
tELQX  
tAXQX  
tELQV  
E
tGLQX  
tEHQX  
tGLQV  
tEHQZ  
G
GD  
tGHQX  
tGHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI04407C  
Table 16. Asynchronous Bus Read AC Characteristics.  
M58BW016  
Symbol  
Parameter  
Test Condition  
Unit  
80  
80  
80  
0
90  
90  
90  
0
100  
100  
100  
0
t
E = V , G = V  
IL  
Address Valid to Address Valid  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
IL  
t
E = V , G = V  
Address Valid to Output Valid  
AVQV  
IL  
t
E = V , G = V  
Address Transition to Output Transition  
Chip Enable High to Latch Enable Transition  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
AXQX  
IL  
t
0
0
0
EHLX  
t
G = V  
0
0
0
EHQX  
IL  
t
G = V  
20  
20  
20  
EHQZ  
IL  
(1)  
G = V  
80  
90  
100  
t
IL  
ELQV  
t
G = V  
Chip Enable Low to Output Transition  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable to Output Transition  
Latch Enable Low to Chip Enable Low  
Min  
Min  
Max  
Max  
Min  
Min  
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ELQX  
IL  
t
E = V  
GHQX  
IL  
t
E = V  
15  
25  
0
15  
25  
0
15  
25  
0
GHQZ  
IL  
t
E = V  
GLQV  
IL  
t
E = V  
GLQX  
IL  
t
0
0
0
LLEL  
Note: 1. Output Enable G may be delayed up to t  
- t  
after the falling edge of Chip Enable E without increasing t  
.
ELQV  
ELQV GLQV  
33/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 10. Asynchronous Latch Controlled Bus Read AC Waveforms  
A0-A18  
VALID  
tAVLL  
tLHAX  
L
tLHLL  
tLLLH  
tELLL  
tEHLX  
E
tEHQX  
tEHQZ  
tGLQX  
tGLQV  
G
tLLQX  
tLLQV  
tGHQX  
GHQZ  
DQ0-DQ31  
OUTPUT  
See also Page Read  
AI03645  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58BW016  
Symbol  
Parameter  
Test Condition  
E = V  
Unit  
80  
0
90  
0
100  
0
t
Address Valid to Latch Enable Low  
Chip Enable High to Latch Enable Transition  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Min  
Min  
Min  
Max  
Min  
Min  
Max  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
IL  
t
0
0
0
EHLX  
t
G = V  
G = V  
0
0
0
EHQX  
IL  
t
20  
0
20  
0
20  
0
EHQZ  
IL  
t
Chip Enable Low to Latch Enable Low  
Output Enable High to Output Transition  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Latch Enable High to Address Transition  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Latch Enable Low to Output Valid  
ELLL  
t
E = V  
0
0
0
GHQX  
IL  
IL  
IL  
IL  
IL  
t
E = V  
E = V  
E = V  
E = V  
15  
25  
0
15  
25  
0
15  
25  
0
GHQZ  
t
GLQV  
t
GLQX  
t
5
5
5
LHAX  
t
10  
10  
80  
0
10  
10  
90  
0
10  
10  
100  
0
LHLL  
t
E = V  
LLLH  
IL  
t
E = V , G = V  
LLQV  
IL  
IL  
IL  
t
E = V , G = V  
Latch Enable Low to Output Transition  
LLQX  
IL  
34/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 11. Asynchronous Page Read AC Waveforms  
A0-A1  
A0 and/or A1  
tAVQV1  
tAXQX  
OUTPUT + 1  
OUTPUT  
DQ0-DQ31  
AI03646  
Table 18. Asynchronous Page Read AC Characteristics  
M58BW016  
Symbol  
Parameter  
Test Condition  
Unit  
80  
25  
6
90  
25  
6
100  
t
E = V , G = V  
IL  
Address Valid to Output Valid  
Max  
Min  
25  
6
ns  
ns  
AVQV1  
IL  
t
E = V , G = V  
IL  
Address Transition to Output Transition  
AXQX  
IL  
Note: For other timings see Table 16, Asynchronous Bus Read Characteristics.  
35/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 12. Asynchronous Write AC Waveform  
36/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 13. Asynchronous Latch Controlled Write AC Waveform  
37/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics  
M58BW016  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
80  
0
90  
0
100  
0
t
Address Valid to Latch Enable Low  
Address Valid to Write Enable High  
Data Input Valid to Write Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Low to Latch Enable High  
latch Enable Low to Write Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
t
E = V  
E = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
50  
50  
0
50  
50  
0
50  
50  
0
AVWH  
IL  
IL  
t
DVWH  
t
ELLL  
t
0
0
0
ELWL  
t
5
5
5
LHAX  
t
10  
50  
0
10  
50  
0
10  
50  
0
LLLH  
t
E = V  
LLWH  
IL  
t
Output Valid to V Low  
QVVPL  
PP  
t
V
High to Write Enable High  
PP  
0
0
0
VPHWH  
t
E = V  
E = V  
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Write Enable High to Output Valid  
0
0
0
WHAX  
IL  
IL  
t
0
0
0
WHDX  
t
0
0
0
WHEH  
t
150  
175  
20  
60  
0
150  
175  
20  
60  
0
150  
175  
20  
60  
0
WHGL  
t
WHQV  
t
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Output Valid to Reset/Power-down Low  
WHWL  
t
E = V  
WLWH  
IL  
t
QVPL  
38/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 14. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge)  
39/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 20. Synchronous Burst Read AC Characteristics  
M58BW016  
Symbol  
Parameter  
Test Condition  
Unit  
80  
90  
100  
t
E = V  
Address Valid to Latch Enable Low  
Min  
Min  
0
0
0
8
ns  
ns  
AVLL  
IL  
E = V , G = V ,  
Burst Address Advance High to Valid Clock  
Edge  
IL  
IL  
t
8
8
8
8
BHKH  
L = V  
IH  
E = V , G = V ,  
Burst Address Advance Low to Valid Clock  
Edge  
IL  
IL  
t
Min  
8
ns  
BLKH  
L = V  
IH  
t
Chip Enable Low to Latch Enable low  
Output Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
0
25  
5
0
25  
5
0
25  
5
ns  
ns  
ns  
ns  
ns  
ELLL  
t
E = V , L = V  
GLQV  
IL  
IH  
t
E = V  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable Transition  
KHAX  
IL  
t
E = V  
0
0
0
KHLL  
IL  
t
E = V  
0
0
0
KHLX  
IL  
E = V , G = V ,  
IL  
IL  
t
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Output Valid to Valid Clock Edge  
Min  
Min  
Min  
3
6
6
3
6
6
3
6
6
ns  
ns  
ns  
KHQX  
L = V  
IH  
t
E = V  
IL  
LLKH  
E = V , G = V ,  
IL  
IL  
(1)  
t
QVKH  
L = V  
IH  
E = V , G = V ,  
IL  
IL  
t
Valid Data Ready Low to Valid Clock Edge  
Valid Clock Edge to Output Valid  
Min  
6
6
6
ns  
ns  
RLKH  
L = V  
IH  
E = V , G = V ,  
IL  
IL  
t
Max  
11  
11  
11  
KHQV  
L = V  
IH  
Note: 1. Data output should be read on the valid clock edge.  
2. For other timings see Table 16, Asynchronous Bus Read Characteristics.  
Figure 15. Synchronous Burst Read (Data Valid from ’n’ Clock Rising Edge)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
K
tKHQV  
tQVKH  
DQ0-DQ31  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
tKHQX  
SETUP  
Burst Read  
Q0 to Q3  
Note: n depends on Burst X-Latency  
AI04408b  
Note: For set up signals and timings see Synchronous Burst Read.  
40/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 16. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(1)  
Output  
V
V
V
V
V
tRLKH  
R
(2)  
AI03649  
Note: Valid Data Ready = Valid Low during valid clock edge  
1. V= Valid output.  
2. R is an open drain output with an internal pull up resistor of 1M. The internal timing of R follows DQ. An external resistor, typically  
300k. for a single memory on the R bus, should be used to give the data valid set up time required to recognize that valid data is  
available on the next valid clock edge.  
Figure 17. Synchronous Burst Read - Burst Address Advance  
K
ADD  
VALID  
L
ADD  
G
Q0  
Q1  
Q2  
tGLQV  
tBLKH  
tBHKH  
B
AI03650  
41/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 18. Reset, Power-Down and Power-up AC Waveform  
W, E, G  
tPHWL  
tPHEL  
tPHGL  
tPLRH  
R
tPHWL  
tPHEL  
tPHGL  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI03849b  
Table 21. Reset, Power-Down and Power-up AC Characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
t
Reset/Power-down High to Chip Enable Low  
50  
ns  
PHEL  
(1)  
Reset/Power-down High to Output Valid  
ns  
ns  
ns  
ns  
µs  
µs  
t
130  
PHQV  
t
Reset/Power-down High to Write Enable Low  
Reset/Power-down High to Output Enable Low  
Reset/Power-down Low to Reset/Power-down High  
Reset/Power-down Low to Valid Data Ready High  
Supply Voltages High to Reset/Power-down High  
50  
50  
100  
2
PHWL  
t
PHGL  
t
t
PLPH  
30  
PLRH  
t
10  
VDHPH  
Note: 1. This time is t  
+ t  
AVQV  
or t  
+ t  
.
ELQV  
PHEL  
PHEL  
42/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
PACKAGE MECHANICAL  
Figure 19. LBGA80 10x12mm - 8x10 ball array, 1mm pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1 BALL "A1"  
ddd  
e
e
b
A
A2  
A1  
BGA-Z05  
Note: Drawing is not to scale.  
Table 22. LBGA80 10x12mm - 8x10 ball array, 1mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.700  
0.450  
Typ  
Max  
A
A1  
A2  
b
0.0669  
0.0177  
0.400  
1.100  
0.500  
10.000  
7.000  
0.350  
0.0157  
0.0433  
0.0197  
0.3937  
0.2756  
0.0138  
D
D1  
ddd  
E
0.150  
0.0059  
12.000  
9.000  
1.000  
1.500  
1.500  
0.500  
0.500  
0.4724  
0.3543  
0.0394  
0.0591  
0.0591  
0.0197  
0.0197  
E1  
e
FD  
FE  
SD  
SE  
43/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 20. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Outline  
Ne  
A2  
N
1
e
b
Nd  
D2 D1  
D
E2  
E1  
E
A
c
CP  
L1  
A1  
α
L
QFP-B  
Note: Drawing is not to scale.  
Table 23. PQFP80 - 80 lead Plastic Quad Flat Pack, Package Mechanical Data  
millimeters  
Min  
inches  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
3.400  
0.1339  
0.250  
2.550  
0.300  
0.130  
22.950  
19.900  
0.0098  
0.1004  
0.0118  
0.0051  
0.9035  
0.7835  
2.800  
3.050  
0.450  
0.230  
23.450  
20.100  
0.1102  
0.1201  
0.0177  
0.0091  
0.9232  
0.7913  
c
D
23.200  
20.000  
18.400  
0.800  
0.9134  
0.7874  
0.7244  
0.0315  
0.6772  
0.5512  
0.4724  
0.0315  
0.0630  
D1  
D2  
e
E
17.200  
14.000  
12.000  
0.800  
16.950  
13.900  
17.450  
14.100  
0.6673  
0.5472  
0.6870  
0.5551  
E1  
E2  
L
0.650  
0.950  
0.0256  
0.0374  
L1  
α
1.600  
0°  
7°  
0°  
7°  
N
80  
80  
Nd  
Ne  
24  
24  
16  
16  
44/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
PART NUMBERING  
Table 24. Ordering Information Scheme  
Example:  
M58BW016B  
T
80  
T
3
T
Device Type  
M58  
Architecture  
B = Burst Mode  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= V =2.4 to V  
DDQIN DD  
DD  
DDQ  
Device Function  
016B = 16 Mbit (x32), Boot Block, Burst Tuning Protection  
016D = 16 Mbit (x32), Boot Block, Burst no Tuning Protection  
Array Matrix  
T = Top Boot  
B = Bottom Boot  
Speed  
80 = 80ns  
90 = 90ns  
100 = 100ns  
Package  
T = PQFP80  
ZA = LBGA80: 1.0mm pitch  
Temperature Range  
3 = –40 to 125 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
45/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
APPENDIX A. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 25, 26,  
27, 28 and 29 show the addresses used to retrieve  
the data.  
Table 25. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query Table  
Alternate Algorithm-specific Extended Query Table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
A(h)  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
Table 26. CFI - Query Address and Data Output  
Data  
Instruction  
Address A0-A18  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
51h  
52h  
59h  
"Q"  
"R"  
"Y"  
51h; "Q"  
52h; "R"  
59h; "Y"  
Query ASCII String  
Primary Vendor:  
03h  
00h  
35h  
00h  
00h  
00h  
00h  
00h  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
1Ah  
Note: 1. The x8 or Byte Address and the x16 or Word Address mode are not available.  
2. Query Data are always presented on DQ7-DQ0. DQ31-DQ8 are set to '0'.  
46/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 27. CFI - Device Voltage and Timing Specification  
Data  
Description  
Address A0-A18  
(1)  
V
V
V
V
min, 2.7V  
max, 3.6V  
min  
1Bh  
1Ch  
1Dh  
1Eh  
DD  
DD  
PP  
PP  
27h  
36h  
B4h  
C6h  
00h  
00h  
(1)  
(2)  
(2)  
(3)  
(3)  
max  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
2 ms typical time-out for Word, DWord prog – Not Available  
n
2 ms, typical time-out for max buffer write – Not Available  
n
0Ah  
2 ms, typical time-out for Erase Block  
(3)  
(3)  
n
00h  
00h  
2 ms, typical time-out for chip erase – Not Available  
n
2 x typical for Word Dword time-out max – Not Available  
n
00h  
04h  
2 x typical for buffer write time-out max – Not Available  
n
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
Table 28. Device Geometry Definition  
Data  
Description  
Address A0-A18  
n
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
15h  
03h  
00h  
00h  
00h  
02h  
1Eh  
00h  
00h  
01h  
07h  
00h  
20h  
00h  
2 number of bytes memory size  
Device Interface Sync./Async.  
Organization Sync./Async.  
n
Page size in bytes, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of blocks of identical size; n=31  
Erase Block region information x 256 bytes per  
Erase Block (64Kbytes)  
Number (n-1) of blocks of identical size; n=8  
Erase Block region information x 256 bytes per  
Erase Block (8Kbytes)  
47/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Table 29. Extended Query information  
Address  
offset  
Address  
A18-A0  
Data (Hex)  
50h  
Description  
(P)h  
35h  
36h  
37h  
38h  
39h  
"P"  
"R"  
"Y"  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
52h  
49h  
Query ASCII string - Extended Table  
31h  
31h  
Major version number  
Minor version number  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Lock/Unlock Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
Bit 31-5 reserved for future use  
(P+5)h  
3Ah  
86h  
(P+6)h  
(P+7)h  
(P+8)h  
3Bh  
3Ch  
3Dh  
01h  
00h  
00h  
Optional Features: Synchronous Read supported  
Function allowed after Suspend:  
(P+9)h  
3Eh  
01h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
(1)  
(P+A)h  
3Fh  
Block Status Register Mask – Not Available  
00h  
Note: 1. Not supported.  
48/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
APPENDIX B. FLOW CHARTS  
Figure 21. Program Flowchart and Pseudo Code  
Start  
Program Command:  
– write 40h  
Write 40h  
– write Address & Data  
(memory enters read status  
state after the Program command)  
Write Address  
& Data  
Read Status  
Register  
do:  
– read status register  
(E or G must be toggled)  
NO  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
NO  
V
Invalid  
Error (1)  
If b3 = 1, V  
invalid error:  
PP  
PP  
– error handler  
b3 = 0  
YES  
Program  
Error (1)  
If b4 = 1, Program error:  
– error handler  
b4 = 0  
YES  
Program to Protect  
Block Error  
If b1 = 1, Program to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03850  
Note: 1. If an error is found, the Status Register must be cleared before further P/E operations.  
49/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 22. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b4 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array Command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612  
50/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 23. Block Erase Flowchart and Pseudo Code  
Start  
Erase Command:  
– write 20h  
Write 20h  
– write Block Address  
(A11-A18) & D0h  
(memory enters read status  
state after the Erase command)  
Write Block Address  
& D0h  
NO  
do:  
Read Status  
Register  
– read status register  
(E or G must be toggled)  
if Erase command given execute  
suspend erase loop  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
YES  
NO  
NO  
V
Invalid  
Error (1)  
If b3 = 1, V  
invalid error:  
PP  
PP  
– error handler  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4 and b5  
= 1  
NO  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI03851  
Note: 1. If an error is found, the Status Register must be cleared before further P/E operations.  
51/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 24. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615  
52/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 25. Unlock Device and Change Tuning Protection Code Flowchart  
Reset  
Add: don't care  
Data: 0xFFh  
Issue Read command  
5th: Write Cycle  
Device locked  
by tuning code  
TUNING PROTECTION  
UNLOCK SEQUENCE  
Add: don't care  
Data: 0x78h  
Add: don't care  
Data: 0x48h  
1st: Write Cycle  
6th: Write Cycle  
2nd: Write Cycle  
(old code,  
factory setup = 0xFFFFh)  
Add: 0x00000h  
Data: First 32 bit  
Add: 0x00000h  
Data: First 32 bit  
7th: Write Cycle  
(new code)  
Add: don't care  
Data: 0xFFh  
b7 = 1  
YES  
b7 = 1  
YES  
Issue  
Read  
command  
Add: don't care  
Data: 0x78h  
Add: don't care  
Data: 0x48h  
3rd: Write Cycle  
8th: Write Cycle  
4th: Write Cycle  
(old code,  
factory setup = 0xFFFFh)  
Add: 0x00001h  
Data: Second 32 bit  
Add: 0x00001h  
Data: Second 32 bit  
9th: Write Cycle  
(new code)  
b7 = 1  
YES  
b7 = 1  
YES  
Read Status  
Register  
Reset  
Device locked  
by new code  
NO  
DEVICE LOCKED  
b0 = 1  
YES  
DEVICE UNLOCKED  
AI04501  
53/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 26. Unlock Device and Program a Tuning Protected Block Flowchart  
Reset  
Add: don't care  
Data: 0xFFh  
Issue Read command  
5th: Write Cycle  
Device locked  
by tuning code  
TUNING PROTECTION  
UNLOCK SEQUENCE  
Add: don't care  
Data: 0x78h  
Add: don't care  
Data: 0x40h  
6th: Write Cycle  
7th: Write Cycle  
1st: Write Cycle  
2nd: Write Cycle  
(First part  
of the tuning code)  
Add: 0x00000h  
Data: First 32 bit  
Add: location to prog.  
Data: data to prog.  
Add: don't care  
Data: 0xFFh  
b7 = 1  
YES  
b7 = 1  
YES  
Issue  
Read  
command  
Add: don't care  
Data: 0x78h  
Status Register  
check  
3rd: Write Cycle  
4th: Write Cycle  
(Second part  
of the tuning code)  
Location  
programmed  
Add: 0x00001h  
Data: Second 32 bit  
b7 = 1  
YES  
Read Status  
Register  
NO  
DEVICE LOCKED  
b0 = 1  
YES  
DEVICE UNLOCKED  
AI04502  
54/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 27. Unlock Device and Erase a Tuning Protected Block Flowchart  
Reset  
Add: don't care  
Data: 0xFFh  
Issue Read command  
5th: Write Cycle  
Device locked  
by tuning code  
TUNING PROTECTION  
UNLOCK SEQUENCE  
Add: don't care  
Data: 0x78h  
Add: don't care  
Data: 0x20h  
6th: Write Cycle  
7th: Write Cycle  
1st: Write Cycle  
2nd: Write Cycle  
(First part  
of the tuning code)  
Add: 0x00000h  
Data: First 32 bit  
Add: block to erase  
Data: 0xD0h  
Add: don't care  
Data: 0xFFh  
b7 = 1  
YES  
b7 = 1  
YES  
Issue  
Read  
command  
Add: don't care  
Data: 0x78h  
Status Register  
check  
3rd: Write Cycle  
4th: Write Cycle  
(Second part  
of the tuning code)  
Block  
Erased  
Add: 0x00001h  
Data: Second 32 bit  
b7 = 1  
YES  
Read Status  
Register  
NO  
DEVICE LOCKED  
b0 = 1  
YES  
DEVICE UNLOCKED  
AI04502  
55/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 28. Power-up Sequence to Burst the Flash  
Power-up  
or Reset  
BCR bit 15 = '1'  
Asynchronous Read  
Set Burst Configuration Register Command:  
– write 60h  
Write 60h command  
– write 03h  
and BCR on A15-A0  
Write 03h with A15-A0  
BCR inputs  
BCR bit 15 = '0'  
BCR bit 14-bit 0 = '1'  
Synchronous Read  
AI03834  
56/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 29. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
READ  
ARRAY  
NO  
90h  
YES  
READ ELEC.  
SIGNATURE  
NO  
98h  
YES  
D
READ CFI  
NO  
70h  
YES  
READ  
STATUS  
NO  
20h  
YES  
ERASE  
SET-UP  
NO  
40h  
YES  
ERASE  
COMMAND  
ERROR  
NO  
NO  
PROGRAM  
SET-UP  
D0h  
50h  
E
YES  
YES  
A
CLEAR  
C
STATUS  
D
READ  
STATUS  
B
AI03835  
57/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 30. Command Interface and Program Erase Controller Flowchart (b)  
E
NO  
48h  
YES  
TP  
NO  
78h  
YES  
PROGRAM  
SET_UP  
F
TP  
UNLOCK  
SET_UP  
NO  
60h  
YES  
NO  
FFh  
YES  
G
SET BCR  
SET_UP  
NO  
03h  
YES  
D
AI03836  
58/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 31. Command Interface and Program Erase Controller Flowchart (c)  
A
B
ERASE  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
ERASE  
SUSPEND  
YES  
READY  
NO  
NO  
ERASE  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
YES  
YES  
PROGRAM  
SET_UP  
40h  
NO  
C
NO  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03837  
59/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 32. Command Interface and Program Erase Controller Flowchart (d)  
C
B
PROGRAM  
YES  
READY  
NO  
NO  
READ  
STATUS  
B0h  
YES  
PROGRAM  
SUSPEND  
YES  
READY  
NO  
NO  
PROGRAM  
SUSPENDED  
READ  
STATUS  
YES  
YES  
READ  
STATUS  
70h  
NO  
NO  
YES  
READ  
STATUS  
READ  
ARRAY  
D0h  
AI03838  
60/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Figure 33. Command Interface and Program Erase Controller Flowchart (e)  
F
B
TP  
PROGRAM  
YES  
NO  
READ  
STATUS  
READY  
G
B
TP  
UNLOCK  
YES  
NO  
READ  
STATUS  
READY  
AI03839  
61/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
REVISION HISTORY  
Table 30. Document Revision History  
Date  
Version  
-01  
Revision Details  
January-2001  
05-Jun-2001  
15-Jun-2001  
17-Jul-2001  
First Issue.  
-02  
Major rewrite and restructure.  
-03  
Nd and Ne values changed in PQFP80 Package Mechanical Table  
PQFP80 Package Outline Drawing and Mechanical Data Table updated  
-04  
tLEAD removed from Absolute Maximum Ratings (Table 12)  
80, 90 and 100ns Speed classes defined (Tables 16, 17, 18, 19 and 20 clarified  
accordingly)  
17-Dec-2001  
-05  
Figures 14, 15, 16 and 17 clarified  
Temperature range 3 and 6 added  
Tables 13, 14, 15, 21 and CFI Tables 26, 27, 28, 29 clarified  
Document status changed from Product Preview to Preliminary Data  
DC Characteristics I , I  
AC Bus Read Characteristics timing t  
and I  
clarified  
PP PP1  
DD1  
17-Jan-2002  
30-Aug-2002  
-06  
6.1  
clarified  
GHQZ  
Revision numbering modified: a minor revision will be indicated by incrementing the  
tenths digit, and a major revision, by incrementing the units digit of the previous  
version (e.g. revision version 06 becomes 6.0).  
References of V pin used for block protection purposes removed. Figure 9  
PP  
modified.  
Datasheet status changed from Preliminary Data to full Datasheet.  
t
parameter modified in Table 19, Asynchronous Write and Latch Controlled  
4-Sep-2002  
7.0  
7.1  
WLWH  
Write AC Characteristics.  
Revision History moved to end of document. V clarified in Program and Block  
Erase commands and Status Register, V Status bit. V  
PP  
added to DC  
13-May-2003  
PP  
PPLK  
Characteristics Table. Timing T  
modified.  
KHQV  
62/63  
M58BW016BT, M58BW016BB, M58BW016DT, M58BW016DB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta -  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
63/63  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY