M58WR064FB60ZB6E [STMICROELECTRONICS]

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory; 64兆位( 4Mb的X16 ,多个银行,连拍) 1.8V供应快闪记忆体
M58WR064FB60ZB6E
型号: M58WR064FB60ZB6E
厂家: ST    ST
描述:

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
64兆位( 4Mb的X16 ,多个银行,连拍) 1.8V供应快闪记忆体

闪存 存储 内存集成电路
文件: 总87页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M58WR064FT  
M58WR064FB  
64 Mbit (4Mb x16, Multiple Bank, Burst)  
1.8V Supply Flash Memory  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Package  
VDD = 1.7V to 2V for Program, Erase and  
Read  
VDDQ = 1.7V to 2.24V for I/O Buffers  
VPP = 12V for fast Program (optional)  
SYNCHRONOUS / ASYNCHRONOUS READ  
Synchronous Burst Read mode: 66MHz  
Asynchronous/ Synchronous Page Read  
mode  
FBGA  
Random Access: 60ns, 70ns, 80ns  
SYNCHRONOUS BURST READ SUSPEND  
PROGRAMMING TIME  
8µs by Word typical for Fast Factory  
Program  
Double/Quadruple Word Program option  
Enhanced Factory Program options  
VFBGA56 (ZB)  
7.7 x 9 mm  
MEMORY BLOCKS  
Multiple Bank Memory Array: 4 Mbit  
Banks  
ELECTRONIC SIGNATURE  
Parameter Blocks (Top or Bottom  
location)  
Manufacturer Code: 20h  
Device Codes:  
M58WR064FT (Top): 8810h  
M58WR064FB (Bottom): 8811h  
DUAL OPERATIONS  
Program Erase in one Bank while Read in  
others  
PACKAGE  
No delay between Read and Write  
operations  
Compliant with Lead-Free Soldering  
Processes  
BLOCK LOCKING  
Lead-Free Versions  
All blocks locked at Power up  
Any combination of blocks can be locked  
WP for Block Lock-Down  
SECURITY  
128 bit user programmable OTP cells  
64 bit unique device number  
COMMON FLASH INTERFACE (CFI)  
100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
October 2004  
1/87  
 
 
M58WR064FT, M58WR064FB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3. VFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2. Bank Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Latch Enable (L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock (K).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Wait (WAIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
V
V
DD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
DDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
V
VSSQ Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Address Latch.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COMMAND INTERFACE - STANDARD COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/87  
M58WR064FT, M58WR064FB  
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Protection Register Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Set Configuration Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Standard Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Electronic Signature Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Bank Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Enhanced Factory Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Program Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Quadruple Enhanced Factory Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Setup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Load Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Program and Verify Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Exit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 7. Factory Program Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program/Erase Controller Status Bit (SR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Erase Suspend Status Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Erase Status Bit (SR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program Status Bit (SR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
V
PP Status Bit (SR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program Suspend Status Bit (SR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Protection Status Bit (SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Bank Write/Multiple Word Program Status Bit (SR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CONFIGURATION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Read Select Bit (CR15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
X-Latency Bits (CR13-CR11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wait Polarity Bit (CR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/87  
M58WR064FT, M58WR064FB  
Data Output Configuration Bit (CR9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wait Configuration Bit (CR8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Burst Type Bit (CR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Valid Clock Edge Bit (CR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wrap Burst Bit (CR3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Burst length Bits (CR2-CR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 9. Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 10. Burst Type Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 6. X-Latency and Data Output Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 7. Wait Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
READ MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Asynchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Synchronous Burst Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Synchronous Burst Read Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Single Synchronous Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 11. Dual Operations Allowed In Other Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 12. Dual Operations Allowed In Same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Unlocked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 13. Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 14. Program/Erase Times and Endurance Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 15. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 16. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 9. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 17. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 18. DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 19. DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 10.Asynchronous Random Access Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 11.Asynchronous Page Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 20. Asynchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4/87  
M58WR064FT, M58WR064FB  
Figure 12.Synchronous Burst Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 13.Single Synchronous Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 14.Synchronous Burst Read Suspend AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 15.Clock input AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 21. Synchronous Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 16.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 22. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 17.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 23. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 18.Reset and Power-up AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 24. Reset and Power-up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 19.VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Bottom View Package Outline . . . 53  
Table 25. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Package Mechanical Data . . . . . . 53  
Figure 20.VFBGA56 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 54  
Figure 21.VFBGA56 Daisy Chain - PCB Connection Proposal (Top view through package) . . . . . 55  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 26. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 27. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 28. Top Boot Block Addresses, M58WR064FT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 29. Bottom Boot Block Addresses, M58WR064FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
APPENDIX B.COMMON FLASH INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 30. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 31. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 32. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 33. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 34. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Table 35. Protection Register Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 36. Burst Read Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 37. Bank and Erase Block Region Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 38. Bank and Erase Block Region 1 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 39. Bank and Erase Block Region 2 Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 22.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 23.Double Word Program Flowchart and Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 24.Quadruple Word Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 25.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 26.Block Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 27.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 75  
5/87  
M58WR064FT, M58WR064FB  
Figure 28.Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 29.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 30.Enhanced Factory Program Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Enhanced Factory Program Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 31.Quadruple Enhanced Factory Program Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Quadruple Enhanced Factory Program Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
APPENDIX D.COMMAND INTERFACE STATE TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 40. Command Interface States - Modify Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 41. Command Interface States - Modify Table, Next Output. . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 42. Command Interface States - Lock Table, Next State . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 43. Command Interface States - Lock Table, Next Output . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 44. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6/87  
M58WR064FT, M58WR064FB  
SUMMARY DESCRIPTION  
The M58WR064FT/B is a 64 Mbit (4Mbit x16) non-  
volatile Flash memory that may be erased electri-  
cally at block level and programmed in-system on  
a Word-by-Word basis using a 1.7V to 2V VDD  
supply for the circuitry and a 1.7V to 2.24V VDDQ  
supply for the Input/Output pins. An optional 12V  
VPP power supply is provided to speed up custom-  
er programming. The VPP pin can also be used as  
a control pin to provide absolute protection against  
program or erase.  
The device features an asymmetrical block archi-  
tecture. M58WR064FT/B has an array of 135  
blocks, and is divided into 4 Mbit banks. There are  
15 banks each containing 8 main blocks of 32  
KWords, and one parameter bank containing 8 pa-  
rameter blocks of 4 KWords and 7 main blocks of  
32 KWords. The Multiple Bank Architecture allows  
Dual Operations, while programming or erasing in  
one bank, Read operations are possible in other  
banks. Only one bank at a time is allowed to be in  
Program or Erase mode. It is possible to perform  
burst reads that cross bank boundaries. The bank  
architecture is summarized in Table 2., and the  
memory maps are shown in Figure 4. The Param-  
eter Blocks are located at the top of the memory  
address space for the M58WR064FT, and at the  
bottom for the M58WR064FB.  
The device supports Synchronous Burst Read and  
Asynchronous Read from all blocks of the memory  
array; at power-up the device is configured for  
Asynchronous Read. In Synchronous Burst mode,  
data is output on each clock cycle at frequencies  
of up to 66MHz. The Synchronous Burst Read op-  
eration can be suspended and resumed.  
The device features an Automatic Standby mode.  
When the bus is inactive during Asynchronous  
Read operations, the device automatically switch-  
es to the Automatic Standby mode. In this condi-  
tion the power consumption is reduced to the  
standby value IDD4 and the outputs are still driven.  
The M58WR064FT/B features an instant, individu-  
al block locking scheme that allows any block to be  
locked or unlocked with no latency, enabling in-  
stant code and data protection. All blocks have  
three levels of protection. They can be locked and  
locked-down individually preventing any acciden-  
tal programming or erasure. There is an additional  
hardware protection against program and erase.  
When VPP VPPLK all blocks are protected against  
program or erase. All blocks are locked at Power-  
Up.  
The device includes a Protection Register to in-  
crease the protection of a system’s design. The  
Protection Register is divided into two segments:  
a 64 bit segment containing a unique device num-  
ber written by ST, and a 128 bit segment One-  
Time-Programmable (OTP) by the user. The user  
programmable segment can be permanently pro-  
tected. Figure 5. shows the Protection Register  
Memory Map.  
Each block can be erased separately. Erase can  
be suspended, in order to perform program in any  
other block, and then resumed. Program can be  
suspended to read data in any other block and  
then resumed. Each block can be programmed  
and erased over 100,000 cycles using the supply  
voltage VDD. There are two Enhanced Factory  
programming commands available to speed up  
programming.  
The memory is offered in a VFBGA56, 7.7 x 9mm,  
8x7 active ball array, 0.75 mm pitch package.  
In addition to the standard version, the package is  
also available in Lead-free version, in compliance  
with JEDEC Std J-STD-020B, the ST ECOPACK  
7191395 Specification, and the RoHS (Restriction  
of Hazardous Substances) directive. All packages  
are compliant with Lead-free soldering processes.  
Program and Erase commands are written to the  
Command Interface of the memory. An internal  
Program/Erase Controller takes care of the tim-  
ings necessary for program and erase operations.  
The end of a program or erase operation can be  
detected and any error conditions identified in the  
Status Register. The command set required to  
control the memory is consistent with JEDEC stan-  
dards.  
The memory is supplied with all the bits erased  
(set to ’1’).  
7/87  
M58WR064FT, M58WR064FB  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A21  
Address Inputs  
Data Input/Outputs, Command  
Inputs  
DQ0-DQ15  
V
V
V
DD DDQ PP  
E
Chip Enable  
Output Enable  
Write Enable  
Reset  
22  
16  
G
A0-A21  
DQ0-DQ15  
WAIT  
W
W
E
RP  
WP  
K
M58WR064FT  
M58WR064FB  
Write Protect  
Clock  
G
RP  
WP  
L
L
Latch Enable  
Wait  
WAIT  
V
Supply Voltage  
DD  
K
Supply Voltage for Input/Output  
Buffers  
V
V
DDQ  
PP  
V
V
SSQ  
SS  
Optional Supply Voltage for  
Fast Program & Erase  
AI07747c  
V
V
Ground  
SS  
Ground Input/Output Supply  
Not Connected Internally  
SSQ  
NC  
8/87  
 
 
M58WR064FT, M58WR064FB  
Figure 3. VFBGA Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A11  
A12  
A13  
A15  
A8  
A9  
V
V
V
A18  
A17  
A19  
WP  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
G
SS  
DD  
K
PP  
A20  
A21  
RP  
W
A10  
L
A7  
A14  
WAIT  
DQ6  
DQ13  
DQ5  
A16  
DQ4  
DQ12  
DQ2  
DQ10  
DQ3  
NC  
E
V
DQ15  
DQ14  
DQ1  
DQ9  
DDQ  
V
DQ11  
DQ0  
DQ8  
SS  
G
DQ7  
V
V
V
V
SSQ  
SSQ  
DD  
DDQ  
AI06189  
Table 2. Bank Architecture  
Number  
Bank Size  
Parameter Blocks  
Main Blocks  
Parameter Bank  
4 Mbits  
4 Mbits  
4 Mbits  
4 Mbits  
8 blocks of 4 KWords  
7 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
8 blocks of 32 KWords  
Bank 1  
Bank 2  
Bank 3  
-
-
-
Bank 14  
Bank 15  
4 Mbits  
4 Mbits  
-
-
8 blocks of 32 KWords  
8 blocks of 32 KWords  
9/87  
M58WR064FT, M58WR064FB  
Figure 4. Memory Map  
M58WR064FT - Top Boot Block  
M58WR064FB - Bottom Boot Block  
Address lines A21-A0  
Address lines A21-A0  
000000h  
007FFFh  
000000h  
000FFFh  
32 KWord  
4 KWord  
8 Main  
Blocks  
8 Parameter  
Blocks  
Bank 15  
038000h  
03FFFFh  
007000h  
007FFFh  
008000h  
00FFFFh  
32 KWord  
4KWord  
Parameter  
Bank  
32 KWord  
7 Main  
Blocks  
038000h  
03FFFFh  
040000h  
047FFFh  
32 KWord  
32 KWord  
300000h  
307FFFh  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
Bank 3  
Bank 2  
Bank 1  
Bank 1  
Bank 2  
Bank 3  
338000h  
33FFFFh  
340000h  
347FFFh  
078000h  
07FFFFh  
080000h  
087FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
378000h  
37FFFFh  
380000h  
387FFFh  
0B8000h  
0BFFFFh  
0C0000h  
0C7FFFh  
32 KWord  
32 KWord  
32 KWord  
32 KWord  
8 Main  
Blocks  
8 Main  
Blocks  
3B8000h  
3BFFFFh  
3C0000h  
3C7FFFh  
0F8000h  
0FFFFFh  
32 KWord  
32 KWord  
32 KWord  
7 Main  
Blocks  
3F0000h  
3F7FFFh  
3F8000h  
3F8FFFh  
32 KWord  
4 KWord  
Parameter  
Bank  
3C0000h  
3C7FFFh  
32 KWord  
32 KWord  
8 Parameter  
Blocks  
8 Main  
Blocks  
Bank 15  
3FF000h  
3FFFFFh  
3F8000h  
3FFFFFh  
4 KWord  
AI07748c  
10/87  
M58WR064FT, M58WR064FB  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic Diagram and Table 1., Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Latch Enable (L). Latch Enable latches the ad-  
dress bits on its rising edge. The address  
latch is transparent when Latch Enable is at  
VIL and it is inhibited when Latch Enable is at  
VIH. Latch Enable can be kept Low (also at  
board level) when the Latch Enable function  
is not required or supported.  
Clock (K). The clock input synchronizes the  
memory to the microcontroller during synchronous  
read operations; the address is latched on a Clock  
edge (rising or falling, according to the configura-  
tion settings) when Latch Enable is at VIL. Clock is  
don't care during asynchronous read and in write  
operations.  
Address Inputs (A0-A21). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the Program/Erase Con-  
troller.  
Data Input/Output (DQ0-DQ15). The Data I/O  
output the data stored at the selected address dur-  
ing a Bus Read operation or input a command or  
the data to be programmed during a Bus Write op-  
eration.  
Wait (WAIT). Wait is an output signal used during  
synchronous read to indicate whether the data on  
the output bus are valid. This output is high imped-  
ance when Chip Enable is at VIH or Reset is at VIL.  
It can be configured to be active during the wait cy-  
cle or one clock cycle in advance. The WAIT signal  
is not gated by Output Enable.  
Chip Enable (E). The Chip Enable input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. When Chip Enable is  
at VILand Reset is at VIH the device is in active  
mode. When Chip Enable is at VIH the memory is  
deselected, the outputs are high impedance and  
the power consumption is reduced to the standby  
level.  
VDD Supply Voltage . VDD provides the power  
supply to the internal core of the memory device.  
It is the main power supply for all operations  
(Read, Program and Erase).  
Output Enable (G). The Output Enable input  
controls data outputs during the Bus Read opera-  
tion of the memory.  
V
DDQ Supply Voltage. VDDQ provides the power  
Write Enable (W). The Write Enable input con-  
trols the Bus Write operation of the memory’s  
Command Interface. The data and address inputs  
are latched on the rising edge of Chip Enable or  
Write Enable whichever occurs first.  
supply to the I/O pins and enables all Outputs to  
be powered independently of VDD. VDDQ can be  
tied to VDD or can use a separate supply.  
VPP Program Supply Voltage. VPP is a power  
supply pin. The Supply Voltage VDD and the Pro-  
gram Supply Voltage VPP can be applied in any or-  
der. The pin can also be used as a control input.  
Write Protect (WP). Write Protect is an input  
that gives an additional hardware protection for  
each block. When Write Protect is at VIL, the Lock-  
Down is enabled and the protection status of the  
Locked-Down blocks cannot be changed. When  
Write Protect is at VIH, the Lock-Down is disabled  
and the Locked-Down blocks can be locked or un-  
locked. (refer to Table 13., Lock Status).  
Reset (RP). The Reset input provides a hard-  
ware reset of the memory. When Reset is at VIL,  
the memory is in reset mode: the outputs are high  
impedance and the current consumption is re-  
duced to the Reset Supply Current IDD2. Refer to  
Table 18., DC Characteristics - Currents, for the  
value of IDD2. After Reset all blocks are in the  
Locked state and the Configuration Register is re-  
set. When Reset is at VIH, the device is in normal  
operation. Exiting reset mode the device enters  
asynchronous read mode, but a negative transi-  
tion of Chip Enable or Latch Enable is required to  
ensure valid data outputs.  
In the device the two functions are selected by the  
voltage range applied to the pin. If VPP is kept in a  
low voltage range (0V to VDDQ) VPP is seen as a  
control input. In this case a voltage lower than VP-  
PLK gives an absolute protection against program  
or erase, while VPP > VPP1 enables these func-  
tions (see Tables 18 and 19, DC Characteristics  
for the relevant values). VPP is only sampled at the  
beginning of a program or erase; a change in its  
value after the operation has started does not  
have any effect and program or erase operations  
continue.  
If VPP is in the range of VPPH it acts as a power  
supply pin. In this condition VPP must be stable un-  
til the Program/Erase algorithm is completed.  
VSS Ground. VSS ground is the reference for the  
core supply. It must be connected to the system  
ground.  
The Reset pin can be interfaced with 3V logic with-  
out any additional circuitry. It can be tied to VRPH  
(refer to Table 19., DC Characteristics - Voltages).  
V
SSQ Ground. VSSQ ground is the reference for  
the input/output circuitry driven by VDDQ. VSSQ  
must be connected to VSS  
11/87  
M58WR064FT, M58WR064FB  
Note: Each device in a system should have  
age). See Figure 9., AC Measurement Load Cir-  
cuit. The PCB track widths should be sufficient  
to carry the required VPP program and erase  
currents.  
V
DD, VDDQ and VPP decoupled with a 0.1µF ce-  
ramic capacitor close to the pin (high frequen-  
cy, inherently low inductance capacitors  
should be as close as possible to the pack-  
BUS OPERATIONS  
There are six standard bus operations that control  
the device. These are Bus Read, Bus Write, Ad-  
dress Latch, Output Disable, Standby and Reset.  
See Table 3., Bus Operations, for a summary.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect Bus Write operations.  
the Latch Enable should be tied to VIH during the  
bus write operation.  
See Figures 16 and 17, Write AC Waveforms, and  
Tables 22 and 23, Write AC Characteristics, for  
details of the timing requirements.  
Address Latch. Address latch operations input  
valid addresses. Both Chip enable and Latch En-  
able must be at VIL during address latch opera-  
tions. The addresses are latched on the rising  
edge of Latch Enable.  
Bus Read. Bus Read operations are used to out-  
put the contents of the Memory Array, the Elec-  
tronic Signature, the Status Register and the  
Common Flash Interface. Both Chip Enable and  
Output Enable must be at VIL in order to perform a  
read operation. The Chip Enable input should be  
used to enable the device. Output Enable should  
be used to gate data onto the output. The data  
read depends on the previous command written to  
the memory (see Command Interface section).  
See Figures 10, 11, 12 and 13 Read AC Wave-  
forms, and Tables 20 and 21 Read AC Character-  
istics, for details of when the output becomes  
valid.  
Bus Write. Bus Write operations write Com-  
mands to the memory or latch Input Data to be  
programmed. A bus write operation is initiated  
when Chip Enable and Write Enable are at VIL with  
Output Enable at VIH. Commands, Input Data and  
Addresses are latched on the rising edge of Write  
Enable or Chip Enable, whichever occurs first. The  
addresses can also be latched prior to the write  
operation by toggling Latch Enable. In this case  
Output Disable. The outputs are high imped-  
ance when the Output Enable is at VIH.  
Standby. Standby disables most of the internal  
circuitry allowing a substantial reduction of the cur-  
rent consumption. The memory is in stand-by  
when Chip Enable and Reset are at VIH. The pow-  
er consumption is reduced to the stand-by level  
and the outputs are set to high impedance, inde-  
pendently from the Output Enable or Write Enable  
inputs. If Chip Enable switches to VIH during a pro-  
gram or erase operation, the device enters Stand-  
by mode when finished.  
Reset. During Reset mode the memory is dese-  
lected and the outputs are high impedance. The  
memory is in Reset mode when Reset is at VIL.  
The power consumption is reduced to the Standby  
level, independently from the Chip Enable, Output  
Enable or Write Enable inputs. If Reset is pulled to  
VSS during a Program or Erase, this operation is  
aborted and the memory content is no longer valid.  
Table 3. Bus Operations  
(4)  
Operation  
Bus Read  
E
G
W
L
RP  
DQ15-DQ0  
Data Output  
Data Input  
WAIT  
(2)  
V
V
V
V
IL  
IL  
IL  
IH  
V
V
IH  
IL  
(2)  
V
V
V
V
V
Bus Write  
IH  
IL  
IH  
IL  
(3)  
V
V
V
V
V
Address Latch  
Output Disable  
Standby  
X
IL  
IL  
IH  
IH  
IL  
IH  
Data Output or Hi-Z  
V
V
V
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
IH  
IH  
V
X
X
Hi-Z  
Hi-Z  
IH  
IH  
V
IL  
Reset  
X
X
X
Note: 1. X = Don't care.  
2. L can be tied to V if the valid address has been previously latched.  
IH  
3. Depends on G.  
4. WAIT signal polarity is configured using the Set Configuration Register command.  
12/87  
 
M58WR064FT, M58WR064FB  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. An internal Program/Erase Controller han-  
dles all timings and verifies the correct execution  
of the Program and Erase commands. The Pro-  
gram/Erase Controller provides a Status Register  
whose output may be read at any time to monitor  
the progress or the result of the operation.  
Table 4. Command Codes  
Hex Code  
01h  
Command  
Block Lock Confirm  
03h  
Set Configuration Register Confirm  
Alternative Program Setup  
Block Erase Setup  
10h  
20h  
The Command Interface is reset to read mode  
when power is first applied, when exiting from Re-  
set or whenever VDD is lower than VLKO. Com-  
mand sequences must be followed exactly. Any  
invalid combination of commands will be ignored.  
Refer to Table 4., Command Codes, and APPEN-  
DIX D., Tables 40, 41, 42 and 43, Command Inter-  
face States - Modify and Lock Tables, for a  
summary of the Command Interface.  
2Fh  
Block Lock-Down Confirm  
Enhanced Factory Program Setup  
Double Word Program Setup  
Program Setup  
30h  
35h  
40h  
50h  
Clear Status Register  
56h  
Quadruple Word Program Setup  
The Command Interface is split into two types of  
commands: Standard commands and Factory  
Program commands. The following sections ex-  
plain in detail how to perform each command.  
Block Lock Setup, Block Unlock Setup,  
Block Lock Down Setup and Set  
Configuration Register Setup  
60h  
70h  
75h  
Read Status Register  
Quadruple Enhanced Factory Program  
Setup  
80h  
90h  
98h  
B0h  
C0h  
Bank Erase Setup  
Read Electronic Signature  
Read CFI Query  
Program/Erase Suspend  
Protection Register Program  
Program/Erase Resume, Block Erase  
Confirm, Bank Erase Confirm, Block  
Unlock Confirm or Enhanced Factory  
Program Confirm  
D0h  
FFh  
Read Array  
13/87  
 
M58WR064FT, M58WR064FB  
COMMAND INTERFACE - STANDARD COMMANDS  
The following commands are the basic commands  
used to read, write to and configure the device.  
Refer to Table 5., Standard Commands, in con-  
junction with the following text descriptions.  
Read CFI Query Command  
The Read CFI Query command is used to read  
data from the Common Flash Interface (CFI). The  
Read CFI Query Command consists of one Bus  
Write cycle, to an address within one of the banks.  
Once the command is issued subsequent Bus  
Read operations in the same bank read from the  
Common Flash Interface.  
If a Read CFI Query command is issued in a bank  
that is executing a Program or Erase operation the  
bank will go into Read CFI Query mode, subse-  
quent Bus Read cycles will output the CFI data  
and the Program/Erase controller will continue to  
Program or Erase in the background. This mode  
supports asynchronous or single synchronous  
reads only, it does not support page mode or syn-  
chronous burst reads.  
Read Array Command  
The Read Array command returns the addressed  
bank to Read Array mode. One Bus Write cycle is  
required to issue the Read Array command and re-  
turn the addressed bank to Read Array mode.  
Subsequent read operations will read the ad-  
dressed location and output the data. A Read Ar-  
ray command can be issued in one bank while  
programming or erasing in another bank. However  
if a Read Array command is issued to a bank cur-  
rently executing a Program or Erase operation the  
command will be executed but the output data is  
not guaranteed.  
Read Status Register Command  
The status of the other banks is not affected by the  
command (see Table 11.). After issuing a Read  
CFI Query command, a Read Array command  
should be issued to the addressed bank to return  
the bank to Read Array mode.  
See APPENDIX B., COMMON FLASH INTER-  
FACE, Tables 30, 31, 32, 33, 34, 35, 36, 37, 38  
and 39 for details on the information contained in  
the Common Flash Interface memory area.  
The Status Register indicates when a Program or  
Erase operation is complete and the success or  
failure of operation itself. Issue a Read Status  
Register command to read the Status Register  
content. The Read Status Register command can  
be issued at any time, even during Program or  
Erase operations.  
The following read operations output the content  
of the Status Register of the addressed bank. The  
Status Register is latched on the falling edge of E  
or G signals, and can be read until E or G returns  
to VIH. Either E or G must be toggled to update the  
latched data. See Table 8. for the description of  
the Status Register Bits. This mode supports  
asynchronous or single synchronous reads only.  
Clear Status Register Command  
The Clear Status Register command can be used  
to reset (set to ‘0’) error bits SR1, SR3, SR4 and  
SR5 in the Status Register. One bus write cycle is  
required to issue the Clear Status Register com-  
mand. The Clear Status Register command does  
not change the Read mode of the bank.  
The error bits in the Status Register do not auto-  
matically return to ‘0’ when a new command is is-  
sued. The error bits in the Status Register should  
be cleared before attempting a new Program or  
Erase command.  
Read Electronic Signature Command  
The Read Electronic Signature command reads  
the Manufacturer and Device Codes, the Block  
Locking Status, the Protection Register, and the  
Configuration Register.  
The Read Electronic Signature command consists  
of one write cycle to an address within one of the  
banks. A subsequent Read operation in the same  
bank will output the Manufacturer Code, the De-  
vice Code, the protection Status of the blocks in  
the targeted bank, the Protection Register, or the  
Configuration Register (see Table 6.).  
If a Read Electronic Signature command is issued  
in a bank that is executing a Program or Erase op-  
eration the bank will go into Read Electronic Sig-  
nature mode, subsequent Bus Read cycles will  
output the Electronic Signature data and the Pro-  
gram/Erase controller will continue to program or  
erase in the background. This mode supports  
asynchronous or single synchronous reads only, it  
does not support page mode or synchronous burst  
reads.  
Block Erase Command  
The Block Erase command can be used to erase  
a block. It sets all the bits within the selected block  
to ’1’. All previous data in the block is lost. If the  
block is protected then the Erase operation will  
abort, the data in the block will not be changed and  
the Status Register will output the error. The Block  
Erase command can be issued at any moment, re-  
gardless of whether the block has been pro-  
grammed or not.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Erase  
command.  
The second latches the block address in the  
Program/Erase Controller and starts it.  
14/87  
 
M58WR064FT, M58WR064FB  
If the second bus cycle is not Write Erase Confirm  
(D0h), Status Register bits SR4 and SR5 are set  
and the command aborts. Erase aborts if Reset  
turns to VIL. As data integrity cannot be guaran-  
teed when the Erase operation is aborted, the  
block must be erased again.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
During Erase operations the bank containing the  
block being erased will only accept the Read Ar-  
ray, Read Status Register, Read Electronic Signa-  
ture, Read CFI Query and the Program/Erase  
Suspend command, all other commands will be ig-  
nored. Refer to Dual Operations section for de-  
tailed information about simultaneous operations  
allowed in banks not being erased. Typical Erase  
times are given in Table 14., Program/Erase  
Times and Endurance Cycles.  
Program/Erase Suspend Command  
The Program/Erase Suspend command is used to  
pause a Program or Block Erase operation. A  
Bank Erase operation cannot be suspended.  
One bus write cycle is required to issue the Pro-  
gram/Erase command. Once the Program/Erase  
Controller has paused bits SR7, SR6 and/ or SR2  
of the Status Register will be set to ‘1’. The com-  
mand can be addressed to any bank.  
During Program/Erase Suspend the Command In-  
terface will accept the Program/Erase Resume,  
Read Array (cannot read the erase-suspended  
block or the program-suspended Word), Read  
Status Register, Read Electronic Signature and  
Read CFI Query commands. Additionally, if the  
suspend operation was Erase then the Clear sta-  
tus Register, Program, Block Lock, Block Lock-  
Down or Block Unlock commands will also be ac-  
cepted. The block being erased may be protected  
by issuing the Block Lock, Block Lock-Down or  
Protection Register Program commands. Only the  
blocks not being erased may be read or pro-  
grammed correctly. When the Program/Erase Re-  
sume command is issued the operation will  
complete. Refer to the Dual Operations section for  
detailed information about simultaneous opera-  
tions allowed during Program/Erase Suspend.  
See APPENDIX C., Figure 26., Block Erase Flow-  
chart and Pseudo Code, for a suggested flowchart  
for using the Block Erase command.  
Program Command  
The memory array can be programmed word-by-  
word. Only one Word in one bank can be pro-  
grammed at any one time. Two bus write cycles  
are required to issue the Program Command.  
During a Program/Erase Suspend, the device can  
be placed in standby mode by taking Chip Enable  
to VIH. Program/Erase is aborted if Reset turns to  
VIL.  
See APPENDIX C., Figure 25., Program Suspend  
& Resume Flowchart and Pseudo Code, and Fig-  
ure 27., Erase Suspend & Resume Flowchart and  
Pseudo Code, for flowcharts for using the Pro-  
gram/Erase Suspend command.  
The first bus cycle sets up the Program  
command.  
The second latches the Address and the Data  
to be written and starts the Program/Erase  
Controller.  
After programming has started, read operations in  
the bank being programmed output the Status  
Register content.  
Program/Erase Resume Command  
The Program/Erase Resume command can be  
used to restart the Program/Erase Controller after  
a Program/Erase Suspend command has paused  
it. One Bus Write cycle is required to issue the  
command. The command can be written to any  
address.  
The Program/Erase Resume command does not  
change the read mode of the banks. If the sus-  
pended bank was in Read Status Register, Read  
Electronic signature or Read CFI Query mode the  
bank remains in that mode and outputs the corre-  
sponding data. If the bank was in Read Array  
mode subsequent read operations will output in-  
valid data.  
If a Program command is issued during a Block  
Erase Suspend, then the erase cannot be re-  
sumed until the programming operation has com-  
pleted. It is possible to accumulate suspend  
operations. For example: suspend an erase oper-  
ation, start a programming operation, suspend the  
During Program operations the bank being pro-  
grammed will only accept the Read Array, Read  
Status Register, Read Electronic Signature, Read  
CFI Query and the Program/Erase Suspend com-  
mand. Refer to Dual Operations section for de-  
tailed information about simultaneous operations  
allowed in banks not being programmed. Typical  
Program times are given in Table 14., Program/  
Erase Times and Endurance Cycles.  
Programming aborts if Reset goes to VIL. As data  
integrity cannot be guaranteed when the program  
operation is aborted, the memory location must be  
reprogrammed.  
See APPENDIX C., Figure 22., Program Flow-  
chart and Pseudo Code, for the flowchart for using  
the Program command.  
15/87  
M58WR064FT, M58WR064FB  
programming operation then read the array. See  
APPENDIX C., Figure 25., Program Suspend &  
Resume Flowchart and Pseudo Code, and Figure  
27., Erase Suspend & Resume Flowchart and  
Pseudo Code, for flowcharts for using the Pro-  
gram/Erase Resume command.  
Block Lock Command  
The Block Lock command is used to lock a block  
and prevent Program or Erase operations from  
changing the data in it. All blocks are locked at  
power-up or reset.  
Two Bus Write cycles are required to issue the  
Block Lock command.  
Protection Register Program Command  
The Protection Register Program command is  
used to Program the 128 bit user One-Time-Pro-  
grammable (OTP) segment of the Protection Reg-  
ister and the Protection Register Lock. The  
segment is programmed 16 bits at a time. When  
shipped all bits in the segment are set to ‘1’. The  
user can only program the bits to ‘0’.  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
address.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 13. shows the Lock Status after issuing a  
Block Lock command.  
Two write cycles are required to issue the Protec-  
tion Register Program command.  
The Block Lock bits are volatile, once set they re-  
main set until a hardware reset or power-down/  
power-up. They are cleared by a Block Unlock  
command. Refer to the section, Block Locking, for  
a detailed explanation. See APPENDIX C., Figure  
28., Locking Operations Flowchart and Pseudo  
Code, for a flowchart for using the Lock command.  
The first bus cycle sets up the Protection  
Register Program command.  
The second latches the Address and the Data  
to be written to the Protection Register and  
starts the Program/Erase Controller.  
Read operations output the Status Register con-  
tent after the programming has started.  
Block Unlock Command  
The segment can be protected by programming bit  
1 of the Protection Lock Register (see Figure  
5., Protection Register Memory Map). Attempting  
to program a previously protected Protection Reg-  
ister will result in a Status Register error. The pro-  
tection of the Protection Register is not reversible.  
The Block Unlock command is used to unlock a  
block, allowing the block to be programmed or  
erased. Two Bus Write cycles are required to is-  
sue the Block Unlock command.  
The first bus cycle sets up the Block Unlock  
command.  
The Protection Register Program cannot be sus-  
The second Bus Write cycle latches the block  
address.  
pended.  
See  
APPENDIX  
C.,  
Figure  
29., Protection Register Program Flowchart and  
Pseudo Code, for a flowchart for using the Protec-  
tion Register Program command.  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Table 13. shows the protection status after issuing  
a Block Unlock command. Refer to the section,  
Block Locking, for a detailed explanation and AP-  
PENDIX C., Figure 28., Locking Operations Flow-  
chart and Pseudo Code, for a flowchart for using  
the Unlock command.  
Set Configuration Register Command  
The Set Configuration Register command is used  
to write a new value to the Configuration Register  
which defines the burst length, type, X latency,  
Synchronous/Asynchronous Read mode and the  
valid Clock edge configuration.  
Two Bus Write cycles are required to issue the Set  
Configuration Register command.  
Block Lock-Down Command  
A locked or unlocked block can be locked-down by  
issuing the Block Lock-Down command. A locked-  
down block cannot be programmed or erased, or  
have its protection status changed when WP is  
low, VIL. When WP is high, VIH, the Lock-Down  
function is disabled and the locked blocks can be  
individually unlocked by the Block Unlock com-  
mand.  
The first cycle writes the setup command and  
the address corresponding to the  
Configuration Register content.  
The second cycle writes the Configuration  
Register data and the confirm command.  
Read operations output the memory array content  
after the Set Configuration Register command is  
issued.  
Two Bus Write cycles are required to issue the  
Block Lock-Down command.  
The value for the Configuration Register is always  
presented on A0-A15. CR0 is on A0, CR1 on A1,  
etc.; the other address bits are ignored.  
The first bus cycle sets up the Block Lock  
command.  
The second Bus Write cycle latches the block  
address.  
16/87  
 
M58WR064FT, M58WR064FB  
The lock status can be monitored for each block  
using the Read Electronic Signature command.  
Locked-Down blocks revert to the locked (and not  
locked-down) state when the device is reset on  
power-down. Table 13. shows the Lock Status af-  
ter issuing a Block Lock-Down command. Refer to  
the section, Block Locking, for a detailed explana-  
tion and APPENDIX C., Figure 28., Locking Oper-  
ations Flowchart and Pseudo Code, for a flowchart  
for using the Lock-Down command.  
Table 5. Standard Commands  
Commands  
Bus Operations  
1st Cycle  
Add  
2nd Cycle  
Add  
Op.  
Write  
Write  
Write  
Write  
Write  
Write  
Data  
FFh  
70h  
90h  
98h  
50h  
20h  
Op.  
Data  
RD  
Read Array  
1+  
1+  
1+  
1+  
1
BKA  
BKA  
WA  
Read  
Read  
Read  
Read  
(2)  
Read Status Register  
Read Electronic Signature  
Read CFI Query  
SRD  
ESD  
QD  
BKA  
(2)  
BKA  
BKA  
(2)  
BKA  
BKA  
Clear Status Register  
Block Erase  
BKA  
(3)  
(3)  
2
Write  
Write  
BA  
D0h  
PD  
BKA or BA  
Program  
2
1
1
2
2
Write  
Write  
Write  
Write  
Write  
40h or 10h  
B0h  
WA  
BKA or WA  
Program/Erase Suspend  
Program/Erase Resume  
Protection Register Program  
Set Configuration Register  
X
X
D0h  
PRA  
CRD  
C0h  
Write  
Write  
Write  
PRA  
CRD  
BA  
PRD  
03h  
01h  
60h  
(3)  
Block Lock  
2
2
2
Write  
Write  
Write  
60h  
60h  
60h  
BKA or BA  
BKA or BA  
BKA or BA  
(3)  
(3)  
Block Unlock  
Block Lock-Down  
Write  
Write  
BA  
BA  
D0h  
2Fh  
Note: 1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data,  
QD=Query Data, BA=Block Address, BKA= Bank Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection  
Register Data, CRD=Configuration Register Data.  
2. Must be same bank as in the first cycle. The signature addresses are listed in Table 6.  
3. Any address within the bank can be used.  
17/87  
M58WR064FT, M58WR064FB  
Table 6. Electronic Signature Codes  
Code  
Address (h)  
Data (h)  
0020  
Manufacturer Code  
Bank Address + 00  
Bank Address + 01  
Bank Address + 01  
Top (M58WR064FT)  
8810  
Device Code  
Bottom(M58WR064FB)  
Locked  
8811  
0001  
Unlocked  
0000  
Block Protection  
Block Address + 02  
Locked and Locked-Down  
Unlocked and Locked-Down  
0003  
0002  
Reserved  
Bank Address + 03  
Bank Address + 05  
Reserved  
CR  
Configuration Register  
ST Factory Default  
0002  
Protection Register Lock  
Bank Address + 80  
OTP Area Permanently Locked  
0000  
Bank Address + 81 Unique Device  
Bank Address + 84  
Number  
Protection Register  
Bank Address + 85  
Bank Address + 8C  
OTP Area  
Note: CR=Configuration Register.  
Figure 5. Protection Register Memory Map  
PROTECTION REGISTER  
8Ch  
User Programmable OTP  
Unique device number  
85h  
84h  
81h  
80h  
Protection Register Lock  
1
0
AI08149  
18/87  
 
 
M58WR064FT, M58WR064FB  
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS  
The Factory Program commands are used to  
speed up programming. They require VPP to be at  
VPPH except for the Bank Erase command which  
also operates at VPP = VDD. Refer to Table  
7., Factory Program Commands, in conjunction  
with the following text descriptions.  
Dual Operations are not supported during Bank  
Erase operations and the command cannot be  
suspended.  
Typical Erase times are given in Table  
14., Program/Erase Times and Endurance Cy-  
cles.  
The use of Factory Program commands requires  
certain operating conditions.  
Double Word Program Command  
The Double Word Program command improves  
the programming throughput by writing a page of  
two adjacent words in parallel. The two words  
must differ only for the address A0.  
Three bus write cycles are necessary to issue the  
Double Word Program command.  
VPP must be set to VPPH (except for Bank  
Erase comand),  
VDD must be within operating range,  
Ambient temperature, TA must be 25°C ± 5°C,  
The targeted block must be unlocked.  
The first bus cycle sets up the Double Word  
Program Command.  
The second bus cycle latches the Address and  
the Data of the first word to be written.  
The third bus cycle latches the Address and  
the Data of the second word to be written and  
starts the Program/Erase Controller.  
Bank Erase Command  
The Bank Erase command can be used to erase a  
bank. It sets all the bits within the selected bank to  
’1’. All previous data in the bank is lost. The Bank  
Erase command will ignore any protected blocks  
within the bank. If all blocks in the bank are pro-  
tected then the Bank Erase operation will abort  
and the data in the bank will not be changed. The  
Status Register will not output any error.  
Read operations in the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
Bank Erase operations can be performed at both  
VPP = VPPH and VPP = VDD.  
During Double Word Program operations the bank  
being programmed will only accept the Read Ar-  
ray, Read Status Register, Read Electronic Signa-  
ture and Read CFI Query command, all other  
commands will be ignored. Dual operations are  
not supported during Double Word Program oper-  
ations and the command cannot be suspended.  
Typical Program times are given in Table  
14., Program/Erase Times and Endurance Cy-  
cles.  
Programming aborts if Reset goes to VIL. As data  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
Two Bus Write cycles are required to issue the  
command.  
The first bus cycle sets up the Bank Erase  
command.  
The second latches the bank address in the  
Program/Erase Controller and starts it.  
If the second bus cycle is not Write Bank Erase  
Confirm (D0h), Status Register bits SR4 and SR5  
are set and the command aborts. Erase aborts if  
Reset turns to VIL. As data integrity cannot be  
guaranteed when the Erase operation is aborted,  
the bank must be erased again.  
Once the command is issued the device outputs  
the Status Register data when any address within  
the bank is read. At the end of the operation the  
bank will remain in Read Status Register mode un-  
til a Read Array, Read CFI Query or Read Elec-  
tronic Signature command is issued.  
During Bank Erase operations the bank being  
erased will only accept the Read Array, Read Sta-  
tus Register, Read Electronic Signature and Read  
CFI Query command, all other commands will be  
ignored.  
See APPENDIX C., Figure 23., Double Word Pro-  
gram Flowchart and Pseudo code, for the flow-  
chart for using the Double Word Program  
command.  
Quadruple Word Program Command  
The Quadruple Word Program command im-  
proves the programming throughput by writing a  
page of four adjacent words in parallel. The four  
words must differ only for the addresses A0 and  
A1.  
Five bus write cycles are necessary to issue the  
Quadruple Word Program command.  
For optimum performance, Bank Erase com-  
mands should be limited to a maximum of 100 Pro-  
gram/Erase cycles per Block. After 100 Program/  
Erase cycles the internal algorithm will still operate  
properly but some degradation in performance  
may occur.  
The first bus cycle sets up the Double Word  
Program Command.  
The second bus cycle latches the Address and  
the Data of the first word to be written.  
19/87  
 
M58WR064FT, M58WR064FB  
The third bus cycle latches the Address and  
the Data of the second word to be written.  
The fourth bus cycle latches the Address and  
the Data of the third word to be written.  
The fifth bus cycle latches the Address and the  
Data of the fourth word to be written and starts  
the Program/Erase Controller.  
The first bus cycle sets up the Enhanced  
Factory Program command.  
The second bus cycle confirms the command.  
The Status Register P/E.C. Bit SR7 should be  
read to check that the P/E.C. is ready. After the  
confirm command is issued, read operations  
output the Status Register data. The read Status  
Register command must not be issued as it will be  
interpreted as data to program.  
Program Phase. The Program Phase requires  
n+1 cycles, where n is the number of Words (refer  
to Table 7., Factory Program Commands, and Fig-  
ure 30., Enhanced Factory Program Flowchart).  
Three successive steps are required to issue and  
execute the Program Phase of the command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word to be programmed.  
The Status Register Bank Write Status bit SR0  
should be read to check that the P/E.C. is  
ready for the next Word.  
2. Each subsequent Word to be programmed is  
latched with a new Bus Write operation. The  
address can either remain the Start Address,  
in which case the P/E.C. increments the  
address location or the address can be  
incremented in which case the P/E.C. jumps to  
the new address. If any address that is not in  
the same block as the Start Address is given  
with data FFFFh, the Program Phase  
Read operations to the bank being programmed  
output the Status Register content after the pro-  
gramming has started.  
Programming aborts if Reset goes to VIL. As data  
integrity cannot be guaranteed when the program  
operation is aborted, the memory locations must  
be reprogrammed.  
During Quadruple Word Program operations the  
bank being programmed will only accept the Read  
Array, Read Status Register, Read Electronic Sig-  
nature and Read CFI Query command, all other  
commands will be ignored.  
Dual operations are not supported during Quadru-  
ple Word Program operations and the command  
cannot be suspended. Typical Program times are  
given in Table 14., Program/Erase Times and En-  
durance Cycles.  
See APPENDIX C., Figure 24., Quadruple Word  
Program Flowchart and Pseudo Code, for the  
flowchart for using the Quadruple Word Program  
command.  
Enhanced Factory Program Command  
terminates and the Verify Phase begins. The  
Status Register bit SR0 should be read  
between each Bus Write cycle to check that  
the P/E.C. is ready for the next Word.  
The Enhanced Factory Program command can be  
used to program large streams of data within any  
one block. It greatly reduces the total program-  
ming time when a large number of Words are writ-  
ten to a block at any one time.  
Dual operations are not supported during the En-  
hanced Factory Program operation and the com-  
mand cannot be suspended.  
For optimum performance the Enhanced Factory  
Program commands should be limited to a maxi-  
mum of 10 program/erase cycles per block. If this  
limit is exceeded the internal algorithm will contin-  
ue to work properly but some degradation in per-  
formance is possible. Typical Program times are  
given in Table 14.  
The Enhanced Factory Program command has  
four phases: the Setup Phase, the Program Phase  
to program the data to the memory, the Verify  
Phase to check that the data has been correctly  
programmed and reprogram if necessary and the  
Exit Phase. Refer to Table 7., Factory Program  
Commands, and Figure 30., Enhanced Factory  
Program Flowchart.  
3. Finally, after all Words have been pro-  
grammed, write one Bus Write operation with  
data FFFFh to any address outside the block  
containing the Start Address, to terminate the  
programming phase. If the data is not FFFFh,  
the command is ignored.  
The memory is now set to enter the Verify Phase.  
Verify Phase. The Verify Phase is similar to the  
Program Phase in that all Words must be resent to  
the memory for them to be checked against the  
programmed data. The Program/Erase Controller  
checks the stream of data with the data that was  
programmed in the Program Phase and repro-  
grams the memory location if necessary.  
Three successive steps are required to execute  
the Verify Phase of the command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word, to be verified. The  
Status Register bit SR0 should be read to  
check that the Program/Erase Controller is  
ready for the next Word.  
Setup Phase. The Enhanced Factory Program  
command requires two Bus Write operations to ini-  
tiate the command.  
2. Each subsequent Word to be verified is  
latched with a new Bus Write operation. The  
20/87  
M58WR064FT, M58WR064FB  
Words must be written in the same order as in  
the Program Phase. The address can remain  
the Start Address or be incremented. If any  
address that is not in the same block as the  
Start Address is given with data FFFFh, the  
Verify Phase terminates. Status Register bit  
SR0 should be read to check that the P/E.C. is  
ready for the next Word.  
to exit the Load phase until all four Words have  
been written.  
Two successive steps are required to issue and  
execute the Load Phase of the Quadruple En-  
hanced Factory Program command.  
1. Use one Bus Write operation to latch the Start  
Address and the first Word of the first Page to  
be programmed. For subsequent Pages the  
first Word address can remain the Start  
3. Finally, after all Words have been verified,  
write one Bus Write operation with data FFFFh  
to any address outside the block containing  
the Start Address, to terminate the Verify  
Phase.  
If the Verify Phase is successfully completed the  
memory remains in Read Status Register mode. If  
the Program/Erase Controller fails to reprogram a  
given location, the error will be signaled in the Sta-  
tus Register.  
Exit Phase. Status Register P/E.C. bit SR7 set to  
‘1’ indicates that the device has returned to Read  
mode. A full Status Register check should be done  
to ensure that the block has been successfully pro-  
grammed. See the section on the Status Register  
for more details.  
Address (in which case the next Page is  
programmed) or can be any address in the  
same block. If any address with data FFFFh is  
given that is not in the same block as the Start  
Address, the device enters the Exit Phase. For  
the first Load Phase Status Register bit SR7  
should be read after the first Word has been  
issued to check that the command has been  
accepted (bit SR7 set to ‘0’). This check is not  
required for subsequent Load Phases.  
2. Each subsequent Word to be programmed is  
latched with a new Bus Write operation. The  
address is only checked for the first Word of  
each Page as the order of the Words to be  
programmed is fixed.  
Quadruple Enhanced Factory Program  
Command  
The memory is now set to enter the Program and  
Verify Phase.  
The Quadruple Enhanced Factory Program com-  
mand can be used to program one or more pages  
of four adjacent words in parallel. The four words  
must differ only for the addresses A0 and A1.  
Dual operations are not supported during Quadru-  
ple Enhanced Factory Program operations and  
the command cannot be suspended.  
Program and Verify Phase. In the Program and  
Verify Phase the four Words that were loaded in  
the Load Phase are programmed in the memory  
array and then verified by the Program/Erase Con-  
troller. If any errors are found the Program/Erase  
Controller reprograms the location. During this  
phase the Status Register shows that the Pro-  
gram/Erase Controller is busy, Status Register bit  
SR7 set to ‘0’, and that the device is not waiting for  
new data, Status Register bit SR0 set to ‘1’. When  
Status Register bit SR0 is set to ‘0’ the Program  
and Verify phase has terminated.  
Once the Verify Phase has successfully complet-  
ed subsequent pages in the same block can be  
loaded and programmed. The device returns to  
the beginning of the Load Phase by issuing one  
Bus Write operation to latch the Address and the  
first of the four new Words to be programmed.  
Exit Phase. Finally, after all the pages have been  
programmed, write one Bus Write operation with  
data FFFFh to any address outside the block con-  
taining the Start Address, to terminate the Load  
and Program and Verify Phases.  
Status Register bit SR7 set to ‘1’ and bit SR0 set  
to ‘0’ indicate that the Quadruple Enhanced Facto-  
ry Program command has terminated. A full Status  
Register check should be done to ensure that the  
block has been successfully programmed. See the  
section on the Status Register for more details.  
The Quadruple Enhanced Factory Program com-  
mand has four phases: the Setup Phase, the Load  
Phase where the data is loaded into the buffer, the  
combined Program and Verify Phase where the  
loaded data is programmed to the memory and  
then automatically checked and reprogrammed if  
necessary and the Exit Phase. Unlike the En-  
hanced Factory Program it is not necessary to re-  
submit the data for the Verify Phase. The Load  
Phase and the Program and Verify Phase can be  
repeated to program any number of pages within  
the block.  
Setup Phase. The Quadruple Enhanced Factory  
Program command requires one Bus Write opera-  
tion to initiate the load phase. After the setup  
command is issued, read operations output the  
Status Register data. The Read Status Register  
command must not be issued as it will be  
interpreted as data to program.  
Load Phase. The Load Phase requires 4 cycles  
to load the data (refer to Table 7., Factory Pro-  
gram Commands and Figure 31., Quadruple En-  
hanced Factory Program Flowchart). Once the  
first Word of each Page is written it is impossible  
If the Program and Verify Phase has successfully  
completed the memory returns to Read mode. If  
21/87  
M58WR064FT, M58WR064FB  
the P/E.C. fails to program and reprogram a given  
location, the error will be signaled in the Status  
Register.  
Table 7. Factory Program Commands  
Bus Write Operations  
3rd  
Command  
Phase  
1st  
2nd  
Add  
Final -1  
Final  
Add  
Data  
Data  
Add  
Data  
Add Data Add  
Data  
Bank Erase  
2
3
BKA  
80h  
BKA  
D0h  
BKA or  
(4)  
35h  
56h  
30h  
PD1  
75h  
WA1  
PD1  
PD1  
D0h  
PD2  
PD1  
WA2  
WA2  
PD2  
PD2  
PD1  
PD3  
PD2  
Double Word Program  
Quadruple Word  
(8)  
WA1  
BKA or  
5
WA1  
WA3 PD3 WA4  
PD4  
FFFFh  
FFFFh  
PD4  
(5)  
(8)  
Program  
WA1  
BKA or  
BA or  
NOT  
Setup,  
2+  
n+1  
(2)  
(3)  
Enhanced  
PAn  
PAn  
PD3  
WA1  
WA3  
WA2  
WAn  
WAn  
WA3  
(8)  
(9)  
(2)  
Program  
Factory  
WA1  
WA1  
WA1  
(6)  
Program  
NOT  
(2)  
(3)  
(2)  
(3)  
(7)  
(3)  
(7)  
Verify, Exit  
n+1  
5
WA1  
WA2  
(2)  
WA1  
WA4  
BKA or  
Setup,  
(7)  
WA1  
(8)  
first Load  
WA1  
First  
Program &  
Automatic  
Verify  
Quadruple  
Enhanced  
Factory  
Program  
(5,6)  
Subsequent  
Loads  
WA1i  
WA2i  
(7)  
WA3i  
WA4i  
(7)  
4
1
PD1i  
PD2i  
PD3i  
PD4i  
(2)  
(7)  
Subsequent  
Program &  
Verify  
Automatic  
NOT  
WA1  
(2)  
Exit  
FFFFh  
Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, BA=Block Address.  
2. WA1 is the Start Address. NOT WA1 is any address that is not in the same block as WA1.  
3. Address can remain Starting Address WA1 or be incremented.  
4. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.  
5. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.  
6. A Bus Read must be done between each Write cycle where the data is programmed or verified to read the Status Register and  
check that the memory is ready to accept the next data. n = number of Words, i = number of Pages to be programmed.  
7. Address is only checked for the first Word of each Page as the order to program the Words in each page is fixed so subsequent  
Words in each Page can be written to any address.  
8. Any address within the bank can be used.  
9. Any address within the block can be used.  
22/87  
M58WR064FT, M58WR064FB  
STATUS REGISTER  
The Status Register provides information on the  
current or previous Program or Erase operations.  
Issue a Read Status Register command to read  
the contents of the Status Register, refer to Read  
Status Register Command section for more de-  
tails. To output the contents, the Status Register is  
latched and updated on the falling edge of the  
Chip Enable or Output Enable signals and can be  
read until Chip Enable or Output Enable returns to  
VIH. The Status Register can only be read using  
single asynchronous or single synchronous reads.  
Bus Read operations from any address within the  
bank, always read the Status Register during Pro-  
gram and Erase operations.  
The various bits convey information about the sta-  
tus and any errors of the operation. Bits SR7, SR6,  
SR2 and SR0 give information on the status of the  
device and are set and reset by the device. Bits  
SR5, SR4, SR3 and SR1 give information on er-  
rors, they are set by the device but must be reset  
by issuing a Clear Status Register command or a  
hardware reset. If an error bit is set to ‘1’ the Status  
Register should be reset before issuing another  
command. SR7 to SR1 refer to the status of the  
device while SR0 refers to the status of the ad-  
dressed bank.  
pended in the addressed block. When the Erase  
Suspend Status bit is High (set to ‘1’), a Program/  
Erase Suspend command has been issued and  
the memory is waiting for a Program/Erase Re-  
sume command.  
The Erase Suspend Status should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus bit is High (Program/Erase Controller inactive).  
SR7 is set within the Erase Suspend Latency time  
of the Program/Erase Suspend command being  
issued therefore the memory may still complete  
the operation rather than entering the Suspend  
mode.  
When a Program/Erase Resume command is is-  
sued the Erase Suspend Status bit returns Low.  
Erase Status Bit (SR5). The Erase Status bit  
can be used to identify if the memory has failed to  
verify that the block or bank has erased correctly.  
When the Erase Status bit is High (set to ‘1’), the  
Program/Erase Controller has applied the maxi-  
mum number of pulses to the block or bank and  
still failed to verify that it has erased correctly. The  
Erase Status bit should be read once the Program/  
Erase Controller Status bit is High (Program/Erase  
Controller inactive).  
Once set High, the Erase Status bit can only be re-  
set Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Program Status Bit (SR4). The Program Status  
bit is used to identify a Program failure or an at-  
tempt to program a ‘1’ to an already programmed  
The bits in the Status Register are summarized in  
Table 8., Status Register Bits. Refer to Table 8. in  
conjunction with the following text descriptions.  
Program/Erase Controller Status Bit (SR7). The  
Program/Erase Controller Status bit indicates  
whether the Program/Erase Controller is active or  
inactive in any bank. When the Program/Erase  
Controller Status bit is Low (set to ‘0’), the Pro-  
gram/Erase Controller is active; when the bit is  
High (set to ‘1’), the Program/Erase Controller is  
inactive, and the device is ready to process a new  
command.  
The Program/Erase Controller Status is Low im-  
mediately after a Program/Erase Suspend com-  
mand is issued until the Program/Erase Controller  
pauses. After the Program/Erase Controller paus-  
es the bit is High.  
During Program, Erase, operations the Program/  
Erase Controller Status bit can be polled to find the  
end of the operation. Other bits in the Status Reg-  
ister should not be tested until the Program/Erase  
Controller completes the operation and the bit is  
High.  
After the Program/Erase Controller completes its  
operation the Erase Status, Program Status, VPP  
Status and Block Lock Status bits should be tested  
for errors.  
bit when VPP = VPPH  
.
When the Program Status bit is High (set to ‘1’),  
the Program/Erase Controller has applied the  
maximum number of pulses to the byte and still  
failed to verify that it has programmed correctly.  
After an attempt to program a '1' to an already pro-  
grammed bit, the Program Status bit SR4 only  
goes High (set to '1') if VPP = VPPH (if VPP is differ-  
ent from VPPH, SR4 remains Low (set to '0') and  
the attempt is not shown).  
The Program Status bit should be read once the  
Program/Erase Controller Status bit is High (Pro-  
gram/Erase Controller inactive).  
Once set High, the Program Status bit can only be  
reset Low by a Clear Status Register command or  
a hardware reset. If set High it should be reset be-  
fore a new command is issued, otherwise the new  
command will appear to fail.  
VPP Status Bit (SR3). The VPP Status bit can be  
used to identify an invalid voltage on the VPP pin  
during Program and Erase operations. The VPP  
pin is only sampled at the beginning of a Program  
Erase Suspend Status Bit (SR6). The  
Suspend Status bit indicates that an Erase opera-  
tion has been suspended or is going to be sus-  
Erase  
23/87  
M58WR064FT, M58WR064FB  
or Erase operation. Indeterminate results can oc-  
cur if VPP becomes invalid during an operation.  
When the Block Protection Status bit is High (set  
to ‘1’), a Program or Erase operation has been at-  
tempted on a locked block.  
Once set High, the Block Protection Status bit can  
only be reset Low by a Clear Status Register com-  
mand or a hardware reset. If set High it should be  
reset before a new command is issued, otherwise  
the new command will appear to fail.  
When the VPP Status bit is Low (set to ‘0’), the volt-  
age on the VPP pin was sampled at a valid voltage;  
when the VPP Status bit is High (set to ‘1’), the VPP  
pin has a voltage that is below the VPP Lockout  
Voltage, VPPLK, the memory is protected and Pro-  
gram and Erase operations cannot be performed.  
Once set High, the VPP Status bit can only be reset  
Low by a Clear Status Register command or a  
hardware reset. If set High it should be reset be-  
fore a new Program or Erase command is issued,  
otherwise the new command will appear to fail.  
Bank Write/Multiple Word Program Status Bit  
(SR0). The Bank Write Status bit indicates wheth-  
er the addressed bank is programming or erasing.  
In Enhanced Factory Program mode the Multiple  
Word Program bit shows if a Word has finished  
programming or verifying depending on the phase.  
The Bank Write Status bit should only be consid-  
ered valid when the Program/Erase Controller Sta-  
tus SR7 is Low (set to ‘0’).  
When both the Program/Erase Controller Status bit  
and the Bank Write Status bit are Low (set to ‘0’),  
the addressed bank is executing a Program or  
Erase operation. When the Program/Erase Con-  
troller Status bit is Low (set to ‘0’) and the Bank  
Write Status bit is High (set to ‘1’), a Program or  
Erase operation is being executed in a bank other  
than the one being addressed.  
Program Suspend Status Bit (SR2). The Pro-  
gram Suspend Status bit indicates that a Program  
operation has been suspended in the addressed  
block. When the Program Suspend Status bit is  
High (set to ‘1’), a Program/Erase Suspend com-  
mand has been issued and the memory is waiting  
for a Program/Erase Resume command. The Pro-  
gram Suspend Status should only be considered  
valid when the Program/Erase Controller Status  
bit is High (Program/Erase Controller inactive).  
SR2 is set within the Program Suspend Latency  
time of the Program/Erase Suspend command be-  
ing issued therefore the memory may still com-  
plete the operation rather than entering the  
Suspend mode.  
In Enhanced Factory Program mode if Multiple  
Word Program Status bit is Low (set to ‘0’), the de-  
vice is ready for the next Word, if the Multiple Word  
Program Status bit is High (set to ‘1’) the device is  
not ready for the next Word.  
When a Program/Erase Resume command is is-  
sued the Program Suspend Status bit returns Low.  
Block Protection Status Bit (SR1). The Block  
Protection Status bit can be used to identify if a  
Program or Block Erase operation has tried to  
modify the contents of a locked block.  
Note: Refer to APPENDIX C., FLOWCHARTS  
AND PSEUDO CODES, for using the Status Reg-  
ister.  
24/87  
M58WR064FT, M58WR064FB  
Table 8. Status Register Bits  
Bit  
Name  
Type LogicLevel  
Definition  
'1'  
Ready  
SR7 P/E.C. Status  
Status  
'0'  
Busy  
'1'  
Erase Suspended  
SR6 Erase Suspend Status  
SR5 Erase Status  
Status  
'0'  
Erase In progress or Completed  
Erase Error  
'1'  
Error  
'0'  
Erase Success  
'1'  
Program Error  
SR4 Program Status  
Error  
'0'  
Program Success  
V
Invalid, Abort  
OK  
'1'  
PP  
PP  
V
PP  
Status  
SR3  
Error  
'0'  
V
'1'  
Program Suspended  
SR2 Program Suspend Status Status  
'0'  
'1'  
'0'  
Program In Progress or Completed  
Program/Erase on protected Block, Abort  
No operation to protected blocks  
SR7 = ‘1’ Not Allowed  
SR1 Block Protection Status  
Error  
'1'  
Program or erase operation in a bank other than  
the addressed bank  
SR7 = ‘0’  
Bank Write Status  
Status  
SR7 = ‘1’ No Program or erase operation in the device  
SR7 = ‘0’ Program or erase operation in addressed bank  
SR7 = ‘1’ Not Allowed  
'0'  
'1'  
'0'  
SR0  
Multiple Word Program  
Status (Enhanced  
Factory Program mode)  
SR7 = ‘0’ the device is NOT ready for the next word  
SR7 = ‘1’ the device is exiting from EFP  
Status  
SR7 = ‘0’ the device is ready for the next Word  
Note: Logic level '1' is High, '0' is Low.  
25/87  
M58WR064FT, M58WR064FB  
CONFIGURATION REGISTER  
The Configuration Register is used to configure  
the type of bus access that the memory will per-  
form. Refer to Read Modes section for details on  
read operations.  
The Configuration Register is set through the  
Command Interface. After a Reset or Power-Up  
the device is configured for asynchronous page  
read (CR15 = 1). The Configuration Register bits  
are described in Table 9. They specify the selec-  
tion of the burst length, burst type, burst X latency  
and the Read operation. Refer to Figures 6 and 7  
for examples of synchronous burst configurations.  
Refer to Figure 6., X-Latency and Data Output  
Configuration Example.  
Wait Polarity Bit (CR10)  
In synchronous burst mode the Wait signal indi-  
cates whether the output data are valid or a WAIT  
state must be inserted. The Wait Polarity bit is  
used to set the polarity of the Wait signal. When  
the Wait Polarity bit is set to ‘0’ the Wait signal is  
active Low. When the Wait Polarity bit is set to ‘1’  
the Wait signal is active High.  
Data Output Configuration Bit (CR9)  
The Data Output Configuration bit determines  
whether the output remains valid for one or two  
clock cycles. When the Data Output Configuration  
Bit is ’0’ the output data is valid for one clock cycle,  
when the Data Output Configuration Bit is ’1’ the  
output data is valid for two clock cycles.  
Read Select Bit (CR15)  
The Read Select bit, CR15, is used to switch be-  
tween asynchronous and synchronous Bus Read  
operations. When the Read Select bit is set to ’1’,  
read operations are asynchronous; when the  
Read Select bit is set to ’0’, read operations are  
synchronous. Synchronous Burst Read is support-  
ed in both parameter and main blocks and can be  
performed across banks.  
The Data Output Configuration depends on the  
condition:  
tK > tKQV + tQVK_CPU  
where tK is the clock period, tQVK_CPU is the data  
setup time required by the system CPU and tKQV  
is the clock to data valid time. If this condition is not  
satisfied, the Data Output Configuration bit should  
be set to ‘1’ (two clock cycles). Refer to Figure  
6., X-Latency and Data Output Configuration Ex-  
ample.  
On reset or power-up the Read Select bit is set  
to’1’ for asynchronous access.  
X-Latency Bits (CR13-CR11)  
The X-Latency bits are used during Synchronous  
Read operations to set the number of clock cycles  
between the address being latched and the first  
data becoming available. For correct operation the  
X-Latency bits can only assume the values in Ta-  
ble 9., Configuration Register.  
The correspondence between X-Latency settings  
and the maximum sustainable frequency must be  
calculated taking into account some system pa-  
rameters. Two conditions must be satisfied:  
Wait Configuration Bit (CR8)  
In burst mode the Wait bit controls the timing of the  
Wait output pin, WAIT. When WAIT is asserted,  
Data is Not Valid and when WAIT is deasserted,  
Data is Valid. When the Wait bit is ’0’ the Wait out-  
put pin is asserted during the wait state. When the  
Wait bit is ’1’ the Wait output pin is asserted one  
clock cycle before the wait state.  
1. Depending on whether tAVK_CPU or tDELAY is  
supplied either one of the following two  
equations must be satisfied:  
Burst Type Bit (CR7)  
The Burst Type bit is used to configure the se-  
quence of addresses read as sequential or inter-  
leaved. When the Burst Type bit is ’0’ the memory  
outputs from interleaved addresses; when the  
Burst Type bit is ’1’ the memory outputs from se-  
quential addresses. See Table 10., Burst Type  
Definition, for the sequence of addresses output  
from a given starting address in each mode.  
(n + 1) tK tACC - tAVK_CPU + tQVK_CPU  
(n + 2) tK tACC + tDELAY + tQVK_CPU  
2. and also  
tK > tKQV + tQVK_CPU  
where  
n is the chosen X-Latency configuration code  
tK is the clock period  
Valid Clock Edge Bit (CR6)  
tAVK_CPU is clock to address valid, L Low, or E  
Low, whichever occurs last  
tDELAY is address valid, L Low, or E Low to clock,  
whichever occurs last  
tQVK_CPU is the data setup time required by the  
system CPU,  
tKQV is the clock to data valid time  
The Valid Clock Edge bit, CR6, is used to config-  
ure the active edge of the Clock, K, during Syn-  
chronous Burst Read operations. When the Valid  
Clock Edge bit is ’0’ the falling edge of the Clock is  
the active edge; when the Valid Clock Edge bit is  
’1’ the rising edge of the Clock is active.  
Wrap Burst Bit (CR3)  
The burst reads can be confined inside the 4 or 8  
Word boundary (wrap) or overcome the boundary  
tACC is the random access time of the device.  
26/87  
M58WR064FT, M58WR064FB  
(no wrap). The Wrap Burst bit is used to select be-  
tween wrap and no wrap. When the Wrap Burst bit  
is set to ‘0’ the burst read wraps; when it is set to  
‘1’ the burst read does not wrap.  
vice asserts the WAIT output to indicate that a de-  
lay is necessary before the data is output.  
If the starting address is aligned to a 4 Word  
boundary no wait states are needed and the WAIT  
output is not asserted.  
Burst length Bits (CR2-CR0)  
The Burst Length bits set the number of Words to  
be output during a Synchronous Burst Read oper-  
ation as result of a single address latch cycle.  
They can be set for 4 Words, 8 Words, 16 Words  
or continuous burst, where all the words are read  
sequentially.  
If the starting address is shifted by 1,2 or 3 posi-  
tions from the four word boundary, WAIT will be  
asserted for 1, 2 or 3 clock cycles when the burst  
sequence crosses the first 16 Word boundary, to  
indicate that the device needs an internal delay to  
read the successive words in the array. WAIT will  
be asserted only once during a continuous burst  
access. See also Table 10., Burst Type Definition.  
In continuous burst mode the burst sequence can  
cross bank boundaries.  
CR14, CR5 and CR4 are reserved for future use.  
In continuous burst mode or in 4, 8, 16 Words no-  
wrap, depending on the starting address, the de-  
Table 9. Configuration Register  
Bit  
Description  
Value  
Description  
0
1
Synchronous Read  
CR15  
CR14  
Read Select  
Asynchronous Read (Default at power-on)  
Reserved  
010  
011  
100  
101  
111  
2 clock latency  
3 clock latency  
4 clock latency  
CR13-CR11  
X-Latency  
5 clock latency  
Reserved (default)  
Other configurations reserved  
0
1
0
1
0
1
0
1
0
1
WAIT is active Low  
CR10  
CR9  
CR8  
CR7  
Wait Polarity  
WAIT is active High (default)  
Data held for one clock cycle  
Data held for two clock cycles (default)  
WAIT is active during wait state  
WAIT is active one data cycle before wait state (default)  
Interleaved  
Data Output  
Configuration  
Wait Configuration  
Burst Type  
Sequential (default)  
Falling Clock edge  
CR6  
CR5-CR4  
CR3  
Valid Clock Edge  
Rising Clock edge (default)  
Reserved  
0
Wrap  
Wrap Burst  
1
No Wrap (default)  
001  
010  
011  
111  
4 Words  
8 Words  
CR2-CR0  
Burst Length  
16 Words  
Continuous (CR7 must be set to ‘1’) (default)  
27/87  
M58WR064FT, M58WR064FB  
Table 10. Burst Type Definition  
4 Words  
Start  
8 Words  
Sequential Interleaved  
0-1-2-3-4-5- 0-1-2-3-4-5-6-7-8-9-  
16 Words  
Continuous  
Burst  
Inter-  
Add  
Sequen-tial  
Sequential Interleaved  
leaved  
0-1-2-3-4-5-6-7-  
8-9-10-11-12-  
13-14-15  
0
0-1-2-3  
0-1-2-3 0-1-2-3-4-5-6-7  
1-0-3-2 1-2-3-4-5-6-7-0  
2-3-0-1 2-3-4-5-6-7-0-1  
3-2-1-0 3-4-5-6-7-0-1-2  
0-1-2-3-4-5-6...  
6-7  
10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9- 1-0-3-2-5-4-7-6- 1-2-3-4-5-6-7-  
10-11-12-13-14-15- 9-8-11-10-13- ...15-WAIT-16-17-  
1-0-3-2-5-4-  
7-6  
1
2
1-2-3-0  
2-3-0-1  
3-0-1-2  
0
12-15-14  
18...  
2-3-0-1-6-7-4-5- 2-3-4-5-6-7...15-  
10-11-8-9-14- WAIT-WAIT-16-  
2-3-0-1-6-7- 2-3-4-5-6-7-8-9-10-  
4-5 11-12-13-14-15-0-1  
15-12-13  
17-18...  
3-2-1-0-7-6-5-4- 3-4-5-6-7...15-  
11-10-9-8-15-  
14-13-12  
3-2-1-0-7-6- 3-4-5-6-7-8-9-10-11-  
3
WAIT-WAIT-  
WAIT-16-17-18...  
5-4  
12-13-14-15-0-1-2  
...  
7-8-9-10-11-12-  
13-14-15-WAIT-  
WAIT-WAIT-16-  
17...  
7-6-5-4-3-2-1-0-  
15-14-13-12-11-  
10-9-8  
7-6-5-4-3-2- 7-8-9-10-11-12-13-  
7
7-4-5-6  
7-6-5-4 7-0-1-2-3-4-5-6  
1-0  
14-15-0-1-2-3-4-5-6  
...  
12-13-14-15-16-  
17-18...  
12  
13-14-15-WAIT-  
16-17-18...  
13  
14  
15  
14-15-WAIT-  
WAIT-16-17-18....  
15-WAIT-WAIT-  
WAIT-16-17-18...  
28/87  
M58WR064FT, M58WR064FB  
4 Words  
8 Words  
Sequential Interleaved  
16 Words  
Start  
Add  
Continuous  
Burst  
Inter-  
leaved  
Sequen-tial  
Sequential  
Interleaved  
0-1-2-3-4-5-6-7-8-9-  
10-11-12-13-14-15  
0
1
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
1-2-3-4-5-6-7-8-9-  
10-11-12-13-14-15-  
WAIT-16  
1-2-3-4  
2-3-4-5  
2-3-4-5-6-7-8-9-10-  
11-12-13-14-15-  
WAIT-WAIT-16-17  
2-3-4-5-6-7-8-  
9...  
2
3-4-5-6-7-8-9-10-11-  
12-13-14-15-WAIT-  
WAIT-WAIT-  
3-4-5-6-7-8-9-  
10  
3
...  
7
3-4-5-6  
16-17-18  
7-8-9-10-11-12-13-  
14-15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22  
7-8-9-10-11-12-  
13-14  
Same as for Wrap  
(Wrap /No Wrap  
has no effect on  
Continuous Burst)  
7-8-9-10  
...  
12-13-14-15-16-17-  
18-19-20-21-22-23-  
24-25-26-27  
12-13-14-15-  
16-17-18-19  
12 12-13-14-15  
13-14-15-  
WAIT-16-17-  
18-19-20  
13-14-15-WAIT-16-  
17-18-19-20-21-22-  
23-24-25-26-27-28  
13-14-15-  
13  
WAIT-16  
14-15-WAIT-WAIT-  
16-17-18-19-20-21-  
22-23-24-25-26-27-  
28-29  
14-15-  
WAIT-  
WAIT-16-17  
14-15-WAIT-  
WAIT-16-17-  
18-19-20-21  
14  
15  
15-WAIT-  
WAIT-  
WAIT-16-  
17-18  
15-WAIT-WAIT-  
WAIT-16-17-18-19-  
20-21-22-23-24-25-  
26-27-28-29-30  
15-WAIT-WAIT-  
WAIT-16-17-  
18-19-20-21-22  
29/87  
M58WR064FT, M58WR064FB  
Figure 6. X-Latency and Data Output Configuration Example  
X-latency  
1st cycle  
2nd cycle  
3rd cycle  
4th cycle  
K
E
L
A21-A0  
tDELAY  
VALID ADDRESS  
tAVK_CPU  
tQVK_CPU  
tK  
tACC  
tKQV  
tQVK_CPU  
DQ15-DQ0  
VALID DATA VALID DATA  
Note. Settings shown: X-latency = 4, Data Output held for one clock cycle  
AI06182  
Figure 7. Wait Configuration Example  
E
K
L
A21-A0  
VALID ADDRESS  
DQ15-DQ0  
VALID DATA VALID DATA NOT VALID VALID DATA  
WAIT  
CR8 = '0'  
CR10 = '0'  
WAIT  
CR8 = '1'  
CR10 = '0'  
WAIT  
CR8 = '0'  
CR10 = '1'  
WAIT  
CR8 = '1'  
CR10 = '1'  
AI06972  
30/87  
M58WR064FT, M58WR064FB  
READ MODES  
Read operations can be performed in two different  
ways depending on the settings in the Configura-  
tion Register. If the clock signal is ‘don’t care’ for  
the data output, the read operation is Asynchro-  
nous; if the data output is synchronized with clock,  
the read operation is Synchronous.  
The Read mode and data output format are deter-  
mined by the Configuration Register. (See Config-  
uration Register section for details). All banks  
supports both asynchronous and synchronous  
read operations. The Multiple Bank architecture  
allows read operations in one bank, while write op-  
erations are being executed in another (see Ta-  
bles 11 and 12).  
sible to perform burst reads across bank  
boundaries.  
Synchronous Burst Read mode can only be used  
to read the memory array. For other read opera-  
tions, such as Read Status Register, Read CFI  
and Read Electronic Signature, Single Synchro-  
nous Read or Asynchronous Random Access  
Read must be used.  
In Synchronous Burst Read mode the flow of the  
data output depends on parameters that are con-  
figured in the Configuration Register.  
A burst sequence is started at the first clock edge  
(rising or falling depending on Valid Clock Edge bit  
CR6 in the Configuration Register) after the falling  
edge of Latch Enable or Chip Enable, whichever  
occurs last. Addresses are internally incremented  
and after a delay of 2 to 5 clock cycles (X latency  
bits CR13-CR11) the corresponding data are out-  
put on each clock cycle.  
The number of Words to be output during a Syn-  
chronous Burst Read operation can be configured  
as 4, 8, 16 Words, or Continuous (Burst Length  
bits CR2-CR0). The data can be configured to re-  
main valid for one or two clock cycles (Data Output  
Configuration bit CR9).  
The order of the data output can be modified  
through the Burst Type and the Wrap Burst bits in  
the Configuration Register. The burst sequence  
may be configured to be sequential or interleaved  
(CR7). The burst reads can be confined inside the  
4, 8 or 16 Word boundary (Wrap) or overcome the  
boundary (No Wrap). If the starting address is  
aligned to the Burst Length (4, 8 or 16 Words) the  
wrapped configuration has no impact on the output  
sequence. Interleaved mode is not allowed in Con-  
tinuous Burst Read mode or with No Wrap se-  
quences.  
A WAIT signal may be asserted to indicate to the  
system that an output delay will occur. This delay  
will depend on the starting address of the burst se-  
quence; the worst case delay will occur when the  
sequence is crossing a 16 Word boundary and the  
starting address was at the end of a four word  
boundary.  
WAIT is asserted during X latency, the Wait state  
and at the end of 4-, 8- or 16-Word burst. It is only  
deasserted when output data are valid. In Contin-  
uous Burst Read mode a Wait state will occur  
when crossing the first 16 Word boundary. If the  
burst starting address is aligned to a 4 Word Page,  
the Wait state will not occur.  
The WAIT signal can be configured to be active  
Low or active High by setting CR10 in the Config-  
uration Register. The WAIT signal is meaningful  
only in Synchronous Burst Read mode, in other  
Asynchronous Read Mode  
In Asynchronous Read operations the clock signal  
is ‘don’t care’. The device outputs the data corre-  
sponding to the address latched, that is the mem-  
ory array, Status Register, Common Flash  
Interface or Electronic Signature depending on the  
command issued. CR15 in the Configuration Reg-  
ister must be set to ‘1’ for Asynchronous opera-  
tions.  
In Asynchronous Read mode a Page of data is in-  
ternally read and stored in a Page Buffer. The  
Page has a size of 4 Words and is addressed by  
A0 and A1 address inputs. The address inputs A0  
and A1 are not gated by Latch Enable in Asyn-  
chronous Read mode.  
The first read operation within the Page has a  
longer access time (Tacc, Random access time),  
subsequent reads within the same Page have  
much shorter access times. If the Page changes  
then the normal, longer timings apply again.  
Asynchronous Read operations can be performed  
in two different ways, Asynchronous Random Ac-  
cess Read and Asynchronous Page Read. Only  
Asynchronous Page Read takes full advantage of  
the internal page storage so different timings are  
applied.  
During Asynchronous Read operations, after a  
bus inactivity of 150ns, the device automatically  
switches to the Automatic Standby mode. In this  
condition the power consumption is reduced to the  
standby value and the outputs are still driven.  
In Asynchronous Read mode, the WAIT signal is  
always asserted.  
See Table 20., Asynchronous Read AC Charac-  
teristics, Figure 10., Asynchronous Random Ac-  
cess Read AC Waveforms, and Figure  
11., Asynchronous Page Read AC Waveforms, for  
details.  
Synchronous Burst Read Mode  
In Synchronous Burst Read mode the data is out-  
put in bursts synchronized with the clock. It is pos-  
31/87  
 
M58WR064FT, M58WR064FB  
modes, WAIT is always asserted (except for Read  
Array mode).  
See Table 21., Synchronous Read AC Character-  
istics, and Figure 12., Synchronous Burst Read  
AC Waveforms, for details.  
WAIT being gated by E remains active and will not  
revert to high-impedance when G goes high. So if  
two or more devices are connected to the system’s  
READY signal, to prevent bus contention the  
WAIT signal of the Flash memory should not be di-  
rectly connected to the system’s READY signal.  
See Table 21., Synchronous Read AC Character-  
istics and Figure 14., Synchronous Burst Read  
Suspend AC Waveforms, for details.  
Synchronous Burst Read Suspend. A  
Syn-  
chronous Burst Read operation can be suspend-  
ed, freeing the data bus for other higher priority  
devices. It can be suspended during the initial ac-  
cess latency time (before data is output) in which  
case the initial latency time can be reduced to ze-  
ro, or after the device has output data. When the  
Synchronous Burst Read operation is suspended,  
internal array sensing continues and any previous-  
ly latched internal data is retained. A burst se-  
quence can be suspended and resumed as often  
as required as long as the operating conditions of  
the device are met.  
Single Synchronous Read Mode  
Single Synchronous Read operations are similar  
to Synchronous Burst Read operations except that  
only the first data output after the X latency is valid.  
Synchronous Single Reads are used to read the  
Electronic Signature, Status Register, CFI, Block  
Protection Status, Configuration Register Status  
or Protection Register. When the addressed bank  
is in Read CFI, Read Status Register or Read  
Electronic Signature mode, the WAIT signal is al-  
ways asserted.  
A Synchronous Burst Read operation is suspend-  
ed when E is low and the current address has  
been latched (on a Latch Enable rising edge or on  
a valid clock edge). The clock signal is then halted  
at VIH or at VIL, and G goes high.  
See Table 21., Synchronous Read AC Character-  
istics and Figure 13., Single Synchronous Read  
AC Waveforms, for details.  
When G becomes low again and the clock signal  
restarts, the Synchronous Burst Read operation is  
resumed exactly where it stopped.  
32/87  
 
M58WR064FT, M58WR064FB  
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE  
The Multiple Bank Architecture of the  
M58WR064FT/B provides flexibility for software  
developers by allowing code and data to be split  
with 4Mbit granularity. The Dual Operations fea-  
ture simplifies the software management of the de-  
vice and allows code to be executed from one  
bank while another bank is being programmed or  
erased.  
The Dual operations feature means that while pro-  
gramming or erasing in one bank, Read opera-  
tions are possible in another bank with zero  
latency (only one bank at a time is allowed to be in  
Program or Erase mode). If a Read operation is re-  
quired in a bank which is programming or erasing,  
the Program or Erase operation can be suspend-  
ed. Also if the suspended operation was Erase  
then a Program command can be issued to anoth-  
er block, so the device can have one block in  
Erase Suspend mode, one programming and oth-  
er banks in Read mode. Bus Read operations are  
allowed in another bank between setup and con-  
firm cycles of program or erase operations. The  
combination of these features means that read op-  
erations are possible at any moment.  
Tables 11 and 12 show the dual operations possi-  
ble in other banks and in the same bank. For a  
complete list of possible commands refer to AP-  
PENDIX D., COMMAND INTERFACE STATE TA-  
BLES.  
Table 11. Dual Operations Allowed In Other Banks  
Commands allowed in another bank  
Read  
Status  
Register  
Read  
CFI  
Query  
Read  
Electronic Program  
Signature  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Block  
Erase  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Programming  
Yes  
Yes  
Erasing  
Yes  
Yes  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Table 12. Dual Operations Allowed In Same Bank  
Commands allowed in same bank  
Read  
Read  
Status  
Register  
Program/ Program/  
Erase Erase  
Suspend Resume  
Status of bank  
Read  
Array  
Read  
Block  
Electronic Program  
Signature  
CFI Query  
Erase  
Idle  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(2)  
Programming  
(2)  
Erasing  
(1)  
Program Suspended  
Erase Suspended  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
(1)  
(1)  
Yes  
Yes  
Note: 1. Not allowed in the Block or Word that is being erased or programmed.  
2. The Read Array command is accepted but the data output is not guaranteed until the Program or Erase has completed.  
33/87  
 
 
M58WR064FT, M58WR064FB  
BLOCK LOCKING  
The M58WR064FT/B features an instant, individu-  
al block locking scheme that allows any block to be  
locked or unlocked with no latency. This locking  
scheme has three levels of protection.  
software commands. A locked block can be un-  
locked by issuing the Unlock command.  
Lock-Down State  
Blocks that are Locked-Down (state (0,1,x))are  
protected from program and erase operations (as  
for Locked blocks) but their protection status can-  
not be changed using software commands alone.  
A Locked or Unlocked block can be Locked-Down  
by issuing the Lock-Down command. Locked-  
Down blocks revert to the Locked state when the  
device is reset or powered-down.  
Lock/Unlock - this first level allows software-  
only control of block locking.  
Lock-Down - this second level requires  
hardware interaction before locking can be  
changed.  
VPP VPPLK - the third level offers a complete  
The Lock-Down function is dependent on the WP  
input pin. When WP=0 (VIL), the blocks in the  
Lock-Down state (0,1,x) are protected from pro-  
gram, erase and protection status changes. When  
WP=1 (VIH) the Lock-Down function is disabled  
(1,1,x) and Locked-Down blocks can be individual-  
ly unlocked to the (1,1,0) state by issuing the soft-  
ware command, where they can be erased and  
programmed. These blocks can then be re-locked  
(1,1,1) and unlocked (1,1,0) as desired while WP  
remains high. When WP is Low, blocks that were  
previously Locked-Down return to the Lock-Down  
state (0,1,x) regardless of any changes made  
while WP was High. Device reset or power-down  
resets all blocks, including those in Lock-Down, to  
the Locked state.  
hardware protection against program and  
erase on all blocks.  
The protection status of each block can be set to  
Locked, Unlocked, and Lock-Down. Table 13., de-  
fines all of the possible protection states (WP,  
DQ1, DQ0), and APPENDIX C., Figure 28., shows  
a flowchart for the locking operations.  
Reading a Block’s Lock Status  
The lock status of every block can be read in the  
Read Electronic Signature mode of the device. To  
enter this mode write 90h to the device. Subse-  
quent reads at the address specified in Table 6.,  
will output the protection status of that block. The  
lock status is represented by DQ0 and DQ1. DQ0  
indicates the Block Lock/Unlock status and is set  
by the Lock command and cleared by the Unlock  
command. It is also automatically set when enter-  
ing Lock-Down. DQ1 indicates the Lock-Down sta-  
tus and is set by the Lock-Down command. It  
cannot be cleared by software, only by a hardware  
reset or power-down.  
Locking Operations During Erase Suspend  
Changes to block lock status can be performed  
during an erase suspend by using the standard  
locking command sequences to unlock, lock or  
lock-down a block. This is useful in the case when  
another block needs to be updated while an erase  
operation is in progress.  
To change block locking during an erase opera-  
tion, first write the Erase Suspend command, then  
check the status register until it indicates that the  
erase operation has been suspended. Next write  
the desired Lock command sequence to a block  
and the lock status will be changed. After complet-  
ing any desired lock, read, or program operations,  
resume the erase operation with the Erase Re-  
sume command.  
If a block is locked or locked-down during an erase  
suspend of the same block, the locking status bits  
will be changed immediately, but when the erase  
is resumed, the erase operation will complete.  
Locking operations cannot be performed during a  
program suspend. Refer to APPENDIX  
D., COMMAND INTERFACE STATE TABLES, for  
detailed information on which commands are valid  
during erase suspend.  
The following sections explain the operation of the  
locking system.  
Locked State  
The default status of all blocks on power-up or af-  
ter a hardware reset is Locked (states (0,0,1) or  
(1,0,1)). Locked blocks are fully protected from  
any program or erase. Any program or erase oper-  
ations attempted on a locked block will return an  
error in the Status Register. The Status of a  
Locked block can be changed to Unlocked or  
Lock-Down using the appropriate software com-  
mands. An Unlocked block can be Locked by issu-  
ing the Lock command.  
Unlocked State  
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),  
can be programmed or erased. All unlocked  
blocks return to the Locked state after a hardware  
reset or when the device is powered-down. The  
status of an unlocked block can be changed to  
Locked or Locked-Down using the appropriate  
34/87  
M58WR064FT, M58WR064FB  
Table 13. Lock Status  
Current  
(1)  
Next Protection Status  
(WP, DQ1, DQ0)  
(1)  
Protection Status  
(WP, DQ1, DQ0)  
After  
Block Lock  
Command  
After  
Block Unlock  
Command  
After Block  
Lock-Down  
Command  
Program/Erase  
Allowed  
After  
WP transition  
Current State  
1,0,0  
yes  
1,0,1  
1,0,0  
1,1,1  
0,0,0  
(2)  
no  
yes  
no  
1,0,1  
1,1,1  
1,1,1  
0,0,1  
1,0,0  
1,1,0  
1,1,0  
0,0,0  
1,1,1  
1,1,1  
1,1,1  
0,1,1  
0,0,1  
0,1,1  
0,1,1  
1,0,0  
1,0,1  
1,1,0  
1,1,1  
0,0,0  
yes  
(2)  
no  
no  
0,0,1  
0,1,1  
0,0,0  
0,1,1  
0,1,1  
0,1,1  
1,0,1  
0,0,1  
(3)  
0,1,1  
1,1,1 or 1,1,0  
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read  
in the Read Electronic Signature command with A1 = V and A0 = V .  
IH  
IL  
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.  
3. A WP transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
35/87  
M58WR064FT, M58WR064FB  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES  
The Program and Erase times and the number of  
Program/ Erase cycles per block are shown in Ta-  
ble 14. Exact erase times may change depending  
on the memory array condition. The best case is  
when all the bits in the block or bank are at ‘0’ (pre-  
programmed). The worst case is when all the bits  
in the block or bank are at ‘1’ (not prepro-  
grammed). Usually, the system overhead is negli-  
gible with respect to the erase time.  
In the M58WR064FT/B the maximum number of  
Program/ Erase cycles depends on the VPP volt-  
age supply used.  
Table 14. Program/Erase Times and Endurance Cycles  
Typicalafter  
100k W/E  
Cycles  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(2)  
0.3  
0.8  
1
1
3
2.5  
4
s
s
Parameter Block (4 KWord)  
Preprogrammed  
Main Block (32 KWord)  
Erase  
Not Preprogrammed  
Preprogrammed  
4
s
4.5  
6
s
Bank (4Mbit)  
Not Preprogrammed  
s
Word Program  
10  
32  
256  
5
10  
100  
µs  
ms  
ms  
µs  
µs  
cycles  
(3)  
Parameter Block (4 KWord)  
Main Block (32 KWord)  
Program  
Program  
10  
20  
Suspend  
Latency  
Erase  
5
Program/  
Erase Cycles  
(per Block)  
Main Blocks  
100,000  
100,000  
Parameter Blocks  
cycles  
Parameter Block (4 KWord)  
Main Block (32 KWord)  
Bank (4Mbit)  
0.25  
0.8  
6
2.5  
4
s
s
Erase  
s
(4)  
8
100  
µs  
Word/ Double Word/ Quadruple Word  
(4)  
(4)  
8
ms  
ms  
ms  
ms  
Quadruple Word  
Word  
Parameter Block (4  
KWord)  
32  
64  
Quadruple Word  
Word  
(3)  
Program  
Main Block (32 KWord)  
Bank (4Mbit)  
256  
Quad-Enhanced  
0.7  
0.5  
s
s
(4)  
Factory Program  
(4)  
Quadruple Word  
Program/  
Erase Cycles  
(per Block)  
Main Blocks  
1000 cycles  
2500 cycles  
Parameter Blocks  
Note: 1. T = –40 to 85°C; V = 1.7V to 2.2V; V = 2.2V to 3.3V.  
DDQ  
A
DD  
2. The difference between Preprogrammed and not preprogrammed is not significant (‹30ms).  
3. Values are liable to change with the external system-level overhead (command sequence and Status Register polling execution).  
4. Measurements performed at 25°C. T = 25°C ±5°C for Quadruple Word, Double Word and Quadruple Enhanced Factory Program.  
A
36/87  
 
 
M58WR064FT, M58WR064FB  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 15. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
–40  
–40  
–65  
Max  
85  
T
Ambient Operating Temperature  
Temperature Under Bias  
Storage Temperature  
°C  
°C  
°C  
°C  
V
A
T
125  
155  
(1)  
BIAS  
T
STG  
T
Lead Temperature During Soldering  
Input or Output Voltage  
Supply Voltage  
LEAD  
V
IO  
V
+0.6  
–0.5  
–0.2  
–0.2  
–0.2  
DDQ  
V
DD  
2.45  
2.45  
14  
V
V
Input/Output Supply Voltage  
Program Voltage  
V
DDQ  
V
PP  
V
I
Output Short Circuit Current  
Time for V at V  
100  
100  
mA  
hours  
O
t
VPPH  
PP  
PPH  
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ® 7191395 specification,  
and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.  
37/87  
 
M58WR064FT, M58WR064FB  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 16., Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 16. Operating and AC Measurement Conditions  
M58WR064FT, M58WR064FB  
60  
70  
80  
Parameter  
Units  
Min  
1.7  
Max  
Min  
1.7  
Max  
2
Min  
1.7  
Max  
2
V
V
V
Supply Voltage  
Supply Voltage  
2
V
V
V
DD  
1.7  
2.24  
12.6  
1.7  
2.24  
12.6  
1.7  
2.24  
12.6  
DDQ  
Supply Voltage (Factory environment)  
11.4  
11.4  
11.4  
PP  
PP  
V
DDQ  
V
DDQ  
V
DDQ  
+0.4  
V
Supply Voltage (Application environment)  
-0.4  
-0.4  
-0.4  
V
+0.4  
+0.4  
Ambient Operating Temperature  
– 40  
85  
– 40  
85  
– 40  
85  
°C  
pF  
ns  
V
Load Capacitance (C )  
30  
30  
30  
L
Input Rise and Fall Times  
5
5
5
0 to V  
0 to V  
0 to V  
DDQ  
Input Pulse Voltages  
DDQ  
DDQ  
V /2  
DDQ  
V
/2  
DDQ  
V
/2  
DDQ  
Input and Output Timing Ref. Voltages  
V
Figure 8. AC Measurement I/O Waveform  
Figure 9. AC Measurement Load Circuit  
V
DDQ  
V
DDQ  
V
V
/2  
DDQ  
DDQ  
V
DD  
0V  
16.7kΩ  
AI06161  
DEVICE  
UNDER  
TEST  
C
L
16.7kΩ  
0.1µF  
0.1µF  
C
includes JIG capacitance  
L
AI06162  
Table 17. Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
8
Unit  
C
V
IN  
= 0V  
= 0V  
6
8
pF  
pF  
IN  
C
V
OUT  
12  
OUT  
Note: Sampled only, not 100% tested.  
38/87  
 
M58WR064FT, M58WR064FB  
Table 18. DC Characteristics - Currents  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Typ  
Max  
±1  
Unit  
µA  
I
LI  
0V V V  
IN  
DDQ  
I
LO  
0V V  
V  
OUT DDQ  
±1  
µA  
Supply Current  
Asynchronous Read (f=6MHz)  
E = V , G = V  
3
6
mA  
IL  
IH  
4 Word  
8 Word  
7
16  
18  
22  
25  
17  
20  
25  
30  
50  
50  
50  
15  
20  
15  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10  
12  
13  
8
Supply Current  
Synchronous Read (f=54MHz)  
16 Word  
Continuous  
4 Word  
I
DD1  
8 Word  
11  
14  
16  
10  
10  
10  
8
Supply Current  
Synchronous Read (f=66MHz)  
16 Word  
Continuous  
I
I
I
RP = V ± 0.2V  
Supply Current (Reset)  
DD2  
DD3  
DD4  
SS  
E = V ± 0.2V  
Supply Current (Standby)  
µA  
DD  
E = V , G = V  
Supply Current (Automatic Standby)  
µA  
IL  
IH  
V
= V  
PPH  
mA  
mA  
mA  
mA  
PP  
Supply Current (Program)  
Supply Current (Erase)  
V
= V  
= V  
10  
8
PP  
DD  
(1)  
I
DD5  
V
PP  
PPH  
V
= V  
DD  
10  
PP  
Program/Erase in one  
Bank, Asynchronous  
Read in another Bank  
13  
26  
mA  
Supply Current  
(Dual Operations)  
(1,2)  
(1)  
I
DD6  
Program/Erase in one  
Bank, Synchronous  
Read in another Bank  
23  
10  
45  
50  
mA  
µA  
Supply Current Program/ Erase  
Suspended (Standby)  
E = V ± 0.2V  
I
I
DD  
DD7  
V
PP  
= V  
PPH  
2
5
5
5
5
5
5
mA  
µA  
mA  
µA  
µA  
µA  
V
Supply Current (Program)  
Supply Current (Erase)  
PP  
PP  
V
= V  
= V  
0.2  
2
PP  
DD  
(1)  
PP1  
V
PP  
PPH  
V
V
= V  
0.2  
0.2  
0.2  
PP  
DD  
DD  
I
V
V
Supply Current (Read)  
V
V  
V  
PP2  
PP  
PP  
(1)  
Supply Current (Standby)  
V
PP  
I
PP  
DD  
PP3  
Note: 1. Sampled only, not 100% tested.  
2. V Dual Operation current is the sum of read and program or erase currents.  
DD  
39/87  
 
M58WR064FT, M58WR064FB  
Table 19. DC Characteristics - Voltages  
Symbol  
Parameter  
Input Low Voltage  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
IL  
–0.5  
0.4  
V
V
V
–0.4  
V
+ 0.4  
DDQ  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IH  
DDQ  
V
I
= 100µA  
OL  
0.1  
V
OL  
V
I
= –100µA  
OH  
–0.1  
V
OH  
DDQ  
V
V
Program Voltage-Logic  
Program Voltage Factory  
Program, Erase  
Program, Erase  
1.1  
1.8  
12  
3.3  
12.6  
0.4  
V
PP1  
PP  
V
V
PP  
11.4  
V
PPH  
V
Program or Erase Lockout  
V Lock Voltage  
DD  
V
PPLK  
V
LKO  
1
V
V
RP pin Extended High Voltage  
3.3  
V
RPH  
40/87  
 
M58WR064FT, M58WR064FB  
Figure 10. Asynchronous Random Access Read AC Waveforms  
41/87  
M58WR064FT, M58WR064FB  
Figure 11. Asynchronous Page Read AC Waveforms  
42/87  
M58WR064FT, M58WR064FB  
Table 20. Asynchronous Read AC Characteristics  
M58WR064FT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
60  
60  
20  
70  
70  
70  
20  
80  
80  
80  
25  
t
t
Address Valid to Next Address Valid  
Address Valid to Output Valid (Random)  
Address Valid to Output Valid (Page)  
Address Transition to Output Transition  
Chip Enable Low to Wait Valid  
Min  
Max  
Max  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
ACC  
AVQV  
t
t
PAGE  
AVQV1  
(1)  
t
0
11  
60  
0
0
14  
70  
0
0
14  
80  
0
t
OH  
AXQX  
t
Max  
Max  
ELTV  
(2)  
t
Chip Enable Low to Output Valid  
t
t
CE  
ELQV  
(1)  
t
Chip Enable Low to Output Transition  
Chip Enable High to Wait Hi-Z  
Min  
Max  
Min  
Max  
Max  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LZ  
ELQX  
t
14  
0
17  
0
17  
0
EHTZ  
(1)  
(1)  
(2)  
(1)  
(1)  
(1)  
t
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
t
t
t
t
t
OH  
EHQX  
EHQZ  
GLQV  
GLQX  
t
14  
20  
0
17  
20  
0
17  
25  
0
HZ  
t
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable High to Output Transition  
OE  
t
OLZ  
t
0
0
0
OH  
GHQX  
t
Output Enable High to Output Hi-Z  
Address Valid to Latch Enable High  
Chip Enable Low to Latch Enable High  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
14  
7
14  
9
14  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
DF  
GHQZ  
t
t
t
t
AVLH  
ELLH  
AVADVH  
ELADVH  
t
t
10  
7
10  
9
10  
9
LHAX  
ADVHAX  
t
t
ADVLADVH  
7
9
9
LLLH  
LLQV  
t
t
t
Latch Enable Low to Output Valid (Random)  
Latch Enable High to Output Enable Low  
60  
0
70  
0
80  
0
ADVLQV  
t
LHGL  
ADVHGL  
Note: 1. Sampled only, not 100% tested.  
2. G may be delayed by up to t  
- t  
after the falling edge of E without increasing t  
.
ELQV GLQV  
ELQV  
43/87  
 
M58WR064FT, M58WR064FB  
Figure 12. Synchronous Burst Read AC Waveforms  
44/87  
M58WR064FT, M58WR064FB  
Figure 13. Single Synchronous Read AC Waveforms  
45/87  
M58WR064FT, M58WR064FB  
Figure 14. Synchronous Burst Read Suspend AC Waveforms  
46/87  
 
M58WR064FT, M58WR064FB  
Figure 15. Clock input AC Waveform  
tKHKL  
tKHKH  
tr  
tf  
tKLKH  
AI06981  
Table 21. Synchronous Read AC Characteristics  
M58WR064FT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
7
70  
80  
t
t
t
Address Valid to Clock High  
Chip Enable Low to Clock High  
Chip Enable Low to Wait Valid  
Min  
Min  
Max  
9
9
ns  
ns  
ns  
AVKH  
AVCLKH  
t
7
9
9
ELKH  
ELCLKH  
t
t
11  
14  
14  
ELTV  
Chip Enable Pulse Width  
(subsequent synchronous reads)  
Min  
14  
14  
14  
ns  
EHEL  
t
t
Chip Enable High to Wait Hi-Z  
Clock High to Address Transition  
Max  
Min  
11  
7
14  
9
14  
9
ns  
ns  
EHTZ  
t
KHAX  
CLKHAX  
t
t
Clock High to Output Valid  
Clock High to WAIT Valid  
KHQV  
t
t
Max  
Min  
11  
14  
4
14  
4
ns  
ns  
CLKHQV  
KHTV  
t
Clock High to Output Transition  
Clock High to WAIT Transition  
KHQX  
3
7
CLKHQX  
t
KHTX  
t
t
ADVLCLKH  
Latch Enable Low to Clock High  
Clock Period (f=54MHz)  
Min  
Min  
Min  
9
9
ns  
ns  
ns  
LLKH  
18.5  
18.5  
t
t
CLK  
KHKH  
Clock Period (f=66MHz)  
15  
t
Clock High to Clock Low  
Clock Low to Clock High  
KHKL  
Min  
3.5  
4.5  
3
4.5  
3
ns  
ns  
t
KLKH  
t
f
Clock Fall or Rise Time  
Max  
3
t
r
Note: 1. Sampled only, not 100% tested.  
2. For other timings please refer to Table 20., Asynchronous Read AC Characteristics.  
47/87  
 
M58WR064FT, M58WR064FB  
Figure 16. Write AC Waveforms, Write Enable Controlled  
48/87  
M58WR064FT, M58WR064FB  
Table 22. Write AC Characteristics, Write Enable Controlled  
M58WR064FT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
60  
7
70  
70  
9
80  
80  
9
t
t
Address Valid to Next Address Valid  
Address Valid to Latch Enable High  
Min  
Min  
ns  
ns  
AVAV  
WC  
t
AVLH  
(3)  
t
Address Valid to Write Enable High  
Data Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
40  
40  
10  
0
45  
45  
10  
0
50  
50  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
WC  
AVWH  
t
t
DVWH  
DS  
t
Chip Enable Low to Latch Enable High  
Chip Enable Low to Write Enable Low  
Chip Enable Low to Output Valid  
Chip Enable Low to Clock Valid  
ELLH  
t
t
ELWL  
CS  
t
60  
7
70  
9
80  
9
ELQV  
t
ELKV  
t
Output Enable High to Write Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
14  
7
17  
9
17  
9
GHWL  
t
LHAX  
t
7
9
9
LLLH  
(3)  
Write Enable High to Address Valid  
Min  
0
0
0
ns  
t
t
WHAV  
(3)  
t
t
t
Write Enable High to Address Transition  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Chip Enable Low  
Min  
Min  
Min  
Min  
0
0
0
0
0
0
ns  
ns  
ns  
ns  
AH  
WHAX  
t
WHDX  
DH  
CH  
t
0
0
0
WHEH  
(2)  
20  
25  
25  
t
WHEL  
t
Write Enable High to Output Enable Low  
Write Enable High to Latch Enable Low  
Write Enable High to Write Enable Low  
Write Enable High to Output Valid  
Min  
Min  
Min  
Min  
Min  
Min  
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
WHGL  
t
WHLL  
t
t
WPH  
20  
80  
40  
0
25  
95  
45  
0
25  
105  
50  
0
WHWL  
t
WHQV  
t
t
Write Enable Low to Write Enable High  
WLWH  
WP  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
Output (Status Register) Valid to Write Protect  
Low  
t
Min  
0
0
0
ns  
QVWPL  
t
t
V
High to Write Enable High  
Min  
Min  
Min  
Min  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
ns  
ns  
ns  
ns  
VPHWH  
VPS  
PP  
t
Write Enable High to V Low  
WHVPL  
PP  
t
Write Enable High to Write Protect Low  
Write Protect High to Write Enable High  
WHWPL  
t
WPHWH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
3. Meaningful only if L is always kept low.  
49/87  
M58WR064FT, M58WR064FB  
Figure 17. Write AC Waveforms, Chip Enable Controlled  
50/87  
M58WR064FT, M58WR064FB  
Table 23. Write AC Characteristics, Chip Enable Controlled  
M58WR064FT/B  
Unit  
Symbol  
Alt  
Parameter  
60  
60  
40  
7
70  
70  
45  
9
80  
80  
50  
9
t
t
Address Valid to Next Address Valid  
Address Valid to Chip Enable High  
Address Valid to Latch Enable High  
Data Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
WC  
WC  
t
t
AVEH  
t
AVLH  
t
t
40  
0
45  
0
50  
0
DVEH  
DS  
AH  
DH  
t
t
t
Chip Enable High to Address Transition  
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Clock Valid  
EHAX  
t
0
0
0
EHDX  
t
t
CPH  
20  
0
25  
0
25  
0
EHEL  
t
EHGL  
t
t
0
0
0
EHWH  
CH  
t
7
9
9
ELKV  
ELEH  
t
t
Chip Enable Low to Chip Enable High  
Chip Enable Low to Latch Enable High  
Chip Enable Low to Output Valid  
40  
10  
60  
14  
7
45  
10  
70  
17  
9
50  
10  
80  
17  
9
CP  
t
t
ELLH  
ELQV  
GHEL  
t
Output Enable High to Chip Enable Low  
Latch Enable High to Address Transition  
Latch Enable Pulse Width  
t
LHAX  
t
7
9
9
LLLH  
(2)  
Write Enable High to Chip Enable Low  
Write Enable High to Output Valid  
Write Enable Low to Chip Enable Low  
Min  
Min  
Min  
Min  
Min  
Min  
20  
80  
0
25  
95  
0
25  
105  
0
ns  
ns  
ns  
ns  
ns  
ns  
t
WHEL  
t
WHQV  
t
t
WLEL  
CS  
t
Chip Enable High to V Low  
200  
200  
0
200  
200  
0
200  
200  
0
EHVPL  
PP  
t
Chip Enable High to Write Protect Low  
EHWPL  
t
Output (Status Register) Valid to V Low  
QVVPL  
PP  
Output (Status Register) Valid to Write Protect  
Low  
t
Min  
0
0
0
ns  
QVWPL  
t
t
V
High to Chip Enable High  
Min  
Min  
200  
200  
200  
200  
200  
200  
ns  
ns  
VPHEH  
VPS  
PP  
t
Write Protect High to Chip Enable High  
WPHEH  
Note: 1. Sampled only, not 100% tested.  
2. t has the values shown when reading in the targeted bank. System designers should take this into account and may insert a  
WHEL  
software No-Op instruction to delay the first read in the same bank after issuing a command. If it is a Read Array operation in a  
different bank t is 0ns.  
WHEL  
51/87  
 
M58WR064FT, M58WR064FB  
Figure 18. Reset and Power-up AC Waveforms  
tPHWL  
tPHEL  
tPHGL  
tPHLL  
tPLWL  
tPLEL  
tPLGL  
tPLLL  
W, E, G, L  
RP  
tVDHPH  
tPLPH  
VDD, VDDQ  
Power-Up  
Reset  
AI06976  
Table 24. Reset and Power-up AC Characteristics  
Symbol  
Parameter  
Test Condition  
During Program  
60  
10  
20  
70  
10  
20  
80  
10  
20  
Unit  
µs  
Reset Low to  
Min  
t
PLWL  
Write Enable Low,  
Chip Enable Low,  
Output Enable Low,  
Latch Enable Low  
t
PLEL  
During Erase  
Min  
Min  
µs  
t
PLGL  
t
Other Conditions  
80  
80  
80  
ns  
ns  
PLLL  
Reset High to  
t
PHWL  
Write Enable Low  
Chip Enable Low  
Output Enable Low  
Latch Enable Low  
t
PHEL  
Min  
30  
30  
30  
t
PHGL  
t
PHLL  
(1,2)  
(3)  
RP Pulse Width  
Min  
Min  
50  
50  
50  
50  
50  
50  
ns  
µs  
t
t
PLPH  
Supply Voltages High to Reset  
High  
VDHPH  
Note: 1. The device Reset is possible but not guaranteed if t  
2. Sampled only, not 100% tested.  
< 50ns.  
PLPH  
3. It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.  
52/87  
M58WR064FT, M58WR064FB  
PACKAGE MECHANICAL  
Figure 19. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Bottom View Package Outline  
D
D1  
FD  
FE  
SD  
E
E1  
ddd  
BALL "A1"  
e
e
b
A
A2  
A1  
BGA-Z38  
Note: Drawing is not to scale.  
Table 25. VFBGA56 - 7.7x9mm, 8x7 ball array, 0.75mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.000  
0.0394  
0.200  
0.0079  
0.660  
0.350  
7.700  
5.250  
0.0260  
0.0138  
0.3031  
0.2067  
0.300  
7.600  
0.400  
0.0118  
0.2992  
0.0157  
D
7.800  
0.3071  
D1  
ddd  
e
0.080  
0.0031  
0.750  
9.000  
4.500  
1.225  
2.250  
0.375  
0.0295  
0.3543  
0.1772  
0.0482  
0.0886  
0.0148  
E
8.900  
9.100  
0.3504  
0.3583  
E1  
FD  
FE  
SD  
53/87  
 
M58WR064FT, M58WR064FB  
Figure 20. VFBGA56 Daisy Chain - Package Connections (Top view through package)  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
AI07731b  
54/87  
 
M58WR064FT, M58WR064FB  
Figure 21. VFBGA56 Daisy Chain - PCB Connection Proposal (Top view through package)  
1
2
3
4
5
6
7
8
START POINT  
A
B
C
D
E
F
G
END POINT  
AI07755  
55/87  
M58WR064FT, M58WR064FB  
PART NUMBERING  
Table 26. Ordering Information Scheme  
Example:  
M58WR064FT  
70 ZB  
6
T
Device Type  
M58  
Architecture  
W = Multiple Bank, Burst Mode  
Operating Voltage  
R = V = 1.7V to 2V, V  
= 1.7V to 2.24V  
DDQ  
DD  
Device Function  
064FT = 64 Mbit (x16), Top Boot  
064FB = 64 Mbit (x16), Bottom Boot  
Speed  
60 = 60ns  
70 = 70ns  
80 = 80ns  
Package  
ZB = VFBGA56: 7.7 x 9mm, 8x7 active ball array, 0.75 mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-Free and RoHS Package, Standard Packing  
F = Lead-Free and RoHS Package, Tape & Reel Packing  
56/87  
 
M58WR064FT, M58WR064FB  
Table 27. Daisy Chain Ordering Scheme  
Example:  
M58WR064F  
-ZB T  
Device Type  
M58WR064F  
Daisy Chain  
ZB = VFBGA56: 7.7 x 9mm, 8x7 active ball array, 0.75 mm pitch  
Option  
Blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead-Free and RoHS Package, Standard Packing  
F = Lead-Free and RoHS Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available op-  
tions (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST  
Sales Office nearest to you.  
57/87  
 
M58WR064FT, M58WR064FB  
APPENDIX A. BLOCK ADDRESS TABLES  
Table 28. Top Boot Block Addresses,  
M58WR064FT  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
Size  
(KWord)  
Bank  
#
Address Range  
0
4
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
58/87  
 
M58WR064FT, M58WR064FB  
79  
80  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
Note: There are two Bank Regions: Bank Region 1 contains all the  
banks that are made up of main blocks only; Bank Region 2  
contains the banks that are made up of the parameter and  
main blocks (Parameter Bank).  
59/87  
M58WR064FT, M58WR064FB  
Table 29. Bottom Boot Block Addresses,  
M58WR064FB  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
Size  
Bank  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
98  
97  
96  
95  
60/87  
 
M58WR064FT, M58WR064FB  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
007000-007FFF  
006000-006FFF  
005000-005FFF  
004000-004FFF  
003000-003FFF  
002000-002FFF  
001000-001FFF  
000000-000FFF  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
Note: There are two Bank Regions: Bank Region 2 contains all the  
banks that are made up of main blocks only; Bank Region 1  
contains the banks that are made up of the parameter and  
main blocks (Parameter Bank).  
61/87  
M58WR064FT, M58WR064FB  
APPENDIX B. COMMON FLASH INTERFACE  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
When the Read CFI Query Command is issued  
the device enters CFI Query mode and the data  
structure is read from the memory. Tables 30, 31,  
32, 33, 34, 35, 36, 37, 38 and 39 show the ad-  
dresses used to retrieve the data. The Query data  
is always presented on the lowest order data out-  
puts (DQ0-DQ7), the other outputs (DQ8-DQ15)  
are set to 0.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Figure 5., Protection Register Memory  
Map). This area can be accessed only in Read  
mode by the final user. It is impossible to change  
the security number after it has been written by  
ST. Issue a Read Array command to return to  
Read mode.  
Table 30. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Lock Protection Register  
Unique device Number and  
User Programmable OTP  
80h  
Security Code Area  
Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections  
detailed in Tables 31, 32, 33 and 34. Query data is always presented on the lowest order data outputs.  
Table 31. CFI Query Identification String  
Offset  
Sub-section Name  
Description  
Value  
00h  
0020h  
Manufacturer Code  
Device Code  
ST  
8810h  
8811h  
Top (M58WR064FT)  
Bottom (M58WR064FB)  
01h  
02h  
03h  
reserved  
reserved  
reserved  
0051h  
Reserved  
Reserved  
Reserved  
04h-0Fh  
10h  
"Q"  
"R"  
"Y"  
11h  
0052h  
Query Unique ASCII String "QRY"  
12h  
0059h  
13h  
0003h  
Primary Algorithm Command Set and Control Interface  
ID code 16 bit ID code defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0039h  
0000h  
Address for Primary Algorithm extended Query table  
(see Table 34.)  
p = 39h  
NA  
16h  
17h  
0000h  
Alternate Vendor Command Set and Control Interface  
ID Code second vendor - specified algorithm supported  
18h  
0000h  
19h  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended Query table  
NA  
1Ah  
62/87  
 
 
M58WR064FT, M58WR064FB  
Table 32. CFI Query System Interface Information  
Offset  
Data  
Description  
Value  
V
V
V
V
Logic Supply Minimum Program/Erase or Write voltage  
bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
DD  
1Bh  
0017h  
1.7V  
2V  
Logic Supply Maximum Program/Erase or Write voltage  
bit 7 to 4 BCD value in volts  
bit 3 to 0 BCD value in 100 millivolts  
DD  
1Ch  
1Dh  
1Eh  
0020h  
00B4h  
00C6h  
[Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 millivolts  
PP  
11.4V  
12.6V  
[Programming] Supply Maximum Program/Erase voltage  
bit 7 to 4 HEX value in volts  
PP  
bit 3 to 0 BCD value in 100 millivolts  
n
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0000h  
000Ah  
0000h  
0003h  
0000h  
0002h  
0000h  
16µs  
NA  
Typical time-out per single byte/word program = 2 µs  
n
Typical time-out for multi-Byte programming = 2 µs  
n
1s  
Typical time-out per individual block erase = 2 ms  
n
NA  
Typical time-out for full chip erase = 2 ms  
n
128µs  
NA  
Maximum time-out for word program = 2 times typical  
n
Maximum time-out for multi-Byte programming = 2 times typical  
n
4s  
Maximum time-out per individual block erase = 2 times typical  
n
NA  
Maximum time-out for chip erase = 2 times typical  
63/87  
 
M58WR064FT, M58WR064FB  
Table 33. Device Geometry Definition  
Offset Word  
Data  
Description  
Value  
Mode  
n
27h  
0017h  
8 MByte  
Device Size = 2 in number of bytes  
28h  
29h  
0001h  
0000h  
x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
0000h  
0000h  
n
NA  
2
Maximum number of bytes in multi-byte program or page = 2  
Number of identical sized erase block regions within the device  
bit 7 to 0 = x = number of Erase Block Regions  
2Ch  
0002h  
2Dh  
2Eh  
007Eh  
0000h  
Region 1 Information  
Number of identical-size erase blocks = 007Eh+1  
127  
2Fh  
30h  
0000h  
0001h  
Region 1 Information  
Block size in Region 1 = 0100h * 256 byte  
64 KByte  
8
31h  
32h  
0007h  
0000h  
Region 2 Information  
Number of identical-size erase blocks = 0007h+1  
33h  
34h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 byte  
8 KByte  
NA  
35h  
38h  
reserved Reserved for future erase block region information  
2Dh  
2Eh  
0007h  
0000h  
Region 1 Information  
Number of identical-size erase block = 0007h+1  
8
2Fh  
30h  
0020h  
0000h  
Region 1 Information  
Block size in Region 1 = 0020h * 256 byte  
8 KByte  
127  
31h  
32h  
007Eh  
0000h  
Region 2 Information  
Number of identical-size erase block = 007Eh+1  
33h  
34h  
0000h  
0001h  
Region 2 Information  
Block size in Region 2 = 0100h * 256 byte  
64 KByte  
NA  
35h  
38h  
reserved Reserved for future erase block region information  
64/87  
 
M58WR064FT, M58WR064FB  
Table 34. Primary Algorithm-Specific Extended Query Table  
Offset  
Data  
Description  
Value  
(P)h = 39h  
0050h  
0052h  
0049h  
0031h  
0033h  
00E6h  
0003h  
0000h  
0000h  
"P"  
Primary Algorithm extended Query table unique ASCII string “PRI”  
"R"  
"I"  
(P+3)h = 3Ch  
(P+4)h = 3Dh  
(P+5)h = 3Eh  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"3"  
Extended Query table contents for Primary Algorithm. Address (P+5)h  
contains less significant byte.  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 8  
bit 9  
Chip Erase supported  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
No  
Yes  
Yes  
No  
(P+7)h = 40h  
(P+8)h = 41h  
Erase Suspend supported  
Program Suspend supported  
Legacy Lock/Unlock supported  
Queued Erase supported  
Instant individual block locking supported(1 = Yes, 0 = No)  
Protection bits supported  
Page mode read supported  
Synchronous read supported  
Simultaneous operation supported  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
(1 = Yes, 0 = No)  
bit 10 to 31 Reserved; undefined bits are ‘0’. If bit 31 is ’1’ then another  
31 bit field of optional features follows at the end of the bit-30  
field.  
(P+9)h = 42h  
0001h  
Supported Functions after Suspend  
Read Array, Read Status Register and CFI Query  
Yes  
bit 0  
Program supported after Erase Suspend (1 = Yes, 0 = No)  
bit 7 to 1 Reserved; undefined bits are ‘0’  
(P+A)h = 43h  
(P+B)h = 44h  
0003h  
0000h  
Block Protect Status  
Defines which bits in the Block Status Register section of the Query are  
implemented.  
bit 0 Block protect Status Register Lock/Unlock  
bit active  
(1 = Yes, 0 = No)  
Yes  
Yes  
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)  
bit 15 to 2 Reserved for future use; undefined bits are ‘0’  
V
V
Logic Supply Optimum Program/Erase voltage (highest performance)  
DD  
(P+C)h = 45h  
(P+D)h = 46h  
0018h  
00C0h  
1.8V  
12V  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
Supply Optimum Program/Erase voltage  
PP  
bit 7 to 4 HEX value in volts  
bit 3 to 0 BCD value in 100 mV  
65/87  
 
M58WR064FT, M58WR064FB  
Table 35. Protection Register Information  
Offset  
Data  
Description  
Value  
Number of protection register fields in JEDEC ID space. 0000h indicates that  
256 fields are available.  
(P+E)h = 47h  
0001h  
1
(P+F)h = 48h  
(P+10)h = 49h  
(P+11)h = 4Ah  
(P+12)h= 4Bh  
0080h  
0000h  
0003h  
0004h  
Protection Field 1: Protection Description  
0080h  
Bits 0-7 Lower byte of protection register address  
Bits 8-15 Upper byte of protection register address  
n
8 Bytes  
Bits 16-23 2 bytes in factory pre-programmed region  
n
Bits 24-31 2 bytes in user programmable region  
16 Bytes  
Table 36. Burst Read Information  
Offset  
Data  
Description  
Value  
(P+13)h = 4Ch  
0003h  
Page-mode read capability  
8 Bytes  
n
bits 0-7  
’n’ such that 2 HEX value represents the number of read-  
page bytes. See offset 28h for device word width to  
determine page-mode data output width.  
(P+14)h = 4Dh  
(P+15)h = 4Eh  
0004h  
0001h  
Number of synchronous mode read configuration fields that follow.  
4
4
Synchronous mode read capability configuration 1  
bit 3-7  
bit 0-2  
Reserved  
n+1  
’n’ such that 2  
HEX value represents the maximum  
number of continuous synchronous reads when the device is  
configured for its maximum word width. A value of 07h  
indicates that the device is capable of continuous linear  
bursts that will output data until the internal burst counter  
reaches the end of the device’s burstable address space.  
This field’s 3-bit value can be written directly to the read  
configuration register bit 0-2 if the device is configured for its  
maximum word width. See offset 28h for word width to  
determine the burst data output width.  
(P+16)h = 4Fh  
(P+17)h = 50h  
(P+18)h = 51h  
0002h  
0003h  
0007h  
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
8
16  
Cont.  
Table 37. Bank and Erase Block Region Information  
M58WR064FT(top)  
M58WR064FB (bottom)  
Description  
Offset  
Data  
Offset  
Data  
(P+19)h = 52h  
02h  
(P+19)h = 52h  
02h  
Number of Bank Regions within the device  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Table 28. and Table 29.  
66/87  
 
 
M58WR064FT, M58WR064FB  
Table 38. Bank and Erase Block Region 1 Information  
M58WR064FT (top)  
M58WR064FB (bottom)  
Description  
Offset  
Data  
0Fh  
00h  
Offset  
Data  
01h  
00h  
(P+1A)h = 53h  
(P+1B)h = 54h  
(P+1A)h = 53h  
(P+1B)h = 54h  
Number of identical banks within Bank Region 1  
Number of program or erase operations allowed in region 1:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+1C)h = 55h  
(P+1D)h = 56h  
11h  
00h  
(P+1C)h = 55h  
(P+1D)h = 56h  
11h  
00h  
Number of program or erase operations allowed in other banks  
while a bank in same region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other banks  
while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+1E)h = 57h  
(P+1F)h = 58h  
00h  
01h  
(P+1E)h = 57h  
(P+1F)h =58h  
00h  
02h  
Types of erase block regions in region 1  
n = number of erase block regions with contiguous same-size  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region.  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
00h  
01h  
64h  
00h  
(P+20)h = 59h  
(P+21)h = 5Ah  
(P+22)h = 5Bh  
(P+23)h = 5Ch  
(P+24)h = 5Dh  
(P+25)h = 5Eh  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 1 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 1 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
(P+26)h = 5Fh  
(P+27)h = 60h  
01h  
03h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved 5Eh 01 5Eh 01  
Bank Region 1 (Erase Block Type 1): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+28)h = 61h  
(P+29)h = 62h  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
06h  
00h  
00h  
01h  
64h  
00h  
Bank Region 1 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 1 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
67/87  
 
M58WR064FT, M58WR064FB  
M58WR064FT (top)  
Offset Data  
M58WR064FB (bottom)  
Description  
Offset  
Data  
Bank Regions 1 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+2E)h = 67h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 1 (Erase Block Type 2): Page mode and  
synchronous mode capabilities  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+2F)h = 68h  
03h  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Table 28. and Table 29.  
Table 39. Bank and Erase Block Region 2 Information  
M58WR064FT (top)  
M58WR064FB (bottom)  
Description  
Offset  
Data  
01h  
00h  
Offset  
Data  
0Fh  
00h  
(P+28)h = 61h  
(P+29)h = 62h  
(P+30)h = 69h  
(P+31)h = 6Ah  
Number of identical banks within bank region 2  
Number of program or erase operations allowed in bank region  
2:  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
(P+2A)h = 63h  
(P+2B)h = 64h  
(P+2C)h = 65h  
(P+2D)h = 66h  
11h  
00h  
00h  
02h  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
(P+34)h = 6Dh  
(P+35)h = 6Eh  
11h  
00h  
00h  
01h  
Number of program or erase operations allowed in other banks  
while a bank in this region is programming  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Number of program or erase operations allowed in other banks  
while a bank in this region is erasing  
Bits 0-3: Number of simultaneous program operations  
Bits 4-7: Number of simultaneous erase operations  
Types of erase block regions in region 2  
n = number of erase block regions with contiguous same-size  
erase blocks.  
(2)  
Symmetrically blocked banks have one blocking region.  
(P+2E)h = 67h  
(P+2F)h = 68h  
(P+30)h = 69h  
(P+31)h = 6Ah  
(P+32)h = 6Bh  
(P+33)h = 6Ch  
06h  
00h  
00h  
01h  
64h  
00h  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
00h  
01h  
64h  
00h  
Bank Region 2 Erase Block Type 1 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 1)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 1): BIts per cell, internal  
ECC  
(P+34)h = 6Dh  
01h  
(P+3C)h = 75h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
68/87  
 
M58WR064FT, M58WR064FB  
M58WR064FT (top)  
M58WR064FB (bottom)  
Description  
Offset  
Data  
Offset  
Data  
Bank Region 2 (Erase Block Type 1): Page mode and  
synchronous mode capabilities (defined in Table 36.)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+35)h = 6Eh  
03h  
(P+3D)h = 76h  
03h  
(P+36)h = 6Fh  
(P+37)h = 70h  
(P+38)h = 71h  
(P+39)h = 72h  
(P+3A)h = 73h  
(P+3B)h = 74h  
07h  
00h  
20h  
00h  
64h  
00h  
Bank Region 2 Erase Block Type 2 Information  
Bits 0-15: n+1 = number of identical-sized erase blocks  
Bits 16-31: n×256 = number of bytes in erase block region  
Bank Region 2 (Erase Block Type 2)  
Minimum block erase cycles × 1000  
Bank Region 2 (Erase Block Type 2): BIts per cell, internal  
ECC  
(P+3C)h = 75h  
01h  
Bits 0-3: bits per cell in erase region  
Bit 4: reserved for “internal ECC used”  
BIts 5-7: reserved  
Bank Region 2 (Erase Block Type 2): Page mode and  
synchronous  
mode capabilities (defined in Table 36.)  
Bit 0: Page-mode reads permitted  
Bit 1: Synchronous reads permitted  
Bit 2: Synchronous writes permitted  
Bits 3-7: reserved  
(P+3D)h = 76h  
03h  
(P+3E)h = 77h  
(P+3F)h = 78h  
(P+3E)h = 77h  
(P+3F)h = 78h  
Feature Space definitions  
Reserved  
Note: 1. The variable P is a pointer which is defined at CFI offset 15h.  
2. Bank Regions. There are two Bank Regions, see Table 28. and Table 29.  
69/87  
M58WR064FT, M58WR064FB  
APPENDIX C. FLOWCHARTS AND PSEUDO CODES  
Figure 22. Program Flowchart and Pseudo Code  
Start  
program_command (addressToProgram, dataToProgram) {:  
"
writeToFlash (addressToProgram, 0x40);  
/*writeToFlash (addressToProgram, 0x10);*/  
/*see note (3)*/  
Write 40h or 10h (3)  
"
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram);  
"see note (3)";  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06170b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
70/87  
 
M58WR064FT, M58WR064FB  
Figure 23. Double Word Program Flowchart and Pseudo code  
Start  
Write 35h  
double_word_program_command (addressToProgram1, dataToProgram1,  
addressToProgram2, dataToProgram2)  
{
writeToFlash (addressToProgram1, 0x35);  
/*see note (4)*/  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
/*Memory enters read status state after  
the Program command*/  
Write Address 2  
& Data 2 (3)  
do {  
status_register=readFlash (addressToProgram) ;  
"see note (4)"  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
PP  
SR3 = 0  
YES  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06171b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.  
4. Any address within the bank can equally be used.  
71/87  
M58WR064FT, M58WR064FB  
Figure 24. Quadruple Word Program Flowchart and Pseudo Code  
Start  
quadruple_word_program_command (addressToProgram1, dataToProgram1,  
Write 56h  
addressToProgram2, dataToProgram2,  
addressToProgram3, dataToProgram3,  
addressToProgram4, dataToProgram4)  
{
Write Address 1  
& Data 1 (3, 4)  
writeToFlash (addressToProgram1, 0x56);  
/*see note (4) */  
writeToFlash (addressToProgram1, dataToProgram1) ;  
/*see note (3) */  
Write Address 2  
& Data 2 (3)  
writeToFlash (addressToProgram2, dataToProgram2) ;  
/*see note (3) */  
writeToFlash (addressToProgram3, dataToProgram3) ;  
/*see note (3) */  
Write Address 3  
& Data 3 (3)  
writeToFlash (addressToProgram4, dataToProgram4) ;  
/*see note (3) */  
Write Address 4  
& Data 4 (3)  
/*Memory enters read status state after  
the Program command*/  
do {  
status_register=readFlash (addressToProgram) ;  
/"see note (4) "/  
/* E or G must be toggled*/  
Read Status  
Register (4)  
NO  
NO  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
V
Invalid  
if (status_register.SR3==1) /*V  
PP  
invalid error */  
PP  
SR3 = 0  
YES  
Error (1, 2)  
error_handler ( ) ;  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
Program  
SR4 = 0  
YES  
Error (1, 2)  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06977b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.  
4. Any address within the bank can equally be used.  
72/87  
M58WR064FT, M58WR064FB  
Figure 25. Program Suspend & Resume Flowchart and Pseudo Code  
Start  
program_suspend_command ( ) {  
writeToFlash (any_address, 0xB0) ;  
Write B0h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
program has already completed */  
Write 70h  
do {  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
Read Status  
Register  
NO  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
SR2 = 1  
Program Complete  
Write FFh  
if (status_register.SR2==0) /*program completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
Read Data  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
Read data from  
another address  
read_data ( ); /*read data from another address*/  
writeToFlash (any_address, 0xD0) ;  
/*write 0xD0 to resume program*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if program has completed */  
Write 70h(1)  
}
Program Continues with  
Bank in Read Status  
Register Mode  
}
AI10117b  
Note: The Read Status Register command (Write 70h) can be issued just before or just after the Program Resume command.  
73/87  
M58WR064FT, M58WR064FB  
Figure 26. Block Erase Flowchart and Pseudo Code  
Start  
erase_command ( blockToErase ) {  
writeToFlash (blockToErase, 0x20) ;  
/*see note (2) */  
Write 20h (2)  
writeToFlash (blockToErase, 0xD0) ;  
/* only A12-A21 are significant */  
/* Memory enters read status state after  
the Erase Command */  
Write Block  
Address & D0h  
do {  
Read Status  
Register (2)  
status_register=readFlash (blockToErase) ;  
/* see note (2) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
YES  
NO  
NO  
V
Invalid  
if (status_register.SR3==1) /*V  
error_handler ( ) ;  
invalid error */  
PP  
Error (1)  
PP  
SR3 = 0  
YES  
if ( (status_register.SR4==1) && (status_register.SR5==1) )  
/* command sequence error */  
Command  
Sequence Error (1)  
SR4, SR5 = 1  
NO  
error_handler ( ) ;  
if ( (status_register.SR5==1) )  
/* erase error */  
SR5 = 0  
YES  
Erase Error (1)  
error_handler ( ) ;  
Erase to Protected  
Block Error (1)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI10526  
Note: 1. If an error is found, the Status Register must be cleared before further Program/Erase operations.  
2. Any address within the bank can be used also.  
74/87  
M58WR064FT, M58WR064FB  
Figure 27. Erase Suspend & Resume Flowchart and Pseudo Code  
Start  
erase_suspend_command ( ) {  
writeToFlash (bank_address, 0xB0) ;  
Write B0h  
Write 70h  
writeToFlash (bank_address, 0x70) ;  
/* read status register to check if  
erase has already completed */  
do {  
Read Status  
Register  
status_register=readFlash (bank_address) ;  
/* E or G must be toggled*/  
NO  
NO  
} while (status_register.SR7== 0) ;  
SR7 = 1  
YES  
SR6 = 1  
Erase Complete  
Write FFh  
if (status_register.SR6==0) /*erase completed */  
{ writeToFlash (bank_address, 0xFF) ;  
read_data ( ) ;  
Read Data  
/*The device returns to Read Array  
(as if program/erase suspend was not issued).*/  
YES  
}
else  
Write FFh  
{ writeToFlash (bank_address, 0xFF) ;  
read_program_data ( );  
Read data from another block  
or  
Program/Protection Register Program  
or  
/*read or program data from another block*/  
Block Lock/Unlock/Lock-Down  
writeToFlash (bank_address, 0xD0) ;  
/*write 0xD0 to resume erase*/  
Write D0h  
writeToFlash (bank_address, 0x70) ;  
/*read status register to check if erase has completed */  
Write 70h(1)  
}
}
Erase Continues with  
Bank in Read Status  
Register Mode  
AI10116b  
Note: The Read Status Register command (Write 70h) can be issued just before or just after the Erase Resume command.  
75/87  
M58WR064FT, M58WR064FB  
Figure 28. Locking Operations Flowchart and Pseudo Code  
Start  
locking_operation_command (address, lock_operation) {  
Write 60h (1)  
writeToFlash (address, 0x60) ; /*configuration setup*/  
/* see note (1) */  
if (lock_operation==LOCK) /*to protect the block*/  
writeToFlash (address, 0x01) ;  
else if (lock_operation==UNLOCK) /*to unprotect the block*/  
writeToFlash (address, 0xD0) ;  
Write  
01h, D0h or 2Fh  
else if (lock_operation==LOCK-DOWN) /*to lock the block*/  
writeToFlash (address, 0x2F) ;  
writeToFlash (address, 0x90) ;  
/*see note (1) */  
Write 90h (1)  
Read Block  
Lock States  
if (readFlash (address) ! = locking_state_expected)  
error_handler () ;  
NO  
Locking  
change  
/*Check the locking state (see Read Block Signature table )*/  
confirmed?  
YES  
writeToFlash (address, 0xFF) ; /*Reset to Read Array mode*/  
/*see note (1) */  
Write FFh (1)  
}
End  
AI06176b  
Note: 1. Any address within the bank can equally be used.  
76/87  
M58WR064FT, M58WR064FB  
Figure 29. Protection Register Program Flowchart and Pseudo Code  
Start  
protection_register_program_command (addressToProgram, dataToProgram) {:  
writeToFlash (addressToProgram, 0xC0) ;  
/*see note (3) */  
Write C0h (3)  
writeToFlash (addressToProgram, dataToProgram) ;  
/*Memory enters read status state after  
the Program Command*/  
Write Address  
& Data  
do {  
Read Status  
Register (3)  
status_register=readFlash (addressToProgram) ;  
/* see note (3) */  
/* E or G must be toggled*/  
NO  
SR7 = 1  
YES  
} while (status_register.SR7== 0) ;  
NO  
V
Invalid  
if (status_register.SR3==1) /*VPP invalid error */  
error_handler ( ) ;  
PP  
SR3 = 0  
YES  
Error (1, 2)  
NO  
NO  
Program  
Error (1, 2)  
if (status_register.SR4==1) /*program error */  
error_handler ( ) ;  
SR4 = 0  
YES  
Program to Protected  
Block Error (1, 2)  
if (status_register.SR1==1) /*program to protect block error */  
error_handler ( ) ;  
SR1 = 0  
YES  
End  
}
AI06177b  
Note: 1. Status check of SR1 (Protected Block), SR3 (V Invalid) and SR4 (Program Error) can be made after each program operation or  
PP  
after a sequence.  
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.  
3. Any address within the bank can equally be used.  
77/87  
M58WR064FT, M58WR064FB  
Figure 30. Enhanced Factory Program Flowchart  
SETUP PHASE  
Start  
VERIFY PHASE  
Write PD1  
Address WA1  
Write 30h  
Address WA1  
1)  
(
Write D0h  
Address WA1  
Read Status  
Register  
Read Status  
Register  
NO  
SR0 = 0?  
YES  
NO  
SR7 = 0?  
Check SR4, SR3  
Write PD2  
Address WA2  
YES  
1)  
(
and SR1 for program,  
V
and Lock Errors  
PP  
NO  
SR0 = 0?  
YES  
Exit  
Read Status  
Register  
Write PD1  
Address WA1  
PROGRAM PHASE  
NO  
SR0 = 0?  
Read Status  
Register  
YES  
Write PDn  
Address WAn  
NO  
1)  
(
SR0 = 0?  
YES  
Read Status  
Register  
Write PD2  
Address WA2  
1)  
(
NO  
Read Status  
Register  
SR0 = 0?  
YES  
NO  
Write FFFFh  
SR0 = 0?  
Address Block WA1  
=
/
YES  
EXIT PHASE  
Write PDn  
Address WAn  
1)  
(
Read Status  
Register  
Read Status  
Register  
NO  
SR7 = 1?  
YES  
NO  
SR0 = 0?  
YES  
Check Status  
Register for Errors  
Write FFFFh  
=
Address Block WA1  
/
End  
AI06160  
Note: 1. Address can remain Starting Address WA1 or be incremented.  
78/87  
M58WR064FT, M58WR064FB  
Enhanced Factory Program Pseudo Code  
efp_command(addressFlow,dataFlow,n)  
/* n is the number of data to be programmed */  
{
/* setup phase */  
writeToFlash(addressFlow[0],0x30);  
writeToFlash(addressFlow[0],0xD0);  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
else{  
/*Program Phase*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1)  
/*Ready for first data*/  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* Verify Phase */  
for (i=0; i++; i< n){  
writeToFlash(addressFlow[i],dataFlow[i]);  
/* status register polling*/  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
} while (status_register.SR0==1);  
/* Ready for a new data */  
}
writeToFlash(another_block_address,FFFFh);  
/* exit program phase */  
/* Exit Phase */  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block error*/  
error_handler();  
}
}
79/87  
M58WR064FT, M58WR064FB  
Figure 31. Quadruple Enhanced Factory Program Flowchart  
SETUP PHASE  
Start  
LOAD PHASE  
Write PD1  
Address WA1(  
1)  
Write 75h  
Address WA1  
FIRST  
LOAD PHASE  
Write PD2  
Address WA2(  
Write PD1  
Address WA1  
2)  
Read Status  
Register  
Write PD3  
Address WA3(  
2)  
NO  
SR7 = 0?  
YES  
Write PD4  
Address WA4(  
2)  
EXIT PHASE  
Check SR4, SR3  
and SR1 for program,  
VPP and Lock Errors  
PROGRAM AND  
VERIFY PHASE  
Read Status  
Register  
Write FFFFh  
Address =Block WA1  
/
Exit  
Check SR4 for  
Programming Errors  
NO  
NO  
SR0 = 0?  
YES  
End  
Last Page?  
YES  
AI06178b  
Note: 1. Address can remain Starting Address WA1 (in which case the next Page is programmed) or can be any address in the same block.  
2. The address is only checked for the first Word of each Page as the order to program the Words is fixed, so subsequent Words in  
each Page can be written to any address.  
80/87  
M58WR064FT, M58WR064FB  
Quadruple Enhanced Factory Program Pseudo Code  
quad_efp_command(addressFlow,dataFlow,n)  
/* n is the number of pages to be programmed.*/  
{
/* Setup phase */  
writeToFlash(addressFlow[0],0x75);  
for (i=0; i++; i< n){  
/*Data Load Phase*/  
/*First Data*/  
writeToFlash(addressFlow[i],dataFlow[i,0]);  
/*at the first data of the first page, Quad-EFP may be aborted*/  
if (First_Page) {  
status_register=readFlash(any_address);  
if (status_register.SR7==1){  
/*EFP aborted for an error*/  
if (status_register.SR4==1) /*program error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR1==1) /*program to protect block er-  
ror*/  
error_handler();  
}
}
/*2nd data*/  
writeToFlash(addressFlow[i],dataFlow[i,1]);  
/*3rd data*/  
writeToFlash(addressFlow[i],dataFlow[i,2]);  
/*4th data*/  
writeToFlash(addressFlow[i],dataFlow[i,3]);  
/* Program&Verify Phase */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled*/  
}while (status_register.SR0==1)  
}
/* Exit Phase */  
writeToFlash(another_block_address,FFFFh);  
/* status register polling */  
do{  
status_register=readFlash(any_address);  
/* E or G must be toggled */  
} while (status_register.SR7==0);  
if (status_register.SR1==1) /*program to protected block error*/  
error_handler();  
if (status_register.SR3==1) /*VPP invalid error*/  
error_handler();  
if (status_register.SR4==1) /*program failure error*/  
error_handler();  
}
}
81/87  
M58WR064FT, M58WR064FB  
APPENDIX D. COMMAND INTERFACE STATE TABLES  
Table 40. Command Interface States - Modify Table, Next State  
Command Input  
Erase  
Confirm  
P/E  
Block  
Erase,  
Bank  
Erase  
Setup  
(3,4)  
Read  
DWP,  
QWP  
Setup  
(3,4)  
(35h,  
56h)  
Clear  
status  
Register  
(5)  
Quad- Resume, Program/ Read  
Electronic  
signature,  
Read CFI  
Query  
WP  
setup  
(3,4)  
Read  
EFP  
Setup  
(30h)  
Current CI State  
EFP  
Setup  
(75h)  
Block  
Erase  
Status  
(2)  
Array  
(FFh)  
Unlock Suspend Register  
confirm,  
EFP  
Confirm  
(D0h)  
(10/40h)  
(B0h)  
(70h)  
(50h)  
(20h,  
80h)  
(90h, 98h)  
Program  
Setup  
Program  
Setup  
Quad-EFP  
Setup  
Ready  
Ready  
Erase Setup EFP Setup  
Ready  
Lock/CR Setup  
Ready (Lock Error)  
Ready  
Ready (Lock Error)  
Setup  
OTP  
OTP Busy  
Busy  
Setup  
Program Busy  
Program  
Suspended  
Busy  
Program Busy  
Program Busy  
Program  
Program  
Busy  
Suspend  
Setup  
Program Suspended  
Ready (error)  
Program Suspended  
Ready (error)  
Erase Busy  
Erase  
Suspended  
Busy  
Erase Busy  
EraseBusy  
Erase  
Program in  
Erase  
Suspend  
Erase  
Suspended  
Suspend  
Setup  
Erase Suspended  
Erase Busy  
Erase Suspended  
Program Busy in Erase Suspend  
Program  
Suspend in  
Erase  
Busy  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Program  
in Erase  
Suspend  
Suspend  
Program  
Busy in  
Erase  
Suspend  
Program Suspend in Erase Suspend  
Program Suspend in Erase Suspend  
Suspend  
Lock/CR Setup  
in Erase Suspend  
Erase  
Suspend  
EraseSuspend(Lock Error)  
Ready (error)  
Erase Suspend (Lock Error)  
Ready (error)  
Setup  
EFP Busy  
(6)  
(6)  
Busy  
Verify  
Setup  
Busy  
EFP  
EFP Busy  
EFP Verify  
(6)  
(6)  
Quad EFP Busy  
Quad  
EFP  
Quad EFP Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data out-  
put.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’.EFP and Quad EFP are busy if Block Address is  
first EFP Address. Any other commands are treated as data.  
82/87  
 
M58WR064FT, M58WR064FB  
Table 41. Command Interface States - Modify Table, Next Output  
(6)  
Command Input  
Erase  
Confirm  
P/E  
Resume, Program/  
Block  
Unlock  
confirm,  
EFP  
Confirm  
(D0h)  
Block  
Erase,  
Bank  
Erase  
Setup  
(3,4)  
Read  
DWP,  
QWP  
Setup  
(3,4)  
Clear status  
Register  
(5)  
Quad-  
EFP  
Setup  
(75h)  
Read  
Status  
Suspend Register  
Electronic  
signature,  
Read CFI  
Query  
Read  
EFP  
Setup  
(30h)  
Current CI State  
Erase  
(2)  
Array  
(FFh)  
(B0h)  
(70h)  
(50h)  
(35h, 56h)  
(90h, 98h)  
(20h, 80h)  
Program Setup  
Erase Setup  
OTP Setup  
Program in  
Erase Suspend  
EFP Setup  
EFP Busy  
Status Register  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Lock/CR Setup  
in Erase  
Suspend  
Status  
Register  
OTP Busy  
Ready  
Program Busy  
Erase Busy  
Status  
Register  
Output  
Unchanged  
Array  
Status Register  
Output Unchanged  
Electronic  
Signature/  
CFI  
Program/Erase  
Program Busy in  
Erase Suspend  
Program  
Suspend in  
Erase Suspend  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, DWP = Double Word Program, QWP = Quadruple Word Program, P/E. C. = Program/Erase Controller.  
2. At Power-Up, all banks are in Read Array mode. A Read Array command issued to a busy bank, results in undetermined data out-  
put.  
3. The two cycle command should be issued to the same bank address.  
4. If the P/E.C. is active, both cycles are ignored.  
5. The Clear Status Register command clears the Status Register error bits except when the P/E.C. is busy or suspended.  
6. The output state shows the type of data that appears at the outputs if the bank address is the same as the command address. A  
bank can be placed in Read Array, Read Status Register, Read Electronic Signature or Read CFI Query mode, depending on the  
command issued. Each bank remains in its last output state until a new command is issued. The next state does not depend on the  
bank’s output state.  
83/87  
M58WR064FT, M58WR064FB  
Table 42. Command Interface States - Lock Table, Next State  
Command Input  
Block  
Lock/CR  
OTP  
EFP Exit,  
Quad EFP  
Block Lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(5)  
Current CI State  
Lock-Down  
Confirm  
(2Fh)  
(4)  
(4)  
Setup  
(60h)  
Setup  
(C0h)  
(3)  
Exit  
Lock/CR  
Setup  
Ready  
OTP Setup  
Ready  
N/A  
Lock/CR Setup  
Ready (Lock error)  
Ready  
Ready (Lock error)  
N/A  
N/A  
Setup  
OTP  
OTP Busy  
Busy  
Ready  
N/A  
Setup  
Program Busy  
Program Busy  
Program  
Erase  
Busy  
Suspend  
Setup  
Ready  
N/A  
Program Suspended  
Ready (error)  
N/A  
Busy  
Erase Busy  
Ready  
Lock/CR  
Setup in  
Erase  
Suspend  
Erase Suspended  
N/A  
N/A  
Suspend  
Setup  
Busy  
Program Busy in Erase Suspend  
Program Busy in Erase Suspend  
Program Suspend in Erase Suspend  
Erase Suspend  
Program in  
Erase  
Erase  
Suspended  
Suspend  
Suspend  
N/A  
Lock/CR Setup  
in Erase Suspend  
Erase Suspend (Lock  
error)  
Erase Suspend (Lock error)  
N/A  
Setup  
Ready (error)  
N/A  
N/A  
(2)  
(2)  
(2)  
Busy  
Verify  
Setup  
EFP Verify  
Ready  
EFP  
EFP Busy  
EFP Busy  
(2)  
Ready  
N/A  
EFP Verify  
EFP Verify  
(2)  
Quad EFP Busy  
QuadEFP  
Quad EFP  
(2)  
Busy  
Ready  
Ready  
Quad EFP Busy  
(2)  
Busy  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, P/E. C. = Program/Erase Controller.  
2. EFP and Quad EFP are allowed only when Status Register bit SR0 is set to ‘0’. EFP and Quad EFP are busy if Block Address is  
first EFP Address. Any other commands are treated as data.  
3. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
4. If the P/E.C. is active, both cycles are ignored.  
5. Illegal commands are those not defined in the command set.  
84/87  
M58WR064FT, M58WR064FB  
Table 43. Command Interface States - Lock Table, Next Output  
Command Input  
Block  
Lock/CR  
EFP Exit,  
Quad EFP  
Block Lock  
Confirm  
(01h)  
Set CR  
Confirm  
(03h)  
P/E. C.  
Operation  
Completed  
Illegal  
Command  
(4)  
(3)  
Current CI State  
Lock-Down  
Confirm  
(2Fh)  
OTPSetup  
(C0h)  
(3)  
Setup  
(60h)  
(2)  
Exit  
Program Setup  
Erase Setup  
OTP Setup  
Program in Erase  
Suspend  
Status Register  
EFP Setup  
EFP Busy  
EFP Verify  
Quad EFP Setup  
Quad EFP Busy  
Lock/CR Setup  
Output  
Unchanged  
Status Register  
Array  
Status Register  
Lock/CR Setup in  
Erase Suspend  
OTP Busy  
Ready  
Program Busy  
EraseBusy  
Program/Erase  
Output  
Unchanged  
Status Register  
Output Unchanged  
Array  
Program Busy in  
Erase Suspend  
Program Suspend in  
Erase Suspend  
Note: 1. CI = Command Interface, CR = Configuration Register, EFP = Enhanced Factory Program, Quad EFP = Quadruple Enhanced Fac-  
tory Program, P/E. C. = Program/Erase Controller.  
2. EFP and Quad EFP exit when Block Address is different from first Block Address and data is FFFFh.  
3. If the P/E.C. is active, both cycles are ignored.  
4. Illegal commands are those not defined in the command set.  
85/87  
M58WR064FT, M58WR064FB  
REVISION HISTORY  
Table 44. Document Revision History  
Date  
Version  
Revision Details  
18-Oct-2002  
1.0  
First Issue  
Synchronous Burst Read Suspend and Figure 14., Synchronous Burst Read Suspend  
AC Waveforms, added. 16-Word burst and 16 Word boundary added. Security Block  
removed from the document.  
Automatic Standby mode explained under Asynchronous Read Mode. Minor text  
change in Clear Status Register Command.  
Bank Erase Command moved to Factory Program Commands section. Number of  
Bank Erase cycles limited to 100. Erase replaced by Block Erase in Tables 11 and 12,  
Dual Operations Allowed in Other Banks and the Same Bank, respectively.  
12-Mar-2003  
2.0  
V
PP  
= V  
test condition for I  
removed from Table 18., DC Characteristics -  
PPH  
PP2  
Currents. Overbar removed from WAIT signal in Read AC Waveforms (Figures 10, 11,  
12 and 13). t parameter changed for 70 and 80 class speeds in Table  
EHEL  
21., Synchronous Read AC Characteristics. Package mechanical data corrected  
(Table 25.). Data reserved at addresses 35h and 38h (Table 33). Data and Value  
modified at address offset (P+14)h = 4Dh. 16 Word burst added to Table 36., Burst  
Read Information, and subsequent address offsets shifted by one (Tables 37, 38 and  
39). Note to Table 30., Query Structure Overview, modified.  
V
V
V
and V  
voltage ranges limited to 1.7V to 2V and 1.7V to 2.24V, respectively;  
DDQ  
DD  
max modified accordingly in Table 15., Absolute Maximum Ratings.  
DDQ  
PP1  
parameter modified in Table 19., DC Characteristics - Voltages. Alt symbols for  
t
and t  
corrected in Table 23., Write AC Characteristics, Chip Enable  
EHEL  
ELEH  
Controlled. Cross-references corrected.  
Address lines corrected in Figure 14., Synchronous Burst Read Suspend AC  
Waveforms. Connection added to Figure 20., VFBGA56 Daisy Chain - Package  
Connections (Top view through package).  
12-May-2003  
2.1  
Lead-free package options added to Table 26., Ordering Information Scheme, and  
Table 27., Daisy Chain Ordering Scheme.  
CFI information modified: at addresses 1Ch, 1Dh, 1Eh, 20h and 24h in Table Table 32.;  
at address 2Ah in Table 33.; at address (P+4)h = 3Dh in Table 34.; at address (P+18)h  
= 51h in Table 36. and at address (P+38)h = 71h in Table 39.  
M58WR064FP and M58WR064FQ Part Numbers added. V protection feature  
PP  
disabled in the M58WR064FP and M58WR064FQ.  
Set Configuration Register Command clarified. PROGRAM AND ERASE TIMES AND  
ENDURANCE CYCLES section modified.  
16 Word burst test condition added for f=40MHz and f=54MHz, and 66MHz burst  
frequency added in Table 18., DC Characteristics - Currents.  
11-Dec-2003  
3.0  
V
PP1  
Min and V  
Max corrected in Table 19., DC Characteristics - Voltages.  
PPLK  
t
parameter corrected for speed classes 70ns and 80ns in Table  
GHQZ  
20., Asynchronous Read AC Characteristics.  
M58WR064FP and M58WR064FQ Part Numbers removed.  
Typical values for Bank Erase and Main Block Erase (not preprogrammed), and for  
Parameter and Main Block Program when V = V modified in Table 14., Program/  
PP  
DD  
Erase Times and Endurance Cycles. Typical values for Erase and Bank Program when  
15-Apr-2004  
08-Oct-2004  
4.0  
5.0  
V
PP  
= V  
modified in Table 14., Program/Erase Times and Endurance Cycles.  
PPH  
I
parameters for Synchronous Read at f = 40MHz removed from Table 18., DC  
DD1  
Characteristics - Currents. Small text changes.  
Document status promoted from Product Preview to Preliminary Data.  
I
values for Program/Erase in one Bank, Synchronous Read in another Bank  
DD6  
modified in Table 18., DC Characteristics - Currents.  
AC Waveforms simplified. APPENDIX C. and APPENDIX D. revised.  
Small text changes. Product fully Compliant with the ST ECOPACK specification.  
Document Status promoted from Preliminary Data to Full Datasheet.  
86/87  
M58WR064FT, M58WR064FB  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
ECOPACK is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
87/87  

相关型号:

M58WR064FB60ZB6F

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB60ZB6T

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB70ZB6

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB70ZB6E

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB70ZB6F

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB70ZB6T

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB80ZB6

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB80ZB6E

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB80ZB6F

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FB80ZB6T

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FT

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR

M58WR064FT60ZB6

64 Mbit (4Mb x16, Multiple Bank, Burst) 1.8V Supply Flash Memory
STMICROELECTR