M93S46-WMN3P/W [STMICROELECTRONICS]

IC,SERIAL EEPROM,64X16,CMOS,SOP,8PIN,PLASTIC;
M93S46-WMN3P/W
型号: M93S46-WMN3P/W
厂家: ST    ST
描述:

IC,SERIAL EEPROM,64X16,CMOS,SOP,8PIN,PLASTIC

存储 内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总34页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M93S66, M93S56  
M93S46  
4Kbit, 2Kbit and 1Kbit (16-bit wide)  
MICROWIRE Serial Access EEPROM with Block Protection  
FEATURES SUMMARY  
Industry Standard MICROWIRE Bus  
Figure 1. Packages  
Single Supply Voltage:  
4.5 to 5.5V for M93Sx6  
2.5 to 5.5V for M93Sx6-W  
1.8 to 5.5V for M93Sx6-R  
8
Single Organization: by Word (x16)  
Programming Instructions that work on: Word  
or Entire Memory  
1
Self-timed Programming Cycle with Auto-  
Erase  
PDIP8 (BN)  
User Defined Write Protected Area  
Page Write Mode (4 words)  
Ready/Busy Signal During Programming  
Speed:  
8
1MHz Clock Rate, 10ms Write Time  
(Current product, identified by process  
identification letter F or M)  
1
SO8 (MN)  
150 mil width  
2MHz Clock Rate, 5ms Write Time (New  
Product, identified by process  
identification letter W or G)  
Sequential Read Operation  
Enhanced ESD/Latch-Up Behavior  
More than 1 Million Erase/Write Cycles  
More than 40 Year Data Retention  
TSSOP8 (DS)  
3x3mm body size  
TSSOP8 (DW)  
169 mil width  
April 2004  
1/34  
M93S66, M93S56, M93S46  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. DIP, SO and TSSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
POWER-ON DATA PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 2. Instruction Set for the M93S46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Instruction Set for the M93S66, M93S56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4. READ, WRITE, WEN and WDS Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Enable and Write Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. PAWRITE and WRAL Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 6. PREAD, PRWRITE and PREN Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 7. PRCLEAR and PRDS Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
WRITE PROTECTION AND THE PROTECTION REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection Register Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
COMMON I/O OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8. Write Sequence with One Clock Glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CLOCK PULSE COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 5. Operating Conditions (M93Sx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Operating Conditions (M93Sx6-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 7. Operating Conditions (M93Sx6-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 8. AC Measurement Conditions (M93Sx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 9. AC Measurement Conditions (M93Sx6-W and M93Sx6-R). . . . . . . . . . . . . . . . . . . . . . . 17  
2/34  
M93S66, M93S56, M93S46  
Figure 9. AC Testing Input Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 10. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. DC Characteristics (M93Sx6, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 12. DC Characteristics (M93Sx6, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 13. DC Characteristics (M93Sx6-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 14. DC Characteristics (M93Sx6-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 15. DC Characteristics (M93Sx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 16. AC Characteristics (M93Sx6, Device Grade 6 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 17. AC Characteristics (M93Sx6-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 18. AC Characteristics (M93Sx6-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 19. AC Characteristics (M93Sx6-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10.Synchronous Timing (Start and Op-Code Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 28  
Table 20. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 28  
Figure 14.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 29  
Table 21. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
29  
Figure 15.TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline  
30  
Table 22. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data  
30  
Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 31  
Table 23. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 31  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 25. How to Identify Current and New Products by the Process Identification Letter . . . . . . . 32  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 26. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3/34  
M93S66, M93S56, M93S46  
SUMMARY DESCRIPTION  
This specification covers a range of 4K, 2K, 1K bit  
serial Electrically Erasable Programmable Memo-  
ry (EEPROM) products (respectively for M93S66,  
M93S56, M93S46). In this text, these products are  
collectively referred to as M93Sx6.  
and instructions used to set the memory protec-  
tion. These are summarized in Table 2. and Table  
3.).  
A Read Data from Memory (READ) instruction  
loads the address of the first word to be read into  
an internal address pointer. The data contained at  
this address is then clocked out serially. The ad-  
dress pointer is automatically incremented after  
the data is output and, if the Chip Select Input (S)  
is held High, the M93Sx6 can output a sequential  
stream of data words. In this way, the memory can  
be read as a data stream from 16 to 4096 bits (for  
the M93S66), or continuously as the address  
counter automatically rolls over to 00h when the  
highest address is reached.  
Figure 2. Logic Diagram  
V
CC  
D
C
Within the time required by a programming cycle  
(t ), up to 4 words may be written with help of the  
W
Q
Page Write instruction. the whole memory may  
also be erased, or set to a predetermined pattern,  
by using the Write All instruction.  
M93Sx6  
S
PRE  
W
Within the memory, a user defined area may be  
protected against further Write instructions. The  
size of this area is defined by the content of a Pro-  
tection Register, located outside of the memory ar-  
ray. As a final protection step, data may be  
permanently protected by programming a One  
Time Programming bit (OTP bit) which locks the  
Protection Register content.  
V
SS  
AI02020  
Programming is internally self-timed (the external  
clock signal on Serial Clock (C) may be stopped or  
left running after the start of a Write cycle) and  
does not require an erase cycle prior to the Write  
instruction. The Write instruction writes 16 bits at a  
time into one of the word locations of the M93Sx6,  
the Page Write instruction writes up to 4 words of  
16 bits to sequential locations, assuming in both  
cases that all addresses are outside the Write Pro-  
tected area. After the start of the programming cy-  
cle, a Busy/Ready signal is available on Serial  
Data Output (Q) when Chip Select Input (S) is driv-  
en High.  
Table 1. Signal Names  
S
Chip Select Input  
D
Serial Data Input  
Serial Data Output  
Serial Clock  
Q
C
PRE  
W
Protection Register Enable  
Write Enable  
Figure 3. DIP, SO and TSSOP Connections  
V
Supply Voltage  
Ground  
M93Sx6  
CC  
S
C
D
Q
1
2
3
4
8
V
CC  
PRE  
V
SS  
7
6
The M93Sx6 is accessed through a serial input (D)  
and output (Q) using the MICROWIRE bus proto-  
col. The memory is divided into 256, 128, 64 x16  
bit words (respectively for M93S66, M93S56,  
M93S46).  
W
5
V
SS  
AI02021  
The M93Sx6 is accessed by a set of instructions  
which includes Read, Write, Page Write, Write All  
Note: See PACKAGE MECHANICAL section for package dimen-  
sions, and how to identify pin-1.  
4/34  
M93S66, M93S56, M93S46  
An internal Power-on Data Protection mechanism  
in the M93Sx6 inhibits the device when the supply  
is too low.  
INSTRUCTIONS  
The instruction set of the M93Sx6 devices con-  
tains seven instructions, as summarized in Table  
2. to Table 3.. Each instruction consists of the fol-  
lowing parts, as shown in Figure 4.:  
Each instruction is preceded by a rising edge  
on Chip Select Input (S) with Serial Clock (C)  
being held Low.  
A start bit, which is the first ‘1’ read on Serial  
Data Input (D) during the rising edge of Serial  
Clock (C).  
Two op-code bits, read on Serial Data Input  
(D) during the rising edge of Serial Clock (C).  
(Some instructions also use the first two bits of  
the address to define the op-code).  
POWER-ON DATA PROTECTION  
To prevent data corruption and inadvertent write  
operations during power-up, a Power-On Reset  
(POR) circuit resets all internal programming cir-  
cuitry, and sets the device in the Write Disable  
mode.  
At Power-up and Power-down, the device  
must not be selected (that is, Chip Select Input  
(S) must be driven Low) until the supply  
voltage reaches the operating value V  
specified in Table 5. to Table 6..  
CC  
The address bits of the byte or word that is to  
be accessed. For the M93S46, the address is  
made up of 6 bits (see Table 2.). For the  
M93S56 and M93S66, the address is made up  
of 8 bits (see Table 3.).  
When V reaches its valid level, the device is  
CC  
properly reset (in the Write Disable mode) and  
is ready to decode and execute incoming  
instructions.  
The M93Sx6 devices are fabricated in CMOS  
technology and are therefore able to run as slow  
as 0 Hz (static input signals) or as fast as the max-  
imum ratings specified in Table 16. to Table 19..  
For the M93Sx6 devices (5V range) the POR  
threshold voltage is around 3V. For the M93Sx6-  
W (3V range) and M93Sx6-R (2V range) the POR  
threshold voltage is around 1.5V.  
5/34  
M93S66, M93S56, M93S46  
Table 2. Instruction Set for the M93S46  
Required  
Clock  
Cycles  
Start Op-  
Additional  
Comments  
1
Instruction  
Description  
W
PRE  
Data  
Address  
bit  
Code  
Read Data  
from Memory  
READ  
X
0
1
10  
A5-A0  
Q15-Q0  
Write is executed if  
the address is not  
inside the Protected  
area  
Write Data to  
Memory  
WRITE  
PAWRITE  
WRAL  
1
1
1
0
0
0
1
1
1
01  
11  
00  
A5-A0  
A5-A0  
D15-D0  
25  
9 + N x 16  
25  
Write is executed if  
all the N addresses  
are not inside the  
Protected area  
Page Write to  
Memory  
N x  
D15-D0  
Write All  
Memory  
with same  
Data  
Write all data if the  
Protection Register  
is cleared  
01 XXXX  
D15-D0  
WEN  
WDS  
Write Enable  
Write Disable  
1
0
0
1
1
00  
00  
11 XXXX  
00 XXXX  
9
9
X
Data Output =  
Protection Register  
content + Protection  
Flag bit  
Protection  
Register Read  
Q5-Q0  
+ Flag  
PRREAD  
X
1
1
10  
XXXXXX  
Data above specified  
address A5-A0 are  
protected  
Protection  
Register Write  
PRWRITE  
PRCLEAR  
PREN  
1
1
1
1
1
1
1
1
1
1
1
1
01  
11  
00  
00  
A5-A0  
111111  
11XXXX  
000000  
9
9
9
9
Protect Flag is also  
cleared (cleared  
Flag = 1)  
Protection  
Register Clear  
Protection  
Register  
Enable  
Protection  
Register  
Disable  
OTP bit is set  
permanently  
PRDS  
Note: 1. X = Don’t Care bit.  
6/34  
M93S66, M93S56, M93S46  
Table 3. Instruction Set for the M93S66, M93S56  
Start Op-  
Required  
Additional  
Clock  
1,2  
Instruction  
Description  
W
PRE  
Data  
Address  
bit  
Code  
Comments  
Cycles  
Read Data  
from Memory  
READ  
X
0
1
10  
A7-A0  
Q15-Q0  
Write is executed if  
Write Data to  
Memory  
the address is not  
inside the  
Protected area  
WRITE  
PAWRITE  
WRAL  
1
1
1
0
0
0
1
1
1
01  
11  
00  
A7-A0  
A7-A0  
D15-D0  
27  
Write is executed if  
all the N  
11 + N x 16 addresses are not  
Page Write to  
Memory  
N x  
D15-D0  
inside the  
Protected area  
Write All  
Memory  
with same  
Data  
Write all data if the  
Protection  
Register is cleared  
01XXXXXX D15-D0  
27  
WEN  
WDS  
Write Enable  
Write Disable  
1
0
0
1
1
00  
00  
11XXXXXX  
00XXXXXX  
11  
11  
X
Data Output =  
Protection  
Register content +  
Protection  
Register Read  
Q7-Q0  
XXXXXXXX  
PRREAD  
PRWRITE  
X
1
1
1
1
1
10  
01  
+ Flag  
Protection Flag bit  
Data above  
specified address  
A7-A0 are  
Protection  
Register Write  
A7-A0  
11  
protected  
Protect Flag is also  
cleared (cleared  
Flag = 1)  
Protection  
Register Clear  
PRCLEAR  
PREN  
1
1
1
1
1
1
1
1
1
11  
00  
00  
11111111  
11XXXXXX  
00000000  
11  
11  
11  
Protection  
Register  
Enable  
Protection  
Register  
Disable  
OTP bit is set  
permanently  
PRDS  
Note: 1. X = Don’t Care bit.  
2. Address bit A7 is not decoded by the M93S56.  
7/34  
M93S66, M93S56, M93S46  
Figure 4. READ, WRITE, WEN and WDS Sequences  
READ  
PRE  
S
D
1 1 0 An  
A0  
Q
Qn  
Q0  
ADDR  
DATA OUT  
OP  
CODE  
WRITE  
PRE  
W
S
CHECK  
STATUS  
D
1 0 1 An  
A0 Dn  
D0  
Q
ADDR  
DATA IN  
BUSY  
READY  
OP  
CODE  
WRITE  
ENABLE  
PRE  
W
WRITE  
DISABLE  
PRE  
S
S
D
1 0 0 0 0 Xn X0  
D
1 0 0 1 1 Xn X0  
OP  
CODE  
OP  
CODE  
AI00889D  
Note: For the meanings of An, Xn, Qn and Dn, see Table 2. and Table 3..  
8/34  
M93S66, M93S56, M93S46  
Read  
Write  
The Read Data from Memory (READ) instruction  
outputs serial data on Serial Data Output (Q).  
When the instruction is received, the op-code and  
address are decoded, and the data from the mem-  
ory is transferred to an output shift register. A dum-  
my 0 bit is output first, followed by the 16-bit word,  
with the most significant bit first. Output data  
changes are triggered by the rising edge of Serial  
Clock (C). The M93Sx6 automatically increments  
the internal address register and clocks out the  
next byte (or word) as long as the Chip Select In-  
put (S) is held High. In this case, the dummy 0 bit  
is not output between bytes (or words) and a con-  
tinuous stream of data can be read.  
The Write Data to Memory (WRITE) instruction is  
composed of the Start bit plus the op-code fol-  
lowed by the address and the 16 data bits to be  
written.  
Write Enable (W) must be held High before and  
during the instruction. Input address and data, on  
Serial Data Input (D) are sampled on the rising  
edge of Serial Clock (C).  
After the last data bit has been sampled, the Chip  
Select Input (S) must be taken Low before the next  
rising edge of Serial Clock (C). If Chip Select Input  
(S) is brought Low before or after this specific time  
frame, the self-timed programming cycle will not  
be started, and the addressed location will not be  
programmed.  
Write Enable and Write Disable  
The Write Enable (WEN) instruction enables the  
future execution of write instructions, and the Write  
Disable (WDS) instruction disables it. When power  
is first applied, the M93Sx6 initializes itself so that  
write instructions are disabled. After an Write En-  
able (WEN) instruction has been executed, writing  
remains enabled until an Write Disable (WDS) in-  
While the M93Sx6 is performing a write cycle, but  
after a delay (t  
) before the status information  
SLSH  
becomes available, Chip Select Input (S) can be  
driven High to monitor the status of the write cycle:  
Serial Data Output (Q) is driven Low while the  
M93Sx6 is still busy, and High when the cycle is  
complete, and the M93Sx6 is ready to receive a  
new instruction. The M93Sx6 ignores any data on  
the bus while it is busy on a write cycle. Once the  
M93Sx6 is Ready, Serial Data Output (Q) is driven  
High, and remains in this state until a new start bit  
is decoded or the Chip Select Input (S) is brought  
Low.  
struction is executed, or until V  
falls below the  
CC  
power-on reset threshold voltage. To protect the  
memory contents from accidental corruption, it is  
advisable to issue the Write Disable (WDS) in-  
struction after every write cycle. The Read Data  
from Memory (READ) instruction is not affected by  
the Write Enable (WEN) or Write Disable (WDS)  
instructions.  
Programming is internally self-timed, so the exter-  
nal Serial Clock (C) may be disconnected or left  
running after the start of a write cycle.  
9/34  
M93S66, M93S56, M93S46  
Figure 5. PAWRITE and WRAL Sequence  
PAGE  
WRITE  
PRE  
W
S
CHECK  
STATUS  
D
1 1 1 An  
A0 Dn  
D0  
Q
ADDR  
DATA IN  
BUSY  
READY  
OP  
CODE  
WRITE  
ALL  
PRE  
W
S
CHECK  
STATUS  
D
1 0 0 0 1 Xn X0 Dn  
D0  
Q
ADDR  
OP  
DATA IN  
BUSY  
READY  
CODE  
AI00890C  
Note: For the meanings of An, Xn and Dn, please see Table 2. and Table 3..  
Page Write  
The Page Write to Memory (PAWRITE) instruction  
will not be executed if any of the 4 words address-  
es the protected area.  
Write Enable (W) must be held High before and  
during the instruction. Input address and data, on  
Serial Data Input (D) are sampled on the rising  
edge of Serial Clock (C).  
After the last data bit has been sampled, the Chip  
Select Input (S) must be taken Low before the next  
rising edge of Serial Clock (C). If Chip Select Input  
(S) is brought Low before or after this specific time  
frame, the self-timed programming cycle will not  
A Page Write to Memory (PAWRITE) instruction  
contains the first address to be written, followed by  
up to 4 data words.  
After the receipt of each data word, bits A1-A0 of  
the internal address register are incremented, the  
high order bits remaining unchanged (A7-A2 for  
M93S66, M93S56; A5-A2 for M93S46). Users  
must take care, in the software, to ensure that the  
last word address has the same upper order ad-  
dress bits as the initial address transmitted to  
avoid address roll-over.  
10/34  
M93S66, M93S56, M93S46  
be started, and the addressed location will not be  
programmed.  
While the M93Sx6 is performing a write cycle, but  
Write Enable (W) must be held High before and  
during the instruction. Input address and data, on  
Serial Data Input (D) are sampled on the rising  
edge of Serial Clock (C).  
after a delay (t  
) before the status information  
SLSH  
becomes available, Chip Select Input (S) can be  
driven High to monitor the status of the write cycle:  
Serial Data Output (Q) is driven Low while the  
M93Sx6 is still busy, and High when the cycle is  
complete, and the M93Sx6 is ready to receive a  
new instruction. The M93Sx6 ignores any data on  
the bus while it is busy on a write cycle. Once the  
M93Sx6 is Ready, Serial Data Output (Q) is driven  
High, and remains in this state until a new start bit  
is decoded or the Chip Select Input (S) is brought  
Low.  
After the last data bit has been sampled, the Chip  
Select Input (S) must be taken Low before the next  
rising edge of Serial Clock (C). If Chip Select Input  
(S) is brought Low before or after this specific time  
frame, the self-timed programming cycle will not  
be started, and the addressed location will not be  
programmed.  
While the M93Sx6 is performing a write cycle, but  
after a delay (t  
) before the status information  
SLSH  
becomes available, Chip Select Input (S) can be  
driven High to monitor the status of the write cycle:  
Serial Data Output (Q) is driven Low while the  
M93Sx6 is still busy, and High when the cycle is  
complete, and the M93Sx6 is ready to receive a  
new instruction. The M93Sx6 ignores any data on  
the bus while it is busy on a write cycle. Once the  
M93Sx6 is Ready, Serial Data Output (Q) is driven  
High, and remains in this state until a new start bit  
is decoded or the Chip Select Input (S) is brought  
Low.  
Programming is internally self-timed, so the exter-  
nal Serial Clock (C) may be disconnected or left  
running after the start of a write cycle.  
Write All  
The Write All Memory with same Data (WRAL) in-  
struction is valid only after the Protection Register  
has been cleared by executing a Protection Reg-  
ister Clear (PRCLEAR) instruction. The Write All  
Memory with same Data (WRAL) instruction simul-  
taneously writes the whole memory with the same  
data word given in the instruction.  
Programming is internally self-timed, so the exter-  
nal Serial Clock (C) may be disconnected or left  
running after the start of a write cycle.  
11/34  
M93S66, M93S56, M93S46  
Figure 6. PREAD, PRWRITE and PREN Sequences  
Protect  
Register  
READ  
PRE  
S
D
1 1 0 Xn  
X0  
Q
An  
A0 F  
ADDR  
DATA  
OUT  
F = Protect Flag  
OP  
CODE  
Protect  
Register  
WRITE  
PRE  
W
S
CHECK  
STATUS  
D
1 0 1 An  
A0  
Q
ADDR  
BUSY  
READY  
OP  
CODE  
Protect  
Register  
ENABLE  
PRE  
W
S
D
1 0 0 1 1 Xn X0  
OP  
CODE  
AI00891D  
Note: For the meanings of An, Xn and Dn, please see Table 2. and Table 3..  
12/34  
M93S66, M93S56, M93S46  
Figure 7. PRCLEAR and PRDS Sequences  
Protect  
Register  
CLEAR  
PRE  
W
S
CHECK  
STATUS  
D
1 1 1  
1 1 1  
Q
ADDR  
BUSY  
READY  
OP  
CODE  
Protect  
Register  
DISABLE  
PRE  
W
S
CHECK  
STATUS  
D
1 0 0  
0 0 0  
Q
ADDR  
BUSY  
READY  
OP  
CODE  
AI00892C  
Note: For the meanings of An, Xn and Dn, please see Table 2. and Table 3..  
13/34  
M93S66, M93S56, M93S46  
WRITE PROTECTION AND THE PROTECTION REGISTER  
The Protection Register on the M93Sx6 is used to  
adjust the amount of memory that is to be write  
protected. The write protected area extends from  
the address given in the Protection Register, up to  
the top address in the M93Sx6 device.  
Two flag bits are used to indicate the Protection  
Register status:  
able (PREN) instruction does not modify the Pro-  
tection Flag bit value.  
Note: A Write Enable (WEN) instruction must be  
executed before the Protection Register Enable  
(PREN) instruction. Both the Protection Enable  
(PRE) and Write Enable (W) signals must be driv-  
en High during the instruction execution.  
Protection Flag: this is used to enable/disable  
protection of the write-protected area of the  
M93Sx6 memory  
OTP bit: when set, this disables access to the  
Protection Register, and thus prevents any  
further modifications to the value in the  
Protection Register.  
Protection Register Clear  
The Protection Register Clear (PRCLEAR) in-  
struction clears the address stored in the Protec-  
tion Register to all 1s, so that none of the memory  
is write-protected by the Protection Register. How-  
ever, it should be noted that all the memory re-  
mains protected, in the normal way, using the  
Write Enable (WEN) and Write Disable (WDS) in-  
structions.  
The Protection Register Clear (PRCLEAR) in-  
struction clears the Protection Flag to 1. Both the  
Protection Enable (PRE) and Write Enable (W)  
signals must be driven High during the instruction  
execution.  
The lower-bound memory address is written to the  
Protection Register using the Protection Register  
Write (PRWRITE) instruction. It can be read using  
the Protection Register Read (PRREAD) instruc-  
tion.  
The Protection Register Enable (PREN) instruc-  
tion must be executed before any PRCLEAR,  
PRWRITE or PRDS instruction, and with appropri-  
ate levels applied to the Protection Enable (PRE)  
and Write Enable (W) signals.  
Note: A Protection Register Enable (PREN) in-  
struction must immediately precede the Protection  
Register Clear (PRCLEAR) instruction.  
Write-access to the Protection Register is  
achieved by executing the following sequence:  
Protection Register Write  
The Protection Register Write (PRWRITE) instruc-  
tion is used to write an address into the Protection  
Register. This is the address of the first word to be  
protected. After the Protection Register Write  
(PRWRITE) instruction has been executed, all  
memory locations equal to and above the speci-  
fied address are protected from writing.  
The Protection Flag bit is set to 0, and can be read  
with Protection Register Read (PRREAD) instruc-  
tion. Both the Protection Enable (PRE) and Write  
Enable (W) signals must be driven High during the  
instruction execution.  
Note: A Protection Register Enable (PREN) in-  
struction must immediately precede the Protection  
Register Write (PRWRITE) instruction, but it is not  
necessary to execute first a Protection Register  
Clear (PRCLEAR).  
Execute the Write Enable (WEN) instruction  
Execute the Protection Register Enable  
(PREN) instruction  
Execute one PRWRITE, PRCLEAR or PRDS  
instructions, to set a new boundary address in  
the Protection Register, to clear the protection  
address (to all 1s), or permanently to freeze  
the value held in the Protection Register.  
Protection Register Read  
The Protection Register Read (PRREAD) instruc-  
tion outputs, on Serial Data Output (Q), the con-  
tent of the Protection Register, followed by the  
Protection Flag bit. The Protection Enable (PRE)  
signal must be driven High before and during the  
instruction.  
As with the Read Data from Memory (READ) in-  
struction, a dummy 0 bit is output first. Since it is  
not possible to distinguish between the Protection  
Register being cleared (all 1s) or having been writ-  
ten with all 1s, the user must check the Protection  
Flag status (and not the Protection Register con-  
tent) to ascertain the setting of the memory protec-  
tion.  
Protection Register Disable  
The Protection Register Disable (PRDS) instruc-  
tion sets the One Time Programmable (OTP) bit.  
This instruction is a ONE TIME ONLY instruction  
which latches the Protection Register content, this  
content is therefore unalterable in the future. Both  
the Protection Enable (PRE) and Write Enable (W)  
signals must be driven High during the instruction  
execution. The OTP bit cannot be directly read, it  
can be checked by reading the content of the Pro-  
tection Register, using the Protection Register  
Read (PRREAD) instruction, then by writing this  
same value back into the Protection Register, us-  
Protection Register Enable  
The Protection Register Enable (PREN) instruc-  
tion is used to authorize the use of instructions that  
modify the Protection Register (PRWRITE,  
PRCLEAR, PRDS). The Protection Register En-  
14/34  
M93S66, M93S56, M93S46  
ing the Protection Register Write (PRWRITE) in-  
struction. When the OTP bit is set, the Ready/Busy  
status cannot appear on Serial Data Output (Q).  
