M95040-RMB6T [STMICROELECTRONICS]

512X8 SPI BUS SERIAL EEPROM, DSO8, 2 X 3 MM, MLP-8;
M95040-RMB6T
型号: M95040-RMB6T
厂家: ST    ST
描述:

512X8 SPI BUS SERIAL EEPROM, DSO8, 2 X 3 MM, MLP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总42页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95040  
M95020 M95010  
4 Kbit, 2 Kbit and 1 Kbit Serial SPI bus EEPROM  
with high speed Clock  
Feature summary  
Compatible with SPI bus serial interface  
(Positive Clock SPI Modes)  
Single supply voltage:  
– 4.5 V to 5.5 V for M950x0  
– 2.5 V to 5.5 V for M950x0-W  
– 1.8 V to 5.5 V for M950x0-R  
SO8 (MN)  
150 mil width  
High Speed  
– 10 MHz Clock rate, 5 ms Write time  
Status Register  
Byte and Page Write (up to 16 bytes)  
Self-timed programming cycle  
Adjustable size read-only EEPROM area  
Enhanced ESD Protection  
TSSOP8 (DW)  
169 mil width  
More than 1 Million Write cycles  
More than 40-year data retention  
Packages  
– ECOPACK® (RoHS compliant)  
UFDFPN8 (MB)  
2 × 3mm  
Table 1.  
Product list  
Reference  
Part Number  
M95040  
M95040  
M95020  
M95010  
M95040-W  
M95040-R  
M95020  
M95020-W  
M95020-R  
M95010  
M95010-W  
M95010-R  
November 2006  
Rev 7  
1/42  
www.st.com  
1
Contents  
M95040, M95020, M95010  
Contents  
1
2
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.8.1  
2.8.2  
2.8.3  
2.8.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Internal device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
Hold Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Protection and Protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.3.1  
6.3.2  
6.3.3  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/42  
M95040, M95020, M95010  
Contents  
6.4  
6.5  
6.6  
6.7  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7
Power-up and delivery states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.1  
7.2  
Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9
10  
11  
12  
3/42  
List of tables  
M95040, M95020, M95010  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Product list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Write-Protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Operating conditions (M950x0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M950x0-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
AC test measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M950x0, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M950x0, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics (M950x0-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (M950x0-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC characteristics (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC characteristics (M950x0, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AC characteristics (M950x0, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
AC characteristics (M950x0-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
AC characteristics (M950x0-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC characteristics (M950x0-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SO8N - 8 lead Plastic Small Outline, 150 mils body width, package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data . . . . . . . . . . . . . . 37  
UFDFPN8 (MLP8) - 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
Table 24.  
Table 25.  
2 × 3mm, package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 26.  
Table 27.  
4/42  
M95040, M95020, M95010  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Hold Condition activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. AC test measurement I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 16. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 17. Output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 18. SO8N - 8 lead Plastic Small Outline, 150 mils body width, package outline . . . . . . . . . . . 36  
Figure 19. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20. UFDFPN8 (MLP8) - 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2 × 3mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5/42  
Summary description  
M95040, M95020, M95010  
1
Summary description  
The M95040 is a 4 Kbit (512 x 8) electrically erasable programmable memory (EEPROM),  
accessed by a high speed SPI-compatible bus. The other members of the family (M95020  
and M95010) are identical, though proportionally smaller (2 and 1 Kbit, respectively).  
Each device is accessed by a simple serial interface that is SPI-compatible. The bus signals  
are C, D and Q, as shown in Table 2 and Figure 1.  
The device is selected when Chip Select (S) is taken Low. Communications with the device  
can be interrupted using Hold (HOLD). WRITE instructions are disabled by Write Protect  
(W).  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages.  
ECOPACK® packages are Lead-free and RoHS compliant.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 1.  
Logic diagram  
V
CC  
D
C
S
Q
M95xxx  
W
HOLD  
V
SS  
AI01789C  
Figure 2.  
8-pin package connections  
M95xxx  
S
Q
1
8
V
CC  
HOLD  
2
3
4
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Section 10: Package mechanical for package dimensions, and how to identify pin-1.  
6/42  
M95040, M95020, M95010  
Summary description  
Table 2.  
Signal names  
C
Serial Clock  
Serial Data Input  
Serial Data Output  
Chip Select  
Write Protect  
Hold  
D
Q
S
W
HOLD  
VCC  
VSS  
Supply Voltage  
Ground  
7/42  
Signal description  
M95040, M95020, M95010  
2
Signal description  
During all operations, V must be held stable and within the specified valid range:  
CC  
V
(min) to V (max).  
CC  
CC  
All of the input and output signals can be held High or Low (according to voltages of V ,  
IH  
V
, V or V , as specified in Table 13 to Table 17). These signals are described next.  
OH  
IL OL  
2.1  
2.2  
Serial Data Output (Q)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the  
falling edge of Serial Clock (C).  
Serial Data Input (D)  
This input signal is used to transfer data serially into the device. It receives instructions,  
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock  
(C).  
2.3  
2.4  
Serial Clock (C)  
This input signal provides the timing of the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on  
Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
When this input signal is High, the device is deselected and Serial Data Output (Q) is at high  
impedance. Unless an internal Write cycle is in progress, the device will be in the Standby  
Power mode. Driving Chip Select (S) Low selects the device, placing it in the Active Power  
mode.  
After Power-up, a falling edge on Chip Select (S) is required prior to the start of any  
instruction.  
2.5  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be selected, with Chip Select (S) driven Low.  
8/42  
M95040, M95020, M95010  
Signal description  
2.6  
Write Protect (W)  
This input signal is used to control whether the memory is write protected. When Write  
Protect (W) is held Low, writes to the memory are disabled, but other operations remain  
enabled. Write Protect (W) must either be driven High or Low, but must not be left floating.  
2.7  
VSS ground  
V
is the reference for the V supply voltage.  
CC  
SS  
2.8  
Supply voltage (VCC)  
V
is the supply voltage.  
CC  
2.8.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 8, Table 9 and  
CC  
CC  
Table 10). In order to secure a stable DC supply voltage, it is recommended to decouple the  
V
V
line with a suitable capacitor (usually of the order of 10nF to 100nF) close to the  
CC  
/V package pins.  
CC SS  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal write cycle (t ).  
W
2.8.2  
Power-up conditions  
When the power supply is turned on, V rises from V to V . During this time, the Chip  
CC  
SS  
CC  
Select (S) signal is not allowed to float and must follow the V voltage. The S line should  
CC  
therefore be connected to V via a suitable pull-up resistor.  
CC  
In addition, the Chip Select (S) input offers a built-in safety feature, as it is both edge  
sensitive and level sensitive. Practically this means that after power-up, the device cannot  
become selected until a falling edge has first been detected on Chip Select (S). So the Chip  
Select (S) signal must first have been High, and then gone Low before the first operation can  
be started.  
2.8.3  
Internal device reset  
In order to prevent inadvertent Write operations during Power-up, a Power On Reset (POR)  
circuit is included. At Power-up (continuous rise of V ), the device will not respond to any  
CC  
instruction until V has reached the Power On Reset threshold voltage (this threshold is  
CC  
lower than the minimum V operating voltage defined in Section 9: DC and AC  
CC  
parameters).  
9/42  
Signal description  
M95040, M95020, M95010  
When V has passed the POR threshold voltage, the device is reset and in the following  
CC  
state:  
in Standby Power mode  
deselected (at next Power-up, a falling edge is required on Chip Select (S) before any  
instruction can be executed)  
not in the Hold Condition Status register state:  
the Write Enable Latch (WEL) is reset to 0  
the Write In Progress (WIP) is reset to 0. The SRWD, BP1 and BP0 bits of the  
Status Register are at the same logic level as when the device was last powered  
down (they are non-volatile bits)  
2.8.4  
Power-down  
At Power-down (continuous decrease of V ), as soon as V drops from the normal  
CC  
CC  
operating voltage to below the Power On Reset threshold voltage, the device stops  
responding to any instruction sent to it.  
At Power-down, the device must be deselected and in Standby Power mode (that is there  
should be no internal Write cycle in progress). Chip Select (S) should be allowed to follow  
the voltage applied on V  
.
CC  
10/42  
M95040, M95020, M95010  
Connecting to the SPI bus  
3
Connecting to the SPI bus  
These devices are fully compatible with the SPI protocol.  
All instructions, addresses and input data bytes are shifted in to the device, most significant  
bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C)  
after Chip Select (S) goes Low.  
All output data bytes are shifted out of the device, most significant bit first. The Serial Data  
Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction  
(such as the Read from Memory Array and Read Status Register instructions) have been  
clocked into the device.  
Figure 3 shows three devices, connected to an MCU, on a SPI bus. Only one device is  
selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the  
others being high impedance.  
Figure 3.  
Bus master and memory devices on the SPI bus  
VSS  
VCC  
R(2)  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
VCC  
VCC  
VCC  
C
Q
D
C
Q
D
C Q D  
Bus Master  
VSS  
VSS  
VSS  
R(2)  
R(2)  
R(2)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI12304  
1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.  
2. These pull-up resistors, R, ensure that the M950x0 are not selected if the Bus Master leaves the S line in the high-  
impedance state. As the Bus Master may enter a state where all inputs/outputs are in high impedance at the same time  
(that is when the Bus Master is reset), the clock line (C) must be connected to an external pull-down resistor so that, when  
all inputs/outputs become high impedance, S is pulled High while C is pulled Low (thus ensuring that S and C do not  
become High at the same time, and so, that the tSHCH requirement is met).  
11/42  
Connecting to the SPI bus  
M95040, M95020, M95010  
3.1  
SPI modes  
These devices can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 4, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 4.  
SPI modes supported  
CPOL CPHA  
C
C
0
1
0
1
D
Q
MSB  
MSB  
AI01438B  
12/42  
M95040, M95020, M95010  
Operating features  
4
Operating features  
4.1  
Hold Condition  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be selected, with Chip Select (S) Low.  
Normally, the device is kept selected, for the whole duration of the Hold condition.  
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of  
the device, and this mechanism can be used if it is required to reset any processes that had  
been in progress.  
The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as  
Serial Clock (C) already being Low (as shown in Figure 5).  
The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as  
Serial Clock (C) already being Low.  
Figure 5 also shows what happens if the rising and falling edges are not timed to coincide  
with Serial Clock (C) being Low.  
Figure 5.  
Hold Condition activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
4.2  
Status Register  
Figure 6 shows the position of the Status Register in the control logic of the device. This  
register contains a number of control bits and status bits, as shown in Table 5. For a detailed  
description of the Status Register bits, see Section 6.3: Read Status Register (RDSR).  
13/42  
Operating features  
M95040, M95020, M95010  
4.3  
Data Protection and Protocol control  
To help protect the device from data corruption in noisy or poorly controlled environments, a  
number of safety features have been built in to the device. The main security measures can  
be summarized as follows:  
The WEL bit is reset at power-up.  
Chip Select (S) must rise after the eighth clock count (or multiple thereof) in order to  
start a non-volatile Write cycle (in the memory array or in the Status Register).  
Accesses to the memory array are ignored during the non-volatile programming cycle,  
and the programming cycle continues unaffected.  
Invalid Chip Select (S) and Hold (HOLD) transitions are ignored.  
For any instruction to be accepted and executed, Chip Select (S) must be driven High after  
the rising edge of Serial Clock (C) that latches the last bit of the instruction, and before the  
next rising edge of Serial Clock (C).  
For this, “the last bit of the instruction” can be the eighth bit of the instruction code, or the  
eighth bit of a data byte, depending on the instruction (except in the case of RDSR and  
READ instructions). Moreover, the "next rising edge of CLOCK" might (or might not) be the  
next bus transaction for some other device on the bus.  
When a Write cycle is in progress, the device protects it against external interruption by  
ignoring any subsequent READ, WRITE or WRSR instruction until the present cycle is  
complete.  
Table 3.  
Write-Protected block size  
Status Register Bits  
Array Addresses Protected  
Protected Block  
BP1  
BP0  
M95040  
M95020  
M95010  
0
0
1
1
0
1
0
1
none  
none  
none  
none  
Upper quarter  
Upper half  
180h - 1FFh  
100h - 1FFh  
000h - 1FFh  
C0h - FFh  
80h - FFh  
00h - FFh  
60h - 7Fh  
40h - 7Fh  
00h - 7Fh  
Whole memory  
14/42  
M95040, M95020, M95010  
Memory organization  
5
Memory organization  
The memory is organized as shown in Figure 6.  
Figure 6.  
Block diagram  
HOLD  
W
High Voltage  
Generator  
Control Logic  
S
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
15/42  
Instructions  
M95040, M95020, M95010  
6
Instructions  
Each instruction starts with a single-byte code, as summarized in Table 4.  
If an invalid instruction is sent (one not contained in Table 4), the device automatically  
deselects itself.  
Table 4.  
Instruction set  
Instruction  
Description  
Instruction Format  
WREN  
WRDI  
Write Enable  
Write Disable  
0000 X110(1)  
0000 X100(1)  
0000 X101(1)  
0000 X001(1)  
0000 A8011(2)  
0000 A8010(2)  
RDSR  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
WRSR  
READ  
WRITE  
1. X = Don’t Care.  
2. A8 = 1 for the upper half of the memory array of the M95040, and 0 for the lower half, and is Don’t Care for  
other devices.  
6.1  
Write Enable (WREN)  
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.  
The only way to do this is to send a Write Enable instruction to the device.  
As shown in Figure 7, to send this instruction to the device, Chip Select (S) is driven Low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then  
enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven  
High.  
Figure 7.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI01441D  
16/42  
M95040, M95020, M95010  
Instructions  
6.2  
Write Disable (WRDI)  
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction  
to the device.  
As shown in Figure 8, to send this instruction to the device, Chip Select (S) is driven Low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D).  
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select  
(S) being driven High.  
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion  
Write Protect (W) line being held Low.  
Figure 8.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03790D  
17/42  
Instructions  
M95040, M95020, M95010  
6.3  
Read Status Register (RDSR)  
One of the major uses of this instruction is to allow the MCU to poll the state of the Write In  
Progress (WIP) bit. This is needed because the device will not accept further WRITE or  
WRSR instructions when the previous Write cycle is not yet finished.  
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte are then shifted in, on Serial Data Input (D). The current  
state of the bits in the Status Register is shifted out, on Serial Data Out (Q). The Read Cycle  
is terminated by driving Chip Select (S) High.  
The Status Register may be read at any time, even during a Write cycle (whether it be to the  
memory area or to the Status Register). All bits of the Status Register remain valid, and can  
be read using the RDSR instruction. However, during the current Write cycle, the values of  
the non-volatile bits (BP0, BP1) become frozen at a constant value. The updated value of  
these bits becomes available when a new RDSR instruction is executed, after completion of  
the Write cycle. On the other hand, the two read-only bits (Write Enable Latch (WEL), Write  
In Progress (WIP)) are dynamically updated during the on-going Write cycle.  
Bits b7, b6, b5 and b4 are always read as 1. The status and control bits of the Status  
Register are as follows:  
6.3.1  
6.3.2  
6.3.3  
WIP bit  
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such  
cycle is in progress.  
WEL bit  
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable  
Latch is reset and no Write or Write Status Register instruction is accepted.  
BP1, BP0 bits  
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be  
software protected against Write instructions. These bits are written with the Write Status  
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to  
1, the relevant memory area (as defined in Table 3) becomes protected against Write  
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the  
Hardware Protected mode has not been set.  
Table 5.  
Status Register format  
b7  
b0  
1
1
1
1
BP1  
BP0  
WEL  
WIP  
Block Protect Bits  
Write Enable Latch Bit  
Write In Progress Bit  
18/42  
M95040, M95020, M95010  
Instructions  
Figure 9.  
Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI01444D  
19/42  
Instructions  
M95040, M95020, M95010  
6.4  
Write Status Register (WRSR)  
This instruction has no effect on bits b7, b6, b5, b4, b1 and b0 of the Status Register.  
As shown in Figure 10, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte and data byte are then shifted in on Serial Data Input  
(D).  
The instruction is terminated by driving Chip Select (S) High. Chip Select (S) must be driven  
High after the rising edge of Serial Clock (C) that latches the eighth bit of the data byte, and  
before the next rising edge of Serial Clock (C). If this condition is not met, the Write Status  
Register (WRSR) instruction is not executed. The self-timed Write Cycle starts, and  
continues for a period t (as specified in Table 18 to Table 22), at the end of which the Write  
W
in Progress (WIP) bit is reset to 0.  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write Cycle is already in progress  
if the device has not been deselected, by Chip Select (S) being driven High, after the  
eighth bit, b0, of the data byte has been latched in  
if Write Protect (W) is Low.  
Figure 10. Write Status Register (WRSR) sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI01445B  
20/42  
M95040, M95020, M95010  
Instructions  
6.5  
Read from Memory Array (READ)  
As shown in Figure 11, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte and address byte are then shifted in, on Serial Data  
Input (D). For the M95040, the most significant address bit, A8, is incorporated as bit b3 of  
the instruction byte, as shown in Table 4. The address is loaded into an internal address  
register, and the byte of data at that address is shifted out, on Serial Data Output (Q).  
If Chip Select (S) continues to be driven Low, an internal bit-pointer is automatically  
incremented at each clock cycle, and the corresponding data bit is shifted out.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a  
single READ instruction.  
The Read cycle is terminated by driving Chip Select (S) High. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle.  
The first byte addressed can be any byte within any page.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Table 6.  
Address range bits  
Device  
Address Bits  
M95040  
M95020  
M95010  
A8-A0  
A7-A0  
A6-A0  
Figure 11. Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22  
C
Instruction  
A8  
Byte Address  
A7 A6 A5 A4 A3 A2 A1 A0  
D
Q
Data Out  
High Impedance  
2
1
7
6
5
4
3
0
AI01440E  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
21/42  
Instructions  
M95040, M95020, M95010  
6.6  
Write to Memory Array (WRITE)  
As shown in Figure 12, to send this instruction to the device, Chip Select (S) is first driven  
Low. The bits of the instruction byte, address byte, and at least one data byte are then  
shifted in, on Serial Data Input (D).  
The instruction is terminated by driving Chip Select (S) High after the rising edge of Serial  
Clock (C) that latches the last data bit, and before the next rising edge of Serial Clock (C)  
occurs anywhere on the bus. In the case of Figure 12, this occurs after the eighth bit of the  
data byte has been latched in, indicating that the instruction is being used to write a single  
byte. The self-timed Write cycle starts, and continues for a period t  
(as specified in  
WC  
Table 18 to Table 22), at the end of which the Write in Progress (WIP) bit is reset to 0.  
If, though, Chip Select (S) continues to be driven Low, as shown in Figure 13, the next byte  
of input data is shifted in. In this way, all the bytes from the given address to the end of the  
same page can be programmed in a single instruction.  
If Chip Select (S) still continues to be driven Low, the next byte of input data is shifted in, and  
is used to overwrite the byte at the start of the current page.  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip Select (S) being driven High, at a byte  
boundary (after the rising edge of Serial Clock (C) that latches the last data bit, and  
before the next rising edge of Serial Clock (C) occurs anywhere on the bus)  
if Write Protect (W) is Low or if the addressed page is in the region protected by the  
Block Protect (BP1 and BP0) bits.  
Figure 12. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
C
Instruction  
A8  
Byte Address  
Data Byte  
1
A7 A6 A5 A4 A3 A2 A1 A0  
7
6
5
4
3
2
0
D
Q
High Impedance  
AI01442D  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
22/42  
M95040, M95020, M95010  
Instructions  
Figure 13. Page Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
C
Instruction  
A8  
Byte Address  
Data Byte 1  
1
A7 A6 A5 A4 A3 A2 A1 A0  
7
6
5
4
3
2
0
7
D
S
C
D
24 25 26 27 28 29 30 31  
Data Byte 2  
Data Byte N  
Data Byte 16  
1
7
6
5
4
3
2
1
0
7
6
5
4
3
2
0
7
6
5
4
3
2
1
0
AI01443D  
1. Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
6.7  
Cycling  
23/42  
Power-up and delivery states  
M95040, M95020, M95010  
7
Power-up and delivery states  
7.1  
Power-up state  
After Power-up, the device is in the following state:  
low power Standby Power mode  
deselected (after Power-up, a falling edge is required on Chip Select (S) before any  
instructions can be started).  
not in the Hold Condition  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The BP1 and BP0 bits of the Status Register are unchanged from the previous power-down  
(they are non-volatile bits).  
7.2  
Initial delivery state  
The device is delivered with the memory array set at all 1s (FFh). The Block Protect (BP1  
and BP0) bits are initialized to 0.  
24/42  
M95040, M95020, M95010  
Maximum rating  
8
Maximum rating  
Stressing the device outside the ratings listed in Table 7 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the Operating sections of this specification, is not  
implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect  
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant  
quality documents.  
Table 7.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TA  
TSTG  
TLEAD  
VO  
Ambient Operating Temperature  
Storage Temperature  
Lead Temperature during Soldering  
Output Voltage  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
see note (1)  
–0.50 VCC+0.6  
VI  
Input Voltage  
–0.50  
–0.50  
6.5  
6.5  
V
VCC  
VESD  
Supply Voltage  
V
Electrostatic Discharge Voltage (Human Body model)(2) –4000  
4000  
V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
25/42  
DC and AC parameters  
M95040, M95020, M95010  
9
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC Characteristic tables that  
follow are derived from tests performed under the Measurement Conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 8.  
Symbol  
Operating conditions (M950x0)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
4.5  
–40  
–40  
5.5  
85  
V
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
°C  
°C  
125  
Table 9.  
Symbol  
Operating conditions (M950x0-W)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
2.5  
–40  
–40  
5.5  
85  
V
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
°C  
°C  
125  
Table 10. Operating conditions (M950x0-R)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply Voltage  
Ambient Operating Temperature  
1.8  
5.5  
85  
V
–40  
°C  
Table 11. AC test measurement conditions  
Symbol  
Parameter  
Load Capacitance  
Min.  
Max.  
Unit  
CL  
30  
pF  
ns  
V
Input Rise and Fall Times  
50  
Input Pulse Voltages  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and Output Timing Reference Voltages  
V
1. Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 14. AC test measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI00825B  
26/42  
M95040, M95020, M95010  
DC and AC parameters  
Table 12. Capacitance  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
COUT  
CIN  
Output Capacitance (Q)  
Input Capacitance (D)  
VOUT = 0V  
VIN = 0V  
VIN = 0V  
8
8
6
pF  
pF  
pF  
Input Capacitance (other pins)  
1. Sampled only, not 100% tested, at TA=25°C and a frequency of 5MHz.  
Table 13. DC characteristics (M950x0, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
Output Leakage  
Current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
µA  
mA  
µA  
C = 0.1VCC/0.9VCC at 10 MHz,  
VCC = 5 V, Q = open  
Supply Current  
5
2
Supply Current  
(Standby Power mode)  
S = VCC, VCC = 5 V,  
VIN = VSS or VCC  
ICC1  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
0.8 VCC  
Table 14. DC characteristics (M950x0, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
Input Leakage  
Current  
ILI  
VIN = VSS or VCC  
± 2  
µA  
Output Leakage  
Current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
± 2  
3
µA  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 5 V, Q = open  
Supply Current  
mA  
Supply Current  
(Standby Power  
mode)  
S = VCC, VIN = VSS or VCC  
VCC = 5 V  
ICC1  
5
µA  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
V
V
V
V
0.7 VCC VCC+1  
0.4  
VOL  
VOH  
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
0.8 VCC  
27/42  
DC and AC parameters  
M95040, M95020, M95010  
Table 15. DC characteristics (M950x0-W, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
ICC  
Supply Current  
2
mA  
µA  
Supply Current  
(Standby Power mode)  
S = VCC, VIN = VSS or VCC  
VCC = 2.5 V  
ICC1  
1
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
V
V
V
V
0.7 VCC VCC+1  
0.4  
VOL  
VOH  
IOL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Table 16. DC characteristics (M950x0-W, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
VIN = VSS or VCC  
± 2  
µA  
Output Leakage  
Current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
± 2  
2
µA  
mA  
µA  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
Supply Current  
Supply Current  
(Standby Power mode)  
S = VCC, VIN = VSS or VCC  
VCC = 2.5 V  
ICC1  
2
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45 0.3 VCC  
0.7 VCC VCC+1  
0.4  
V
V
V
V
VOL  
VOH  
IOL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Table 17. DC characteristics (M950x0-R)  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
ILI  
Input Leakage Current  
VIN = VSS or VCC  
± 2  
µA  
Output Leakage  
Current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
± 2  
2
µA  
mA  
µA  
C = 0.1 VCC/0.9. VCC at 2 MHz,  
VCC = 1.8 V, Q = open  
Supply Current  
Supply Current  
(Standby Power mode)  
S = VCC, VIN = VSS or VCC,  
ICC1  
1
VCC = 1.8 V  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3VCC  
VCC+1  
0.3  
V
V
V
V
0.7 VCC  
VOL  
VOH  
IOL = 0.15 mA, VCC = 1.8 V  
IOH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
28/42  
M95040, M95020, M95010  
DC and AC parameters  
Table 18. AC characteristics (M950x0, Device Grade 6)  
Test conditions specified in Table 11 and Table 8  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK  
Clock Frequency  
D.C.  
15  
15  
40  
25  
15  
40  
40  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
tCS  
S Deselect Time  
tCSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
(1)  
tCL  
Clock Low Time  
(2)  
tCLCH  
Clock Rise Time  
1
1
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU  
tDH  
Data In Setup Time  
15  
15  
15  
20  
0
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Setup Time before HOLD Active  
Clock Low Setup Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
25  
35  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
20  
20  
25  
35  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
29/42  
DC and AC parameters  
M95040, M95020, M95010  
Table 19. AC characteristics (M950x0, Device Grade 3)  
Test conditions specified in Table 11 and Table 8  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK  
Clock Frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
90  
tCS  
S Deselect Time  
100  
90  
tCSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
90  
(1)  
tCH  
tCLH  
tCLL  
tRC  
90  
(1)  
tCL  
Clock Low Time  
90  
(2)  
tCLCH  
Clock Rise Time  
1
1
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU  
tDH  
Data In Setup Time  
20  
30  
70  
40  
0
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Setup Time before HOLD Active  
Clock Low Setup Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
100  
60  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
50  
50  
50  
100  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
30/42  
M95040, M95020, M95010  
DC and AC parameters  
Table 20. AC characteristics (M950x0-W, Device Grade 6)  
Test conditions specified in Table 11 and Table 9  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK  
tCSS1  
tCSS2  
tCS  
Clock Frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
90  
100  
90  
tCSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
90  
(1)  
tCH  
tCLH  
tCLL  
tRC  
90  
(1)  
tCL  
Clock Low Time  
90  
(2)  
tCLCH  
Clock Rise Time  
1
1
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU  
tDH  
Data In Setup Time  
20  
30  
70  
40  
0
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Setup Time before HOLD Active  
Clock Low Setup Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
100  
60  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
50  
50  
50  
100  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
31/42  
DC and AC parameters  
M95040, M95020, M95010  
Table 21. AC characteristics (M950x0-W, Device Grade 3)  
Test conditions specified in Table 11 and Table 9  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK Clock Frequency  
D.C.  
90  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S Active Setup Time  
tCSS2 S Not Active Setup Time  
90  
tCS  
S Deselect Time  
100  
90  
tCSH S Active Hold Time  
S Not Active Hold Time  
90  
(1)  
tCH  
tCLH  
tCLL  
tRC  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
90  
(1)  
tCL  
90  
(2)  
tCLCH  
1
1
(2)  
tCHCL  
tFC  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data In Setup Time  
20  
30  
70  
40  
0
tDH  
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Setup Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
100  
60  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
50  
50  
50  
100  
5
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
32/42  
M95040, M95020, M95010  
DC and AC parameters  
Table 22. AC characteristics (M950x0-R)  
Test conditions specified in Table 11 and Table 10  
Symbol  
Alt.  
Parameter  
Min.  
Max.  
Unit  
fC  
fSCK  
tCSS1  
tCSS2  
tCS  
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
200  
2
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
tCSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
(1)  
tCL  
Clock Low Time  
(2)  
tCLCH  
Clock Rise Time  
1
1
(2)  
tCHCL  
tFC  
Clock Fall Time  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU  
tDH  
Data In Setup Time  
40  
50  
140  
90  
0
Data In Hold Time  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Setup Time before HOLD Active  
Clock Low Setup Time before HOLD not Active  
Output Disable Time  
0
(2)  
tSHQZ  
tDIS  
tV  
250  
180  
tCLQV  
tCLQX  
Clock Low to Output Valid  
Output Hold Time  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output Rise Time  
100  
100  
100  
250  
10  
(2)  
tQHQL  
Output Fall Time  
tHHQV  
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
2. Value guaranteed by characterization, not 100% tested in production.  
33/42  
DC and AC parameters  
M95040, M95020, M95010  
Figure 15. Serial input timing  
tSHSL  
tSHCH  
tCHCL  
S
C
tCHSL  
tSLCH  
tCHSH  
tDVCH  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
AI01447C  
Figure 16. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
D
HOLD  
AI01448B  
34/42  
M95040, M95020, M95010  
DC and AC parameters  
Figure 17. Output timing  
S
tCH  
C
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
tCLQX  
LSB OUT  
Q
D
tQLQH  
tQHQL  
ADDR.LSB IN  
AI01449e  
35/42  
Package mechanical  
M95040, M95020, M95010  
10  
Package mechanical  
Figure 18. SO8N - 8 lead Plastic Small Outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 23. SO8N - 8 lead Plastic Small Outline, 150 mils body width, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
1.27  
0.016  
0.050  
L1  
1.04  
0.041  
36/42  
M95040, M95020, M95010  
Package mechanical  
Figure 19. TSSOP8 – 8 lead Thin Shrink Small Outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 24. TSSOP8 – 8 lead Thin Shrink Small Outline, package mechanical data  
millimeters  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
Typ.  
Max.  
A
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A1  
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
A2  
1.000  
0.0394  
b
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N (number of pins)  
37/42  
Package mechanical  
M95040, M95020, M95010  
Figure 20. UFDFPN8 (MLP8) - 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2 × 3mm, package outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
1. Drawing is not to scale.  
Table 25. UFDFPN8 (MLP8) - 8-lead Ultra thin Fine pitch Dual Flat Package No lead  
2 × 3mm, package mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
0.55  
0.50  
0.00  
0.20  
0.60  
0.05  
0.30  
0.022  
0.020  
0.000  
0.008  
0.024  
0.002  
0.012  
A1  
b
0.25  
2.00  
0.010  
0.079  
D
D2  
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
ddd  
E
3.00  
0.118  
E2  
0.15  
0.25  
0.006  
0.010  
e
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
0.30  
8
0.012  
8
N (number of pins)  
38/42  
M95040, M95020, M95010  
Part numbering  
11  
Part numbering  
Table 26. Ordering information scheme  
Example:  
M95040  
W MN 6  
T P /W  
Device Type  
M95 = SPI serial access EEPROM  
Device Function  
040 = 4 Kbit (512 x 8)  
020 = 2 Kbit (256 x 8)  
010 = 1 Kbit (128 x 8)  
Operating Voltage  
blank = VCC = 4.5 to 5.5V  
W = VCC = 2.5 to 5.5V  
R = VCC = 1.8 to 5.5V  
Package  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
MB = UFDFPN8 (MLP8) 2 × 3mm  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
3 = Device tested with High Reliability Certified Flow(1)  
Automotive temperature range (–40 to 125 °C)  
.
