M58LSW32B150N6T [STMICROELECTRONICS]

1MX32 FLASH 3V PROM, 150ns, PDSO56, PLASTIC, TSOP-56;
M58LSW32B150N6T
型号: M58LSW32B150N6T
厂家: ST    ST
描述:

1MX32 FLASH 3V PROM, 150ns, PDSO56, PLASTIC, TSOP-56

可编程只读存储器 光电二极管
文件: 总59页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58LSW32A  
M58LSW32B  
32 Mbit (2Mb x16 or 1Mb x32, Uniform Block)  
3V Supply Flash Memories  
PRELIMINARY DATA  
FEATURES SUMMARY  
WIDE x16/x32 DATA BUS for HIGH  
Figure 1. Packages  
BANDWIDTH  
– M58LSW32A x16 DATA BITS  
– M58LSW32B x16/x32 DATA BITS  
SUPPLY VOLTAGE  
– V = 2.7 to 3.6V core supply voltage for Pro-  
DD  
gram, Erase and Read operations  
TSOP56 (N)  
14 x 20 mm  
– V  
= 1.8 to V for I/O Buffers  
DD  
DDQ  
SYNCHRONOUS/ASYNCHRONOUS READ  
– Synchronous Burst read (x16)  
TBGA  
– Pipelined Synchronous Burst Read (x16)  
– Asynchronous Random Read (x16/x32)  
– Asynchronous Address Latch Controlled  
Read (x16/x32)  
TBGA64 (ZA)  
8x8 ball array  
– Page Read (x16)  
ACCESS TIME  
– Synchronous Burst Read up to 66MHz  
TBGA  
– Asynchronous Page Mode Read 120/25ns,  
150/25ns  
TBGA80 (ZA)  
8x10 ball array  
– Random Read 120ns, 150ns  
PROGRAMMING TIME  
– 8 Word or 4 Double-Word Write Buffer  
– 24µs Word effective programming time  
64 UNIFORM 32 KWord MEMORY BLOCKS  
BLOCK PROTECTION/ UNPROTECTION  
PROGRAM and ERASE SUSPEND  
OTP SECURITY AREA  
COMMON FLASH INTERFACE  
10,000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code M58LSW32A: 16h  
– Device Code M58LSW32B: 15h  
June 2001  
1/59  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M58LSW32A, M58LSW32B  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. TSOP56 Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. TBGA64 Connections for M58LSW32A (Top view through package) . . . . . . . . . . . . . . . 9  
Figure 5. TBGA80 Connections for M58LSW32B (Top view through package) . . . . . . . . . . . . . . 10  
Figure 6. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Address Inputs (A1-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Inputs/Outputs (DQ0-DQ31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reset/Power-Down (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Latch Enable (L).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Burst Address Advance (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Valid Data Ready (R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Word Organization (WORD).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program/Erase Enable (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PP  
V
DD  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Input/Output Supply Voltage (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DDQ  
Ground (V ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SS  
Ground (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SSQ  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Latch Controlled Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Asynchronous Latch Controlled Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Low Power.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-Down.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2. Asynchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Synchronous Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Synchronous Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Synchronous Pipelined Burst Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/59  
M58LSW32A, M58LSW32B  
Table 3. Synchronous Burst Read Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 4. Address Latch Cycle for Optimum Pipelined Synchronous Burst Read . . . . . . . . . . . . . 18  
Figure 7. Synchronous Burst Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 8. Example Synchronous Pipelined Burst Read Operation . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9. Example Burst Address Advance and Burst Abort operations. . . . . . . . . . . . . . . . . . . . 19  
Burst Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read Select Bit (M15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
X-Latency Bits (M14-M11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Y-Latency Bit (M9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Valid Data Ready Bit (M8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Burst Type Bit (M7).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Valid Clock Edge Bit (M6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Latch Enable Bit (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Burst Length Bit (M2-M0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5. Burst Configuration Register (x16 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. Burst Type Definition (x16 Bus Width). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 7. Burst Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Query Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clear Status Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Write to Buffer and Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Set Burst Configuration Register Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Protect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Blocks Unprotect Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 8. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 9. Read Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . 26  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
V
PP  
Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Block Protection Status (Bit 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 11. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/59  
M58LSW32A, M58LSW32B  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 12. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 10. AC Measurement Input Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12. Asynchronous Bus Read AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 16. Asynchronous Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13. Asynchronous Latch Controlled Bus Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . 33  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics. . . . . . . . . . . . . . . . . . . 33  
Figure 14. Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 18. Asynchronous Page Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 15. Asynchronous Write AC Waveform, Write Enable Controlled . . . . . . . . . . . . . . . . . . . 35  
Figure 16. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled. . . . . . 35  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 17. Asynchronous Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . 37  
Figure 18. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled . . . . . 37  
Table 20. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 19. Synchronous Burst Read AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 20. Synchronous Burst Read - Continuous - Valid Data Ready Output. . . . . . . . . . . . . . . 40  
Table 21. Synchronous Burst Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 21. Reset, Power-Down and Power-up AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 22. Reset, Power-Down and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline . . . . . . . 43  
Table 23. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data 43  
Figure 23. TBGA64 - 8 x 8 ball array 1mm pitch, Package Outline. . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 24. TBGA64 - 8 x 8 ball array, 1 mm pitch, Package Mechanical Data. . . . . . . . . . . . . . . . 44  
Figure 24. TBGA80 - 8 x 10 ball array, 1mm pitch, Package Outline . . . . . . . . . . . . . . . . . . . . . . 45  
Table 25. TBGA80 - 8 x 10 ball array, 1mm pitch, Package Mechanical Data . . . . . . . . . . . . . . . 45  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 26. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 27. Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
APPENDIX A. BLOCK ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 28. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4/59  
M58LSW32A, M58LSW32B  
APPENDIX B. COMMON FLASH INTERFACE - CFI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 29. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 30. CFI - Query Address and Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 31. CFI - Device Voltage and Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 32. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 33. Block Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 34. Extended Query information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
APPENDIX C. FLOW CHARTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 25. Write to Buffer and Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 52  
Figure 26. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . 53  
Figure 27. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 28. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 29. Command Interface and Program Erase Controller Flowchart (a). . . . . . . . . . . . . . . . 56  
Figure 30. Command Interface and Program Erase Controller Flowchart (b). . . . . . . . . . . . . . . . 57  
Figure 31. Command Interface and Program Erase Controller Flowchart (c). . . . . . . . . . . . . . . . 58  
5/59  
M58LSW32A, M58LSW32B  
SUMMARY DESCRIPTION  
The M58LSW32 isa 32 Mbit (2Mb x16 or 1Mb x32)  
non-volatile memory that can be read, erased and  
reprogrammed. These operations can be per-  
formed using a single low voltage (2.7V to 3.6V)  
core supply. On power-up the memory defaults to  
Read mode with an asynchronous bus where it  
can be read in the same way as a non-burst Flash  
memory.  
when power was last removed. Software com-  
mands are provided to allow protection of some or  
all of the blocks and to cancel all block protection  
bits simultaneously. All Program or Erase opera-  
tions are blocked when the Program Erase Enable  
input Vpp is low.  
The Reset/Power-Down pin is used to apply a  
Hardware Reset to the memory and to set the de-  
vice in deep power-down mode. It can also be  
used to temporarily disable the protection mecha-  
nism.  
In asynchronous mode Chip Enable, Output En-  
able and Write Enable signals control the bus op-  
eration ofthe memory. An Address Latch input can  
be used to latch addresses in Latch Controlled  
mode. Together they allow simple, yet powerful,  
connection to most microprocessors, often without  
additional logic.  
In synchronous mode all Bus Read operations are  
synchronous with the Clock. Chip Enable and Out-  
put Enable select the Bus Read operation; the ad-  
dress is Latched using the Latch Enable inputs  
and the address is advanced using Burst Address  
Advance. The signals are compatible with most  
microprocessor burst interfaces.  
The memory is divided into 64 blocks of 512Kbit  
that can be erased independently so it is possible  
to preserve valid data while old data is erased.  
Program and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller simplifies the process of  
programming or erasing the memory by taking  
care of all of the special operations that are re-  
quired to update the memory contents. The end of  
a Programor Erase operation can be detected and  
any error conditions identified in the Status Regis-  
ter. The command set required to control the  
memory is consistent with JEDEC standards.  
The Write Buffer allows the microprocessor to pro-  
gram from 1 to 8 Words (or from 1 to 4 Double  
Words) in parallel, both speeding up the program-  
ming and freeing up the microprocessor to perform  
other work.  
Erase can be suspended in order to perform either  
Read or Program in any other block and then re-  
sumed. Program can be suspended to Read data  
in any other block and then resumed. Each block  
can be programmed and erased over 10,000 cy-  
cles.  
A One Time Programmable (OTP) area is included  
for security purposes. Either 2K Words (x16 Bus  
Width) or 1K Double-Words (x32 Bus Width) is  
available in the OTP area. The process of reading  
from and writing to the OTP area is not published  
for security purposes; contact STMicroelectronics  
for details on how to use the OTP area.  
Individual block protection against Program or  
Erase is provided for data security. All blocks are  
protected during power-up. The protection of the  
blocks is non-volatile; after power-up the protec-  
tion status of each block is restored to the state  
The memory is offered in various packages. The  
M58LSW32A is available inTSOP56 (14 x 20 mm)  
and TBGA64 (1mm pitch). The M58LSW32B is  
available in TBGA80 (1mm pitch).  
6/59  
M58LSW32A, M58LSW32B  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A1  
Address Input (x16 Bus Width only)  
Address inputs  
V
V
DD DDQ  
A2-A21  
DQ0-DQ15  
21  
16  
16  
Data Inputs/Outputs  
A1-A21  
DQ0-DQ15  
Data Inputs/Outputs (x32 Bus Width of  
M58LSW32B only)  
DQ16-DQ31  
V
PP  
DQ16-DQ31(1)  
B
Burst Address Advance  
Chip Enable  
W
E
E
RB  
R
G
Output Enable  
M58LSW32A  
M58LSW32B  
K
Clock  
G
L
Latch Enable  
RP  
L
R
Valid Data Ready  
Ready/Busy  
RB  
RP  
B
Reset/Power-Down  
Program/Erase Enable  
Write Enable  
K
V
PP  
WORD(1)  
W
WORD  
Word Organization (M58LSW32B only)  
Supply Voltage  
V
DD  
V
V
SS SSQ  
AI04347  
V
Input/Output Supply Voltage  
Ground  
DDQ  
Note: 1. M58LSW32B only.  
V
SS  
V
Input/Output Ground  
Not Connected Internally  
SSQ  
NC  
7/59  
M58LSW32A, M58LSW32B  
Figure 3. TSOP56 Connections  
NC  
R
1
56  
NC  
W
A21  
A20  
A19  
A18  
A17  
A16  
G
RB  
DQ15  
DQ7  
DQ14  
DQ6  
V
V
DD  
A15  
A14  
A13  
A12  
E
SSQ  
DQ13  
DQ5  
DQ12  
DQ4  
14  
15  
43  
42  
V
V
DDQ  
SS  
M58LSW32A  
V
PP  
RP  
DQ11  
A11  
A10  
A9  
DQ3  
DQ10  
DQ2  
A8  
V
DD  
V
DQ9  
DQ1  
DQ8  
DQ0  
B
SS  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
K
NC  
L
28  
29  
AI04348  
8/59  
M58LSW32A, M58LSW32B  
Figure 4. TBGA64 Connections for M58LSW32A (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A3  
A4  
DQ8  
K
A6  
A8  
A9  
V
A13  
A14  
V
A18  
A19  
NC  
R
PP  
DD  
V
E
NC  
NC  
SS  
A7  
A10  
A11  
DQ9  
DQ10  
DQ2  
A12  
RP  
A15  
A20  
A21  
A17  
RB  
G
A5  
DQ1  
DQ0  
B
NC  
NC  
A16  
DQ3  
DQ11  
DQ4  
DQ12  
DQ5  
DQ13  
NC  
DQ15  
NC  
NC  
G
H
NC  
L
V
DQ6  
DQ14  
DQ7  
W
DDQ  
NC  
V
V
V
SSQ  
NC  
DD  
SS  
AI04349  
9/59  
M58LSW32A, M58LSW32B  
Figure 5. TBGA80 Connections for M58LSW32B (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A1  
A2  
A8  
A7  
V
E
A13  
A14  
V
A18  
A19  
NC  
R
SS  
DD  
A9  
A10  
A11  
DQ19  
DQ27  
L
A12  
A16  
A17  
A3  
A6  
V
A15  
A20  
A21  
NC  
PP  
NC  
NC  
A4  
A5  
RP  
NC  
DQ16  
DQ24  
DQ17  
K
DQ25  
DQ18  
DQ26  
B
WORD  
DQ10  
DQ3  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
DQ28  
DQ20  
W
DQ22  
DQ29  
DQ21  
RB  
DQ31  
DQ23  
DQ30  
G
G
H
J
DQ2  
DQ11  
DQ15  
DQ0  
DQ8  
DQ1  
DQ9  
V
V
V
V
DQ7  
DQ14  
DD  
SS  
SSQ  
SSQ  
K
V
V
V
V
V
DD  
SS  
DDQ  
DDQ  
DDQ  
AI04350  
10/59  
M58LSW32A, M58LSW32B  
Figure 6. Block Addresses  
M58LSW32B  
Double-Word (x32) Bus Width  
M58LSW32A, M58LSW32B  
Word (x16) Bus Width  
Address lines A1-A21  
Address lines A2-A21  
(A1 is Don’t Care)  
1FFFFFh  
0FFFFFh  
512 Kbit or  
32 KWords  
512 Kbit or  
16 KDouble-Words  
1F8000h  
1F7FFFh  
0FC000h  
0FBFFFh  
512 Kbit or  
32 KWords  
512 Kbit or  
16 KDouble-Words  
1F0000h  
0F8000h  
Total of 64  
512 Kbit Blocks  
00FFFFh  
007FFFh  
512 Kbit or  
32 KWords  
512 Kbit or  
16 KDouble-Words  
008000h  
007FFFh  
004000h  
003FFFh  
512 Kbit or  
32 KWords  
512 Kbit or  
16 KDouble-Words  
000000h  
000000h  
AI04351  
Note: Also see Appendix A, Table 28 for a full listing of the Block Addresses  
11/59  
M58LSW32A, M58LSW32B  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
G, can be used to inhibit the data output during a  
burst read operation.  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data can be latched on the rising edge of Write En-  
able (also see Latch Enable, L).  
Address Inputs (A1-A21). The Address Inputs  
are used to select the cells to access in the mem-  
ory array during Bus Read operations either to  
read or to program data to. During Bus Write oper-  
ations they control the commands sent to the  
Command Interface of the internal state machine.  
Chip Enable must be low when selecting the ad-  
dresses.  
Reset/Power-Down (RP). The  
Reset/Power-  
Down pin can be used to apply a Hardware Reset  
to the memory or to temporarily unprotect all  
blocks that have been protected.  
The address inputs are latched on the rising edge  
of Chip Enable, Write Enable or Latch Enable,  
whichever occurs first in a Write operation. The  
address latch is transparent when Latch Enable is  
A Hardware Reset is achieved by holding Reset/  
Power-Down Low, V , for at least t  
. When  
IL  
PLPH  
Reset/Power-Down is Low, V , the Status Regis-  
IL  
ter informationis cleared and the power consump-  
tion is reduced to deep power-down level. The  
device is deselected and outputs are high imped-  
low, V . The address is internally latched in an  
IL  
Erase or Program operation.  
With ax32 Bus Width, WORD = V , Address Input  
ance. If Reset/Power-Down goes low, V ,during a  
IH  
IL  
A1 is ignored; the Least Significant Word is output  
on DQ0-DQ15 and the Most Significant Word is  
output on DQ16-DQ31. With a x16 Bus Width,  
Block Erase, a Write to Buffer and Program or a  
Block Protect/Unprotect the operation is aborted  
and the data may be corrupted. In this case the  
WORD = V , the Least Significant Word is output  
Ready/Busy pin stays low, V , for a maximum tim-  
IL  
IL  
on DQ0-DQ15 when A1 is low, V and the Most  
ing of t  
+t  
until the completion of the Re-  
PHRH,  
IL,  
PLPH  
Significant Word is output on DQ0-DQ15 when A1  
set/Power-Down pulse.  
is high, V .  
IH  
After Reset/Power-Down goes High, V , the  
IH  
Data Inputs/Outputs (DQ0-DQ31). The Data In-  
puts/Outputs outputthe data stored at the selected  
address during a Bus Read operation, or are used  
to input the data during a program operation. Dur-  
ing Bus Write operations they represent the com-  
mands sent to the Command Interface of the  
internal state machine. When used to input data or  
Write commands they are latched on the rising  
edge of Write Enable or Chip Enable, whichever  
occurs first.  
memory will be ready for Bus Read and Bus Write  
operations after t  
or t  
, whichever occurs  
PHEL  
RHEL  
last. Note that Ready/Busy does not fall during a  
reset, see Ready/Busy Output section.  
During power-up Reset/Power-Down must be held  
Low, V Furthermore it must stay low for t  
IL.  
VDHPH  
after the Supply Voltage inputs become stable.  
The device will then be configured in Asynchro-  
nous Random Read mode.  
See Table 22 and Figure 21, Reset, Power-Down  
and Power-up Characteristics, for more details.  
When Chip Enable and Output Enable are both  
low, V , the data bus outputs data from the mem-  
IL  
Holding RP at V will temporarily unprotect the  
HH  
ory array, the Electronic Signature, the Block Pro-  
tection status, the CFI Information or the contents  
of the Status Register. The data bus is high imped-  
ance when the chip is deselected, Output Enable  
protected blocks in the memory. Program and  
Erase operations on all blocks will be possible.  
In an application, it is recommended to associate  
Reset/Power-Down pin, RP, with the reset signal  
of the microprocessor. Otherwise, if a reset opera-  
tion occurs while the memory is performing an  
Erase orProgram operation, thememory may out-  
put the Status Register information instead of be-  
ing initialized to the default Asynchronous  
Random Read.  
is low, V or the Reset/Power-Down signal is low,  
IL,  
V . When the Program/Erase Controller is active  
IL  
the Ready/Busy status is given on DQ7 while  
DQ0-DQ6 and DQ8-DQ31 are high impedance.  
With a x16 Bus Width, WORD = V , DQ16-DQ31  
are not used and are high impedance.  
Chip Enable (E). The Chip Enable, E, input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. Chip Enable, E, at  
IL  
Latch Enable (L). The Bus Interface can be con-  
figured to latch the Address Inputs on the rising  
edge of Latch Enable, L. In synchronous bus oper-  
ations the address is latched on the active edge of  
V
deselects the memory and reduces the power  
IH  
consumption to the Standby level, I  
.
DD1  
the Clock when Latch Enable is Low, V . Once  
IL  
Output Enable (G). The Output Enable, G, gates  
the outputs through the data output buffers during  
a read operation. When Output Enable, G, is at V  
the outputs are high impedance. Output Enable,  
latched, the addresses may change without affect-  
ing the address used by the memory. When Latch  
IH  
Enable is Low, V , the latch is transparent.  
IL  
12/59  
M58LSW32A, M58LSW32B  
Clock (K). The Clock, K, is used to synchronize  
the memory with the external bus during Synchro-  
nous Bus Read operations. The Clock can be con-  
figured to have an active rising or falling edge. Bus  
signals are latched on the active edge of the Clock  
during synchronous bus operations. In Synchro-  
nous Burst Read mode the address is latched on  
the first active clock edge when Latch Enable is  
When the system clock frequency is between  
33MHz and 50MHz and the Y latency is set to 2,  
values of B sampled on odd clock cycles, starting  
from the first read are not considered.  
The Valid Data Ready, R, output has an internal  
pull-up resistor of approximately 1 Mpowered  
from V  
, designers should use an external pull-  
DDQ  
up resistor of the correct valueto meet the external  
low, V , or on the rising edge of Latch Enable,  
IL  
timing requirements for Valid Data Ready rising.  
whichever occurs first.  
Word Organization (WORD). The Word Organi-  
zation input, WORD, selects the x16 or x32 Bus  
Width on the M58LSW32B. The Word Organiza-  
tion input is not available on the M58LSW32A.  
During asynchronous bus operations the Clock is  
not used.  
Burst Address Advance (B). The Burst Address  
Advance, B, controls the advancing of the address  
by the internal address counter during synchro-  
nous bus operations.  
When WORD is Low, V , Word-wide x16 Bus  
IL  
Width is selected; data is read and written to DQ0-  
DQ15; DQ16-DQ31 are at high impedance and A1  
is the LSB of the address bus. When WORD is  
Burst Address Advance, B, is only sampled on the  
active clock edge of the Clock when the X- or Y-  
latency time has expired. If Burst Address Ad-  
High, V , the Double-Word wide x32 Bus Width is  
IH  
selected and the data is read and written to on  
DQ0-DQ31; A2 is the LSB of the address bus and  
A1 is don’t care.  
vance is Low, V , the internal address counter ad-  
IL  
vances. If Burst Address Advance is High, V , the  
IH  
internal address counter does not change; the  
same data remains on the Data Inputs/Outputs  
and Burst Address Advance is not sampled until  
the Y-latency expires.  
Ready/Busy (RB). The Ready/Busy output, RB,  
is an open-drain output that can be used to identify  
if the Program/Erase Controller is currently active.  
When Ready/Busy is high impedance, the memo-  
ry is ready for any Read, Program or Erase opera-  
The Burst Address Advance, B, may be tied to V .  
IL  
tion. Ready/Busy is Low, V , during Program and  
OL  
Valid Data Ready (R). The Valid Data Ready  
output, R, is an open drain output that can be used  
to identify if the memory is ready to output data or  
not. The Valid Data Ready output is only active  
during Synchronous Burst Read operations when  
the Burst Length is set to Continuous. The Valid  
Data Ready output can be configured to be active  
on the clock edge of the invalid data read cycle or  
Erase operations. When the device is busy it will  
not accept any additional Program or Erase com-  
mands except Program/Erase Suspend. When the  
Program/Erase Controller is idle, or suspended,  
Ready Busy can float High through a pull-up resis-  
tor.  
The useof an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
one cycle before. Valid Data Ready Low, V , in-  
OL  
dicates that the data is not, or will not be valid. Val-  
id Data Ready in a high-impedance state indicates  
that valid data is or will be available.  
Ready/Busy is not Low during a reset unless the  
reset was applied when the Program/Erase Con-  
troller was active; Ready/Busy can rise before Re-  
set/Power-Down rises.  
If the memory is configured for Synchronous Burst  
Read operations with Burst Length set to Continu-  
ous then the value of Valid Data Ready, will de-  
pend on the starting address. If the starting  
address is aligned to a four Word boundary then  
the continuous burst mode will run without activat-  
ing the Valid Data Ready output. If the starting ad-  
dress is not aligned to a four Word boundary, Valid  
Data Ready is Low at the beginning of the contin-  
uous burst read to indicate that the memory needs  
an internal delay to read the content of the four  
successive words in the array.  
Program/Erase Enable (V ). The  
Program/  
PP  
Erase Enable input, V  
is used to protect all  
PP,  
blocks, preventing Program and Erase operations  
from affecting their data.  
When Program/Erase Enable is Low, V , any Pro-  
IL  
gram or Erase operations sent to the command in-  
terface will cause the V Status bit in the Status  
PP  
Register to be set. When Program/Erase Enable is  
High, V , Program and Erase operations can be  
IH  
Unless the Burst Length is set to Continuous and  
Synchronous Burst Read has been selected, Valid  
Data Ready is high-impedance. It may be tied to  
other components with the same Valid Data  
Ready signal to create a unique System Ready  
signal.  
performed on unprotected blocks.  
Program/Erase Enable must be kept High during  
all Program/Erase Controller operations, other-  
wise the operations is not guaranteed to succeed  
and data may become corrupt.  
V
Supply Voltage. The Supply Voltage, V  
,
DD  
DD  
is the core power supply. All internal circuits draw  
13/59  
M58LSW32A, M58LSW32B  
their current from the V  
gram/Erase Controller.  
pin, including the Pro-  
The Input/Output Supply Voltage, V  
, must al-  
Supply Volt-  
DD  
DDQ  
ways be equal or less than the V  
age, including during Power-Up.  
DD  
A 0.1µF capacitor should be connected between  
the Supply Voltage, V , and the Ground, V , to  
A 0.1µF capacitor should be connected between  
the Input/Output Supply Voltage, V , and the  
DD  
SS  
decouple the current surges from the power sup-  
ply. The PCB track widths must be sufficient to  
carry the currents required during all operations of  
the parts, see Table 15, DC Characteristics, for  
maximum current supply requirements.  
DDQ  
Ground, V  
from the power supply. If V  
nected together then only one decoupling capaci-  
tor is required.  
, to decouple the current surges  
SSQ  
and V are con-  
DDQ  
DD  
Input/Output Supply Voltage (V  
). The In-  
Ground (V ). Ground, V  
all core power supply voltages.  
is the reference for  
SS,  
DDQ  
SS  
put/Output Supply Voltage, V , is the input/out-  
DDQ  
put buffer power supply. All input and output pins  
and voltage references are powered and mea-  
sured relative to the Input/Output Supply Voltage  
Ground (V ). Ground, V  
is the reference  
SSQ,  
SSQ  
for input/output voltage measurements. It is es-  
sential to connect V and V to the same  
SS  
SSQ  
pin, V  
.
DDQ  
ground  
.
14/59  
M58LSW32A, M58LSW32B  
BUS OPERATIONS  
There are 12 bus operations that control the mem-  
ory. Each of these is described in this section, see  
Tables 2 and 3, Bus Operations, for a summary.  
The bus operation is selected through the Burst  
Configuration Register; the bits in this register are  
described at the end of this section.  
Characteristics for details on when the output be-  
comes valid.  
Note that, since the Latch Enable input is transpar-  
ent when set Low, V , Asynchronous Bus Read  
IL  
operations can be performed when the memory is  
configured for Asynchronous Latch Enable bus  
On Power-up or after a Hardware Reset the mem-  
ory defaults to Asynchronous Bus Read and Asyn-  
chronous Bus Write, no other bus operation can  
be performed until the Burst Control Register has  
been configured.  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in asynchro-  
nous mode regardless of the Burst Control Regis-  
ter settings.  
operations by holding Latch Enable Low, V  
throughout the bus operation.  
IL  
Asynchronous Page Read. Asynchronous Page  
Read operations are used to read from several ad-  
dresses within the same memory page. Each  
memory page is 2 Words and has the same A2-  
A21, only A1 may change. Asynchronous Page  
Read is only available for x16 bus width.  
Valid bus operations are the same as Asynchro-  
nous Bus Read operations but with different tim-  
ings. The first read operation within the page has  
identical timings, subsequent reads within the  
same page have much shorter access times. If the  
page changes then the normal, longer timings ap-  
ply again. See Figure 14, Asynchronous Page  
Read AC Waveforms and Table 18, Asynchro-  
nous Page Read AC Characteristics for details on  
when the outputs become valid.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
Asynchronous Bus Operations  
For asynchronous bus operations refer to Table 3  
together with the text below.  
Asynchronous Bus Read. Asynchronous Bus  
Read operations read from the memory cells, or  
specific registers (Electronic Signature, Status  
Register, CFI and Block Protection Status) in the  
Command Interface. A valid bus operation in-  
volves setting the desired address on the Address  
Asynchronous Bus Write. Asynchronous Bus  
Write operations write to the Command Interface  
in order to send commands to the memory or to  
latch addresses and input data to program. Bus  
Write operations are asynchronous, the clock, K,  
is don’t care during Bus Write operations.  
Inputs, applying a Low signal, V , to Chip Enable  
IL  
A valid Asynchronous Bus Write operation begins  
by setting the desired address on the Address In-  
and Output Enable and keeping Write Enable  
High, V . The Data Inputs/Outputs will output the  
IH  
puts and setting Latch Enable Low, V . The Ad-  
IL  
value, see Figure 12, Asynchronous Bus Read AC  
Waveforms, and Table 16, Asynchronous Bus  
Read AC Characteristics, for details of when the  
output becomes valid.  
dress Inputs are latched by the Command  
Interface on the rising edge of Chip Enable or  
Write Enable, whichever occurs first. The Data In-  
puts/Outputs are latched by the Command Inter-  
face on the rising edge of Chip Enable or Write  
Enable, whichever occurs first. Output Enable  
Asynchronous Latch Controlled Bus Read.  
Asynchronous Latch Controlled Bus Read opera-  
tions read from the memory cells or specific regis-  
ters in the Command Interface. The address is  
latched in the memory before the value is output  
on the data bus, allowing the address to change  
during the cycle without affecting the address that  
the memory uses. Asynchronous Latch Controlled  
Bus Read is available for x16 and x32 bus widths.  
must remain High, V , during the whole Asyn-  
IH  
chronous Bus Write operation. See Figures 15,  
and 17, Asynchronous Write AC Waveforms, and  
Tables 19 and 20, Asynchronous Write and Latch  
Controlled Write AC Characteristics, for details of  
the timing requirements.  
Asynchronous Latch Controlled Bus Write.  
A valid bus operation involves setting the desired  
address on the Address Inputs, setting Chip En-  
Asynchronous Latch Controlled Bus Write opera-  
tions write to the Command Interface in order to  
send commands to the memory or to latch ad-  
dresses and input data to program. Bus Write op-  
erations are asynchronous, the clock, K, is don’t  
care during Bus Write operations.  
able and Address Latch Low, V and keeping  
IL  
Write Enable High, V ; the address is latched on  
IH  
the rising edge of Address Latch. Once latched,  
the Address Inputs can change. Set Output En-  
able Low, V , to read the data on the Data Inputs/  
IL  
A valid Asynchronous Latch Controlled Bus Write  
operation begins by setting the desired address on  
the Address Inputs and pulsing Latch Enable Low,  
Outputs; see Figure 13, Asynchronous Latch Con-  
trolled Bus Read AC Waveforms and Table 17,  
Asynchronous Latch Controlled Bus Read AC  
V . The Address Inputs are latched by the Com-  
IL  
15/59  
M58LSW32A, M58LSW32B  
mand Interface on the rising edge of Latch Enable.  
The Data Inputs/Outputs are latched by the Com-  
mand Interface on the rising edge of Chip Enable  
or Write Enable, whichever occurs first. OutputEn-  
During Program or Erase operations the memory  
will continue to use the Program/Erase Supply  
Current, I  
, for Program or Erase operations un-  
DD3  
til the operation completes.  
able must remain High, V , during the whole  
IH  
Automatic Low Power. If there is no change in  
the state of the bus for a short period of time during  
Asynchronous Bus Read operations the memory  
enters Auto Low Power mode where the internal  
Supply Current is reduced to the Auto-Standby  
Asynchronous Bus Write operation. See Figures  
16 and 18 Asynchronous Latch Controlled Write  
AC Waveforms, and Tables 19 and 20, Asynchro-  
nous Write and Latch Controlled Write AC Charac-  
teristics, for details of the timing requirements.  
Supply Current, I  
. The Data Inputs/Outputs will  
DD5  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when the Output Enable  
is High.  
still output data if a Bus Read operation is in  
progress.  
Automatic Low Power is only available in Asyn-  
chronous Read modes.  
Standby. When Chip Enable is High, V , the  
IH  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high imped-  
ance state regardless of Output Enable or Write  
Enable. The Supply Current is reduced to the  
Power-Down. The memory is in Power-Down  
mode when Reset/Power-Down, RP, is Low. The  
power consumption is reduced to the Power-Down  
level, I  
, and the outputs are high impedance,  
DD2  
Standby Supply Current, I  
.
DD1  
independent of Chip Enable, Output Enable or  
Write Enable.  
Table 2. Asynchronous Bus Operations  
(2)  
Bus Operation  
Step  
E
G
W
RP  
L
A1-A22  
Address  
Address  
X
DQ0-DQ31  
Data Output  
High Z  
M3  
0
V
V
V
Asynchronous Bus Read  
High  
High  
High  
High  
High  
X
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
V
V
V
V
V
V
V
V
V
V
V
V
Address Latch  
Read  
1
IL  
Asynchronous Latch  
Controlled Bus Read  
V
1
Data Output  
Data Output  
Data Input  
IH  
Asynchronous Page Read  
Asynchronous Bus Write  
0
X
Address  
Address  
V
V
V
V
X
IH  
IH  
IH  
IL  
IL  
IL  
IL  
Asynchronous Latch  
Controlled Bus Write  
Address Latch  
V
V
V
High  
X
Address  
Data Input  
IL  
IL  
Output Disable  
Standby  
V
V
V
High  
High  
X
X
X
X
X
X
X
High Z  
High Z  
High Z  
IH  
X
X
X
X
IH  
V
Power-Down  
X
X
X
IL  
Note: 1. X = Don’t Care V or V . High = V or V .  
HH  
IL  
IH  
IH  
2. M15 = 1, Bits M15 and M3 are in the Burst Configuration Register.  
16/59  
M58LSW32A, M58LSW32B  
Synchronous Bus Operations  
Ready output timing (bit M8) can be changed in  
the Burst Configuration Register.  
For synchronous bus operations refer to Table 3  
together with the text below.  
The Synchronous Burst Read timing diagrams  
and AC Characteristics are described in the AC  
and DC Parameters section. See Figures 19, 20  
and Table 21.  
Synchronous Pipelined Burst Read. Synchro-  
nous Burst Read operations can be overlapped to  
avoid or reduce the X-latency. Pipelined opera-  
tions should only be used with Burst Configuration  
Register bit M9 = 0 (Y-latency setting).  
A valid Synchronous Pipelined Burst Read opera-  
tion occurs during a Synchronous Burst Read op-  
eration when the new address is set on the  
Address Inputs and a Low pulse isapplied to Latch  
Enable. The data for the new address becomes  
valid after the X-latency specified in the Burst Con-  
figuration Register has expired.  
For optimum operation the address should be  
latched on the correct clock cycle. Table 4 gives  
the clock cycle for each valid X- and Y-latency set-  
ting. Only these settings are valid, other settings  
must not be used. There is always one Y-Latency  
period where the data is not valid. If the address is  
latched later than the clock cycle specified in Ta-  
bles 4 then additional cycles where the data is not  
valid are inserted. Synchronous Pipelined Burst  
Read operations should only be performed on  
Burst Lengths of 4 with a x16 bus width.  
Synchronous Burst Read. Synchronous Burst  
Read operations are used to read from the memo-  
ry at specific times synchronized to an external ref-  
erence clock. The burst type, length and latency  
can be configured. The different configurations for  
Synchronous Burst Read operations are de-  
scribed in the Burst Configuration Register sec-  
tion. Synchronous Burst Read is only available for  
x16 bus width.  
A valid Synchronous Burst Read operation begins  
when the address is set on the Address Inputs,  
Write Enable is High, V , and Chip Enable and  
IH  
Latch Enable are Low, V , during the active edge  
IL  
of the Clock. The address is latched on the first ac-  
tive clock edge when Latch Enable is low, or on  
the rising edge of Latch Enable, whichever occurs  
first. The data becomes available for output after  
the X-latency specified in the Burst Control Regis-  
ter has expired. The output buffers are activated  
by setting Output Enable Low, V . See Figure 7  
IL  
for an example of a Synchronous Burst Read op-  
eration.  
The Burst Address Advance input and the Y-laten-  
cy specified in the Burst Control Register deter-  
mine whether the internal address counter is  
advanced on the active edge of the Clock. When  
the internal address counter is advanced the Data  
Inputs/Outputs change to output the value for the  
next address.  
Suspending a Pipelined Synchronous Burst Read  
operation is not recommended.  
Synchronous Burst Read Suspend. During  
a
In Continuous Burst mode (Burst Length Bit M2-  
M0 is set to ‘111’), one Burst Read operation can  
access the entire memory sequentially and wrap  
at the last address. The Burst Address Advance,  
Synchronous Burst Read operation it is possible to  
suspend the operation, freeing the data bus for  
other higher priority devices.  
A valid Synchronous Burst Read operation is sus-  
pended when both Output Enable and Burst Ad-  
B, must be kept low, V , for the appropriate num-  
IL  
ber of clock cycles. If Burst Address Advance, B,  
dress Advance are High, V . The Burst Address  
IH  
is pulled High, V , the Burst Read will be sus-  
IH  
Advance going High, V , stops the burst counter  
IH  
pended.  
and the Output Enable going High, V , inhibits the  
IH  
In Continuous Burst Mode, if the starting address  
is not associated with a page (2 Word) boundary  
data outputs. The Synchronous Burst Read oper-  
ation can be resumed by setting Output Enable  
Low. See Figure 7 for an example of a Synchro-  
nous Burst Read Suspend operation.  
the Valid Data Ready, R, output goes Low, V , to  
IL  
indicate that the data will not be ready in time and  
additional wait-states are required. The Valid Data  
17/59  
M58LSW32A, M58LSW32B  
Table 3. Synchronous Burst Read Bus Operations  
A1-A21  
DQ0-DQ31  
(3)  
Bus Operation  
Step  
Address Latch  
E
G
RP  
L
B
K
V
V
V
IL  
X
T
X
Address Input  
Data Output  
Data Output  
High Z  
IL  
IL  
IL  
IL  
IH  
V
V
V
V
V
V
IH  
Read (no address advance)  
Read (with address advance)  
Read Suspend  
T
T
X
X
X
X
IL  
IL  
IH  
V
V
V
V
V
IH  
IL  
Synchronous Burst Read  
V
IH  
IH  
IH  
IH  
Pipelined Synchronous  
Burst Read  
Read Resume (no address  
advance)  
V
V
V
V
T
X
Data Output  
IL  
IL  
IL  
IL  
IH  
Read Resume (with address  
advance)  
V
V
V
V
V
IL  
T
X
X
X
Data Output  
High Z  
IH  
V
X
Read Abort  
X
IH  
IH  
Note: 1. X = Don’t Care, V or V  
.
IL  
IH  
2. M15 = 0, Bit M15 is in the Burst Configuration Register.  
3. T = transition, see M6 in the Burst Configuration Register for details on the active edge of K.  
Table 4. Address Latch Cycle for Optimum Pipelined Synchronous Burst Read  
Address Latch Clock Cycle  
X-Latency  
Y-Latency  
Burst Length = 4  
8
9
1
1
2
6
7
15  
11  
Figure 7. Synchronous Burst Read Operation  
1
0
X-1  
X
X+1  
K
Address  
Inputs  
Q1  
L
tBHKH  
tBLKH  
Q1  
tBHKH  
B
tBHKH  
Data Inputs/  
Outputs  
Q2  
Q3 Q4 Q5 Q5 Q5 Q6 Q7 Q7 Q8 Q8  
AI03454b  
Note: In this example the Burst Configuration Register is set with M2-M0 = 001 (Burst Length = 4 Words), M6 = 1 (Valid Clock Edge = Rising  
Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X-Latency = 8) and M15  
= 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
18/59  
M58LSW32A, M58LSW32B  
Figure 8. Example Synchronous Pipelined Burst Read Operation  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
K
Address  
Inputs  
Q1  
R1  
S1  
L
E
G
B
Data  
Q1 Q2 Q3 Q4 NV R1 R2 R3 R4 NV S1 S2 S3  
Inputs/ Outputs  
NV= Not Valid  
AI03455  
Note: In this example the Burst Configuration Register is set with M2-M0 = 001 (Burst Length = 4 Words or Double Words), M6 = 1 (Valid  
Clock Edge = Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 0 (Y-Latency = 1), M14-M11 = 0011 (X-  
Latency = 8) and M15 = 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
Figure 9. Example Burst Address Advance and Burst Abort operations  
1
0
X-2  
X
X+2  
X+4  
X+6  
X+8  
X+10  
X+12  
K
Address  
Inputs  
Q1  
L
tBHKH  
tBLKH  
tBHKH  
B
tBHKH  
Q2  
Data Inputs/  
Outputs  
Q1  
Q3  
Q3  
Q4  
Q4  
Q4  
AI03457b  
Note: 1. In this example the Burst Configuration Register is set with M2-M0 = 001 (Burst Length = 4 Words), M6 = 1 (Valid Clock Edge =  
Rising Clock Edge), M7 = 0 or 1 (Burst Type = Interleaved or Sequential), M9 = 1 (Y-Latency = 2), M14-M11 = 0011 (X-Latency =  
8) and M15 = 0 (Read Select = Synchronous Burst Read), other bits are don’t care.  
2. When the system clock frequency is between 33MHz and 50MHz and the Y latency is set to 2, values of B sampled on odd clock  
cycles, starting from the first read are not considered.  
19/59  
M58LSW32A, M58LSW32B  
Burst Configuration Register  
The Burst Configuration Register is used to config-  
ure the type of bus access that the memory will  
perform.  
The Burst Configuration Register is set through  
the Command Interface and will retain its informa-  
tion until it is re-configured, the device is reset, or  
the device goes into Reset/Power-Down mode.  
The Burst Configuration Register bits are de-  
scribed in Table 5. They specify the selection of  
the burst length, burst type, burst X and Y laten-  
cies and the Read operation.  
Read Select Bit (M15). The Read Select bit,  
M15, is used to switch between asynchronous and  
synchronous Bus Read operations. When the  
Read Select bit is set to ’1’, Bus Read operations  
are asynchronous; when the Read Select but is  
set to ’0’, Bus Read operations are synchronous.  
Valid Data Ready Bit (M8). The  
Valid  
Data  
Ready bit controls the timing of the Valid Data  
Ready output pin, R. When the Valid Data Ready  
bit is ’0’ the Valid Data Ready output pin is driven  
Low for the active clock edge when invalid data is  
output on the bus. When the Valid Data Ready bit  
is ’1’ theValid Data Ready output pin is driven Low  
one clock cycle prior to invalid data being output  
on the bus.  
Burst Type Bit (M7). The Burst Type bit is used  
to configure the sequence of addresses read as  
sequential or interleaved. When the Burst Type bit  
is ’0’ the memory outputs from interleaved ad-  
dresses; when the Burst Type bit is ’1’ the memory  
outputs from sequential addresses. See Table 6,  
Burst Type Definition, for the sequence of ad-  
dresses output from a given starting address.  
Valid Clock Edge Bit (M6). The Valid Clock Edge  
bit, M6, is used to configure the active edge of the  
Clock, K, during Synchronous Burst Read opera-  
tions. When the Valid Clock Edge bit is ’0’ the fall-  
ing edge of the Clock is the active edge; when the  
Valid Clock Edge bit is ’1’ the rising edge of the  
Clock is active.  
Latch Enable Bit (M3). The Latch Enable bit is  
used to select between Asynchronous Random  
Read and Asynchronous Latch Enable Controlled  
Read. When the Latch Enable bit is set to ‘0’ Ran-  
dom read is selected; when it is set to ‘1’ Latch En-  
able Controlled Read is selected. To enable these  
Asynchronous Read configurations M15 must be  
set to ‘1’.  
Burst Length Bit (M2-M0). The Burst Length bits  
set the maximum number of Words or Double-  
Words that can be output during a Synchronous  
Burst Read operation before the address wraps.  
Table 5, Burst Configuration Register gives the  
valid combinations of the Burst Length bits that the  
memory accepts; Table 6, Burst Type Definition,  
gives the sequence of addresses output from a  
given starting address for each length.  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous accesses.  
X-Latency Bits (M14-M11). The X-Latency bits  
are used during Synchronous Bus Read opera-  
tions to set the number of clock cycles between  
the address being latched and the first data be-  
coming available. For correct operation the X-La-  
tency bits can only assume the values in Table 5,  
Burst Configuration Register. The X-Latency bits  
should also be selected in conjunction with Table  
7, Burst Performance to ensure valid settings.  
Y-Latency Bit (M9). The Y-Latency bit is used  
during Synchronous Bus Read operations to set  
the number of clock cycles between consecutive  
reads. The Y-Latency value depends on both the  
X-Latency value and the setting in M9.  
When the Y-Latency is 1 the data changes each  
clock cycle; when the Y-Latency is 2 the data  
changes every second clock cycle. See Table 5,  
Burst Configuration Register and Table 7, Burst  
Performance, for valid combinations of the Y-La-  
tency, the X-Latency and the Clock frequency.  
M10, M5 and M4 are reserved for future use.  
20/59  
M58LSW32A, M58LSW32B  
Table 5. Burst Configuration Register (x16 Bus Width)  
Address  
Bit  
Reset  
Value  
Mnemonic  
Bit Name  
Value  
Description  
0
Synchronous Burst Read  
16  
M15  
Read Select  
1
1
Asynchronous Bus Read  
0010  
0011  
0100  
1011  
1101  
X-Latency = 7, use only with Continuous Burst Length  
X-Latency = 8  
15  
to  
12  
X-Latency = 9  
M14-M11  
X-Latency  
XXXX  
X-Latency = 14, use only with Continuous Burst Length  
X-Latency = 15  
Others Reserved, Do Not Use.  
When X-Latency < 13, Y-Latency = 1  
When X-Latency 13, Y-Latency = 2  
0
1
10  
M9  
Y-Latency  
X
When X-Latency < 13, Y-Latency = 2  
When X-Latency 13, do not use.  
0
1
R valid Low during valid Clock edge  
R valid Low one cycle before valid Clock edge  
Interleaved  
Valid Data  
Ready  
9
8
7
5
M8  
M7  
M6  
M3  
X
X
X
0
0
Burst Type  
1
Sequential  
0
Falling Clock edge  
Rising Clock edge  
Random Read  
Valid Clock  
Edge  
1
0
Latch Enable  
1
Latch Enable Controlled Read  
1 Word  
100  
101  
001  
111  
2 Words  
3
to  
1
M2-M0  
Burst Length  
XXX  
4 Words  
Continuous  
Others Reserved, Do Not Use.  
21/59  
M58LSW32A, M58LSW32B  
Table 6. Burst Type Definition (x16 Bus Width)  
Starting Address  
Sequential  
(decimal)  
Interleaved  
(decimal)  
(binary)  
Burst Length  
A2 A1  
X0  
0, 1  
1, 0  
0, 1  
2
X1  
1, 0  
00  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
A, A+1, A+2...  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
Not Valid  
01  
4
10  
11  
Continuous  
A
Note: X = 0 or 1.  
Table 7. Burst Performance  
Clock Frequency  
Continuous Burst Length  
Y-Latency  
1 or 2  
Other Burst Length  
X-Latency  
X-Latency  
Y-Latency  
33 MHz  
7  
8  
1 or 2  
2
33 MHz f 66 MHz  
13  
2
15  
22/59  
M58LSW32A, M58LSW32B  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. The Commands are summarized in Table  
8, Commands. Refer to Table 8 in conjunction with  
the text descriptions below.  
Register. One Bus Write cycle is required to issue  
the Read Status Register command. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register until another com-  
mand is issued.  
The Status Register information is present on the  
output data bus (DQ1-DQ7) when both Chip En-  
After power-up or a Reset operation the memory  
enters Read mode.  
able and Output Enable are low, V . In Synchro-  
IL  
nous Burst mode the Status Register information  
is output on the active clock edge when Latch En-  
Synchronous Read operations and Latch Con-  
trolled Bus Read operations can only be used to  
read the memory array. The Electronic Signature,  
CFI or Status Register will be read in asynchro-  
nous mode regardless of the Burst Control Regis-  
ter settings. Once the memory returns to Read  
Memory Array mode the bus will resume the set-  
ting in the Burst Configuration Register automati-  
cally.  
Read Memory Array Command. The Read Mem-  
ory Array command returns the memory to Read  
mode. One Bus Write cycle is required to issue the  
Read Memory Array command and return the  
memory to Read mode. Once the command is is-  
sued the memory remains in Read mode until an-  
other command is issued. From Read mode Bus  
Read commands will access the memory array.  
able is low, V , or on the rising edge of Latch En-  
IL  
able, whichever occurs first.  
See the section on the Status Register and Table  
11 for details on the definitions of the Status Reg-  
ister bits  
Clear Status Register Command. The Clear Sta-  
tus Register command can be used to reset bits 1,  
3, 4 and 5 in the Status Register to ‘0’. One Bus  
Write is required to issue the Clear StatusRegister  
command. Once the command is issued the mem-  
ory returns to its previous mode, subsequent Bus  
Read operationscontinue to output the same data.  
The bits in the Status Register are sticky and do  
not automatically return to ‘0’ when a new Write to  
Buffer and Program, Erase, Block Protect or Block  
Unprotect command is issued. If any error occurs  
then it is essential to clear any error bits in the Sta-  
tus Register by issuing the Clear Status Register  
command before attempting a new Program,  
Erase or Resume command.  
While the Program/Erase Controller is executing a  
Program, Erase, Block Protect or Blocks Unpro-  
tect operation the memory will not accept the Read  
Memory Array command until the operation com-  
pletes.  
ReadElectronic Signature Command. The Read  
Electronic Signature command is used to read the  
Manufacturer Code, the Device Code and the  
Block Protection Status. One Bus Write cycle is re-  
quired to issue the Read Electronic Signature  
command. Once the command is issued subse-  
quent Bus Read operations read the Manufacturer  
Code, the Device Code or the Block Protection  
Status until another command is issued; see Table  
9, Read Electronic Signature.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a block. It sets all of  
the bits in the block to ‘1’. All previous data in the  
block is lost. If the block is protected then the  
Erase operation will abort, the data in the block will  
not be changed and the Status Register will output  
the error.  
Two Bus Write operations are required to issue the  
command; the second Bus Write cycle latches the  
block address in the internal state machine and  
starts the Program/Erase Controller. Once the  
command is issued subsequent Bus Read opera-  
tions read the Status Register. See the section on  
the Status Register for details on the definitions of  
the Status Register bits.  
Read Query Command. The Read Query Com-  
mand is used to read data from the Common Flash  
Interface (CFI) Memory Area. One Bus Write cycle  
is required to issue the Read Query Command.  
Once the command is issued subsequent Bus  
Read operations read from the Common Flash In-  
terface Memory Area. See Appendix B, Tables 29,  
30, 31, 32, 33 and 34 for details on the information  
contained in the Common Flash Interface (CFI)  
memory area.  
During the Erase operation the memory will only  
accept the Read Status Register command and  
the Program/Erase Suspend command. All other  
commands will be ignored. Typical Erase times  
are given in Table 10.  
Note that the addresses for the Common Flash In-  
terface Memory Area are A1-A21 for the  
M58LSW32A and A2-A21 for the M58LSW32B,  
regardless of the bus width selected.  
See Appendix C, Figure 27, Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
on using the Block Erase command.  
Write to Buffer and Program Command. The  
Write to Buffer and Program command is used to  
program the memory array. Up to 8 Words (or 4  
Read Status Register Command. The Read Sta-  
tus Register command is used to read the Status  
23/59  
M58LSW32A, M58LSW32B  
Double Words)can be loaded into the Write Buffer  
and programmed into the memory. Each Word has  
the same A5-A21.  
Four successive steps are required to issue the  
command.  
Program/Erase Controller has paused; no other  
commands will be accepted until the Program/  
Erase Controller has paused. After the Program/  
Erase Controller has paused, the memory will con-  
tinue to output the Status Register until another  
command is issued.  
1. One Bus Write operation is required to set up  
the Write to Buffer and Program Command. Is-  
sue the set up command with the selected  
memory Block Address where the program op-  
eration should occur (any address in the block  
where the values will be programmed can be  
used). Any Bus Read operations will start to out-  
put the Status Register after the 1st cycle.  
During the polling period between issuing the Pro-  
gram/Erase Suspend command and the Program/  
Erase Controller pausing it is possible for the op-  
eration to complete. Once the Program/Erase  
Controller Status bit (bit 7) indicates that the Pro-  
gram/Erase Controller is no longer active, the Pro-  
gram Suspend Status bit (bit 2) or the Erase  
Suspend Status bit (bit 6) can be used to deter-  
mine if the operation has completed or is suspend-  
ed. For timing on the delay between issuing the  
Program/Erase Suspend command and the Pro-  
gram/Erase Controller pausing see Table 10.  
2. Use one Bus Write operation to write the same  
block address along with the value N on the  
Data Inputs/Output, where N+1 is the number of  
Words (x16 Bus Width) or Double Words (x32  
Bus Width) to be programmed.  
During Program/Erase Suspend the Read Memo-  
ry Array, Read Status Register, Read Electronic  
Signature, Read Query and Program/Erase Re-  
sume commands will be accepted by the Com-  
mand Interface. Additionally, if the suspended  
operation was Erase then the Write to Buffer and  
Program, and the Program Suspend commands  
will also be accepted. When a program operation  
is completed inside a Block Erase Suspend the  
Read Memory Array command must be issued to  
reset the device in Read mode, then the Erase Re-  
sume command can be issued to complete the  
whole sequence. Only the blocks not being erased  
may be read or programmed correctly.  
3. Use N+1 Bus Write operations to load the ad-  
dress and data for each Word or Double Word  
into the Write Buffer. See the constraints on the  
address combinations listed below. The ad-  
dresses must have the same A5-A21.  
4. Finally, use one Bus Write operation to issue the  
final cycle to confirm the command and start the  
Program operation.  
Invalid address combinations or failing to follow  
the correct sequence of Bus Write cycles will set  
an error in the Status Register and abort the oper-  
ation without affecting the data in the memory ar-  
ray. The Status Register should be cleared before  
re-issuing the command.  
If the block being programmed is protected an er-  
ror will be set in the Status Register and the oper-  
ation will abort without affecting the data in the  
memory array. The block must be unprotected us-  
ing the Blocks Unprotect command or by using the  
Blocks Temporary Unprotect feature of the Reset/  
Power-Down pin, RP.  
See Appendix C, Figure 26, Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
28, Erase Suspend & Resume Flowchart and  
Pseudo Code, for suggested flowcharts on using  
the Program/Erase Suspend command.  
Program/Erase Resume Command. The  
gram/Erase Resume command can be used to re-  
start the Program/Erase Controller after  
Pro-  
a
Program/Erase Suspend operation has paused it.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Resume command. Once the com-  
mand is issued subsequent Bus Read operations  
read the Status Register.  
See Appendix C, Figure 25, Write to Buffer and  
Program Flowchart and Pseudo Code, for a sug-  
gested flowchart on using the Write to Buffer and  
Program command.  
Program/Erase Suspend Command. The  
Pro-  
Set Burst Configuration Register Command.  
gram/Erase Suspend command is used to pause a  
Write to Buffer and Program or Erase operation.  
The command will only be accepted during a Pro-  
gram or an Erase operation. It can be issued at  
any time during an Erase operation but will only be  
accepted during a Write to Buffer and Program  
command if the Program/Erase Controller is run-  
ning.  
The Set Burst Configuration Register command is  
used to write a new value to the Burst Configura-  
tion Control Register which defines the burst  
length, type, X and Y latencies, Synchronous/  
Asynchronous Read mode and the valid Clock  
edge configuration.  
One Bus Write cycle is required to issue the Set  
Burst Configuration Register command. Once the  
command is issued the memory returns to Read  
mode as if a Read Memory Array command had  
been issued.  
One Bus Write cycle is required to issue the Pro-  
gram/Erase Suspend command and pause the  
Program/Erase Controller. Once the command is  
issued it is necessary to poll the Program/Erase  
Controller Status bit (bit 7) to find out when the  
24/59  
M58LSW32A, M58LSW32B  
The value for the Burst Configuration Register is  
always presented on A2-A17, regardless of the  
bus width that is selected. M0 is on A2, M1 on A3,  
etc.; the other address bits are ignored.  
The Block Protection bits are non-volatile, once  
set they remain set through reset and power-  
down/power-up. They are cleared by a Blocks Un-  
protect command or temporary disabled by raising  
the Reset/Power-Down pin to V and holding it at  
HH  
Block Protect Command. The Block Protect  
command is used to protect a block and prevent  
Program or Erase operations from changing the  
data in it. Two Bus Write cycles are required to is-  
sue the Block Protect command; the second Bus  
Write cycle latches the block address in the inter-  
nal state machine and starts the Program/Erase  
Controller. Once the command is issued subse-  
quent Bus Read operations read the Status Reg-  
ister. See the section on the Status Register for  
details on the definitions of the Status Register  
bits.  
that level throughout a Block Erase or Write to  
Buffer and Program command.  
Blocks Unprotect Command. The Blocks Un-  
protect command is used to unprotect all of the  
blocks. Two Bus Write cycles are required to issue  
the Blocks Unprotect command; the second Bus  
Write cycle starts the Program/Erase Controller.  
Once the command is issued subsequent Bus  
Read operations read the Status Register. See the  
section on the Status Register for details on the  
definitions of the Status Register bits.  
During theBlock Protect operation the memory will  
only accept the Read Status Register command.  
All other commands will be ignored. Typical Block  
Protection times are given in Table 10.  
During the Block Protect operation the memory will  
only accept the Read Status Register command.  
All other commands will be ignored. Typical Block  
Protection times are given in Table 10.  
25/59  
M58LSW32A, M58LSW32B  
Table 8. Commands  
Command  
Bus Write Operations  
2nd Subsequent  
1st  
Final  
Addr  
X
Data  
FFh  
90h  
98h  
70h  
50h  
20h  
E8h  
B0h  
D0h  
60h  
60h  
60h  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Read Memory Array  
Read Electronic Signature  
Read Query  
1
1
1
1
1
2
X
X
Read Status Register  
Clear Status Register  
Block Erase  
X
X
X
BA  
BA  
D0h  
N
Write to Buffer and Program  
Program/Erase Suspend  
Program/Erase Resume  
Set Burst Configuration Register  
Block Protect  
4 + N  
BA  
X
PA  
PD  
X
D0h  
1
1
2
2
2
X
BCR  
BA  
X
BCR  
BA  
X
03h  
01h  
D0h  
Blocks Unprotect  
Note: X Don’t Care; PA Program Address; PD Program Data; BA Any address in the Block; N+1 Number of Addresses to Program;  
BCR Burst Configuration Register value.  
Table 9. Read Electronic Signature  
Address (A21-A1,  
x16 Bus Width)  
Address (A21-A2,  
x32 Bus Width)  
Data  
(DQ31-DQ8)  
Data  
(DQ7-DQ0)  
Code  
Manufacturer Code  
Device Code  
000000h  
000001h  
000000h  
000001h  
000000h  
000000h  
20h  
16h (M58LSW32A)  
15h (M58LSW32B)  
00h (Block Unprotected)  
01h (Block Protected)  
(1)  
BA OR 02h  
BA OR 02h  
000000h  
Block Protection Status  
Note: BA is any address in the block. Use the Logical OR operator to ensure that the two LSBs of the address are ’1’.  
Table 10. Program, Erase Times and Program Erase Endurance Cycles  
M58LSW32A/B  
Parameters  
Unit  
Typical after  
10k W/E Cycles  
Min  
Typ  
Max  
Block (512 Kbit) Erase  
Chip Program  
0.75  
54  
0.75  
54  
5
s
s
Program Write Buffer  
192  
3
192  
µs  
Program Suspend Latency Time  
Erase Suspend Latency Time  
Block Protect Time  
10  
30  
µs  
10  
µs  
192  
0.75  
µs  
Blocks Unprotect Time  
Program/Erase Cycles (per Block)  
s
10,000  
cycles  
Note: (T = 0 to 70°C; V = 2.7V to 3.6V; V =1.8V)  
DDQ  
A
DD  
26/59  
M58LSW32A, M58LSW32B  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program, Erase, Block Protect  
or Blocks Unprotect operation. The various bits in  
the Status Register convey information and errors  
on the operation. They are output on DQ7-DQ0.  
To read the Status Register the Read Status Reg-  
ister command can be issued. The Status Register  
is automatically read after Program, Erase, Block  
Protect, Blocks Unprotect and Program/Erase Re-  
sume commands. The Status Register can be  
read from any address.  
The Status Register can only be read using Asyn-  
chronous Bus Read operations. Once the memory  
returns to Read Memory Array mode the bus will  
resume the setting in the Burst Configuration Reg-  
ister automatically.  
When the Erase Suspend Status bit is Low, V  
,
OL  
the Program/EraseController is active or has com-  
pleted its operation; when the bit is High, V , a  
OH  
Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status (Bit 5). The Erase Status bit can be  
used to identify if the memory has failed to verify  
that the block has erased correctly or that all  
blocks have been unprotected successfully. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
When the Erase Status bit is Low, V , the mem-  
OL  
The contents of the Status Register can be updat-  
ed during an Erase or Program operation by tog-  
gling the Output Enable pin or by dis-activating  
ory has successfully verified that the block has  
erased correctlyor all blocks have been unprotect-  
ed successfully. When the Erase Status bit is  
(Chip Enable, V ) and then reactivating (Chip En-  
High, V , the Program/Erase Controller has ap-  
IH  
OH  
able and Output Enable, V ) the device.  
plied the maximum number of pulses to the block  
and still failed to verify that the block has erased  
correctly or that all the blocks have been unpro-  
tected successfully.  
IL  
The Status Register bits are summarized in Table  
11, Status Register Bits. Refer to Table 11 in con-  
junction with the following text descriptions.  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status (Bit 4). The Program Status bit  
is used to identify a Program or Block Protect fail-  
ure. The Program Status bit should be read once  
the Program/Erase Controller Status bit is High  
(Program/Erase Controller inactive).  
Program/Erase Controller Status (Bit 7). ThePro-  
gram/Erase Controller Status bit indicates whether  
the Program/Erase Controller is active or inactive.  
When the Program/Erase Controller Status bit is  
Low, V , the Program/Erase Controller is active;  
OL  
when the bit is High, V , the Program/Erase  
OH  
Controller is inactive.  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
When the Program Status bit is Low, V , the  
OL  
memory has successfully verified that the Write  
Buffer has programmed correctly or the block is  
protected. When the Program Status bit is High,  
During Program, Erase, Block Protect and Blocks  
Unprotect operations the Program/Erase Control-  
ler Status bit can be polled to find the end of the  
operation. The other bits in the Status Register  
should not be tested until the Program/Erase Con-  
troller completes the operation and the bit is High.  
V
, the Program/Erase Controller has applied  
OH  
the maximum number of pulses to the byte and still  
failed to verify that the Write Buffer has pro-  
grammed correctly or that the Block is protected.  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status, V  
PP  
Status and Block Protection Status bits should be  
tested for errors.  
Erase Suspend Status (Bit 6). The Erase Sus-  
pend Status bit indicates that an Erase operation  
has been suspended and is waiting to be re-  
sumed. The Erase Suspend Status should only be  
considered valid when the Program/Erase Con-  
troller Status bit is High (Program/Erase Controller  
inactive); after a Program/Erase Suspend com-  
mand is issued the memory may still complete the  
operation rather than entering the Suspend mode.  
V
Status (Bit 3). The V  
Status bit can be  
PP  
PP  
used to identify an invalid voltage on the V pin  
PP  
during Program, Erase, Block Protect and Blocks  
Unprotect operations. The V pin is only sampled  
PP  
at thebeginning of a Program, Erase Block Protect  
or Blocks Unprotect operation. Indeterminate re-  
sults can occur if V becomes invalid during an  
PP  
operation.  
27/59  
M58LSW32A, M58LSW32B  
When the V Status bit is Low, V , the voltage  
a Program/Erase Suspend command has been is-  
sued and the memory is waiting for a Program/  
Erase Resume command.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
PP  
OL  
on the V  
pin was sampled at a valid voltage;  
PP  
when the V Status bit is High, V , the V pin  
PP  
OH  
PP  
has a voltage that is below the V Lockout Volt-  
PP  
age, V  
, the memory is protected; Program  
PPLK  
Erase, Block Protect and Blocks Unprotect opera-  
tion cannot be performed.  
Block Protection Status (Bit 1). The Block Pro-  
tection Status bit can be used to identify if a Pro-  
gram or Erase operation has tried to modify the  
contents of a protected block.  
Once setHigh, theV Status bit can only be reset  
PP  
Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program, Erase, Block Protect or  
Blocks Unprotect command is issued, otherwise  
the new command will appear to fail.  
When the Block Protection Status bit is Low, V  
,
OL  
no Program or Erase operations have been at-  
tempted to protected blocks since the last Clear  
Status Register command or hardware reset;  
Program Suspend Status (Bit 2). The Program  
Suspend Status bit indicates that a Program oper-  
ation has been suspended and is waiting to be re-  
sumed. The Program Suspend Status should only  
be considered valid when the Program/Erase  
Controller Status bit is High (Program/Erase Con-  
troller inactive); after a Program/Erase Suspend  
command is issued the memory may still complete  
the operation rather than entering the Suspend  
mode.  
when the Block Protection Status bit is High, V ,  
IH  
a Programor Erase operation has been attempted  
on a protected block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new Program or Erase command is  
issued, otherwise the new command will appear to  
fail.  
Reserved (Bit 0). Bit 0 of the Status Register is  
reserved. Its value should be masked.  
When the Program Suspend Status bit is Low,  
V
, the Program/Erase Controller is active or has  
OL  
completed its operation; when the bit is High, V  
,
OH  
Table 11. Status Register Bits  
Operation  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 RB  
V
Program/Erase Controller Active  
Write Buffer not ready  
‘0’  
‘0’  
‘1’  
Not Valid  
Not Valid  
OL  
V
OL  
(1)  
(1)  
(1)  
Write Buffer ready  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
X
X
X
Program suspended  
‘1’  
‘1’  
Program/Block Protect completed successfully  
Program/Block Protect failure due to incorrect command  
sequence  
(1)  
’1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
Hi-Z  
X
(1)  
(1)  
(1)  
Program/Block Protect failure due to V Error  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘1’  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
PP  
X
X
X
Program failure due to Block Protection  
Program/Block Protect failure due cell failure or unerased cell  
Erase suspended  
‘1’  
‘1’  
‘1’  
‘1’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘1’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘0’  
‘1’  
‘0’  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Erase/Blocks Unprotect completed successfully  
‘0’  
‘0’  
‘0’  
‘0’  
Erase/Blocks Unprotect failure due to V Error  
PP  
Erase failure due to Block Protection  
Erase/Blocks Unprotect failure due to failed cell(s) in block  
Note: 1. For Program operations during Erase Suspend Bit 6 is ‘1’, otherwise Bit 6 is ‘0’.  
28/59  
M58LSW32A, M58LSW32B  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 12, Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 12. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Temperature Under Bias  
Unit  
Min  
–40  
–55  
Max  
125  
T
BIAS  
°C  
°C  
°C  
V
T
Storage Temperature  
150  
STG  
T
Maximum TLEAD Temperature during soldering  
Input or Output Voltage  
t.b.a.  
LEAD  
V
V
+0.6  
–0.6  
–0.6  
–0.6  
IO  
DDQ  
V
, V  
DD DDQ  
Supply Voltage  
5.0  
V
(1)  
V
RP Hardware Block Unlock Voltage  
V
HH  
10  
Note: 1. Cumulative time at a high voltage level of 10V should not exceed 80 hours on RP pin.  
29/59  
M58LSW32A, M58LSW32B  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in Table 13,  
Operating and AC Measurement Conditions. De-  
signers should check that the operating conditions  
in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Table 13. Operating and AC Measurement Conditions  
M58LSW32  
Parameter  
120  
150  
Units  
Min  
Max  
3.6  
Min  
2.7  
1.8  
0
Max  
Supply Voltage (V  
)
2.7  
1.8  
0
3.6  
V
V
DD  
Input/Output Supply Voltage (V  
)
V
DD  
V
DD  
DDQ  
Grade 1  
Grade 6  
70  
70  
°C  
°C  
pF  
ns  
ns  
V
Ambient Temperature (T )  
A
–40  
85  
–40  
85  
Load Capacitance (C )  
30  
30  
L
Clock Rise and Fall Times  
Input Rise and Fall Times  
Input Pulses Voltages  
3
4
3
4
0 to V  
0.5 V  
0 to V  
0.5 V  
DDQ  
DDQ  
Input and Output Timing Ref. Voltages  
V
DDQ  
DDQ  
Figure 10. AC Measurement Input Output  
Waveform  
Figure 11. AC Measurement Load Circuit  
1.3V  
1N914  
V
DDQ  
V
DD  
3.3kΩ  
V
DDQ  
0.5 V  
DDQ  
DEVICE  
UNDER  
TEST  
DQ  
S
0V  
C
L
AI00610  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI03459  
Table 14. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
6
Max  
8
Unit  
pF  
pF  
C
IN  
Input Capacitance  
Output Capacitance  
V
= 0V  
= 0V  
IN  
C
OUT  
V
OUT  
8
12  
Note: 1. T = 25°C, f = 1 MHz  
A
2. Sampled only, not 100% tested.  
30/59  
M58LSW32A, M58LSW32B  
Table 15. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±1  
±5  
30  
50  
40  
2
Unit  
µA  
I
0VV V  
DDQ  
Input Leakage Current  
LI  
IN  
I
LO  
0VV  
V  
Output Leakage Current  
µA  
OUT DDQ  
I
E = V , G = V , f  
= 6MHz  
Supply Current (Random Read)  
Supply Current (Burst Read)  
Supply Current (Standby)  
mA  
mA  
µA  
DD  
IL  
IH add  
I
E = V , G = V , f = 50MHz  
IH clock  
DDB  
IL  
I
E = V , RP = V  
DD1  
IH  
IH  
IH  
I
E = V , RP = V  
Supply Current (Auto Low-Power)  
Supply Current (Reset/Power-Down)  
mA  
µA  
DD5  
IL  
I
I
RP = V  
1
DD2  
DD3  
IL  
Supply Current (Program or Erase,  
Set Lock Bit, Erase Lock Bit)  
Program or Erase operation in  
progress  
50  
mA  
mA  
Supply Current  
(Erase/Program Suspend)  
I
E = V  
50  
DD4  
IH  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.5  
0.8  
V
V
V
V
IL  
V
V
V
–0.8  
V
+ 0.5  
DDQ  
IH  
DDQ  
V
V
I
= 100µA  
OL  
0.1  
OL  
I
= –100µA  
–0.1  
DDQ  
OH  
OH  
RP Hardware Block Unprotect  
Voltage  
Block Erase in progress,  
Write to Buffer and Program  
(1)  
8.5  
9.5  
1
V
µA  
V
V
HH  
RP Hardware Block Unprotect  
Current  
I
RP = V  
HH  
HH  
V
Supply Voltage (Erase and  
DD  
V
2.2  
LKO  
Program lockout)  
Note: 1. Biasing RP pin to V is allowed for a maximum cumulative period of 80 hours.  
HH  
31/59  
M58LSW32A, M58LSW32B  
Figure 12. Asynchronous Bus Read AC Waveforms  
tAVAV  
A1-A21  
VALID  
tELQV  
tELQX  
tAXQX  
E
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
G
tAVQV  
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
AI04353  
Note: Asynchronous Read (M15 = 1), Random Read (M3 = 0)  
Table 16. Asynchronous Bus Read AC Characteristics.  
M58LSW32  
120 150  
Symbol  
Parameter  
Test Condition  
Unit  
t
Address Valid to Address Valid  
E = V , G = V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Min  
Min  
Max  
Max  
120  
120  
0
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
IL  
IL  
IL  
t
E = V , G = V  
IL  
Address Valid to Output Valid  
AVQV  
t
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Transition  
Output Enable High to Output Transition  
Address Transition to Output Transition  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
G = V  
E = V  
ELQX  
IL  
IL  
t
120  
0
150  
0
ELQV  
GLQX  
GLQV  
t
t
t
IL  
IL  
E = V  
50  
0
50  
0
G = V  
E = V  
EHQX  
GHQX  
IL  
t
0
0
IL  
t
E = V , G = V  
0
0
AXQX  
EHQZ  
IL  
IL  
t
G = V  
10  
10  
10  
10  
IL  
t
E = V  
GHQZ  
IL  
32/59  
M58LSW32A, M58LSW32B  
Figure 13. Asynchronous Latch Controlled Bus Read AC Waveforms  
A1-A21  
VALID  
tAVHL  
tLHAX  
tAVLL  
L
tLHLL  
tLLLH  
tEHLX  
tELLH  
tELLL  
E
tGLQV  
tGLQX  
tEHQZ  
tEHQX  
G
tLLQX  
tLLQV  
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
AI04354  
Note: Asynchronous Read (M15 = 1), Latch Enable Controlled (M3 = 1)  
Table 17. Asynchronous Latch Controlled Bus Read AC Characteristics  
M58LSW32  
Symbol  
Parameter  
Test Condition  
Unit  
120  
0
150  
t
E = V  
Address Valid to Latch Enable Low  
Address Valid to Latch Enable High  
Latch Enable High to Latch Enable Low  
Latch Enable Low to Latch Enable High  
Chip Enable Low to Latch Enable Low  
Chip Enable Low to Latch Enable High  
Latch Enable Low to Output Transition  
Latch Enable Low to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
0
10  
10  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
IL  
t
E = V  
10  
10  
10  
0
AVLH  
IL  
t
LHLL  
t
E = V  
LLLH  
IL  
t
ELLL  
t
10  
0
10  
0
ELLH  
t
E = V , G = V  
IL IL  
LLQX  
t
E = V , G = V  
120  
10  
0
150  
10  
0
LLQV  
IL  
IL  
t
t
Latch Enable High to Address Transition  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
E = V  
E = V  
E = V  
LHAX  
IL  
IL  
IL  
GLQX  
t
20  
20  
GLQV  
Chip Enable High to Latch Enable  
Transition  
t
Min  
0
0
ns  
EHLX  
Note: For other timings see Table 16, Asynchronous Bus Read Characteristics.  
33/59  
M58LSW32A, M58LSW32B  
Figure 14. Asynchronous Page Read AC Waveforms  
A1-A2  
VALID  
VALID  
A3-A21  
VALID  
tAVQV  
tELQV  
tELQX  
tAXQX  
E
tAVQV1  
tAXQX1  
tEHQZ  
tEHQX  
tGLQV  
tGLQX  
G
tGHQZ  
tGHQX  
DQ0-DQx  
OUTPUT  
OUTPUT  
AI04355  
Note: Asynchronous Read (M15 = 1), Random (M3 = 0)  
Table 18. Asynchronous Page Read AC Characteristics  
M58LSW32  
Symbol  
Parameter  
Test Condition  
E = V , G = V  
Unit  
120  
150  
6
t
Address Transition to Output Transition  
Address Validto Output Valid  
Min  
6
ns  
ns  
AXQX1  
IL  
IL  
t
E = V , G = V  
IL  
Max  
25  
25  
AVQV1  
IL  
Note: For other timings see Table 16, Asynchronous Bus Read Characteristics.  
34/59  
M58LSW32A, M58LSW32B  
Figure 15. Asynchronous Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVWH  
tWHAX  
tWHEH  
E
tELWL  
G
tWHGL  
tGHWL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQn  
tWHDX  
RB  
tVPHWH  
tWHBL  
V
PP  
AI04356  
Figure 16. Asynchronous Latch Controlled Write AC Waveform, Write Enable Controlled  
A1-A21  
VALID  
tAVWH  
tAVLH  
tLHAX  
L
tWHAX  
tELLL  
tLLLH  
tLHWH  
tLHGL  
E
tELWL  
tGHWL  
tWHEH  
G
tWHGL  
tWLWH  
tWHWL  
W
tDVWH  
INPUT  
DQ0-DQn  
tWHDX  
RB  
tVPHWH  
tWHBL  
V
PP  
AI04357  
35/59  
M58LSW32A, M58LSW32B  
Table 19. Asynchronous Write and Latch Controlled Write AC Characteristics, Write Enable  
Controlled.  
M58LSW32  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
120  
10  
50  
50  
0
150  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
Address Valid to Write Enable High  
E = V  
E = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
AVWH  
IL  
IL  
t
Data Input Valid to Write Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Write Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Write Enable High  
Program/Erase Enable High to Write Enable High  
Write Enable High to Address Transition  
Write Enable High to Ready/Busy low  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
DVWH  
t
ELWL  
t
0
0
ELLL  
LHAX  
LHGL  
t
t
3
3
35  
0
35  
0
t
LHWH  
t
10  
50  
0
10  
50  
0
LLLH  
t
LLWH  
t
VPHWH  
t
E = V  
E = V  
10  
90  
10  
0
10  
90  
10  
0
WHAX  
IL  
IL  
t
t
WHBL  
WHDX  
WHEH  
GHWL  
WHGL  
t
t
t
20  
35  
30  
70  
20  
35  
30  
70  
t
WHWL  
t
E = V  
WLWH  
IL  
36/59  
M58LSW32A, M58LSW32B  
Figure 17. Asynchronous Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVEH  
tEHAX  
W
G
tWLEL  
tEHWH  
tGHEL  
tELEH  
tEHEL  
tEHGL  
E
tDVEH  
INPUT  
DQ0-DQn  
tEHDX  
RB  
tVPHEH  
tEHBL  
V
PP  
AI04358  
Figure 18. Asynchronous Latch Controlled Write AC Waveforms, Chip Enable Controlled  
A1-A21  
VALID  
tAVLH  
tAVEH  
tLHAX  
tEHAX  
L
tLLLH  
tLHGL  
tWLLL  
tLHEH  
W
G
tWLEL  
tGHEL  
tEHWH  
tELEH  
tDVEH  
tEHEL  
tEHGL  
E
DQ0-DQn  
INPUT  
tEHDX  
RB  
tVPHEH  
tEHBL  
V
PP  
AI04359  
37/59  
M58LSW32A, M58LSW32B  
Table 20. Asynchronous Write and Latch Controlled Write AC Characteristics, Chip Enable  
Controlled  
M58LSW32  
Symbol  
Parameter  
Test Condition  
Min  
Unit  
120  
10  
50  
50  
0
150  
10  
50  
50  
0
t
Address Valid to Latch Enable High  
Address Valid to Chip Enable High  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLH  
t
W = V  
W = V  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
Min  
Min  
AVEH  
IL  
IL  
t
t
Data Input Valid to Chip Enable High  
Write Enable Low to Chip Enable Low  
Write Enable Low to Latch Enable Low  
Latch Enable High to Address Transition  
Latch Enable High to Output Enable Low  
Latch Enable High to Chip Enable High  
Latch Enable low to Latch Enable High  
Latch Enable Low to Chip Enable High  
Program/Erase Enable High to Chip Enable High  
Chip Enable High to Address Transition  
Chip Enable High to Ready/Busy low  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Output Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Chip Enable Low  
Chip Enable Low to Chip Enable High  
DVEH  
WLEL  
t
0
0
WLLL  
t
3
3
LHAX  
t
35  
0
35  
0
LHGL  
t
LHEH  
t
10  
50  
0
10  
50  
0
LLLH  
t
LLEH  
t
VPHEH  
t
W = V  
W = V  
10  
90  
10  
0
10  
90  
10  
0
EHAX  
IL  
IL  
t
EHBL  
t
EHDX  
t
EHWH  
t
20  
35  
30  
70  
20  
35  
30  
70  
GHEL  
EHGL  
t
t
EHEL  
t
W = V  
ELEH  
IL  
38/59  
M58LSW32A, M58LSW32B  
Figure 19. Synchronous Burst Read AC Waveform  
Note: Valid Clock Edge = Rising (M6 = 1)  
39/59  
M58LSW32A, M58LSW32B  
Figure 20. Synchronous Burst Read - Continuous - Valid Data Ready Output  
K
(2)  
Output  
R
V
V
V
NV  
NV  
V
V
tRLKH  
(3)  
AI03696  
Note: 1. Valid Data Ready = Valid Low during valid clock edge (M8 = 0)  
2. V= Valid output, NV= Not Valid output.  
3. R is an open drain output with an internal pull up resistor of 1MΩ. Depending on the Valid Data Ready pin capacitance load an  
external pull up resistor must be chosen according to the system clock period.  
4. When the system clock frequency is between 33MHz and 50MHz and the Y latency is set to 2, values of B sampled on odd clock  
cycles, starting from the first read are not considered.  
40/59  
M58LSW32A, M58LSW32B  
Table 21. Synchronous Burst Read AC Characteristics  
M58LSW32  
Symbol  
Parameter  
Test Condition  
Unit  
120  
10  
10  
10  
10  
10  
10  
20  
10  
0
150  
10  
10  
10  
10  
10  
10  
20  
10  
0
t
E = V  
E = V  
Address Valid to Active Clock Edge  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVKH  
IL  
IL  
t
Address Valid to Latch Enable High  
AVLH  
t
E = V , G = V , L = V  
IL IL  
Burst Address Advance High to Active Clock Edge  
Burst Address Advance Low to Active Clock Edge  
Chip Enable Low to Active Clock Edge  
Chip Enable Low to Latch Enable High  
Output Enable Low to Valid Clock Edge  
Valid Clock Edge to Address Transition  
Valid Clock Edge to Latch Enable Low  
Valid Clock Edge to Latch Enable High  
Valid Clock Edge to Output Transition  
Latch Enable Low to Valid Clock Edge  
Latch Enable Low to Latch Enable High  
ValidClock Edge to Output Valid  
BHKH  
IH  
IH  
t
E = V , G = V , L = V  
BLKH  
IL  
IL  
IL  
IL  
t
E = V  
E = V  
ELKH  
t
ELLH  
t
E = V , L = V  
IL IH  
GLKH  
t
E = V  
E = V  
E = V  
KHAX  
IL  
IL  
IL  
t
KHLL  
KHLH  
t
0
0
t
E = V , G = V , L = V  
3
3
KHQX  
IL  
IL  
IL  
IL  
IH  
t
E = V  
E = V  
10  
10  
20  
5
10  
10  
20  
5
LLKH  
t
LLLH  
KHQV  
QVKH  
t
t
E = V , G = V , L = V  
IL IL  
IH  
IH  
IH  
IH  
IH  
E = V , G = V , L = V  
Output Valid to Active Clock Edge  
IL  
IL  
t
E = V , G = V , L = V  
IL IL  
Valid Data Ready Low to Valid Clock Edge  
5
5
RLKH  
t
Active Clock Edge to Burst Address Advance Low E = V , G = V , L = V  
0
0
KHBL  
KHBH  
IL  
IL  
t
E = V , G = V , L = V  
IL IL  
Active Clock Edge to Burst Address Advance High  
0
0
Note: For other timings see Table 16, Asynchronous Bus Read Characteristics.  
41/59  
M58LSW32A, M58LSW32B  
Figure 21. Reset, Power-Down and Power-up AC Waveform  
W, E, G  
tPHWL  
tPHEL  
tPHGL  
tRHWL  
tRHEL  
tRHGL  
RB  
tPLRH  
tPHWL  
tPHEL  
tPHGL  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI03453  
Table 22. Reset, Power-Down and Power-up AC Characteristics  
M58LSW32  
Symbol  
Parameter  
Unit  
120  
150  
t
t
t
PHWL  
Reset/Power-Down High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
Min  
Min  
10  
10  
µs  
PHEL  
PHGL  
t
t
RHWL  
Ready/Busy High to Write Enable Low, Chip Enable Low, Output  
Enable Low  
(Program/Erase Controller Active)  
t
10  
10  
µs  
RHEL  
RHGL  
t
Reset/Power-Down Low to Reset/Power-Down High  
Reset/Power-Down Low to Ready High  
Min  
Max  
Min  
100  
30  
1
100  
30  
1
ns  
µs  
µs  
PLPH  
t
PLRH  
t
Supply Voltages High to Reset/Power-Down High  
VDHPH  
42/59  
M58LSW32A, M58LSW32B  
PACKAGE MECHANICAL  
Figure 22. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Outline  
A2  
1
N
e
E
B
N/2  
D1  
D
A
CP  
DIE  
C
TSOP-a  
A1  
α
L
Note: Drawing is not to scale.  
Table 23. TSOP56 - 56 lead Plastic Thin Small Outline, 14 x 20 mm, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.20  
0.15  
1.05  
0.27  
0.21  
20.20  
18.50  
14.10  
Typ  
Max  
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.7953  
0.7283  
0.5551  
A
A1  
A2  
B
0.05  
0.95  
0.17  
0.10  
19.80  
18.30  
13.90  
0.0020  
0.0374  
0.0067  
0.0039  
0.7795  
0.7205  
0.5472  
C
D
D1  
E
e
0.50  
0.0197  
L
0.50  
0°  
0.70  
5°  
0.0197  
0°  
0.0276  
5°  
α
N
56  
56  
CP  
0.10  
0.0039  
43/59  
M58LSW32A, M58LSW32B  
Figure 23. TBGA64 - 8 x 8 ball array 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL ”A1”  
A
e
b
A2  
A1  
BGA-Z23  
Note: Drawing is not to scale.  
Table 24. TBGA64 - 8 x 8 ball array, 1 mm pitch, Package Mechanical Data  
millimeters  
Symbol  
inches  
Min  
Typ  
Min  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.2756  
0.3976  
D1  
ddd  
e
0.100  
0.0039  
1.000  
13.000  
7.000  
1.500  
3.000  
0.500  
0.500  
0.0394  
0.5118  
0.2756  
0.0591  
0.1181  
0.0197  
0.0197  
E
12.900  
13.100  
0.5079  
0.5157  
E1  
FD  
FE  
SD  
SE  
44/59  
M58LSW32A, M58LSW32B  
Figure 24. TBGA80 - 8 x 10 ball array, 1mm pitch, Package Outline  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
BALL ”A1”  
ddd  
e
e
b
A
A2  
A1  
BGA-Z27  
Note: Drawing is not to scale.  
Table 25. TBGA80 - 8 x 10 ball array, 1mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Symbol  
Typ  
Max  
1.200  
0.350  
0.850  
0.500  
10.100  
Typ  
Min  
Max  
A
A1  
A2  
b
0.0472  
0.300  
0.200  
0.0118  
0.0079  
0.0138  
0.0335  
0.400  
9.900  
0.0157  
0.3898  
0.0197  
D
10.000  
7.000  
0.3937  
0.2756  
0.3976  
D1  
ddd  
E
0.100  
13.100  
0.0039  
13.000  
9.000  
1.000  
1.500  
2.000  
0.500  
0.500  
12.900  
0.5118  
0.3543  
0.0394  
0.0591  
0.0787  
0.0197  
0.0197  
0.5079  
0.5157  
E1  
e
FD  
FE  
SD  
SE  
45/59  
M58LSW32A, M58LSW32B  
PART NUMBERING  
Table 26. Ordering Information Scheme  
Example:  
M58LSW32A  
120  
N
1
T
Device Type  
M58  
Architecture  
L = Multi-Bit Cell or Multi-Bit Compatible, Burst Mode,  
Page Mode  
S = Special  
Operating Voltage  
W = V = 2.7V to 3.6V; V  
= 1.8 to V  
DD  
DD  
DDQ  
Device Function  
32A = 32 Mbit (x16), Equal Block, Boot Block  
32B = 32 Mbit (x16/x32), Equal Block, Boot Block  
Speed  
120 = 120 ns  
150 = 150 ns  
Package  
N = TSOP56: 14 x 20 mm (M58LSW32A)  
ZA = TBGA64: 1mm pitch (M58LSW32A)  
ZA = TBGA80: 1mm pitch (M58LSW32B)  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
T = Tape & Reel Packing  
Note: Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
46/59  
M58LSW32A, M58LSW32B  
REVISION HISTORY  
Table 27. Document Revision History  
Date  
Version  
Revision Details  
06-Apr-2001  
05-Jun-2001  
-01  
First Issue.  
150ns speed class added, corrections Figures 7 , 8, 9, 15, 16, 17 and 18.  
-02  
47/59  
M58LSW32A, M58LSW32B  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 28. Block Addresses  
Block  
Number  
Address Range  
(x16 Bus Width)  
Address Range  
(x32 Bus Width)  
Block  
Address Range  
(x16 Bus Width)  
Address Range  
(x32 Bus Width)  
Number  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
07C000h-07FFFFh  
078000h-07BFFFh  
074000h-077FFFh  
070000h-073FFFh  
06C000h-06FFFFh  
068000h-06BFFFh  
064000h-067FFFh  
060000h-063FFFh  
05C000h-05FFFFh  
058000h-05BFFFh  
054000h-057FFFh  
050000h-053FFFh  
04C000h-04FFFFh  
048000h-04BFFFh  
044000h-047FFFh  
040000h-043FFFh  
03C000h-03FFFFh  
038000h-03BFFFh  
034000h-037FFFh  
030000h-033FFFh  
02C000h-02FFFFh  
028000h-02BFFFh  
024000h-027FFFh  
020000h-023FFFh  
01C000h-01FFFFh  
018000h-01BFFFh  
014000h-017FFFh  
010000h-013FFFh  
00C000h-00FFFFh  
008000h-00BFFFh  
004000h-007FFFh  
000000h-003FFFh  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0FC000h-0FFFFFh  
0F8000h-0FBFFFh  
0F4000h-0F7FFFh  
0F0000h-0F3FFFh  
0EC000h-0EFFFFh  
0E8000h-0EBFFFh  
0E4000h-0E7FFFh  
0E0000h-0E3FFFh  
0DC000h-0DFFFFh  
0D8000h-0DBFFFh  
0D4000h-0D7FFFh  
0D0000h-0D3FFFh  
0CC000h-0CFFFFh  
0C8000h-0CBFFFh  
0C4000h-0C7FFFh  
0C0000h-0C3FFFh  
0BC000h-0BFFFFh  
0B8000h-0BBFFFh  
0B4000h-0B7FFFh  
0B0000h-0B3FFFh  
0AC000h-0AFFFFh  
0A8000h-0ABFFFh  
0A4000h-0A7FFFh  
0A0000h-0A3FFFh  
09C000h-09FFFFh  
098000h-09BFFFh  
094000h-097FFFh  
090000h-093FFFh  
08C000h-08FFFFh  
088000h-08BFFFh  
084000h-087FFFh  
080000h-083FFFh  
8
7
6
5
4
3
2
1
48/59  
M58LSW32A, M58LSW32B  
APPENDIX B. COMMON FLASH INTERFACE - CFI  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the CFI Query Command (RCFI) is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 29, 30,  
31, 32, 33 and 34 show the addresses used to re-  
trieve the data.  
Table 29. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Manufacturer Code  
01h  
Device Code  
10h  
CFI Query Identification String  
Command set ID and algorithm data offset  
Device timing and voltage information  
Flash memory layout  
1Bh  
27h  
System Interface Information  
Device Geometry Definition  
Additional information specific to the Primary  
Algorithm (optional)  
(1)  
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
P(h)  
Additional information specific to the Alternate  
Algorithm (optional)  
(2)  
A(h)  
(BA+2)h Block Status Register  
Block-related Information  
Note: 1. Offset 15h defines P which points to the Primary Algorithm Extended Query Address Table.  
2. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
Table 30. CFI - Query Address and Data Output  
(4)  
Address  
Data  
Instruction  
A21-A1 (M58LSW32A)  
A21-A2 (M58LSW32B)  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
51h  
52h  
59h  
”Q”  
”R”  
”Y”  
51h; ”Q”  
52h; ”R”  
59h; ”Y”  
Query ASCII String  
Primary Vendor:  
20h  
00h  
31h  
00h  
00h  
00h  
31h  
Command Set and Control Interface ID Code  
Primary algorithm extended Query Address Table: P(h)  
Alternate Vendor:  
Command Set and Control Interface ID Code  
Alternate Algorithm Extended Query address Table  
(5)  
00h  
1Ah  
Note: 1. The x8 or Byte Address mode is not available.  
2. With the x16 Bus Width, the value of the address location of the CFI Query is independent of A1 pad (M58LSW32B).  
3. Query Data are always presented on DQ7-DQ0. DQ31-DQ8 are set to ’0’.  
4. For M58LSW32B, A1 = Don’t Care.  
5. Offset 19h defines A which points to the Alternate Algorithm Extended Query Address Table.  
49/59  
M58LSW32A, M58LSW32B  
Table 31. CFI - Device Voltage and Timing Specification  
(4)  
Address  
Data  
Description  
A21-A1 (M58LSW32A)  
A21-A2 (M58LSW32B)  
(1)  
V
V
V
V
Min, 2.7V  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
DD  
DD  
PP  
PP  
27h  
36h  
00h  
00h  
00h  
(1)  
(2)  
(2)  
(3)  
max, 3.6V  
min – Not Available  
max – Not Available  
n
2 ms typical time-out for Word, DWord prog – Not Available  
n
07h  
0Ah  
2 ms, typical time-out for max buffer write  
n
2 ms, typical time-out for Erase Block  
(3)  
n
00h  
00h  
2 ms, typical time-out for chip erase – Not Available  
(3)  
n
2 x typical for Word Dword time-out max – Not Available  
n
04h  
04h  
2 x typical for buffer write time-out max  
n
2 x typical for individual block erase time-out maximum  
(3)  
n
00h  
2 x typical for chip erase max time-out – Not Available  
Note: 1. Bits are coded in Binary Code Decimal, bit7 to bit4 are scaled in Volts and bit3 to bit0 in mV.  
2. Bit7 to bit4 are coded in Hexadecimal and scaled in Volts while bit3 to bit0 are in Binary Code Decimal and scaled in 100mV.  
3. Not supported.  
4. For M58LSW32B, A1 = Don’t Care.  
Table 32. Device Geometry Definition  
(1)  
Address  
Data  
Description  
A21-A1 (M58LSW32A)  
A21-A2 (M58LSW32B)  
n
27h  
17h  
2 number of bytes memory Size  
Device Interface Sync./Async.  
Organization Sync./Async.  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
01h.  
00h  
05h  
00h  
01h  
3Fh  
00h  
00h  
02h  
n
Maximum number of bytes in Write Buffer, 2  
Bit7-0 = number of Erase Block Regions in device  
Number (n-1) of Erase Blocks of identical size; n=64  
Erase Block Region Information  
Erase block (64K bytes)  
Note: 1. For M58LSW32B, A1 = Don’t Care.  
50/59  
M58LSW32A, M58LSW32B  
Table 33. Block Status Register  
Address  
A21-A1 (M58LSW32A)  
A21-A2 (M58LSW32B)  
Data  
Selected Block Information  
0
1
Block Unlocked  
Block Locked  
bit0  
(2)  
(1)  
0
1
0
Last erase operation ended successfully  
(BA+2)h  
bit1  
(2)  
Last erase operation not ended successfully  
Reserved for future features  
bit7-2  
Note: 1. BA specifies the block address location, A21-A17.  
2. Not Supported.  
Table 34. Extended Query information  
M58LSW32B – x32 Bus Width  
M58LSW32A – x16 Bus Width  
M58LSW32B –  
x16 Bus Width  
Description  
Address Address  
Data (Hex)  
Address  
A21-A1  
Data  
offset  
A21-A2  
x32 Bus Width  
(P)h  
31h  
50h  
52h  
49h  
”P”  
”R”  
”Y”  
62h, 63h  
64h, 65h  
66h, 67h  
68h, 69h  
6Ah, 6Bh  
50h  
52h  
49h  
31h  
31h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
32h  
Query ASCII string - Extended Table  
33h  
34h  
31h  
31h  
Major version number  
Minor version number  
35h  
Optional Feature: (1=yes, 0=no)  
bit0, Chip Erase Supported (0=no)  
bit1, Suspend Erase Supported (1=yes)  
bit2, Suspend Program Supported (1=yes)  
bit3, Lock/Unlock Supported (1=yes)  
bit4, Queue Erase Supported (0=no)  
Bit 31-5 reserved for future use  
(P+5)h  
36h  
0Eh  
6Ch, 6Dh  
0Eh  
(P+6)h  
(P+7)h  
(P+8)h  
37h  
38h  
39h  
00h  
00h  
00h  
6Eh, 6Fh  
70h, 71h  
72h, 73h  
00h  
00h  
00h  
Optional Features  
Function allowed after Suspend:  
(P+9)h  
3Ah  
01h  
74h, 75h  
00h  
Program allowed after Erase Suspend (1=yes)  
Bit 7-1 reserved for future use  
(2)  
(2)  
(P+A)h  
3Bh  
76h, 77h  
Block Status Register Mask  
00h  
00h  
33h  
V
V
OPTIMUM Program/Erase voltage conditions  
OPTIMUM Program/Erase voltage conditions  
(P+C)h  
(P+D)h  
(P+E)h  
(P+F)h  
3Ch  
3Dh  
3Eh  
3Fh  
33h  
50h  
00h  
00h  
78h, 79h  
7Ah, 7Bh  
7Ch, 7Dh  
7Dh, 7Fh  
DD  
PP  
50h  
00h  
00h  
Reserved for future use  
Reserved for future use  
Note: 1. Bit7 to bit4 are coded in Hexadecimal and scaled in Volt while bit3 to bit0 are in Binary Code Decimal and scaled in mV.  
2. Not supported.  
51/59  
M58LSW32A, M58LSW32B  
APPENDIX C. FLOW CHARTS  
Figure 25. Write to Buffer and Program Flowchart and Pseudo Code  
Start  
Write to Buffer E8h  
Command, Block Address  
Read Status  
Register  
NO  
NO  
YES  
Write to Buffer  
Timeout  
b7 = 1  
YES  
Write Word or Double  
Word, Block Address  
Try Again Later  
Write Buffer Data,  
Start Address  
X = 0  
YES  
X = N  
NO  
Write Next Buffer Data,  
Device Address  
X = X + 1  
Program Buffer to Flash  
Confirm D0h  
Read Status  
Register  
NO  
b7 = 1  
YES  
Full StatusCheck  
(Optional)  
End  
AI03635  
52/59  
M58LSW32A, M58LSW32B  
Figure 26. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b4 = 0, Program completed  
b2 = 1  
YES  
Program Complete  
Read Memory Array instruction:  
– write FFh  
Write FFh  
– one or more data reads  
from other blocks  
Read data from  
another block  
Program Erase Resume Command:  
– write D0h  
to resume erasure  
– if the program operation completed  
then this is not necessary. The device  
returns to Read Array as normal  
(as if the Program/Erase Suspend  
command was not issued).  
Write D0h  
Write FFh  
Read Data  
Program Continues  
AI00612  
53/59  
M58LSW32A, M58LSW32B  
Figure 27. Erase Flowchart and Pseudo Code  
Start  
Erase command:  
– write 20h  
Write 20h  
– write D0h to Block Address  
(A12-A17)  
(memory enters read Status  
Register after the Erase command)  
Write D0h to  
Block Address  
NO  
do:  
Read Status  
– read status register  
– if Program/Erase Suspend command  
given execute suspend erase loop  
Register  
Suspend  
YES  
NO  
Suspend  
Loop  
b7 = 1  
while b7 = 1  
YES  
NO  
NO  
NO  
NO  
V
Invalid  
If b3 = 1, V  
invalid error:  
– error handler  
PP  
Error (1)  
PP  
b3 = 0  
YES  
Command  
Sequence Error  
If b4, b5 = 1, Command Sequence error:  
– error handler  
b4, b5 = 0  
YES  
Erase  
Error (1)  
If b5 = 1, Erase error:  
– error handler  
b5 = 0  
YES  
Erase to Protected  
Block Error  
If b1 = 1, Erase to Protected Block Error:  
– error handler  
b1 = 0  
YES  
End  
AI00613B  
Note: 1. If an error is found, the Status Register must be cleared (Clear Status Register Command) before further Program or Erase oper-  
ations.  
54/59  
M58LSW32A, M58LSW32B  
Figure 28. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
Write B0h  
Program/Erase Suspend Command:  
– write B0h  
– write 70h  
Write 70h  
do:  
Read Status  
Register  
– read status register  
NO  
NO  
b7 = 1  
YES  
while b7 = 1  
If b6 = 0, Erase completed  
b6 = 1  
YES  
Erase Complete  
Read Memory Array command:  
– write FFh  
Write FFh  
– one o more data reads  
from other blocks  
Read data from  
another block  
or Program  
Program/Erase Resume command:  
– write D0h to resume the Erase  
operation  
– if the Program operation completed  
then this is not necessary. The device  
returns to Read mode as normal  
(as if the Program/Erase suspend  
was not issued).  
Write D0h  
Write FFh  
Read Data  
Erase Continues  
AI00615  
55/59  
M58LSW32A, M58LSW32B  
Figure 29. Command Interface and Program Erase Controller Flowchart (a)  
WAIT FOR  
COMMAND  
WRITE  
NO  
90h  
YES  
READ  
SIGNATURE  
NO  
98h  
YES  
CFI  
QUERY  
NO  
70h  
YES  
READ  
ARRAY  
READ  
STATUS  
NO  
50h  
YES  
CLEAR  
STATUS  
NO  
E8h  
YES  
PROGRAM  
BUFFER  
LOAD  
NO  
(1)  
20h  
YES  
ERASE  
NO  
FFh  
YES  
SET-UP  
NO  
D0h  
YES  
C
NO  
PROGRAM  
COMMAND  
ERROR  
D0h  
YES  
ERASE  
COMMAND  
ERROR  
A
B
AI03618  
Note 1. The Erase command (20h) can only be issued if the flash is not already in Erase Suspend.  
56/59  
M58LSW32A, M58LSW32B  
Figure 30. Command Interface and Program Erase Controller Flowchart (b)  
A
B
ERASE  
(READ STATUS)  
Program/Erase Controller  
Status bit in the Status  
Register  
YES  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
READ  
STATUS  
NO  
FFh  
ERASE  
SUSPEND  
NO  
YES  
ERASE  
SUSPENDED  
READY  
?
NO  
READ  
STATUS  
YES  
WAIT FOR  
COMMAND  
WRITE  
YES  
YES  
YES  
YES  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
PROGRAM  
BUFFER  
LOAD  
E8h  
NO  
NO  
PROGRAM  
COMMAND  
ERROR  
YES  
READ  
STATUS  
D0h  
D0h  
NO  
(ERASE RESUME)  
YES  
READ  
ARRAY  
c
AI03619  
57/59  
M58LSW32A, M58LSW32B  
Figure 31. Command Interface and Program Erase Controller Flowchart (c).  
B
C
PROGRAM  
(READ STATUS)  
YES  
Program/Erase Controller  
Status bit in the Status  
Register  
READ  
STATUS  
READY  
?
NO  
READ  
ARRAY  
NO  
B0h  
YES  
YES  
NO  
READ  
STATUS  
FFh  
PROGRAM  
SUSPEND  
NO  
YES  
PROGRAM  
SUSPENDED  
READY  
?
NO  
YES  
WAIT FOR  
COMMAND  
WRITE  
READ  
STATUS  
YES  
YES  
YES  
NO  
READ  
STATUS  
70h  
NO  
READ  
SIGNATURE  
90h  
NO  
CFI  
QUERY  
98h  
NO  
YES  
READ  
ARRAY  
READ  
STATUS  
D0h  
(PROGRAM RESUME)  
AI00618  
58/59  
M58LSW32A, M58LSW32B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
59/59  

相关型号:

M58LSW32B150ZA1T

1MX32 FLASH 3V PROM, 150ns, PBGA80, 1 MM PITCH, TBGA-80
STMICROELECTR

M58LSW32B150ZA6

1MX32 FLASH 3V PROM, 150ns, PBGA80, 1 MM PITCH, TBGA-80
STMICROELECTR

M58LSW32B150ZA6T

1MX32 FLASH 3V PROM, 150ns, PBGA80, 1 MM PITCH, TBGA-80
STMICROELECTR

M58LT128GS

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GSB

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GSB1ZA5

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GSB1ZA5E

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GSB1ZA5F

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GST

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GST1ZA5

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GST1ZA5E

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR

M58LT128GST1ZA5F

128Mbit (8Mb x16, Multiple Bank, Multi-Level, Burst) 1.8V Supply Secure Flash Memories
STMICROELECTR