When the OTP bit is not set, the Busy status ap-  
pears on Serial Data Output (Q).  
Note: A Protection Register Enable (PREN) in-  
struction must immediately precede the Protection  
Register Disable (PRDS) instruction.  
COMMON I/O OPERATION  
Serial Data Output (Q) and Serial Data Input (D)  
can be connected together, through a current lim-  
iting resistor, to form a common, single-wire data  
bus. Some precautions must be taken when oper-  
ating the memory in this way, mostly to prevent a  
short circuit current from flowing when the last ad-  
dress bit (A0) clashes with the first data bit on Se-  
rial Data Output (Q). Please see the application  
note AN394 for details.  
Figure 8. Write Sequence with One Clock Glitch  
S
C
D
An  
An-1  
Glitch  
An-2  
START  
"0"  
"1"  
D0  
ADDRESS AND DATA  
ARE SHIFTED BY ONE BIT  
WRITE  
AI01395  
aborted, and the contents of the memory are not  
modified.  
CLOCK PULSE COUNTER  
In a noisy environment, the number of pulses re-  
ceived on Serial Clock (C) may be greater than the  
number delivered by the Bus Master (the micro-  
controller). This can lead to a misalignment of the  
instruction of one or more bits (as shown in Figure  
8.) and may lead to the writing of erroneous data  
at an erroneous address.  
To combat this problem, the M93Sx6 has an on-  
chip counter that counts the clock pulses from the  
start bit until the falling edge of the Chip Select In-  
put (S). If the number of clock pulses received is  
not the number expected, the WRITE, PAWRITE,  
WRALL, PRWRITE or PRCLEAR instruction is  
The number of clock cycles expected for each in-  
struction, and for each member of the M93Sx6  
family, are summarized in Table 2. to Table 3.. For  
example, a Write Data to Memory (WRITE) in-  
struction on the M93S56 (or M93S66) expects 27  
clock cycles from the start bit to the falling edge of  
Chip Select Input (S). That is:  
1 Start bit  
+ 2 Op-code bits  
+ 8 Address bits  
+ 16 Data bits  
15/34  
M93S66, M93S56, M93S46  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 4. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
°C  
°C  
V
T
Storage Temperature  
–65  
150  
STG  
1
TLEAD  
VOUT  
VIN  
Lead Temperature during Soldering  
See note  
Output range (Q = V or Hi-Z)  
–0.50  
–0.50  
–0.50  
–4000  
VCC+0.5  
VCC+1  
6.5  
OH  
Input range  
V
V
Supply Voltage  
V
CC  
2
VESD  
4000  
V
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU  
2. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
16/34  
M93S66, M93S56, M93S46  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 5. Operating Conditions (M93Sx6)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 6. Operating Conditions (M93Sx6-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 6)  
TA  
–40  
85  
°C  
Table 7. Operating Conditions (M93Sx6-R)  
Symbol  
Parameter  
Min.  
1.8  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (Device Grade 6)  
TA  
–40  
85  
°C  
Table 8. AC Measurement Conditions (M93Sx6)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
50  
Input Pulse Voltages  
0.4 V to 2.4 V  
1.0 V and 2.0 V  
0.8 V and 2.0 V  
Input Timing Reference Voltages  
Output Timing Reference Voltages  
V
V
Note: Output Hi-Z is defined as the point where data out is no longer driven.  
Table 9. AC Measurement Conditions (M93Sx6-W and M93Sx6-R)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
50  
CC  
CC  
CC  
0.2V to 0.8V  
Input Pulse Voltages  
CC  
0.3V to 0.7V  
Input Timing Reference Voltages  
Output Timing Reference Voltages  
V
CC  
0.3V to 0.7V  
V
CC  
Note: Output Hi-Z is defined as the point where data out is no longer driven.  
17/34  
M93S66, M93S56, M93S46  
Figure 9. AC Testing Input Output Waveforms  
M93SXX  
2.4V  
2V  
2.0V  
0.8V  
1V  
0.4V  
INPUT  
OUTPUT  
M93SXX-W & M93SXX-R  
0.8V  
0.2V  
CC  
0.7V  
0.3V  
CC  
CC  
CC  
AI02791  
Table 10. Capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
COUT  
Output  
Capacitance  
5
pF  
V
OUT  
= 0V  
CIN  
Input  
Capacitance  
5
pF  
V
= 0V  
IN  
Note: Sampled only, not 100% tested, at T =25°C and a frequency of 1 MHz.  
A
18/34  
M93S66, M93S56, M93S46  
Table 11. DC Characteristics (M93Sx6, Device Grade 6)  
Symbol  
ILI  
Parameter  
Test Condition  
Min.  
Max.  
±2.5  
±2.5  
Unit  
µA  
0V V V  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
0V V  
V , Q in Hi-Z  
CC  
ILO  
µA  
OUT  
V
= 5V, S = V , f = 1 MHz, Current  
CC  
IH  
1.5  
2
mA  
mA  
µA  
1
Product  
ICC  
Supply Current  
V
= 5V, S = V , f = 2 MHz, New  
CC  
IH  
2
Product  
V
= 5V, S = V , C = V  
,
SS  
CC  
CC  
SS  
50  
1
Current Product  
ICC1  
Supply Current (Stand-by)  
V
= 5V, S = V , C = V  
,
SS  
SS  
15  
µA  
2
New Product  
V
V
= 5V ± 10%  
= 5V ± 10%  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
2
0.8  
V
V
V
V
CC  
CC  
V
+ 1  
CC  
V
V
= 5V, I = 2.1mA  
OL  
VOL  
VOH  
0.4  
CC  
= 5V, I  
= –400µA  
2.4  
CC  
OH  
Note: 1. Current product: identified by Process Identification letter F or M.  
2. New product: identified by Process Identification letter W or G.  
Table 12. DC Characteristics (M93Sx6, Device Grade 3)  
Symbol  
ILI  
Parameter  
Test Condition  
0V V V  
Min.  
Max.  
±2.5  
±2.5  
Unit  
µA  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
0V V  
V , Q in Hi-Z  
CC  
ILO  
µA  
OUT  
V
= 5V, S = V , f = 1 MHz, Current  
CC  
IH  
1.5  
2
mA  
mA  
µA  
1
Product  
ICC  
Supply Current  
V
= 5V, S = V , f = 2 MHz, New  
CC  
IH  
2
Product  
V
= 5V, S = V , C = V  
,
SS  
CC  
CC  
SS  
50  
1
Current Product  
ICC1  
Supply Current (Stand-by)  
V
= 5V, S = V , C = V  
,
SS  
SS  
15  
µA  
2
New Product  
V
V
= 5V ± 10%  
= 5V ± 10%  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
2
0.8  
V
V
V
V
CC  
CC  
V
+ 1  
CC  
V
V
= 5V, I = 2.1mA  
OL  
VOL  
VOH  
0.4  
CC  
= 5V, I  
= –400µA  
2.4  
CC  
OH  
Note: 1. Current product: identified by Process Identification letter F or M.  
2. New product: identified by Process Identification letter W or G.  
19/34  
M93S66, M93S56, M93S46  
Table 13. DC Characteristics (M93Sx6-W, Device Grade 6)  
Symbol  
ILI  
Parameter  
Test Condition  
Min.  
Max.  
±2.5  
±2.5  
Unit  
µA  
0V V V  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
0V V  
V , Q in Hi-Z  
CC  
ILO  
µA  
OUT  
V
= 5V, S = V , f = 1 MHz, Current  
CC  
IH  
1.5  
1
mA  
mA  
mA  
mA  
µA  
1
Product  
V
= 2.5V, S = V , f = 1 MHz, Current  
CC  
IH  
1
Product  
Supply Current (CMOS  
Inputs)  
ICC  
V
= 5V, S = V , f = 2 MHz, New  
CC  
IH  
2
2
Product  
V
= 2.5V, S = V , f = 2 MHz, New  
CC  
IH  
1
2
Product  
V
CC  
= 2.5V, S = V , C = V  
,
SS  
SS  
10  
1
Current Product  
ICC1  
Supply Current (Stand-by)  
V
CC  
= 2.5V, S = V , C = V  
,
SS  
SS  
5
µA  
2
New Product  
0.2 V  
VIL  
VIH  
Input Low Voltage (D, C, S)  
Input High Voltage (D, C, S)  
–0.45  
0.7 V  
V
V
V
V
V
V
CC  
V
CC  
+ 1  
CC  
V
= 5V, I = 2.1mA  
OL  
0.4  
0.2  
CC  
VOL  
Output Low Voltage (Q)  
Output High Voltage (Q)  
V
V
= 2.5V, I = 100µA  
OL  
CC  
= 5V, I  
= –400µA  
2.4  
–0.2  
CC  
OH  
VOH  
V
= 2.5V, I  
= –100µA  
V
CC  
OH  
CC  
Note: 1. Current product: identified by Process Identification letter F or M.  
2. New product: identified by Process Identification letter W or G.  
20/34  
M93S66, M93S56, M93S46  
Table 14. DC Characteristics (M93Sx6-W, Device Grade 3)  
1
1
Symbol  
ILI  
Parameter  
Test Condition  
Unit  
µA  
µA  
mA  
mA  
µA  
V
Min .  
Max.  
±2.5  
±2.5  
2
0V V V  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
0V V  
V , Q in Hi-Z  
CC  
ILO  
OUT  
V
= 5V, S = V , f = 2 MHz  
IH  
CC  
Supply Current (CMOS  
Inputs)  
ICC  
V
= 2.5V, S = V , f = 2 MHz  
1
CC  
IH  
V
CC  
= 2.5V, S = V , C = V  
SS  
ICC1  
VIL  
Supply Current (Stand-by)  
Input Low Voltage (D, C, S)  
Input High Voltage (D, C, S)  
5
SS  
0.2 V  
–0.45  
0.7 V  
CC  
V
CC  
+ 1  
VIH  
V
CC  
V
= 5V, I = 2.1mA  
0.4  
0.2  
V
CC  
OL  
VOL  
Output Low Voltage (Q)  
Output High Voltage (Q)  
V
CC  
= 2.5V, I = 100µA  
OL  
V
V
= 5V, I  
= –400µA  
2.4  
–0.2  
V
CC  
OH  
VOH  
V
= 2.5V, I  
= –100µA  
V
V
CC  
OH  
CC  
Note: 1. New product: identified by Process Identification letter W or G.  
Table 15. DC Characteristics (M93Sx6-R)  
1
1
Symbol  
ILI  
Parameter  
Test Condition  
Unit  
µA  
µA  
mA  
mA  
µA  
V
Min.  
Max.  
±2.5  
±2.5  
2
0V V V  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
0V V  
V , Q in Hi-Z  
CC  
ILO  
OUT  
V
= 5V, S = V , f = 2 MHz  
IH  
CC  
Supply Current (CMOS  
Inputs)  
ICC  
V
= 1.8V, S = V , f = 1 MHz  
1
CC  
IH  
V
CC  
= 1.8V, S = V , C = V  
SS  
ICC1  
VIL  
Supply Current (Stand-by)  
Input Low Voltage (D, C, S)  
Input High Voltage (D, C, S)  
Output Low Voltage (Q)  
Output High Voltage (Q)  
2
SS  
0.2 V  
–0.45  
0.8 V  
CC  
V
CC  
+ 1  
VIH  
VOL  
VOH  
V
CC  
V
V
= 1.8V, I = 100µA  
0.2  
V
CC  
OL  
= 1.8V, I  
= –100µA  
V
–0.2  
CC  
V
CC  
OH  
Note: 1. Preliminary Data: this product is under development. For more infomation, please contact your nearest ST sales office.  
21/34  
M93S66, M93S56, M93S46  
Table 16. AC Characteristics (M93Sx6, Device Grade 6 or 3)  
Test conditions specified in Table 8. and Table 5.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Clock Frequency  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
SK  
D.C.  
50  
50  
0
1
D.C.  
50  
50  
0
2
t
t
t
Protect Enable Valid to Clock High  
Write Enable Valid to Clock High  
Clock Low to Protect Enable Transition  
PRVCH  
PRES  
t
t
ns  
WVCH  
PES  
t
ns  
CLPRX  
PREH  
Chip Select Low to Write Enable  
Transition  
t
t
250  
250  
50  
250  
50  
ns  
ns  
ns  
SLWX  
PEH  
t
Chip Select Low to Clock High  
SLCH  
Chip Select Set-up Time  
M93C46, M93C56, M93C66  
50  
t
t
t
SHCH  
CSS  
Chip Select Set-up time  
M93C76, M93C86  
100  
50  
ns  
2
t
Chip Select Low to Chip Select High  
Clock High Time  
250  
250  
200  
200  
ns  
ns  
t
CS  
SLSH  
CHCL  
CLCH  
1
1
t
t
SKH  
t
Clock Low Time  
250  
100  
100  
100  
0
200  
50  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
SKL  
t
t
Data In Set-up Time  
DVCH  
DIS  
DIH  
SKS  
t
t
Data In Hold Time  
CHDX  
t
t
t
Clock Set-up Time (relative to S)  
Chip Select Hold Time  
Chip Select to Ready/Busy Status  
Chip Select Low to Output Hi-Z  
Delay to Output Low  
CLSH  
t
CLSL  
CSH  
t
t
SV  
400  
200  
400  
400  
10  
200  
100  
200  
200  
5
SHQV  
t
t
DF  
SLQZ  
CHQL  
t
t
t
PD0  
t
Delay to Output Valid  
CHQV  
PD1  
t
t
Erase/Write Cycle time  
W
WP  
Note: 1. t  
+ t  
CLCH  
1 / f .  
C
CHCL  
2. Chip Select Input (S) must be brought Low for a minimum of tSLSH between consecutive instruction cycles.  
3. Current product: identified by Process Identification letter F or M.  
4. New product: identified by Process Identification letter W or G.  
22/34  
M93S66, M93S56, M93S46  
Table 17. AC Characteristics (M93Sx6-W, Device Grade 6)  
Test conditions specified in Table 9. and Table 6.  
3
3
4
4
Symbol  
Alt.  
Parameter  
Clock Frequency  
Unit  
MHz  
ns  
Min.  
Max.  
Min.  
Max.  
f
C
f
SK  
D.C.  
50  
50  
0
1
D.C.  
50  
50  
0
2
t
t
t
Protect Enable Valid to Clock High  
Write Enable Valid to Clock High  
Clock Low to Protect Enable Transition  
PRVCH  
PRES  
t
t
ns  
WVCH  
PES  
t
ns  
CLPRX  
PREH  
Chip Select Low to Write Enable  
Transition  
t
t
250  
250  
ns  
SLWX  
PEH  
t
Chip Select Low to Clock High  
Chip Select Set-up Time  
250  
100  
50  
50  
ns  
ns  
ns  
SLCH  
t
t
SHCH  
CSS  
2
t
Chip Select Low to Chip Select High  
1000  
200  
t
CS  
SLSH  
1
t
Clock High Time  
350  
200  
ns  
t
SKH  
CHCL  
1
t
Clock Low Time  
250  
100  
100  
100  
0
200  
50  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
t
SKL  
CLCH  
t
t
Data In Set-up Time  
DVCH  
DIS  
t
t
Data In Hold Time  
CHDX  
DIH  
t
t
Clock Set-up Time (relative to S)  
Chip Select Hold Time  
Chip Select to Ready/Busy Status  
Chip Select Low to Output Hi-Z  
Delay to Output Low  
CLSH  
SKS  
t
t
CLSL  
CSH  
t
t
400  
200  
100  
200  
200  
5
SHQV  
SV  
t
t
200  
400  
400  
10  
SLQZ  
DF  
t
t
CHQL  
PD0  
t
t
Delay to Output Valid  
CHQV  
PD1  
t
t
Erase/Write Cycle time  
W
WP  
Note: 1. t  
+ t 1 / f .  
CLCH C  
CHCL  
2. Chip Select Input (S) must be brought Low for a minimum of tSLSH between consecutive instruction cycles.  
3. Current product: identified by Process Identification letter F or M.  
4. New product: identified by Process Identification letter W or G.  
23/34  
M93S66, M93S56, M93S46  
Table 18. AC Characteristics (M93Sx6-W, Device Grade 3)  
Test conditions specified in Table 9. and Table 6.  
3
3
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
50  
Max.  
f
f
SK  
Clock Frequency  
2
C
t
t
t
Protect Enable Valid to Clock High  
Write Enable Valid to Clock High  
Clock Low to Protect Enable Transition  
Chip Select Low to Write Enable Transition  
Chip Select Low to Clock High  
Chip Select Set-up Time  
PRVCH  
PRES  
t
t
50  
ns  
WVCH  
PES  
t
0
ns  
CLPRX  
PREH  
t
t
250  
50  
ns  
SLWX  
PEH  
t
ns  
SLCH  
t
t
50  
ns  
SHCH  
CSS  
2
t
Chip Select Low to Chip Select High  
200  
200  
200  
ns  
t
CS  
SLSH  
CHCL  
CLCH  
1
1
t
Clock High Time  
Clock Low Time  
ns  
ns  
t
t
SKH  
t
SKL  
t
t
t
Data In Set-up Time  
50  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
DVCH  
DIS  
t
Data In Hold Time  
CHDX  
DIH  
t
t
Clock Set-up Time (relative to S)  
Chip Select Hold Time  
CLSH  
SKS  
t
t
CLSL  
CSH  
t
t
Chip Select to Ready/Busy Status  
Chip Select Low to Output Hi-Z  
Delay to Output Low  
200  
100  
200  
200  
5
SHQV  
SV  
t
t
SLQZ  
CHQL  
DF  
t
t
t
PD0  
t
Delay to Output Valid  
CHQV  
PD1  
t
W
t
Erase/Write Cycle time  
WP  
Note: 1. t  
+ t 1 / f .  
CLCH C  
CHCL  
2. Chip Select Input (S) must be brought Low for a minimum of tSLSH between consecutive instruction cycles.  
3. New product: identified by Process Identification letter W or G.  
24/34  
M93S66, M93S56, M93S46  
Table 19. AC Characteristics (M93Sx6-R)  
Test conditions specified in Table 9. and Table 7.  
3
3
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
f
f
SK  
Clock Frequency  
D.C.  
50  
1
C
t
t
t
Protect Enable Valid to Clock High  
Write Enable Valid to Clock High  
Clock Low to Protect Enable Transition  
Chip Select Low to Write Enable Transition  
Chip Select Low to Clock High  
PRVCH  
PRES  
t
t
50  
ns  
WVCH  
PES  
t
0
ns  
CLPRX  
PREH  
t
t
250  
250  
50  
ns  
SLWX  
PEH  
t
ns  
SLCH  
t
t
Chip Select Set-up Time  
ns  
SHCH  
CSS  
2
t
Chip Select Low to Chip Select High  
250  
ns  
t
CS  
SLSH  
CHCL  
CLCH  
1
1
t
Clock High Time  
Clock Low Time  
250  
250  
ns  
ns  
t
t
SKH  
t
SKL  
t
t
t
Data In Set-up Time  
100  
100  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
DVCH  
DIS  
t
Data In Hold Time  
CHDX  
DIH  
t
t
Clock Set-up Time (relative to S)  
Chip Select Hold Time  
CLSH  
SKS  
t
t
CLSL  
CSH  
t
t
Chip Select to Ready/Busy Status  
Chip Select Low to Output Hi-Z  
Delay to Output Low  
400  
200  
400  
400  
10  
SHQV  
SV  
t
t
SLQZ  
CHQL  
DF  
t
t
t
PD0  
t
Delay to Output Valid  
CHQV  
PD1  
t
W
t
Erase/Write Cycle time  
WP  
Note: 1. t  
+ t 1 / f .  
CLCH C  
CHCL  
2. Chip Select Input (S) must be brought Low for a minimum of tSLSH between consecutive instruction cycles.  
3. Preliminary Data: this product is under development. For more infomation, please contact your nearest ST sales office.  
25/34  
M93S66, M93S56, M93S46  
Figure 10. Synchronous Timing (Start and Op-Code Input)  
PRE  
tPRVCH  
W
tWVCH  
tCHCL  
C
tCLSH  
tSHCH  
tDVCH  
tCLCH  
S
D
tCHDX  
OP CODE  
START  
OP CODE  
OP CODE INPUT  
START  
AI02025  
Figure 11. Synchronous Timing (Read or Write)  
C
tCLSL  
S
tDVCH  
tCHDX  
tCHQV  
tSLSH  
A0  
D
Q
An  
tSLQZ  
tCHQL  
Hi-Z  
Q15  
Q0  
ADDRESS INPUT  
DATA OUTPUT  
AI002026  
26/34  
M93S66, M93S56, M93S46  
Figure 12. Synchronous Timing (Read or Write)  
PRE  
tCLPRX  
W
C
tSLWX  
tSLCH  
tCLSL  
S
tSLSH  
tDVCH  
tCHDX  
A0/D0  
An  
D
Q
tSHQV  
BUSY  
tW  
tSLQZ  
Hi-Z  
READY  
ADDRESS/DATA INPUT  
WRITE CYCLE  
AI02027  
27/34  
M93S66, M93S56, M93S46  
PACKAGE MECHANICAL  
Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Note: Drawing is not to scale.  
Table 20. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
28/34  
M93S66, M93S56, M93S46  
Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 21. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
29/34  
M93S66, M93S56, M93S46  
Figure 15. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note: Drawing is not to scale.  
Table 22. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.100  
0.150  
0.950  
0.400  
0.230  
3.100  
5.150  
3.100  
Typ.  
Max.  
0.0433  
0.0059  
0.0374  
0.0157  
0.0091  
0.1220  
0.2028  
0.1220  
A
A1  
A2  
b
0.050  
0.750  
0.250  
0.130  
2.900  
4.650  
2.900  
0.0020  
0.0295  
0.0098  
0.0051  
0.1142  
0.1831  
0.1142  
0.850  
0.0335  
c
D
3.000  
4.900  
3.000  
0.650  
0.1181  
0.1929  
0.1181  
0.0256  
E
E1  
e
CP  
L
0.100  
0.700  
0.0039  
0.0276  
0.550  
0.950  
0.400  
0°  
0.0217  
0.0374  
0.0157  
0°  
L1  
α
6°  
6°  
30/34  
M93S66, M93S56, M93S46  
Figure 16. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Note: Drawing is not to scale.  
Table 23. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
31/34  
M93S66, M93S56, M93S46  
PART NUMBERING  
Table 24. Ordering Information Scheme  
Example:  
M93S66  
W MN  
6
T
P
Device Type  
M93 = MICROWIRE serial access EEPROM (x16) with  
Block Protection  
Device Function  
66 = 4 Kbit (256 x 16)  
56 = 2 Kbit (128 x 16)  
46 = 1 Kbit (64 x 16)  
Operating Voltage  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
R = V = 1.8 to 5.5V  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
2
DS = TSSOP8 (3x3mm body size)  
Device Grade  
6 = Industrial: device tested with standard test flow over –40 to 85 °C  
1
3 = Automotive: device tested with High Reliability Certified Flow over –40 to 125 °C  
Option  
blank = Standard Packing  
T = Tape & Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P = Lead-Free and RoHS compliant  
G = Lead-Free, RoHS compliant, Sb O -free and TBBA-free  
2
3
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-  
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.  
2. Available only on new products: identified by the Process Identification letter W or G.  
Devices are shipped from the factory with the  
memory content set at all 1s (FFh).  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
Table 25. How to Identify Current and New Products by the Process Identification Letter  
1
1
Markings on Current Products  
Markings on New Products  
M93S46W6  
M93S46W6  
AYWWF (or AYWWM)  
AYWWW (or AYWWG)  
Note: 1. This example comes from the S08 package. Other packages have similar information. For further information, please ask your ST  
Sales Office for Process Change Notice PCN MPG/EE/0059 (PCEE0059).  
32/34  
M93S66, M93S56, M93S46  
REVISION HISTORY  
Table 26. Document Revision History  
Date  
Rev.  
Description of Revision  
Document reformatted, and reworded, using the new template. Temperature range 1 removed.  
TSSOP8 (3x3mm) package added. New products, identified by the process letter W, added,  
with fc(max) increased to 1MHz for -R voltage range, and to 2MHz for all other ranges (and  
corresponding parameters adjusted).  
07-Mar-2002  
2.0  
Value of standby current (max) corrected in DC characteristics tables for -W and -R ranges  
26-Mar-2003  
14-Apr-2003  
2.1  
2.2  
V
OUT  
and V separated from V in the Absolute Maximum Ratings table  
IN IO  
Values corrected in AC characteristics tables for -W range (tSLSH, tDVCH, tCLSL) for devices  
with Process Identification Letter W.  
Standby current corrected for -R range. Four missing parameters restored to all AC  
Characteristics tables  
23-May-2003  
24-Nov-2003  
2.3  
3.0  
Table of contents, and Pb-free options added. V (min) improved to -0.45V.  
IL  
Absolute Maximum Ratings for V (min) and V (min) changed. Soldering temperature  
IO  
CC  
19-Apr-2004  
4.0  
information clarified for RoHS compliant devices. Device Grade 3 clarified, with reference to  
HRCF and automotive environments. Process identification letter “G” information added  
33/34  
M93S66, M93S56, M93S46  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
34/34  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY