M87C257-10F7 [STMICROELECTRONICS]

IC,EPROM,32KX8,CMOS,DIP,28PIN,CERAMIC;
M87C257-10F7
型号: M87C257-10F7
厂家: ST    ST
描述:

IC,EPROM,32KX8,CMOS,DIP,28PIN,CERAMIC

可编程只读存储器 电动程控只读存储器
文件: 总13页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M87C257  
ADDRESS LATCHED  
256K (32K x 8) UV EPROM and OTP EPROM  
INTEGRATED ADDRESS LATCH  
FAST ACCESS TIME: 45ns  
LOW POWER “CMOS” CONSUMPTION:  
– Active Current 30mA  
– Standby Current 100µA  
28  
PROGRAMMING VOLTAGE: 12.75V  
1
ELECTRONIC SIGNATURE for AUTOMATED  
PROGRAMMING  
FDIP28W (F)  
PLCC32 (C)  
PROGRAMMING TIMES of AROUND 3sec.  
(PRESTO II ALGORITHM)  
Figure 1. Logic Diagram  
DESCRIPTION  
The M87C257 is a high speed 262,144 bit UV  
erasable and electrically programmable EPROM.  
The M87C257 incorporates latches for all address  
inputs to minimize chip count, reduce cost, and  
simplify the design of multiplexed bus systems.  
The Window Ceramic Frit-Seal Dual-in-Line pack-  
age has a transparent lid which allows the user to  
expose the chip to ultraviolet light to erase the bit  
pattern. A new pattern can then be written to the  
device by following the programming procedure.  
V
CC  
15  
8
A0-A14  
Q0-Q7  
For applications where the content is programmed  
only one time and erasure is not required, the  
M87C257 is offered in Plastic Leaded Chip Carrier,  
package.  
E
M87C257  
G
Table 1. Signal Names  
ASV  
PP  
A0 - A14  
Q0 - Q7  
E
Address Inputs  
Data Outputs  
V
SS  
Chip Enable  
AI00928B  
G
Output Enable  
ASVPP  
VCC  
Address Strobe / Program Supply  
Supply Voltage  
Ground  
VSS  
June 1996  
1/13  
M87C257  
Figure 2A. DIP Pin Connections  
Figure 2B. LCC Pin Connections  
ASV  
1
2
3
4
5
6
7
8
9
28  
V
CC  
PP  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
27 A14  
26 A13  
25 A8  
24 A9  
23 A11  
1 32  
A6  
A8  
A9  
A11  
NC  
G
A5  
A4  
A3  
22  
G
M87C257  
21 A10  
20  
A2  
A1  
A0  
NC  
Q0  
9
M87C257  
25  
E
A10  
E
A0 10  
Q0 11  
Q1 12  
Q2 13  
19 Q7  
18 Q6  
17 Q5  
16 Q4  
15 Q3  
Q7  
Q6  
17  
V
14  
SS  
AI00929  
AI00930  
Warning: NC = Not Connected, DU = Dont’t Use.  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Ambient Operating Temperature  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
TBIAS  
TSTG  
Temperature Under Bias  
Storage Temperature  
Input or Output Voltages (except A9)  
Supply Voltage  
(2)  
VIO  
VCC  
–2 to 7  
V
(2)  
VA9  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
VPP  
Program Supply Voltage  
V
Notes: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings"  
may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other  
conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum  
Rating conditions for extended periods may affect device reliability. Refer also to the SGS-THOMSON SURE Program and other  
relevant quality documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less than 20ns.  
DEVICE OPERATION  
Read Mode  
The modes of operation of the M87C257 are listed  
in the Operating Modes. A single power supply is  
required in the read mode. Allinputs are TTLlevels  
except for VPP and 12V on A9 for Electronic Signa-  
ture.  
The M87C257 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
2/13  
M87C257  
Table 3. Operating Modes  
Mode  
Read (Latched Address)  
Read (Applied Address)  
Output Disable  
Program  
E
VIL  
G
A9  
X
ASVPP  
VIL  
Q0 - Q7  
Data Out  
Data Out  
Hi-Z  
VIL  
VIL  
VIH  
VIH  
VIL  
VIH  
X
VIL  
X
VIH  
X
VIL  
X
V
IL Pulse  
X
VPP  
VPP  
VPP  
X
Data In  
Data Out  
Hi-Z  
Verify  
VIH  
X
Program Inhibit  
Standby  
VIH  
X
VIH  
X
Hi-Z  
Electronic Signature  
VIL  
VIL  
VID  
VIL  
Codes  
Note: X = VIH or VIL, VID = 12V ± 0.5V  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
VIL  
VIH  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
1
0
0
0
0
0
0
0
80h  
be used to gate data to the output pins, inde-  
pendent of device selection. Assuming that the  
addresses are stable (AS = VIH) or latched (AS =  
VIL), the address access time (tAVQV) is equal to the  
delay from E to output (tELQV). Data is available at  
the output after delay of tGLQV from the falling edge  
of G, assuming that E has been low and the ad-  
Two Line Output Control  
Because EPROMs are usually used in larger mem-  
ory arrays, this product features a 2 line control  
function which accommodates the use of multiple  
memory connection. The two line control function  
allows:  
dresses have been stable for at least tAVQV-tGLQV  
.
a. the lowest possible memory power dissipation,  
The M87C257 reduces the hardware interface in  
multiplexed address-data bus systems. The proc-  
essor multiplexed bus (AD0-AD7) may be tied to  
the M87C257’s address and data pins. No sepa-  
rate address latch is needed because the  
M87C257 latches all address inputs when AS is  
low.  
b. complete assurance that output bus contention  
will not occur.  
For the most efficient use of these two control lines,  
E should be decoded and used as the primary  
device selecting function, while G should be made  
a common connection to all devices in the array  
and connected to the READ line from the system  
control bus. This ensures that all deselected mem-  
ory devices are in their low power standby mode  
and that the output pins are only active when data  
is desired from a particular memory device.  
Standby Mode  
The M87C257 has a standby mode which reduces  
the active current from 30mA to 100µA (Address  
Stable). The M87C257 is placed in the standby  
mode by applying a CMOS high signal to the E  
input. When in the standby mode, the outputs are  
in a high impedance state, independent of the G  
input.  
3/13  
M87C257  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3k  
0V  
DEVICE  
UNDER  
TEST  
OUT  
= 30pF or 100pF  
Standard  
C
2.4V  
L
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823  
Table 6. Capacitance (1) (TA = 25 °C, f = 1 MHz )  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
6
Unit  
pF  
COUT  
VOUT = 0V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
System Considerations  
output control and by properly selected decoupling  
capacitors. It isrecommended thata0.1µF ceramic  
capacitor be used on every device between VCC  
and VSS. This should be a high frequency capacitor  
of low inherent inductance and should be placed  
as close to the device as possible. In addition, a  
4.7µF bulk electrolytic capacitor should be used  
between VCC and VSS for every eight devices. The  
bulk capacitor should be located near the power  
supply connection point. The purpose of the bulk  
capacitor is to overcome the voltage drop caused  
by the inductive effects of PCB traces.  
The power switching characteristics of Advance  
CMOS EPROMs require careful decoupling of the  
devices. The supply current, ICC, has three seg-  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
this transient current peaks is dependent on the  
capacitive andinductive loadingof the deviceatthe  
output. The associated transient voltage peaks can  
be suppressed by complying with the two line  
4/13  
M87C257  
Table 7. Read Mode DC Characteristics (1)  
(TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC  
)
Symbol  
ILI  
Parameter  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Min  
Max  
±10  
±10  
Unit  
µA  
Input Leakage Current  
Output Leakage Current  
ILO  
µA  
E = VIL, G = VIL,  
OUT = 0mA, f = 5MHz  
ICC  
Supply Current  
30  
mA  
I
E = VIH, ASVPP = VIH, Address Switching  
E = VIH, ASVPP = VIL, Address Stable  
10  
1
mA  
mA  
Supply Current  
(Standby) TTL  
ICC1  
E VCC – 0.2V, ASVPP VCC – 0.2V,  
6
mA  
Address Switching  
Supply Current (Standby)  
CMOS  
ICC2  
E VCC – 0.2V, ASVPP = VSS  
,
100  
µA  
Address Stable  
IPP  
VIL  
Program Current  
VPP = VCC  
100  
0.8  
µA  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
2
(2)  
VIH  
VCC + 1  
0.4  
V
VOL  
VOH  
IOL = 2.1mA  
IOH = –1mA  
V
VCC – 0.8V  
V
Notes: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
.
2. Maximum DC voltage on Output is VCC +0.5V.  
Table 8A. Read Mode AC Characteristics (1)  
(TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC  
)
M87C257  
Test  
Condition  
-45 (3)  
-60  
-70  
-80  
Symbol  
Alt  
Parameter  
Unit  
Min Max Min Max Min Max Min Max  
Address Valid to  
Output Valid  
tAVQV  
tAVASL  
tASHASL  
tASLAX  
tASLGL  
tELQV  
tACC  
tAL  
E = VIL, G = VIL  
45  
60  
70  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to  
Address Strobe Low  
7
7
7
7
Address Strobe High  
to Address Strobe Low  
tLL  
35  
20  
20  
45  
25  
25  
25  
35  
20  
20  
60  
30  
30  
30  
35  
20  
20  
35  
20  
20  
Address Strobe Low to  
Address Transition  
tLA  
Address Strobe Low to  
Output Enable Low  
tLOE  
tCE  
tOE  
tDF  
tDF  
tOH  
Chip Enable Low to  
Output Valid  
G = VIL  
E = VIL  
G = VIL  
E = VIL  
70  
35  
30  
30  
80  
40  
40  
40  
Output Enable Low to  
Output Valid  
tGLQV  
Chip Enable High to  
Output Hi-Z  
(2)  
tEHQZ  
0
0
0
0
0
0
0
0
0
0
0
0
Output Enable High to  
Output Hi-Z  
(2)  
tGHQZ  
Address Transition to  
Output Transition  
E = VIL,  
G = VIL  
tAXQX  
Notes: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
2. Sampled only, not 100% tested.  
.
3. In case of 45ns speed see High Speed AC measurement conditions.  
5/13  
M87C257  
Table 8B. Read Mode AC Characteristics (1)  
(TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC  
)
M87C257  
Test  
Symbol  
Alt  
Parameter  
Unit  
-90  
-10  
-12  
-15/-20  
Condition  
Min Max Min Max Min Max Min Max  
Address Valid to  
Output Valid  
tAVQV  
tAVASL  
tASHASL  
tASLAX  
tASLGL  
tELQV  
tACC  
tAL  
E = VIL, G = VIL  
90  
100  
120  
150 ns  
Address Valid to  
Address Strobe Low  
7
7
7
7
ns  
ns  
Address Strobe High  
to Address Strobe Low  
tLL  
35  
20  
20  
35  
20  
20  
35  
20  
20  
35  
20  
20  
Address Strobe Low to  
Address Transition  
tLA  
ns  
Address Strobe Low  
to Output Enable Low  
tLOE  
tCE  
tOE  
tDF  
tDF  
tOH  
ns  
Chip Enable Low to  
Output Valid  
G = VIL  
E = VIL  
90  
40  
40  
40  
100  
40  
120  
50  
150 ns  
Output Enable Low to  
Output Valid  
tGLQV  
60  
40  
40  
ns  
ns  
ns  
ns  
Chip Enable High to  
Output Hi-Z  
(2)  
tEHQZ  
G = VIL  
0
0
0
0
0
0
30  
0
0
0
40  
0
0
0
Output Enable High to  
Output Hi-Z  
(2)  
tGHQZ  
E = VIL  
30  
40  
Address Transition to  
Output Transition  
tAXQX  
E = VIL, G = VIL  
Notes: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
.
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
A0-A14  
VALID  
tASLAX  
tAXQX  
tAVASL  
ASV  
PP  
tASHASL  
tASLGL  
tAVQV  
E
tGLQV  
tEHQZ  
G
tELQV  
tGHQZ  
Hi-Z  
Q0-Q7  
DATA OUT  
AI00931  
6/13  
M87C257  
Table 9. Programming Mode DC Characteristics (1)  
(TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V)  
Symbol  
ILI  
Parameter  
Input Leakage Current  
Supply Current  
Test Condition  
Min  
Max  
±10  
Unit  
µA  
mA  
mA  
V
VIL VIN VIH  
ICC  
50  
IPP  
Program Current  
E = VIL  
50  
VIL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
–0.3  
2
0.8  
VIH  
VCC + 0.5  
0.4  
V
VOL  
VOH  
VID  
IOL = 2.1mA  
IOH = –1mA  
V
VCC -0.8V  
11.5  
V
12.5  
V
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
.
Table 10. Programming Mode AC Characteristics (1)  
(TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V)  
Symbol  
tAVEL  
Alt  
tAS  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
VPP High to Chip Enable Low  
tQVEL  
tDS  
2
tVPHEL  
tVCHEL  
tELEH  
tVPS  
tVCS  
tPW  
tDH  
2
VCC High to Chip Enable Low  
2
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
Output Enable High to Address Transition  
95  
2
105  
tEHQX  
tQXGL  
tGLQV  
tGHQZ  
tGHAX  
tOES  
tOE  
tDFP  
tAH  
2
100  
130  
0
0
ns  
ns  
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
Programming  
change a "0" to a "1" is by die exposition to ultra-  
violet light (UV EPROM). The M87C257 is in the  
programming mode when VPP input is at 12.75V, G  
is at VIH and E is pulsed to VIL. The data to be  
programmed is applied to 8 bits in parallel to the  
data output pins. The levels required for the ad-  
dress and data inputs are TTL. VCC is specified to  
be 6.25 V ± 0.25 V.  
When delivered (and after each erasure for UV  
EPROM), all bits of the M87C257 are in the "1"  
state. Data is introduced by selectively program-  
ming "0"s into the desired bit locations. Although  
only "0"s will be programmed, both "1"s and "0"s  
can be present in the data word. The only way to  
7/13  
M87C257  
Figure 6. Programming and Verify Modes AC Waveforms  
VALID  
A0-A14  
tAVEL  
Q0-Q7  
ASV  
DATA IN  
tQVEL  
DATA OUT  
tEHQX  
PP  
tVPHEL  
tVCHEL  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tELEH  
tQXGL  
G
PROGRAM  
VERIFY  
AI00557  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows to pro-  
gram the whole array with a guaranteed margin, in  
a typical time of 3.5 seconds. Programming with  
PRESTO II involves the application of a sequence  
of100µs programpulsestoeachbyteuntilacorrect  
verify occurs (see Figure 7). During programming  
and verify operation, a MARGIN MODE circuit is  
automatically activated in order to guarantee that  
each cell is programmed with enough margin. No  
overprogram pulse is applied since the verify in  
MARGIN MODE provides necessary margin to  
each programmed cell.  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
E = 100µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Program Inhibit  
YES  
Programming of multiple M87C257s in parallel with  
different data is also easily accomplished. Except  
for E, all like inputs including G of the parallel  
M87C257 may be common. A TTL low level pulse  
appliedto aM87C257’s E input, with VPP at 12.75V,  
will program that M87C257. A high level E input  
inhibits the other M87C257s from being pro-  
grammed.  
Last  
Addr  
NO  
FAIL  
YES  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correctly  
programmed. The verify is accomplished with G at  
VIL, E at VIH, VPP at 12.75V and VCC at 6.25V.  
AI00760B  
8/13  
M87C257  
Electronic Signature  
ERASURE OPERATION (applies for UV EPROM)  
TheerasurecharacteristicsoftheM87C257issuch  
that erasure begins when the cells are exposed to  
light with wavelengths shorter than approximately  
4000 Å. It should be noted that sunlight and some  
type of fluorescent lamps have wavelengths in the  
3000-4000 Årange. Research shows that constant  
exposure to room level fluorescent lighting could  
erase a typical M87C257 in about 3 years, while it  
would take approximately 1 week to cause erasure  
when exposed to direct sunlight. If the M87C257 is  
to be exposed to these types of lighting conditions  
for extended periods of time, it is suggested that  
opaque labels be put over the M87C257 window to  
prevent unintentional erasure. The recommended  
erasure procedure for the M87C257 is exposure to  
short wave ultraviolet light which has wavelength  
2537Å. The integrated dose (i.e. UV intensity x  
exposure time) for erasure should be a minimum  
of 15 W-sec/cm2. The erasure time with this dos-  
age is approximately 15 to 20 minutes using an  
ultraviolet lamp with 12000 µW/cm2 power rating.  
The M87C257 should be placed within 2.5 cm (1  
inch) of the lamp tubes during the erasure. Some  
lamps have a filter on their tubes which should be  
removed before erasure.  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its correspondingprogramming algorithm. The  
ES mode is functional in the 25°C ± 5°C ambient  
temperature range that is required when program-  
ming the M87C257.  
To activate the ES mode, the programming equip-  
ment must force 11.5V to 12.5V on address line A9  
of the M87C257, withVCC = VPP = 5V. Twoidentifier  
bytes may then be sequenced from the device  
outputs by toggling address line A0 from VIL to VIH.  
All other address lines must be held at VIL during  
Electronic Signature mode. Byte 0 (A0=VIL) repre-  
sents the manufacturer code and byte 1 (A0=VIH)  
the device identifier code. When A9 = VID, ASneed  
not be toggled to latch each identifier address. For  
the SGS-THOMSON M87C257, these two identi-  
fier bytes are given in Table 4 and can be read-out  
on outputs Q0 to Q7.  
9/13  
M87C257  
ORDERING INFORMATION SCHEME  
Example:  
M87C257 -70 X  
C
1
X
Speed  
45 ns  
VCC Tolerance  
Package  
FDIP28W  
PLCC32  
Temperature Range  
Option  
-45 (1)  
-60  
-70  
-80  
-90  
-10  
-12  
-15  
-20  
X
± 5%  
F
1
6
7
3
0 to 70 °C  
X
Additional  
Burn-in  
60 ns  
70 ns  
blank  
± 10%  
C
–40 to 85 °C  
–40 to 105 °C  
–40 to 125 °C  
TR  
Tape & Reel  
Packing  
80 ns  
90 ns  
100 ns  
120 ns  
150 ns  
200 ns  
Note: 1. High Speed, see AC Characteristics section for further information.  
Fora list ofavailable options (Speed, VCC Tolerance, Package, etc...) refer to the current Memory Shortform  
catalogue.  
For further information on any aspect of this device, please contact the SGS-THOMSON Sales Office  
nearest to you.  
10/13  
M87C257  
FDIP28W - 28 pin Ceramic Frit-seal DIP, with window  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.71  
1.78  
5.08  
0.55  
1.42  
0.31  
38.10  
15.80  
13.36  
Typ  
Max  
0.225  
0.070  
0.200  
0.022  
0.056  
0.012  
1.500  
0.622  
0.526  
A
A1  
A2  
B
0.50  
3.90  
0.40  
1.17  
0.22  
0.020  
0.154  
0.016  
0.046  
0.009  
B1  
C
D
E
15.40  
13.05  
0.606  
0.514  
E1  
e1  
e3  
eA  
L
2.54  
0.100  
1.300  
33.02  
16.17  
3.18  
1.52  
18.32  
4.10  
2.49  
0.637  
0.125  
0.060  
0.721  
0.161  
0.098  
S
7.11  
0.280  
α
4°  
15°  
4°  
15°  
N
28  
28  
FDIP28W  
A2  
A
A1  
e1  
L
B1  
B
α
C
eA  
e3  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale  
11/13  
M87C257  
PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular  
mm  
Min  
2.54  
1.52  
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
inches  
Min  
Symb  
Typ  
Max  
3.56  
2.41  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ  
Max  
0.140  
0.095  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
B
0.100  
0.060  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.050  
N
32  
32  
Nd  
Ne  
7
7
9
9
CP  
0.10  
0.004  
PLCC32  
D
D1  
A1  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
B
Nd  
A
CP  
PLCC  
Drawing is not to scale  
12/13  
M87C257  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronicsproducts are not authorized for use as critical components in life support devices or systems withoutexpress  
written approval of SGS-THOMSON Microelectronics.  
© 1996 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
13/13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY