M69KB096AA [STMICROELECTRONICS]

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM; 64兆位( 4M ×16) 1.8V电源, 80MHz的时钟速率,突发PSRAM
M69KB096AA
型号: M69KB096AA
厂家: ST    ST
描述:

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
64兆位( 4M ×16) 1.8V电源, 80MHz的时钟速率,突发PSRAM

静态存储器 时钟
文件: 总48页 (文件大小:621K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M69KB096AA  
64 Mbit (4M x16)  
1.8V Supply, 80MHz Clock Rate, Burst PSRAM  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Package  
VCC = 1.7 to 1.95V core supply voltage  
VCCQ = 1.7 to 3.3V for I/O buffers  
ASYNCHRONOUS MODES  
Asynchronous Random Read: 70ns and  
85ns access time  
Asynchronous Write  
Asynchronous Page Read  
Page Size: 16 words  
Subsequent read within page: 20ns  
SYNCHRONOUS BURST READ AND  
WRITE MODES  
Burst Write in Continuous Mode  
Burst Read:  
Wafer  
Fixed Length (4, 8, or 16 Words) or  
Continuous mde  
Maximum Clock Frequency: 66MHz,  
80MHz  
Burst initial latency: 50ns (4 clock cycles)  
at 80MHz  
LOW POWER FEATURES  
Temperature Compensated Refresh  
(TCR)  
Output delay: 9ns at 80MHz  
Partial Array Refresh (PAR)  
Deep Power-Down (DPD) Mode  
BYTE CONTROL BY LB/UB  
LOW POWER CONSUMPTION  
OPERATING TEMPERATURE  
–30°C to +85°C  
Asynchronous Random Read Mode:  
< 25mA  
Asynchronus Page Read Mode  
(subsequent read operations): < 15mA  
Synchronous Burst Read  
Initial access: < 35mA  
Continuous Burst Read: < 15mA  
Standby Current: 120µA  
Deep Power-Down Current: 10µA (typ)  
THE M69KB096AA IS ONLY AVAILABLE AS PART OF A MULTI-CHIP PACKAGE PRODUCT  
January 2006  
1/48  
M69KB096AA  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Upper Byte Enable (UB).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Lower Byte Enable (LB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Clock Input (K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Configuration Register Enable (CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Latch Enable (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Wait (WAIT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
V
CC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
VCCQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
V
SSQ Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Asynchronous Random Read and Write Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Asynchronous Page Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Synchronous Burst Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Mixed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Temperature Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Partial Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Deep Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CONFIGURATION REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Programming and Reading the Configuration Registers using the CR Controlled Method . 13  
Programming and Reading the Configuration Registers by the Software Method. . . . . . . . . 13  
Bus Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operating Mode Bit (BCR15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Latency Counter Bits (BCR13-BCR11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
WAIT Polarity Bit (BCR10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
WAIT Configuration Bit (BCR8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock Configuration Bit (BCR6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Driver Strength Bit (BCR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2/48  
M69KB096AA  
Burst Wrap Bit (BCR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Burst Length Bits (BCR2-BCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Page Mode Operation Bit (RCR7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Temperature Compensated Refresh Bits (RCR6-RCR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Deep Power-Down Bit (RCR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Partial Array Refresh Bits (RCR2-RCR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3/48  
M69KB096AA  
SUMMARY DESCRIPTION  
The M69KB096AA is a 64 Mbit (67,108,864 bit)  
PSRAM, organized as 4,194,304 words by 16 bits.  
The memory array is implemented using a one  
transistor-per-cell topology, to achieve bigger ar-  
ray sizes.  
This device is a high-speed CMOS, dynamic ran-  
dom-access memory. It provides a high-density  
solution for low-power handheld applications.  
Figure 2. Logic Diagram  
V
V
CCQ  
CC  
22  
16  
A0-A21  
DQ0-DQ15  
WAIT  
W
E
The M69KB096AA includes the industry standard  
Flash memory burst mode that dramatically in-  
creases read/write over that of other low-power  
SRAM or PSRAMs.  
The PSRAM interface supports both asynchro-  
nous and burst-mode transfers. Page mode ac-  
cesses are also included as a bandwidth-  
enhancing extension to the asynchronous read  
protocol.  
PSRAMs are based on the DRAM technology, but  
have a transparent internal self-refresh mecha-  
nism that requires no additional support from the  
system memory controller, and has no significant  
impact on the device read/write performance.  
CR  
G
M69KB096AA  
UB  
LB  
K
L
The device has two configuration registers, acces-  
sible to the user to define the device operation: the  
Bus Configuration Register (BCR) and the Refresh  
Configuration Register (RCR). The Bus Configura-  
tion Register (BCR) indicates how the device inter-  
acts with the system memory bus. Overall, it is  
identical to its counterpart in burst-mode Flash  
memory devices. The Refresh Configuration Reg-  
ister (RCR) is used to control how the memory ar-  
ray refresh is performed. At power-up, these  
registers are automatically loaded with default set-  
tings and can be updated any time during normal  
operation.  
V
V
SSQ  
SS  
AI10584b  
Table 1. Signal Names  
A0-A21  
Address Inputs  
DQ0-DQ15  
Data Inputs/Outputs  
Chip Enable Input  
E
CR  
G
Configuration Register Enable Input  
Output Enable Input  
Write Enable Input  
To minimize the value of the standby current dur-  
ing self-refresh operations, the M69KB096AA in-  
cludes three system-accessible mechanisms  
configured via the Refresh Configuration Register  
(RCR):  
W
UB  
LB  
K
Upper Byte Enable Input  
Lower Byte Enable Input  
Clock Input  
The Temperature Compensated Refresh  
(TCR) is used to adjust the refresh rate  
according to the operating temperature. The  
refresh rate can be decreased at lower  
temperatures to minimize current  
consumption during standby.  
L
Latch Enable Input  
The Partial Array Refresh (PAR) performs a  
limited refresh of the part of the PSRAM array  
that contains essential data.  
The Deep Power-Down (DPD) mode  
completely halts the refresh operation. It is  
used when no essential data is being held in  
the device.  
WAIT  
Wait Output  
V
Core Supply Voltage  
Input/Output Buffers Supply Voltage  
Ground  
CC  
V
CCQ  
V
SS  
V
Input/Output Buffers Ground  
SSQ  
4/48  
M69KB096AA  
SIGNAL DESCRIPTIONS  
The signals are summarized in Figure 2., Logic Di-  
agram, and Table 1., Signal Names.  
Down. It must be kept Low during asynchronous  
operations.  
Address Inputs (A0-A21). The Address Inputs  
select the cells in the memory array to access dur-  
ing Read and Write operations.  
Data Inputs/Outputs (DQ8-DQ15). The Upper  
Byte Data Inputs/Outputs carry the data to or from  
the upper part of the selected address during a  
Write or Read operation, when Upper Byte Enable  
(UB) is driven Low. When disabled, the Data In-  
puts/Outputs are high impedance.  
Configuration Register Enable (CR). When this  
signal is driven High, VIH, Write operations load ei-  
ther the value of the Refresh Configuration Regis-  
ter (RCR) or the Bus configuration register (BCR).  
Latch Enable (L). The Latch Enable input is  
used to latch the address. Once the first address  
has been latched, the state of L controls whether  
subsequent addresses come from the address  
lines (L = VIL) or from the internal Burst counter (L  
= VIH).  
Data Inputs/Outputs (DQ0-DQ7). The  
Lower  
Byte Data Inputs/Outputs carry the data to or from  
the lower part of the selected address during a  
Write or Read operation, when Lower Byte Enable  
(LB) is driven Low.  
Chip Enable (E). Chip Enable, E, activates the  
device when driven Low (asserted). When deas-  
serted (VIH), the device is disabled and goes auto-  
matically in low-power Standby mode or Deep  
Power-down mode.  
Output Enable (G). Output Enable, G, provides a  
high speed tri-state control, allowing fast read/  
write cycles to be achieved with the common I/O  
data bus.  
Write Enable (W). Write Enable, W, controls the  
Bus Write operation of the memory. When assert-  
ed (VIL), the device is in Write mode and Write op-  
erations can be performed either to the  
configuration registers or to the memory array.  
Upper Byte Enable (UB). The Upper Byte En-  
able, UB, gates the data on the Upper Byte Data  
Inputs/Outputs (DQ8-DQ15) to or from the upper  
part of the selected address during a Write or  
Read operation.  
Lower Byte Enable (LB). The Lower Byte En-  
able, LB, gates the data on the Lower Byte Data  
Inputs/Outputs (DQ0-DQ7) to or from the lower  
part of the selected address during a Write or  
Read operation.  
The Latch Enable signal, L, must be held Low, VIL,  
during Asynchronous operations.  
Wait (WAIT). The WAIT output signal provides  
data-valid feedback during Synchronous Burst  
Read and Write operations. The signal is gated by  
E. Driving E High while WAIT is asserted may  
cause data corruption.  
Once a Read or Write operation has been initiated,  
the WAIT signal goes active to indicate that the  
M69KB096AA device requires additional time be-  
fore data can be transferred.  
The WAIT signal also is used for arbitration when  
a Read or Write operation is launched while an on-  
chip refresh is in progress (see Figure 6., Collision  
Between Refresh and Read Operation and Figure  
7., Collision between Refresh and Write Opera-  
tion).  
The WAIT signal on the M69KB096AA device is  
typically connected to a shared system-level WAIT  
signal. The shared WAIT signal is used by the pro-  
cessor to coordinate transactions with multiple  
memories on the synchronous bus.  
See the Operating Modes section for details on the  
WAIT signal operation.  
VCC Supply Voltage. The VCC Supply Voltage  
supplies the power for all operations (Read, Write,  
etc.) and for driving the refresh logic, even when  
the device is not being accessed.  
If both LB and UB are disabled (High) during an  
operation, the device will disable the data bus from  
receiving or transmitting data. Although the device  
will seem to be deselected, it remains in an active  
mode as long as E remains Low.  
Clock Input (K). The Clock, K, is an input signal  
to synchronize the memory to the microcontroller  
or system bus frequency during Synchronous  
Burst Read and Write operations.  
V
CCQ Supply Voltage. VCCQ provides the power  
supply for the I/O pins. This allows all Outputs to  
be powered independently from the core power  
supply, VCC  
SS Ground. The VSS Ground is the reference for  
all voltage measurements.  
SSQ Ground. VSSQ ground is the reference for  
the input/output circuitry driven by VCCQ. VSSQ  
must be connected to VSS  
.
V
V
.
The Clock input is required during all synchronous  
operations, except in Standby and Deep Power-  
5/48  
M69KB096AA  
Figure 3. Block Diagram  
A21-A0  
DQ7-DQ0  
Address Decode  
Logic  
4,096K x 16  
I/O  
Buffers  
MEMORY  
ARRAY  
DQ15-DQ7  
Refresh Configuration  
Register (RCR)  
Bus Configuration  
Register (BCR)  
E
W
G
K
Control  
Logic  
L
CR  
WAIT  
LB  
UB  
AI08721c  
Note: Functional block diagram illustrates simplified device operation.  
6/48  
M69KB096AA  
Table 2. Bus Modes– Asynchronous Mode  
WAIT DQ15-DQ0  
MODE  
POWER  
K
L
E
G
W
CR  
LB, UB  
NOTES  
(2)  
(1)  
Asynchronous Active >  
Read Standby  
1
L
L
L
L
H
L
Low Z  
Data-Out  
3
L
Asynchronous Active >  
1
L
L
L
L
X
X
L
L
L
Low Z  
High Z  
Data-In  
High-Z  
3
L
Write  
Standby  
Standby  
Standby  
X
H
X
X
X
4,5  
Write  
Configuration  
Register  
Active  
L
L
L
L
H
X
L
H
X
Low Z  
High-Z  
High-Z  
Deep  
Power-  
Down  
Deep Power-  
Down (DPD)  
X
H
X
X
High-Z  
6
Table 3. Bus Modes– Synchronous Burst Mode  
WAIT DQ15-DQ0  
MODE  
POWER  
K
L
L
L
E
L
L
G
X
H
W
H
L
CR  
L
LB, UB  
NOTES  
3, 7, 8  
3, 7, 8  
(2)  
(1)  
Initial Burst  
Read  
Active >  
Standby  
L
Low Z  
Data-Out  
!
!
Initial Burst  
Write  
Active >  
Standby  
L
X
Low Z  
Low Z  
Low Z  
Low Z  
Data-In  
Subsequent  
Burst  
Operation  
Active >  
Standby  
Data-In or  
Data-Out  
H
X
L
L
L
L
X
H
H
X
X
L
X
L
L
X
X
3, 7, 8  
3, 7  
!
Burst  
Suspend  
Active >  
Standby  
(9)  
High-Z  
High-Z  
X
Write  
Configuration  
Register  
Active  
H
7, 8  
!
Deep  
Power-  
Down  
Deep Power-  
Down (DPD)  
L
X
H
X
X
X
X
High-Z  
High-Z  
6
Note: 1. When LB and UB are in select mode (Low), DQ15-DQ0 are affected. When only LB is in select mode, DQ7-DQ0 are affected. When  
only UB is in the select mode, DQ15-DQ8 are affected.  
2. The WAIT polarity is configured through the Bus Configuration Register (BCR10).  
3. The device consumes active power in this mode whenever addresses are changed.  
4. When the device is in Standby mode, Address inputs and Data inputs/outputs are internally isolated from any external influence.  
5. V = V or 0V.  
IN  
CC  
6. The device remains in Deep Power-Down mode until the RCR register is reconfigured.  
7. The Synchronous Burst mode is initialized through the Bus Configuration Register (BCR15).  
8. The clock polarity is configured through the Bus Configuration Register (BCR6).  
9. The Clock signal, K, must remain stable during Burst Suspend operations.  
7/48  
M69KB096AA  
OPERATING MODES  
The M69KB096AA supports Asynchronous Ran-  
dom Read, Page Read and Synchronous Burst  
Read and Write modes.  
The device mode is defined by the value that has  
been loaded into the Bus Configuration Register.  
The Page mode is controlled by the Refresh Con-  
figuration Register (RCR7).  
Asynchronous Page Read Mode  
The Asynchronous Page read mode gives greater  
performance, even than the traditional Asynchro-  
nous Random Read mode. The page mode is not  
available for write operations.  
Asynchronous Page Read mode is enabled by  
setting RCR7 to ‘1’. L must be driven Low, VIL, dur-  
ing all Asynchronous Page Read operations.  
Power-Up  
PSRAM devices include an on-chip voltage sen-  
sor used to launch the power-up sequence. VCC  
and VCCQ must be applied simultaneously. Once  
they reach a stable level, equal to or higher than  
1.70V, the device will require tVCHEL to complete  
its self-initialization process. During the initializa-  
tion period, the E signal should remain High. Once  
initialization has completed, the device is ready for  
normal operation. Initialization will configure the  
Bus Configuration Register (BCR) and the Refresh  
Configuration Register (RCR) with their default  
settings (see Table 5., page 16, and Table  
9., Refresh Configuration Register Definition).  
In Asynchronous Page Read mode, a Page of  
data is internally read. Each memory page con-  
sists of 16 Words, and has the same set of values  
on A4-A21; only of A0 to A3 differ. The first read  
operation within the Page has the normal access  
time (tAVQV), subsequent reads within the same  
Page have much shorter access times (tAVQV1). If  
the Page changes then the normal, longer timings  
apply again.  
During Asynchronous Page Read mode, the K in-  
put must be held Low, VIL. E must be kept Low, VIL  
upon completion of an Asynchronous Page Read  
operation. The WAIT signal remains active until  
valid data is output from the device.  
See Figure 34., Power-Up AC Waveforms and Ta-  
ble 19., Power-Up AC Characteristics, for details  
on the Power-up timing.  
See Figure 17. and Table 15. for details of the  
Asynchronous Page Read timing requirements.  
Asynchronous Random Read and Write Modes  
Synchronous Burst Mode  
At power-up, the device is in Asynchronous Ran-  
dom Read mode. This mode uses the industry  
standard control bus (E, G, W, LB, UB). Read op-  
erations are initiated by bringing E, G, and LB, UB  
Low, VIL, while keeping W High, VIH. Valid data will  
be gated through the output buffers after the spe-  
cific access time tAVQV has elapsed.  
The WAIT signal will remain active until valid data  
is output from the device and its state should be ig-  
nored.  
Burst mode allows high-speed synchronous read  
and write operations.  
In Synchronous Burst mode, the data is input or  
output to or from the memory array in bursts that  
are synchronized with the clock. After E goes Low,  
the data address is latched on the first rising edge  
of the Clock, K. During this first clock rising edge,  
the W signal indicates whether the operation is go-  
ing to be a Read (W=VIH, Figure 4.) or Write  
(W=VIL, Figure 5.).  
Write operations occur when E, W, LB and UB are  
driven Low. During Asynchronous Random Write  
operations, the G signal is “don't care” and W will  
override G. The data to be written is latched on the  
rising edge of E, W, LB or UB (whichever occurs  
first). During Write operations, the WAIT signal in-  
dicates to the system memory controller that data  
have been programmed into the memory.  
In Synchronous Burst mode, the number of Words  
to be input or output during a Synchronous Burst  
operation can be configured in the Bus Configura-  
tion Register, BCR, as fixed length (4 Words, 8  
Words or 16 Words) or Continuous. In Synchro-  
nous Continuous Burst mode, the entire memory  
can be accessed sequentially in one Burst opera-  
tion.  
During asynchronous operations (Page mode dis-  
abled), the L input can either be used to latch the  
address or kept Low, VIL, during the entire Read/  
Write operation. The Clock input signal K must be  
held Low, VIL.  
The Latency Counter, stored in the BCR11 to  
BCR13 bits of the BCR register, defines how many  
clock cycles elapse before the first data value is  
transferred between the processor and the  
M69KB096AA.  
See Figures 15, 16 and Table 15. for details of  
Asynchronous Read AC timing requirements.  
See Figures 23, 24, 25, 26, and Table 17. for de-  
tails of Asynchronous Write AC timing require-  
ments.  
The WAIT output will be asserted as soon as a  
Synchronous Burst operation is initiated and will  
be deasserted to indicate when data is to be trans-  
ferred into (or out of) the memory array. The WAIT  
signal is also asserted when a Continuous Burst  
Read or Write operation crosses a row boundary.  
The WAIT assertion allows time for the new row to  
8/48  
M69KB096AA  
be accessed. It also allows any pending refresh  
operations to be performed (see Figure  
22., Continuous Burst Read Showing an Output  
Delay for End-of-Row Condition (BCR8=0,1)).  
Temperature Compensated Refresh. The  
Temperature Compensated Refresh (TCR) is  
used to adjust the refresh rate depending on the  
device operating temperature.  
The processor can access other devices without  
being submitted to the initial burst latency by sus-  
pending the burst operation. Burst operations can  
be suspended by halting the Clock signal, holding  
it High or Low. If another device needs to use the  
data bus while Burst operations are suspended,  
the Output Enable signal, G, should be driven  
High, VIH, to disable data outputs; otherwise, G  
can remain Low, VIL. The WAIT output will remain  
asserted to prevent any other devices from using  
the processor WAIT line.  
Burst operations can be resumed by taking G Low,  
VIL, and then restarting the Clock as soon as valid  
data are available on the bus (see Figure  
21., Synchronous Burst Read Suspend and Re-  
sume Waveforms).  
The leakage current of DRAM capacitive storage  
elements increases with the temperature. PSRAM  
devices, based on a DRAM architecture, conse-  
quently require increasingly frequent refresh oper-  
ations to maintain data integrity as the  
temperature increases. At lower temperatures, the  
refresh rate can be decreased to minimize the  
standby current.  
The TCR mechanism allows adequate refresh  
rates to be set at four different temperature thresh-  
olds. These are defined by setting the RCR5 and  
RCR6 bits of the Refresh Configuration Register,  
RCR. To minimize the self refresh current con-  
sumption, the selected setting must be higher than  
the operating temperature of the PSRAM device.  
As an example, if the operating temperature is  
+50°C, the +70°C setting must be selected; the  
+15°C and +45°C settings would result in inade-  
quate refreshing and could cause data corruption.  
Mixed Mode  
When the BCR register is configured for synchro-  
nous operation, the device can support a combina-  
tion of Synchronous Burst Read and  
Asynchronous Random Write operations.  
See Table 9. for the definition of the Refresh Con-  
figuration Register bits.  
Partial Array Refresh. The Partial Array Refresh  
(PAR) performs a limited refresh of part of the  
PSRAM array. This mechanism enables the de-  
vice to reduce the standby current by refreshing  
only the part of the memory array that contains es-  
sential data. Different refresh options can be de-  
fined by setting the RCR0 to RCR2 bits of the RCR  
Register:  
The Asynchronous Random Write operation re-  
quires that the Clock signal remains Low, VIL, dur-  
ing the entire sequence. The L signal can either be  
used to latch the target address or remain Low,  
VIL, during the entire Write operation. E must re-  
turn Low, VIL, during Asynchronous and Burst op-  
erations. Note that the time, necessary to assure  
adequate refresh, is the same value as that for  
Asynchronous Read and Write mode.  
Full array  
Mixed-mode operation greatly simplifies the inter-  
facing with traditional burst-mode Flash Memory  
Controllers.  
One half of the array  
One quarter of the array  
One eighth of the array  
None of the array.  
Low-Power Modes  
Standby Mode. During Standby, the device cur-  
rent consumption is reduced to the level neces-  
sary to perform the memory array refresh  
operation. Standby operation occurs when E is  
High, VIH, and no transaction is in progress.  
The device will enter Standby mode when a Read  
or Write operation is completed, or when the ad-  
dress and control inputs remain stable for an ex-  
tended period of time. This “active” Standby mode  
will continue until address or control inputs  
change.  
These memory areas can be located either at the  
top or bottom of the memory array.  
The WAIT signal is used for arbitration when a  
read/write operation is launched while an on-chip  
refresh is in progress. If locations are addressed  
while they are undergoing refresh, the WAIT signal  
will be asserted for additional clock cycles, until  
the refresh has completed (see Figure 6. and Fig-  
ure 7., Collision between Refresh and Read or  
Write Operations). When the refresh operation is  
completed, the Read or Write operation will be al-  
lowed to continue normally.  
9/48  
M69KB096AA  
Deep Power-Down Mode. Deep  
power-down  
fresh operations have been re-enabled, the device  
will be available for normal operations after tVCHEL  
(time to perform an initialization sequence). During  
this delay, the current consumption will be higher  
than the specified standby levels, but considerably  
lower than the active current.  
(DPD) mode is used by the system memory con-  
troller to de-activate the PSRAM device when its  
storage capabilities are not needed. All refresh-re-  
lated operations are then disabled. When the  
Deep Power-Down mode is enabled, the data  
stored in the device become corrupted. When re-  
Figure 4. Synchronous Burst Read Mode  
K
Address  
A0-A21  
Valid  
ADV  
Latency Code 2 (3 clocks)  
E
G
W
Hi Z  
Hi Z  
WAIT  
DQ3  
DQ0-DQ15  
LB/UB  
DQ1  
DQ2  
DQ0  
Burst Read Identified  
(W = High)  
AI06774b  
Note: Non-default BCR Register settings: 3 clock cycle latency; WAIT active Low; Hold Data one clock; WAIT asserted during delay.  
10/48  
M69KB096AA  
Figure 5. Synchronous Burst Write Mode (4-word burst)  
K
Address  
A0-A21  
Valid  
L
E
G
W
LB/UB  
Hi Z  
Hi Z  
WAIT  
DQ0-DQ15  
DQ0  
DQ1  
DQ2  
DQ3  
Additional WAIT states inserted  
to allow Refresh completion  
AI06776c  
Note: Non-default BCR Register settings: 3 clock cycle latency; WAIT active Low; Hold Data one clock; WAIT asserted during delay.  
Figure 6. Collision Between Refresh and Read Operation  
K
Address  
A0-A21  
Valid  
L
E
G
W
LB/UB  
Hi Z  
Hi Z  
WAIT  
DQ0-DQ15  
DQ0  
DQ1  
DQ2  
DQ3  
Additional WAIT states inserted  
to allow Refresh completion  
AI06776b  
Note: Additional Wait states inserted to allow Refresh completion.  
Non-default BCR Register settings: 3 clock cycle latency; WAIT active Low; Hold Data one clock; WAIT asserted during delay.  
11/48  
M69KB096AA  
Figure 7. Collision between Refresh and Write Operation  
K
Address  
A0-A21  
Valid  
L
E
G
W
LB/UB  
Hi Z  
Hi Z  
WAIT  
DQ0-DQ15  
DQ0  
DQ3  
DQ1  
DQ2  
Additional WAIT states inserted  
to allow Refresh completion  
AI06777  
Note: Additional Wait states inserted to allow Refresh completion.  
Non-default BCR Register settings: 3 clock cycle latency; WAIT active Low; Hold Data one clock; WAIT asserted during delay.  
12/48  
M69KB096AA  
CONFIGURATION REGISTERS  
Two write-only user-accessible configuration reg-  
isters have been included to define device opera-  
tion. These registers are automatically loaded with  
default settings during power-up, and can be up-  
dated any time the device is operating in a standby  
state.  
Table 4. Register Selection  
Register  
Read or Write Operation  
A19  
0
RCR  
BCR  
Read/Write  
Read/Write  
1
The configuration registers (BCR and RCR) can  
be programmed and read using two methods:  
Programming and Reading the Configuration  
Registers by the Software Method  
The CR Controlled Method (or Hardware  
Method)  
Each register can be read by issuing a Read Con-  
figuration Register sequence (see Figure 9., Read  
Configuration Register (Software Method), and  
programmed by issuing a Set Configuration Reg-  
ister sequence (see Figure 8., Set Configuration  
Register (Software Method). Both sequences  
must be issued in asynchronous mode.  
The timings will be identical to those described in  
Table 15., Asynchronous Read AC Characteris-  
tics. The Chip Enable input, CR, is ‘don’t care’.  
Read Configuration Register and Set Configura-  
tion Register sequences both require 4 cycles:  
The Software Method.  
Programming and Reading the Configuration  
Registers using the CR Controlled Method  
The BCR and the RCR can be programmed and  
read using either a Synchronous or an Asynchro-  
nous Write and Read operation with the Configu-  
ration Register Enable input, CR, at VIH. Address  
bit A19 selects the register to be programmed or  
read (see Table 4., Register Selection). The val-  
ues placed on address lines A0 to A21 are latched  
into the register on the rising edge of L, E, or W,  
whichever occurs first. LB and UB are “don’t care”.  
When CR is at VIL, a Read or Write operation will  
access the memory array.  
See Figures 27 and 33, Configuration Register  
Write in Asynchronous and Synchronous Modes.  
2 bus read and one bus write cycles to a  
unique address location, 3FFFFFh, indicate  
that the next operation will read or write to a  
configuration register. The data written during  
the third cycle must be ‘0000h’ to access the  
RCR and ‘0001h’ to access the BCR during  
the next cycle.  
The fourth cycle reads from or writes to the  
configuration register.  
13/48  
M69KB096AA  
Figure 8. Set Configuration Register (Software Method)  
Addr.  
3FFFFFh  
3FFFFFh  
3FFFFFh  
3FFFFFh  
(4)  
E
tEHEL2  
tEHEL2  
tEHEL2  
G
W
LB, UB  
DQ0-DQ15  
Don't Care  
Don't Care  
(2)  
CR Data IN  
AI10600b  
Note: 1. Only the Bus Configuration Register (BCR) and the Refresh Configuration Register (RCR) can be modified.  
2. To program the BCR or the RCR on last bus write cycle, DQ0-DQ15 must be set to ‘0001h’ and ‘000h’ respectively.  
3. The highest order address location is not modified during this operation.  
4. The third write operation must be controlled by the Chip Enable signal.  
Figure 9. Read Configuration Register (Software Method)  
Addr.  
3FFFFFh  
3FFFFFh  
tEHEL2  
3FFFFFh  
tEHEL2  
3FFFFFh  
tEHEL2  
(3)  
E
G
W
LB, UB  
CR Data  
OUT  
DQ0-DQ15  
Don't Care  
Don't Care  
(1)  
AI10601b  
Note: 1. To read the BCR, RCR on last bus read cycle, DQ0-DQ15 must be set to ‘0001h’, ‘000h’ respectively.  
2. The highest order address location is not modified during this operation.  
3. The Chip Enable signal, E, must be held High for 150ns before reading the content of the Configuration Register.  
4. The third write operation must be controlled by the Chip Enable signal.  
14/48  
M69KB096AA  
Bus Configuration Register  
When the Wait Configuration bit is set to ‘0’, data  
is valid or invalid on the first Clock rising edge im-  
mediately after the WAIT signal transition to the  
deasserted or asserted state.  
When the Wait Configuration bit is set to ‘1’ (de-  
fault settings), the WAIT signal transition occurs  
one clock cycle prior to the data bus going valid or  
invalid.  
The Bus Configuration Register (BCR) defines  
how the PSRAM interacts with the system memory  
bus. Overall, it is identical to its counterpart on  
burst mode Flash devices.  
At power-up, BCR is initialized to 9D4Fh.  
Refer to Table 5. for the description of the Bus  
Configuration Register Bits.  
See Figure 10., WAIT Configuration Example, and  
Figure 11., Example of WAIT Configuration During  
Synchronous Burst Operation.  
Operating Mode Bit (BCR15). The  
Operating  
Mode bit allows the Synchronous Burst mode or  
the Asynchronous mode (default setting) to be se-  
lected.  
Clock Configuration Bit (BCR6). The  
Clock  
Configuration bit is used to configure the activ-  
eedge of the Clock signal, K, during Synchronous  
Burst Read or Write operations. When the Clock  
Configuration bit is set to ’1’ (default setting), the  
rising edge of the Clock is active. Configuring the  
active clock edge to the falling edge (BCR6 set to  
‘0’) is not supported.  
All of the waveforms shown in this datasheet cor-  
respond to a Clock signal active on the rising  
edge.  
Driver Strength Bit (BCR5). The Driver Strength  
bit allows to set the output drive strength to adjust  
to different data bus loading. Normal driver  
strength (full drive) and reduced driver strength (a  
quarter drive) are available.  
By default, outputs are configured at ‘half drive”  
strength.  
Latency Counter Bits (BCR13-BCR11). The  
Latency Counter bits are used to set the number of  
clock cycles between the beginning of a Read or  
Write operation and the first data becoming avail-  
able. For correct operation, the number of clock  
cycles can only be equal to 3 or 4 (default settings)  
and the Latency Counter bits can only assume the  
values shown in Table 5., Bus Configuration Reg-  
ister Definition. See also Table 7., Latency  
Counter Configuration, and Figure 12., Example  
of Latency Counter Configuration).  
WAIT Polarity Bit (BCR10). The WAIT Polarity  
bit indicates whether the WAIT output signal is ac-  
tive High or Low. As a consequence, it also deter-  
mines whether the WAIT signal requires a pull-up  
or pull-down resistor to maintain the de-asserted  
state.  
By default, the WAIT output signal is active High.  
Burst Wrap Bit (BCR3). The burst reads can be  
confined inside the 4, 8 or 16 Word boundary  
(wrap) or allowed to step across the boundary (no  
wrap). The Burst Wrap bit is used to select be-  
tween ‘wrap’ and ‘no wrap’. If the Burst Wrap bit is  
set to ‘1’ (no wrap), the device outputs data se-  
quentially regardless of burst boundaries. When  
Continuous Burst operation is selected, the inter-  
nal address switches to 000000h if the read ad-  
dress passes the last address. By default, Burst  
wrap is selected.  
WAIT Configuration Bit (BCR8). The  
system  
memory controller uses the WAIT signal to control  
data transfer during Synchronous Burst Read  
Read and Write operations.  
The WAIT Configuration bit is used to determine  
when the transition of the WAIT output signal be-  
tween the asserted and the deasserted state oc-  
curs with respect to valid data available on the  
data bus.  
See also Table 6., Burst Type Definition.  
15/48  
M69KB096AA  
Burst Length Bits (BCR2-BCR0). The  
Burst  
Continuous Burst (default settings), where all the  
Words are read sequentially regardless of address  
boundaries. Burst Write operations are always  
performed using the Continuous Burst mode.  
Length bits set the number of Words to be output  
during a Synchronous Burst Read operation. They  
can be set for 4 Words, 8 Words, 16 Words or  
Table 5. Bus Configuration Register Definition  
Bus  
Configuration  
Register Bit  
Address  
Bits  
Description  
Value  
Description  
A21-A20  
-
-
Must be set to ‘0’ Reserved  
0
1
Refresh Selected  
A19  
A18-A16  
A15  
-
Register Select  
-
Bus Configuration Register Selected  
-
Must be set to ‘0’ Reserved  
0
1
Synchronous Burst mode  
Asynchronous mode (default)  
Operating Mode  
Bit  
BCR15  
-
A14  
-
Must be set to ‘0’ Reserved  
010  
011  
LC = 2 (3 Clock Cycles)  
LC= 3 (4 Clock Cycles) (default)  
BCR13-  
BCR11  
Latency Counter  
Bits (LC)  
A13-A11  
Other configurations reserved  
0
1
WAIT Active Low  
WAIT Active High (default)  
A10  
A9  
BCR10  
-
WAIT Polarity Bit  
-
Must be set to ‘0’ Reserved  
0
1
WAIT Asserted During Delay  
Wait  
Configuration Bit  
A8  
BCR8  
WAIT Asserted One Clock Cycle Before Delay  
(Default)  
A7  
A6  
-
-
Must be set to ‘0’ Reserved  
0
1
0
1
Not supported  
Clock  
Configuration Bit  
BCR6  
Rising Clock Edge (Default)  
Full Drive (default)  
1/4 Drive  
Driver Strength  
Bit  
A5  
A4  
A3  
BCR5  
-
-
Must be set to ‘0’ Reserved  
0
Wrap (default)  
BCR3  
Burst Wrap Bit  
1
No Wrap  
001  
010  
011  
111  
4 Words  
8 Words  
A2-A0  
BCR2-BCR0  
Burst Length Bit  
16 Words  
Continuous Burst (default)  
Note: All Burst Write operations are performed in Synchronous Continuous Burst mode.  
16/48  
M69KB096AA  
Table 6. Burst Type Definition  
Start 4 Words  
Add (Sequential)  
8 Words  
16 Words  
(Sequential)  
Continuous Burst  
(Sequential)  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
...  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3  
5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4  
6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
...  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2
2-3-4-5-6-7-8...  
3
3-4-5-6-7-8-9...  
4
4-5-6-7-8-9-10...  
5-6-7-8-9-10-11...  
6-7-8-9-10-11-12...  
7-8-9-10-11-12-13...  
...  
5
6
7
...  
14  
15  
0
...  
14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13  
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17  
3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18  
4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19  
14-15-16-17-18-19-20...  
15-16-17-18-19-20-21...  
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
1
2
3
4
Same as for Wrap  
(Wrap /No Wrap  
has no effect on  
Continuous Burst)  
5
5-6-7-8-9-10-11-12 5-6-7-8-9-10-11-12-13-...-15-16-17-18-19-20  
6-7-8-9-10-11-12-13 6-7-8-9-10-11-12-13-14-...-16-17-18-19-20-21  
6
7-8-9-10-11-12-13-  
7
7-8-9-10-11-12-13-14-...-17-18-19-20-21-22  
14  
...  
14  
15  
...  
14-15-16-17-18-19...-23-24-25-26-27-28-29  
15-16-17-18-19-20...-24-25-26-27-28-29-30  
Table 7. Latency Counter Configuration  
Latency  
Maximum Input Clock Frequency  
Access Time 70ns  
Unit  
Maximum Clock Rate in Burst Mode  
Configuration Code  
Maximum Clock Rate in Burst Mode  
80MHz  
66MHz  
(1)  
2 (3 Clock Cycles)  
3 (4 Clock Cycles)  
53 (18.75ns)  
80 (12.5ns)  
MHz  
MHz  
44 (22.7ns)  
66 (15.2ns)  
Note: 1. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
17/48  
M69KB096AA  
Figure 10. WAIT Configuration Example  
K
WAIT  
DQ0-DQ15  
BCR8='0'  
Hi-Z  
Hi-Z  
Data[0] Data[1]  
Data[0]  
Data Valid During Current Cycle  
DQ0-DQ15  
BCR8='1'  
Data Valid During Next Cycle  
AI06795  
Figure 11. Example of WAIT Configuration During Synchronous Burst Operation  
K
WAIT  
BCR8='0'  
Data Valid During Current Cycle  
WAIT  
BCR8='1'  
Data Valid During Next Cycle  
Hi-Z  
DQ0-DQ15  
Data[0]  
Data[1] Data[2] Data[3] Data[4]  
AI06797  
Figure 12. Example of Latency Counter Configuration  
K
ADDRESS  
VALID  
A0-A21  
L
3 Clock Cycle Latency  
4 Clock Cycle Latency  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ0-DQ15  
BCR13-BCR11='010'  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
DQ0-DQ15  
BCR13-BCR11='011'  
AI08900  
18/48  
M69KB096AA  
Refresh Configuration Register  
The Refresh Configuration Register (RCR) is used  
for two purposes:  
selected at one of four different temperature  
thresholds: +15°C, +45°C, +70°C, and +85°C. The  
default setting is +85°C. See the Temperature  
Compensated Refresh section for more details.  
Deep Power-Down Bit (RCR4). The Deep Pow-  
er-Down bit enables or disables all refresh-related  
operations. The Deep Power-Down mode is en-  
abled when the RCR4 bit is set to ‘0’, and remains  
enabled until this bit is set to ‘1’. At power-up, the  
Deep Power-Down mode is disabled.  
to define how the self refresh of the PSRAM  
array is performed  
to enable Page Read operations.  
Altering the self refresh parameters can dramati-  
cally reduce current consumption in Standby  
mode.  
At power-up, RCR is initialized to 0070h.  
Refer to Table 9. for the description of the Refresh  
Configuration Register Bits.  
See the Deep Power-Down section for more de-  
tails.  
Partial Array Refresh Bits (RCR2-RCR0). The  
Partial Array Refresh bits allow refresh operations  
to be restricted to a portion of the total PSRAM ar-  
ray. The refresh options can be full array, one  
eighth, one quarter, one half, or none of the array.  
These memory areas can be located either at the  
top or bottom of the memory array. By default, the  
full memory array is refreshed (see Table  
8., Address Patterns for Partial Array Refresh).  
Page Mode Operation Bit (RCR7). The  
Page  
Mode operation bit determines whether the Asyn-  
chronous Page Read mode is enabled. At power-  
up, the RCR7 bit is set to ‘0’, and so the Asynchro-  
nous Page Read mode is disabled.  
Temperature Compensated Refresh Bits  
(RCR6-RCR5). The Temperature Compensated  
Refresh bits allow an adequate refresh rate to be  
Table 8. Address Patterns for Partial Array Refresh  
Size of  
RCR2 RCR1 RCR0  
Refreshed Area  
Address Space  
Refreshe Density  
d Area  
0
0
0
0
0
1
0
1
0
Full Array (Default)  
000000h-3FFFFFh 4 Mbitsx16 64 Mbits  
000000h-1FFFFFh 2 Mbitsx16 32 Mbits  
000000h-0FFFFFh 1 Mbitsx16 16 Mbits  
512Kbitsx  
Bottom Half of the Array  
Bottom First Quarter of the Array  
0
1
1
Bottom First Eighth of the Array  
000000h-07FFFFh  
8 Mbits  
16  
1
1
1
0
0
1
0
1
0
None of the Array  
0
0
0
Top Half of the Array  
Top Quarter of the Array  
200000h-3FFFFFh 2 Mbitsx16 32 Mbits  
300000h-3FFFFFh 1 Mbitsx16 16 Mbits  
512Kbitsx  
1
1
1
Top One-Eighth of the Array  
380000h-3FFFFFh  
8 Mbits  
16  
Note: RCR4 is set to ‘1’.  
19/48  
M69KB096AA  
Table 9. Refresh Configuration Register Definition  
Bus  
Configuration  
Register Bit  
Address  
Bits  
Description  
Value  
Description  
A21-A20  
-
-
Must be set to ‘0’ Reserved  
0
1
Refresh Selected  
A19  
A18-A8  
A7  
-
-
Register Select  
-
Bus Configuration Register Selected  
Must be set to ‘0’ Reserved  
0
Page Read Mode Disabled (Default)  
Page Mode  
Operation Bit  
RCR7  
1
Page Read Mode Enabled  
+85°C (Default)  
11  
00  
01  
10  
0
Temperature  
Compensated  
Refresh Bits  
+70°C  
A6-A5  
RCR6-RCR5  
+45°C  
+15°C  
Deep Power-Down Enabled  
Deep Power-Down Disabled (Default)  
Deep Power-  
Down Bit  
A4  
A3  
RCR4  
-
1
-
Must be set to ‘0’ Reserved  
000  
001  
010  
011  
Partial Array  
Refresh Bits  
See Table 8., Address Patterns for Partial  
Array Refresh  
A2-A0  
RCR2-RCR0  
100  
101  
110  
111  
20/48  
M69KB096AA  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 10. Absolute Maximum Ratings  
Symbol  
Parameter  
Ambient Operating Temperature  
Min  
–30  
–55  
–0.2  
–0.2  
Max  
85  
Unit  
°C  
°C  
V
T
A
T
Storage Temperature  
150  
2.45  
4.0  
STG  
V
CC  
Core Supply Voltage  
V
Input/Output Buffer Supply Voltage  
V
CCQ  
4.0 or  
+0.3  
CCQ  
(1)  
V
IO  
Input or Output Voltage  
–0.5  
V
V
Note: 1. Whichever is the lower.  
21/48  
M69KB096AA  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 11., Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 11. Operating and AC Measurement Conditions  
Parameter  
M69KB096AA  
Unit  
Min  
1.7  
Max  
1.95  
3.3  
V
V
Supply Voltage  
V
V
CC  
Input/Output Buffer Supply Voltage  
1.7  
CCQ  
Ambient Operating Temperature  
85  
°C  
pF  
kΩ  
kΩ  
kΩ  
V
30  
Load Capacitance (C )  
30  
2.7  
3.7  
4.5  
L
V
V
V
= 1.8V  
= 2.5V  
= 3.0V  
CCQ  
CCQ  
CCQ  
Output Circuit Protection Resistance (R R )  
1,  
2
V
Input Pulse Voltages  
0
CC  
V
/2  
Input and Output Timing Ref. Voltages  
Output Transition Timing Ref. Voltages  
Input Rise and Fall Time (tτ )  
V
CC  
V
= 0.3V ; V = 0.7V  
CC RH CC  
V
RL  
1.6  
ns  
Note: 1. All voltages are referenced to V  
.
SS  
Figure 13. AC Measurement I/O Waveform  
Figure 14. AC Measurement Load Circuit  
V
CCQ  
I/O Timing Reference Voltage  
R
1
V
CC  
V
/2  
CC  
DEVICE  
0V  
UNDER  
TEST  
OUT  
Output Timing Reference Voltage  
C
R
2
L
V
CC  
0.7V  
0.3V  
CC  
CC  
0V  
AI04831  
AI07222d  
Note: 1. Logic states ‘1’ and ‘0’ correspond to AC test inputs driven at VCCQ and VSS respectively. Input timings begin at VCCQ/2 and  
output timings end at VCCQ/2. Input rise and fall time (10% to 90%) are lower than 1.6ns.  
2. All the tests are performed with the outputs configured as Full drive strength (BCR[5]=0).  
22/48  
M69KB096AA  
Table 12. Capacitance  
Symbol  
Test  
Condition  
Parameter  
Min  
Max  
Unit  
C
V
= 0V  
= 0V  
Address Input Capacitance  
Data Input/Output Capacitance  
6
6
pF  
pF  
IN1  
IN  
IO  
C
V
IO  
Note: 1. These parameters are not fully tested.  
Table 13. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min.  
Typ  
Max.  
Unit  
Operating Current:  
Asynchronous Random  
Read/Write  
70ns  
85ns  
25  
20  
15  
12  
35  
30  
mA  
mA  
mA  
mA  
mA  
mA  
(1)  
I
CC1  
Operating Current:  
Asynchronous Page  
Read  
70ns  
(1)  
I
CC1P  
85ns  
V
=V or V ,  
IH IL  
IN  
Operating Current:  
Initial Access,  
Burst Read/Write  
80MHz  
66MHz  
E = V ,  
IL  
(1)  
I
CC2  
I
= 0mA  
OUT  
80MHz  
66MHz  
80MHz  
66MHz  
18  
15  
35  
30  
mA  
mA  
mA  
mA  
Operating Current:  
Continuous Burst Read  
(1)  
(1)  
I
CC3R  
Operating Current:  
Continuous Burst Write  
I
CC3W  
V
= V  
E = V  
or 0V,  
IN  
CCQ  
(2)  
V
Standby Current  
CC  
120  
µA  
I
SB  
IH  
I
0V V V  
IN CC  
Input Leakage Current  
Output Leakage Current  
1
1
µA  
µA  
LI  
G = V or E = V  
IH  
I
IH  
LO  
Deep-Power Down  
Current  
(3)  
10  
µA  
I
ZZ  
V
= V or V  
IH IL  
IN  
V
V
+ 0.2  
CCQ  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
1.4  
V
V
V
V
IH  
V
0.4  
0.2  
IL  
V
OH  
0.8V  
CCQ  
I
= 0.2mA  
= 0.2mA  
OH  
V
OL  
I
0.2V  
CCQ  
OL  
Note: 1. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current required to  
drive the output capacitance expected in the actual system.  
2. I (Max) values are measured with RCR2 to RCR0 bits set to ‘000’ (full array refresh) and RCR6 to RCR5 bits set to ‘11’ (temper-  
SB  
ature compensated refresh threshold at +85°C). In order to achieve low standby current, all inputs must be driven either to V  
CCQ  
or V . ISB may be slightly higher for up to 500 ms after power-up or when entering Standby mode.  
SS  
3. The Operating Temperature is +25°C.  
23/48  
M69KB096AA  
Table 14. PAR and TCSR Specifications and Conditions  
(2)  
Maximum Operating Temperature  
+45°C +70°C  
Refreshed  
Memory  
Areas  
Test  
Condition  
Symbol  
Parameter  
Unit  
+15°C  
+85°C  
RCR[6-5]=10 RCR[6-5]=01 RCR[6-5]=00 RCR[6-5]=11  
Full  
1/2  
1/4  
1/8  
0
70  
65  
60  
57  
50  
85  
80  
75  
70  
55  
105  
100  
95  
120  
115  
110  
105  
70  
Maximum  
Standby Current  
in TCSR and  
PAR Modes  
V
IN  
= V or  
IH  
(1)  
V ,  
µA  
I
IL  
SB  
E = V  
IH  
90  
60  
Note: 1. In order to achieve low standby current, all inputs must be driven to either VCCQ or VSS. ISB may be slightly higher for up to 500 ms  
after power-up or when entering Standby mode.  
2. RCR values for 85°C are 100 percent tested. TCR values for 15°C, 45°C and 70°C are sampled only.  
Figure 15. Asynchronous Random Read AC Waveforms  
tAVAX  
A0-A21  
VALID ADDRESS  
tAVQV  
L
tEHEL  
tEHQZ  
tBHQZ  
tGHQZ  
E
tELQV  
LB/UB  
tBLQV  
G
tGHQX  
tGLQV  
W
tGLQX  
tBLQX  
Hi-Z  
Hi-Z  
Hi-Z  
VALID  
OUTPUT  
DQ0-DQ15  
tELQX  
tELTV  
tEHTZ  
Hi-Z  
WAIT  
AI06780b  
24/48  
M69KB096AA  
Figure 16. L Controlled Asynchronous Random Read AC Waveforms  
VALID  
ADDRESS  
A0-A21  
tAVQV  
tAVLH  
tLHAX  
tLHLL  
L
tLLQV  
tLLLH  
tEHEL  
tELLH  
tEHQZ  
tBHQZ  
tGHQZ  
E
tELQV  
tBLQV  
tGLQV  
LB/UB  
G
tGHQX  
W
tGLQX  
tBLQX  
Hi-Z  
Hi-Z  
VALID  
OUTPUT  
DQ0-DQ15  
tELQX  
tELTV  
tEHTZ  
Hi-Z  
Hi-Z  
WAIT  
AI06781b  
25/48  
M69KB096AA  
Figure 17. Asynchronous Page Read AC Waveforms  
tAVAX  
VALID ADDRESS  
A4-A21  
A1-A3  
L
VALID ADDRESS  
VALID  
VALID  
tAVAV  
VALID  
tAVQV  
tEHEL  
tEHQZ  
tEHEL  
E
tELQV  
tBHQZ  
tGHQZ  
LB/UB  
tBLQV  
G
tGHQX  
tGLQV  
W
tGLQX  
tBLQX  
tAVQV1  
tAVQX  
Hi-Z  
Hi-Z  
Hi-Z  
VALID  
OUTPUT  
DQ0-DQ15  
WAIT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
tELQX  
tELTV  
tEHTZ  
Hi-Z  
AI06782b  
26/48  
M69KB096AA  
Table 15. Asynchronous Read AC Characteristics  
M69KB096AA  
70ns  
Symbol  
Alt.  
Parameter  
85ns  
Unit  
Min  
Max  
70  
Min  
Max  
85  
t
t
Address Valid to Output Valid  
L Low to Output Valid  
ns  
ns  
ns  
AVQV  
AA  
t
t
AADV  
70  
85  
LLQV  
t
t
Page Access Time  
20  
25  
AVQV1  
APA  
t
t
L High to Address Transition  
Address Valid to L High  
5
5
LHAX  
AVH  
t
t
10  
10  
AVLH  
AVS  
Upper/Lower Byte Enable Low to Output  
Valid  
t
t
70  
8
85  
8
ns  
ns  
ns  
ns  
BLQV  
BA  
Upper/Lower Byte Enable High to Output Hi-  
Z
(4)  
t
t
BHZ  
BHQZ  
Upper/Lower Byte Enable Low to Output  
Transition  
(3)  
t
10  
5
10  
5
t
BLZ  
BLQX  
Chip Enable High between Subsequent  
Mixed-Mode Read Operations  
t
t
CBPH  
EHEL  
(2)  
t
t
Maximum Chip Enable Pulse Width  
Chip Enable Low to WAIT Valid  
Chip Enable high to WAIT High-Z  
8
7.5  
8
8
7.5  
8
µs  
ns  
ns  
t
CEM  
ELEH  
t
1
1
ELTV  
CEW  
t
EHTZ  
Chip Enable Low to Output Valid (Chip  
Select Access Time)  
t
t
70  
85  
ns  
ELQV  
CO  
t
t
CVS  
Chip Enable Low to L High  
10  
10  
10  
10  
ns  
ns  
ELLH  
(4)  
t
HZ  
Chip Enable High to Output Hi-Z  
8
8
t
EHQZ  
(3)  
t
LZ  
Chip Enable Low to Output Transition  
Output Enable Low to Output Valid  
Output Enable High to Output Transition  
Data Hold from Address Change  
Output Enable High to Output Hi-Z  
ns  
ns  
ns  
ns  
ns  
t
ELQX  
t
t
20  
20  
GLQV  
OE  
t
t
5
5
5
5
GHQX  
OH  
t
t
OHA  
AVQX  
(4)  
t
8
8
t
OHZ  
GHQZ  
(3)  
t
Output Enable Low to Output Transition  
Page Cycle Time  
5
5
ns  
t
OLZ  
GLQX  
t
t
t
20  
70  
10  
10  
25  
85  
10  
10  
AVAV  
AVAX  
PC  
t
Read Cycle Time  
ns  
ns  
ns  
RC  
t
t
t
VP  
L Pulse Width Low  
LLLH  
LHLL  
t
L Pulse Width High  
VPH  
Note: 1. All the tests are performed with the outputs configured in “Full drive” strength (BCR5=’0’).  
2. The timing is related to Asynchronous Page mode only.  
3. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14.. The transition timings measure a  
transition of 100mV between the High-Z level (V /2) and V or V  
.
OL  
CCQ  
OH  
4. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14.. The High-Z timings measure a  
transition of 100mV between V or V and V /2.  
OH  
OL  
CCQ  
27/48  
M69KB096AA  
Figure 18. Single Access Synchronous Burst Read AC Waveforms  
tKHKH  
tKHKL  
K
tAVKH  
tKHAX  
ADDRESS  
VALID  
A0-A21  
L
tAVLH  
tKHLH  
tLLKH  
tELKH  
tKHEH  
tEHQZ  
tGHQZ  
tKHQV1  
E
tGLQV  
G
tWHKH  
tBLKH  
tKHWX tGLQX  
tKHBX  
W
LB/UB  
WAIT  
tELTV  
tKHTV  
Hi Z  
Hi-Z  
Hi Z  
Hi-Z  
tKHQV2  
tKHQX2  
VALID  
OUTPUT  
DQ0-DQ15  
Burst Read Identified  
(W = High)  
AI06783  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low; WAIT asserted during delay.  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t specifications are met.  
ELKH  
28/48  
M69KB096AA  
Figure 19. Synchronous Burst Read (4-word) AC Waveforms  
tKHKH  
tKHKL  
K
tAVKH  
tKHAX  
tKHLH  
VALID  
ADDRESS  
A0-A21  
tAVLH  
tLLKH  
L
E
tKHEH  
tEHEL  
tELKH  
tKHQV1  
tEHQZ  
tGHQZ  
tGLQV  
G
W
tWHKH  
tKHWX  
tGLQX  
tBLKH  
tKHBX  
LB/UB  
tKHTX  
tELTV  
Hi-Z  
Hi-Z  
WAIT  
tKHQZ  
tKHQX2  
D0-D15  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
Hi-Z  
READ Burst Identified  
(W = High)  
AI06784  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low; WAIT asserted during delay.  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t specifications are met.  
ELKH  
29/48  
M69KB096AA  
Figure 20. LB/UB Controlled, Synchronous Burst Read (4-word) AC Waveforms  
tKHKH  
tKHKL  
K
tAVKH  
tKHAX  
tKHLH  
VALID  
ADDRESS  
A0-A21  
tAVLH  
tLLKH  
L
tKHEH  
tELKH  
tKHQV1  
tEHEL  
E
tEHQZ  
tGLQV  
G
W
tKHWX  
tWHKH  
tGHQZ  
tGLQX  
tBLKH tKHBX  
LB/UB  
tELTV  
tKHTX  
Hi-Z  
Hi-Z  
WAIT  
tKHQZ  
tKHQX2  
tKHQX1  
tKHQZ  
tKHQZ  
DQ0-DQ15  
VALID  
OUTPUT  
VALID  
OUTPUT  
VALID  
OUTPUT  
Hi-Z  
Hi-Z  
READ Burst Identified  
(W = High)  
AI06785  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low; WAIT asserted during delay.  
2. The Burst Length bits BCR0 to BR2 are set to ‘001’ (4 Words).  
3. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
30/48  
M69KB096AA  
Figure 21. Synchronous Burst Read Suspend and Resume Waveforms  
tKLKL  
tKHKL  
tAVKH  
tKHAX  
Valid  
Address  
Valid  
0-A21  
tAVLH  
Address  
tLLKH  
tKH  
L
tLLKH  
tKHLH  
tEHQZ  
tEHEL  
tELKH  
tGHQZ  
tGLQV  
tGHQZ  
tWHKH  
tBLKH  
tKHWX  
tKHBX  
tGLQX  
W
tGLQX  
B/UB  
tGLQV  
Hi-Z  
Hi-Z  
Hi-Z  
WAIT  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
0-D15  
Output Output Output Output  
Output Output  
tKHQV1  
tKHQX2  
AI08760c  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low; WAIT asserted during delay.  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t specifications are met.  
ELKH  
31/48  
M69KB096AA  
Figure 22. Continuous Burst Read Showing an Output Delay for End-of-Row Condition (BCR8=0,1)  
tKLKH  
K
tKHKH  
tF  
A0-A21  
DON'T CARE  
DON'T CARE  
L
LB/UB  
E
(4)  
G
DON'T CARE  
tKHTV  
DON'T CARE  
W
tKHTX  
WAIT  
(3)  
VALID  
OUTPUT  
VALID  
VALID  
OUTPUT  
VALID  
DQ0-DQ15  
OUTPUT  
OUTPUT  
tKHQV2  
tKHQX2  
WAIT CONFIGIGURED WITH BCR8 = '0'  
WAIT CONFIGIGURED WITH BCR8 = '1'  
AI06787b  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low, WAIT asserted during delay; Burst Wrap bit BCR3 set  
to ‘0’ (wrap).  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
3. WAIT will be asserted for a maximum of 2xLC Cycles (LC being the Latency code set through BCR[13-11]).  
4. E must not remain Low longer that t  
.
ELEH  
32/48  
M69KB096AA  
Table 16. Synchronous Burst Read AC Characteristics  
M69KB096AA  
80MHz 66MHz  
Symbol Alt.  
Parameter  
Unit  
Min  
Max  
46.5  
9
Min Max  
t
t
t
ABA  
Burst Access Time  
56  
ns  
ns  
ns  
ns  
KHQV1  
t
Delay From Clock High to Output Valid  
Address Valid to L High  
11  
KHQV2  
ACLK  
t
t
10  
10  
AVLH  
AVS  
t
t
BOE  
Delay From Output Enable Low to Output Valid in Burst mode  
20  
20  
GLQV  
Chip Enable High between Subsequent Mixed-Mode Read  
Operations  
(5)  
t
5
1
5
ns  
t
t
CBPH  
EHEL  
t
t
CEW  
Chip Enable Low to WAIT Valid  
Maximum Chip Enable Low Pulse  
Clock Period  
7.5  
8
1
7.5  
8
ns  
ns  
ns  
ns  
ELTV  
(5)  
t
CEM  
ELEH  
(4)  
t
12.5  
4.5  
20  
20  
15  
5
20  
20  
t
CLK  
KHKH  
t
t
Chip Enable Low to Clock High  
ELKH  
CSP  
t
t
KHAX  
KHBX  
t
t
HD  
Hold Time From Active Clock Edge  
2
2
ns  
KHWX  
t
KHEH  
t
KHLH  
(2)  
t
Chip Enable High to Output Hi-Z  
8
8
ns  
ns  
t
HZ  
EHQZ  
t
R
Clock Rise Time  
Clock Fall Time  
t
1.8  
2.0  
KHKL  
t
F
t
t
Clock High to WAIT Valid  
Clock High to WAIT Transition  
KHTV  
t
9
11  
ns  
KHTL  
KHTX  
t
t
KHZ  
Clock High to Output Hi-Z  
3
2
2
8
5
3
2
2
8
5
ns  
ns  
ns  
KHQZ  
KHQX1  
KHQX2  
t
t
KLZ  
Clock High to Output Transition  
Output Hold from Clock High  
t
t
KOH  
t
Clock High to Clock Low  
Clock Low to Clock High  
KHKL  
t
KP  
4
5
ns  
t
KLKH  
(2)  
t
Output Enable High to Output Hi-Z  
8
8
ns  
ns  
t
OHZ  
GHQZ  
(3)  
t
Output Enable Low to Output Transition  
5
3
5
3
t
OLZ  
GLQX  
t
t
t
AVKH  
LLKH  
BLKH  
t
SP  
Set-up Time to Active Clock Edge  
ns  
t
WHKH  
t
CHKH  
Note: 1. All the tests are performed with the outputs configured in “Full drive” strength (BCR5=’0’).  
2. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14.. The High-Z timings measure a  
transition of 100mV between V or V and V /2.  
OH  
OL  
CCQ  
3. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14.. The transition timings measure a  
transition of 100mV between the High-Z level (V /2) and V or V  
.
OL  
CCQ  
OH  
4. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
5. When configured in Synchronous mode (BCR15 = 0), a refresh opportunity must be provided every t . A refresh opportunity is  
ELEH  
satisfied by either of the following two conditions: E = V during Clock input K rising edge or E = V for longer than 15ns.  
IH  
IH  
33/48  
M69KB096AA  
Figure 23. Chip Enable Controlled, Asynchronous Write AC Waveforms  
tAVAX  
A0-A21  
VALID ADDRESS  
tAVWH  
tWHAX  
L
tELEH,  
tELWH  
tAVEL  
E
tBLBH  
LB/UB  
G
tWHWL  
tWLWH  
W
tDVEH tEHDX  
DQ0-DQ15  
Hi-Z  
VALID INPUT  
tELTV  
tEHTZ  
Hi-Z  
WAIT  
Hi-Z  
AI06788c  
Figure 24. LB/UB Controlled, Asynchronous Write AC Waveforms  
tAVAX  
A0-A21  
L
VALID ADDRESS  
tAVWH  
tWHAX  
tELEH, tELWH  
tBLBH  
E
LB/UB  
G
tWHWL  
Hi-Z  
tWLWH  
W
tDVEH  
tEHDX  
DQ0-DQ15  
VALID INPUT  
tELTV  
Hi-Z  
tBHTZ  
Hi-Z  
WAIT  
AI06789d  
34/48  
M69KB096AA  
Figure 25. Write Enable Controlled, Asynchronous Write AC Waveforms  
tAVAX  
A0-A21  
L
VALID ADDRESS  
tWHAX  
tAVWH  
tELEH, tELWH  
tBLBH  
E
LB/UB  
G
tWLWH  
tWHWL  
W
tAVWL  
tDVEH  
tEHDX  
tWHTZ  
DQ0-DQ15  
Hi-Z  
VALID INPUT  
tELTV  
WAIT  
Hi-Z  
Hi-Z  
AI06790c  
35/48  
M69KB096AA  
Figure 26. L Controlled, Asynchronous Write AC Waveforms  
A0-A21  
VALID ADDRESS  
tAVLH  
tLHAX  
tLLWH  
tLLLH  
tLHLL  
L
tAVWH  
tELEH, tELWH  
E
tBLBH  
LB/UB  
G
tWLWH  
tDVEH  
tWHWL  
W
tEHDX  
DQ0-DQ15  
Hi-Z  
tELTV  
VALID INPUT  
tWHTZ  
Hi-Z  
WAIT  
Hi-Z  
AI06791c  
36/48  
M69KB096AA  
Figure 27. Configuration Register Write in Asynchronous Mode Followed by Read Operation  
K
A0-A21  
ADDRESS  
ADDRESS  
OPCODE  
except A19  
tAVLH  
Select Control Register  
A19  
CR  
tAVLH  
tLHLL  
L
tEHEL  
tLLVH  
Initiate Control Register Access  
tELWH  
E
G
tWLWH  
Write Address Bus Value  
to Control Register  
W
LB/UB  
DATA VALID  
DQ0-DQ15  
AI06778  
Note: 1. Non default BCR Register settings: Latency code two (three clocks); WAIT active Low; Hold data one clock; WAIT asserted during  
delay.  
2. A19 = V to load RCR; A19 = V to load BCR.  
IL  
IH  
37/48  
M69KB096AA  
Figure 28. Asynchronous Write Followed by Synchronous Burst Read (4-word) AC Waveforms  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low; WAIT asserted during delay.  
2. When configured in Synchronous mode (BCR15 = 0), a refresh opportunity must be provided every t . A refresh opportunity is  
ELEH  
satisfied by either of the following two conditions: E = V during Clock input K rising edge or E = V for longer than 15ns.  
IH  
IH  
3. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
38/48  
M69KB096AA  
Figure 29. Synchronous Burst Read (4-word) Followed by Asynchronous Write AC Waveforms  
Note: 1. When configured in Synchronous mode (BCR15 = 0), a refresh opportunity must be provided every t . A refresh opportunity is  
ELEH  
satisfied by either of the following two conditions: E = V during Clock input K rising edge or E = V for longer than 15ns.  
IH  
IH  
39/48  
M69KB096AA  
Table 17. Asynchronous Write AC Characteristics  
M69KB096AA  
70ns 85ns  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
t
AVEL  
t
AVWL  
t
t
t
t
Address Setting Time  
0
0
µs  
AVBL  
LLWL  
ELWL  
AS  
t
t
L High to Address Transition  
Address Valid to L High  
5
5
ns  
ns  
LHAX  
AVH  
t
t
AVS  
10  
10  
AVLH  
t
t
Address Valid to Write Enable High  
Address Valid to Upper/Lower Byte Enable Transition  
AVWH  
t
70  
85  
ns  
AW  
AVBH  
t
t
t
BLBH  
BLEH  
BLWH  
t
Upper/Lower Byte Enable Low to End of Write Operation  
Chip Enable Low to WAIT Valid  
70  
1
85  
1
ns  
ns  
ns  
BW  
t
t
CEW  
7.5  
7.5  
ELTV  
In Mixed-Mode Operation: Delay between Address  
Transition in Asynchronous Write mode and Clock High in  
Burst Read mode  
t
t
70  
85  
AXCH  
CKA  
Chip Enable High between Subsequent Asynchronous  
Operations  
t
t
5
5
ns  
ns  
ns  
EHEL  
CPH  
t
t
ELLH  
BLLH  
t
Chip Enable Low to L High  
10  
70  
10  
85  
CVS  
t
ELBH  
t
Chip Enable Low to End of Write Operation  
CW  
t
ELWH  
t
EHDX  
t
t
t
DH  
Input Hold from End of Write Operation  
Data to Write Time Overlap  
0
0
ns  
ns  
WHDX  
BHDX  
t
t
t
DVEH  
DVBH  
DVWH  
t
DW  
23  
23  
t
t
t
VP  
L Pulse Width Low  
10  
10  
70  
10  
10  
85  
ns  
ns  
ns  
LLLH  
LHLL  
t
L Pulse Width High  
VPH  
t
t
L Low to Write Enable High  
LLWH  
VS  
t
AVAX  
t
Write Cycle Time  
Write Pulse Width  
70  
46  
85  
55  
ns  
ns  
WC  
t
WHWH  
t
WLBH  
t
t
WP  
WLEH  
t
WLWH  
t
t
Write Enable Pulse Width High  
Write Enable High to Address Transition  
Write Enable Low to Data Valid  
10  
0
10  
0
ns  
ns  
ns  
WHWL  
WPH  
t
t
WHAX  
WR  
t
t
WHZ  
8
8
WLDV  
40/48  
M69KB096AA  
M69KB096AA  
70ns 85ns  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
t
AVEL  
t
AVWL  
t
t
t
t
Address Setting Time  
0
5
0
5
µs  
AVBL  
LLWL  
ELWL  
AS  
t
t
L High to Address Transition  
ns  
ns  
LHAX  
AVH  
t
t
Chip Enable High to WAIT Hi-Z  
LB/UB High to WAIT Hi-Z  
EHTZ  
t
8
8
BHTZ  
HZ  
Write Enable High to WAIT Hi-Z  
t
WHTZ  
Note: 1. WE# LOW time must be limited to t  
(8 µs).  
CEM  
2. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14. The transition timings measure a  
transition of 100 mV between the High-Z level (V ) and V or V  
.
OL  
CCQ/2  
OH  
3. These timings have been obtained with the AC Measurement Load Circuit shown on Figure 14. The High-Z timings measure a tran-  
sition of 100 mV between V or V and V  
.
CCQ/2  
OH  
OL  
Figure 30. Synchronous Burst Write AC Waveform  
tKHKH  
K
VALID  
ADDRESS  
A0-A21  
tAVKH  
tKHLH  
tLLKH  
L
tBLKH  
tKHBH  
LB/UB  
tKHEH  
tELKH  
tEHEL  
tELEH  
E
G
tWHKH  
tELTV  
tKHWH  
W
tKHTV  
Hi-Z  
Hi-Z  
WAIT  
tDVKH tKHDX  
VALID  
INPUT  
VALID  
INPUT  
D0-D15  
VALID  
INPUT  
VALID  
INPUT  
Hi-Z  
WRITE Burst Identified  
(W = Low)  
AI06792b  
Note: 1. Non default BCR Register settings: Latency code two (three clocks); WAIT active Low; WAIT asserted during delay.  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t specifications are met.  
ELKH  
41/48  
M69KB096AA  
Figure 31. Continuous Burst Write Showing an Output Delay for End-of-R ow Condition (BCR8=0)  
tKLKH  
K
tKHKH  
tF  
A0-A21  
DON'T CARE  
DON'T CARE  
L
LB/UB  
E
G
DON'T CARE  
tKHTV  
DON'T CARE  
W
tKHTX  
WAIT  
(3)  
tKHDX  
tDVKH  
VALID  
INPUT D[n]  
VALID  
INPUT D[n+1]  
VALID  
VALID  
VALID  
INPUT D[n+2]  
DQ0-DQ15  
INPUT D[n+3] INPUT D[n+4]  
End of Row  
AI06793b  
Note: 1. Non default BCR Register settings: 3 clock cycle latency; WAIT active Low, Burst Wrap bit BCR3 set to ‘0’ (wrap).  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t specifications are met.  
ELKH  
3. WAIT will be asserted for a maximum of (2xLC)+1 cycles (LC being the Latency Code set through BCR[13-11])  
4. Taking E high or L Low will abort the Burst operation and the writing of the first data.  
42/48  
M69KB096AA  
Figure 32. Synchronous Burst Write Followed by Read AC Waveforms (4 Words)  
tKHKH  
tKLKH  
K
tKHAX  
tKHAX  
tAVKH  
tKHKL  
tAVKH  
Addr.  
tKHLH  
tLLKH  
tKHLL  
tKHEH  
tKHLH  
L
tELKH  
tKHEH  
tGHQZ  
tEHEL  
E
(2)  
tELKH  
tGLQX  
G
tWLKH  
tWHKH  
tKHWL  
W
tKHWH  
UB, LB  
WAIT  
tKHTX  
tKHTX  
tDVKH  
tKHDX  
tKHQX2  
DQ0-  
DQ15  
D
D
D
D
D
D
D
IN3  
D
O0  
O1  
O2  
O3  
IN0  
IN1  
IN2  
ai11313  
Note: 1. The Latency type can set to fixed or variable mode. The Latency is set to 3 clock cycles (BCR13-BCR11 = 101). The WAIT signal  
is active Low (BCR10=0), and is asserted during delay (BCR8=0). In fixed Latency mode, row boundary crossing  
2. E can remain Low between the Burst Read and Burst Write operation, but it must not be held Low for longer than t  
.
ELEH  
43/48  
M69KB096AA  
Figure 33. Configuration Register Write in Synchronous Mode Followed by Read Operation  
K
Latch Control Register Value  
A0-A21  
ADDRESS  
OPCODE  
except A19  
tAVKH  
Latch Control Register Address  
ADDRESS  
A19  
CR  
L
tRHKH  
tCHKH  
tELKH  
tKHRL  
tKHLH  
tEHEL  
E
G
W
tKHLH  
tWLKH  
LB/UB  
WAIT  
tELTV  
Hi-Z  
Hi-Z  
DQ0-DQ15  
AI06779b  
Note: 1. Non default BCR Register settings: Latency code two (three clocks); WAIT active Low; Hold data one clock; WAIT asserted during  
delay.  
2. A19 = V to load RCR; A19 = V to load BCR.  
IL  
IH  
44/48  
M69KB096AA  
Table 18. Synchronous Burst Write AC Characteristics  
M69KB096AA  
80MHz 66MHz  
Min Max Min Max  
Symbol  
Alt.  
Parameter  
Unit  
Chip Enable High between Subsequent Mixed-Mode Read  
Operations  
(1)  
t
5
5
ns  
t
CBPH  
EHEL  
t
t
CEW  
Chip Enable Low to WAIT Valid  
Clock Period  
1
7.5  
20  
20  
1
15  
5
7.5  
20  
20  
ns  
ns  
ns  
ELTV  
(2)  
t
12.5  
4.5  
t
CLK  
CSP  
KHKH  
t
t
Chip Enable Low to Clock High  
ELKH  
t
t
KHAX  
KHBH  
t
t
KHWH  
t
Hold Time From Active Clock Edge  
2
2
ns  
HD  
KHEH  
t
KHLH  
t
KHRL  
t
t
Clock Rise Time  
Clock Fall Time  
R
t
1.8  
9
2.0  
11  
ns  
KHKL  
F
t
t
t
KHTL  
Clock High to WAIT Valid  
Clock High to Clock Low  
ns  
ns  
KHTV  
KHKL  
t
KP  
4
3
5
3
t
t
t
AVKH  
BLKH  
Set-up Time to Active Clock Edge  
WHKH  
t
SP  
ns  
t
WLKH  
t
t
CHKH  
RHKH  
(1)  
t
Maximum Chip Enable Pulse Width  
8
8
µs  
t
CEM  
ELEH  
Note: 1. When configured in Synchronous mode (BCR15 = 0), a refresh opportunity must be provided every t . A refresh opportunity is  
ELEH  
satisfied by either of the following two conditions: E = V during Clock input K rising edge or E = V for longer than 15ns.  
IH  
IH  
2. Clock rates lower than 50MHz (clock period higher than 20ns) are allowed as long as t  
specifications are met.  
ELKH  
Figure 34. Power-Up AC Waveforms  
E
tVCHEL  
1.7V  
VCC, VCCQ  
Device Ready For Normal Operation  
Device Initialization  
AI06794  
Table 19. Power-Up AC Characteristics  
M69KB096AA  
Symbol  
Alt.  
Parameter  
70ns  
85ns  
Min  
Unit  
Min  
Max  
Max  
t
t
Initialization delay  
150  
150  
µs  
VCHEL  
PU  
45/48  
M69KB096AA  
PART NUMBERING  
Table 20. Ordering Information Scheme  
Example:  
M69KB096 A  
A
70  
C
W
8
Device Type  
M69 = PSRAM  
Mode  
K =Tested Die  
Operating Voltage  
B = V = 1.7 to 1.95V, Burst, Address/Data Bus Standard x16  
CC  
Array Organization  
096 = 64 Mbit (4Mb x16)  
Option  
A = 1 Chip Enable  
Die Revision  
A = Revision A  
Speed Class  
70 = 70ns  
85 = 85ns  
Maximum Clock Frequency  
A= 66 MHz Max Clock Frequency in Burst Read Mode  
C= 80MHz Max Clock Frequency in Burst Read Mode  
Package  
W = Unsawn Wafer  
Operating Temperature  
8 = –30 to 85 °C  
The notation used for the device number is as shown in Table 20.. Not all combinations are necessarily  
available. For a list of available options (speed, package, etc.) or for further information on any aspect of  
this device, please contact your nearest STMicroelectronics Sales Office.  
46/48  
M69KB096AA  
REVISION HISTORY  
Table 21. Document Revision History  
Date  
Rev.  
Revision Details  
13-Oct-2004  
0.1  
First Issue.  
I
I
current for Standard Leakage option added in FEATURES SUMMARY.  
current for Standard Leakage option added in Table 13., DC Characteristics and test  
SB  
SB  
conditions updated. I  
current for Standard Leakage option added in Table  
TCR  
11-Feb-2005  
0.2  
14., Temperature Compensated Refresh Specifications and Conditions. I  
current for  
PAR  
Standard Leakage option added in Table 15., Partial Array Refresh Specifications and  
Conditions.  
Standard Leakage option added in Table 20., Ordering Information Scheme.  
Root Part Number changed to M69KB096AA.  
104MHz maximum clock frequency and Low Leakage option removed.  
Temperature range updated to –30°C to +85°C.  
Clock Input (K). definition updated. Figure 3., Block Diagram modified.  
Bus Modes Tables 2, 3 and Synchronous Burst Mode paragraph updated.  
Output Impedance Bit (BCR5) renamed Driver Strength and definition updated.  
R1 and R2 updated in Table 13., DC Characteristics and Refresh Specifications and  
Conditions tables merged into Table 14..  
Figures 15, 16, and 17 describing Asynchronous Read AC waveforms updated.  
Figures 18, 19, 20, 21 and 22 describing Synchronous Read AC waveforms updated.  
29-Apr-2005  
1.0  
Figures 23, 24, and 25, describing Asynchronous Write AC waveforms updated. t  
and  
AVWL  
t
added in Table 17., Asynchronous Write AC Characteristics.  
AVBL  
Figures 28 and 29 added.  
Figures 30, 31, and 32, describing Synchronous Write AC waveforms updated. Figure  
32., Synchronous Burst Write Followed by Read AC Waveforms (4 Words) added. t  
RHKH  
and t  
added in Table 18., Synchronous Burst Write AC Characteristics  
KHRL  
Table 21., Bond Pad Location and Identification modified to express the pad coordinates  
from the center of the die.  
, FEATURES SUMMARY, OPERATING MODES and Figure 5., Synchronous Burst Write  
Mode (4-word burst) modified.  
16-June-2005  
18-Aug-2005  
2.0  
3.0  
Updated Note 2 in Table 13., page 23, added notes to Table 14., page 24 and Table  
17., page 40. Deleted Note 5 from Table 15., page 27.  
Clock rate added in datasheet title.  
Test conditions for I  
Characteristics.  
, I  
, I  
, I  
, I  
and I updated in Table 13., DC  
12-Dec-2005  
19-Jan-2006  
4
5
CC1 CC1P CC2 CC3R CC3W SB  
Section Wafer and die specifications removed.  
47/48  
M69KB096AA  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
48/48  

相关型号:

M69KB096AA70CW8

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
STMICROELECTR

M69KB096AA85AW8

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
STMICROELECTR

M69KB096AB

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB096AB70CW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB70DW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB80CW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB096AB80DW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB128AA

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70AW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70CW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA70DW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR

M69KB128AA85AW8

128 Mbit (8Mb x16) 1.8V Supply, Burst PSRAM
STMICROELECTR