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P or G = ECOPACK® (RoHS compliant)  
Process(2)  
/W, /G or /S = F6SP36%  
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment.  
The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your  
nearest ST sales office for a copy.  
2. Used only for Device Grade 3  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
The category of second-Level Interconnect is marked on the package and on the inner box  
label, in compliance with JEDEC Standard JESD97. The maximum ratings related to  
soldering conditions are also marked on the inner box label.  
39/42  
Revision history  
M95040, M95020, M95010  
12  
Revision history  
Table 27. Document revision history  
Date  
Version  
Changes  
s/issuing three bytes/issuing two bytes/ in the 2nd sentence of the Byte  
Write Operation  
10-May-2000  
2.2  
Human Body Model meets JEDEC std (Table 2). Minor adjustments to  
Figs 7,9,10,11 & Tab 9. Wording changes, according to the standard  
glossary  
16-Mar-2001  
19-Jul-2001  
2.3  
2.4  
Illustrations and Package Mechanical data updated  
Temperature range ‘3’ added to the -W supply voltage range in DC and  
AC characteristics  
11-Oct-2001  
26-Feb-2002  
3.0  
3.1  
Document reformatted using the new template  
Description of chip deselect after 8th clock pulse made more explicit  
Position of A8 in Read Instruction Sequence Figure corrected. Load  
Capacitance CL changed  
27-Sep-2002  
24-Oct-2002  
24-Feb-2003  
28-May-2003  
3.2  
3.3  
3.4  
3.5  
Minimum values for tCHHL and tCHHH changed.  
Description of Read from Memory Array (READ) instruction corrected,  
and clarified  
New products, identified by the process letter W, added  
Correction to current products, identified by the process letter K not L.  
ICC changed in DC characteristics, and tCHHL, tCHHH substituted in AC  
characteristics  
25-Jun-2003  
3.6  
Voltage range -S upgraded by removing it, and adding the -R voltage  
range in its place  
Temperature range 5 removed.  
21-Nov-2003  
02-Feb-2004  
4.0  
4.1  
Table of contents, and Pb-free options added. VIL(min) improved to -0.45V  
VIL(max) and tCLQV(max) changed  
Absolute Maximum Ratings for VIO(min) and VCC(min) improved.  
Soldering temperature information clarified for RoHS compliant devices.  
New 5V and 2.5V devices, with process letter W, promoted from  
preliminary data to full data. Device Grade 3 clarified, with reference to  
HRCF and automotive environments  
01-Mar-2004  
5.0  
40/42  
M95040, M95020, M95010  
Revision history  
Table 27. Document revision history (continued)  
Date  
Version  
Changes  
Product List summary table added. Process identification letter “G”  
information added. Order information for Tape and Reel changed to T.  
AEC-Q100-002 compliance. Device Grade information clarified. tHHQX  
corrected to tHHQV. Signal Description updated.  
05-Oct-2004  
6.0  
10MHz, 5ms Write is now the present product. tCH+tCL<1/fC constraint  
clarified  
Document converted to new template, Table 5: Status Register format  
moved to below Section 6.3: Read Status Register (RDSR).  
PDIP package removed. UFDFPN8 (MB) package added (see Figure 20  
and Table 25) and SO8N package specifications updated (see Figure 18  
and Table 23). Packages are ECOPACK® compliant.  
Section 6.7: Cycling added. Section 2.8: Supply voltage (VCC) added and  
information removed below Section 4: Operating features.  
Figure 3: Bus master and memory devices on the SPI bus modified.  
TLEAD parameter modified, Note 1 changed, and TA added to Table 7:  
Absolute maximum ratings.  
06-Nov-2006  
7
Characteristics of previous product identified by process letter K removed.  
CL modified in Table 11: AC test measurement conditions. Note removed  
below Table 13 and Table 14.  
Information in Table 17 is no longer Preliminary data, ICC, ICC1 and VIL  
modified. End timing line of tSHQZ moved in Figure 17.  
tCHHL and tCHHH changed to tCLHL and tCLHH, respectively in Figure 16,  
Table 18, Table 19, Table 20, Table 21 and Table 22.  
Plating Technology and Process updated in Table 26: Ordering  
information scheme.  
41/42  
M95040, M95020, M95010  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
42/42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY