M95M01-DFCW6P/K [STMICROELECTRONICS]

SPI BUS SERIAL EEPROM;
M95M01-DFCW6P/K
型号: M95M01-DFCW6P/K
厂家: ST    ST
描述:

SPI BUS SERIAL EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总45页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95M01-DF M95M01-R  
1-Mbit serial SPI bus EEPROM  
Datasheet production data  
Features  
Compatible with the Serial Peripheral Interface  
(SPI) bus  
Memory array  
SO8 (MN)  
150 mil width  
– 1 Mb (128 Kbytes) of EEPROM  
– Page size: 256 bytes  
Write  
– Byte Write within 5 ms  
– Page Write within 5 ms  
Additional Write lockable page (Identification  
page)  
TSSOP8 (DW)  
169 mil width  
Write Protect: quarter, half or whole memory  
array  
High-speed clock: 16 MHz  
Single supply voltage:  
– 1.8 V to 5.5 V for M95M01-R  
– 1.7 V to 5.5 V for M95M01-DF  
WLCSP (CS)  
(preliminary data)  
Operating temperature range: from -40°C up to  
+85°C  
Enhanced ESD protection  
More than 4 million Write cycles  
More than 200-year data retention  
Packages  
– RoHS compliant and halogen-free  
®
(ECOPACK )  
September 2012  
Doc ID 13264 Rev 11  
1/45  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
M95M01-DF M95M01-R  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
CC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
V
4
5
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2  
5.3  
5.4  
5.5  
Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.3.1  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Contents  
6.3.2  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.3.3  
6.3.4  
6.4  
6.5  
6.6  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.6.1  
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . 25  
6.7  
6.8  
6.9  
Read Identification Page (available only in M95M01-D devices) . . . . . . . 26  
Write Identification Page (available only in M95M01-D devices) . . . . . . . 27  
Read Lock Status (available only in M95M01-Ddevices) . . . . . . . . . . . . . 28  
6.10 Lock ID (available only in M95M01-D devices) . . . . . . . . . . . . . . . . . . . . . 29  
7
Power-up and delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
7.2  
Power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9
10  
11  
12  
Doc ID 13264 Rev 11  
3/45  
List of tables  
M95M01-DF M95M01-R  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
M95M01-D instruction set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Operating conditions (M95M01-R, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Operating conditions (M95M01-DF, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Cycling performance by groups of four bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SO8N – 8-lead plastic small outline, 150 mils body width, mechanical data . . . . . . . . . . . 38  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 39  
M95M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package mechanical data 41  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WLCSP connections for M95M01-DFCS6TP/K  
(top view, marking side, with balls on the underside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Hold condition activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10. Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 11. Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15. Read Identification Page sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 16. Write identification page sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 17. Read Lock Status sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 18. Lock ID sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 20. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 21. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 22. Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 23. SO8N – 8-lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 38  
Figure 24. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 25. M95M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package outline . . . . . . . . 40  
Doc ID 13264 Rev 11  
5/45  
Description  
M95M01-DF M95M01-R  
1
Description  
The M95M01 devices are Electrically Erasable PROgrammable Memories (EEPROMs)  
organized as 131072 x 8 bits, accessed through the SPI bus.  
The M95M01-R devices can operate with a supply range from 1.8 V up to 5.5 V, the  
M95M01-DF devices can operate with a supply range from 1.7 V up to 5.5 V. These devices  
are guaranteed over the -40 °C/+85 °C temperature range.  
The M95M01-DF offers an additional page, named the Identification Page (256 bytes). The  
Identification Page can be used to store sensitive application parameters which can be  
(later) permanently locked in Read-only mode.  
Figure 1.  
Logic diagram  
V
CC  
D
C
S
Q
M95xxx  
W
HOLD  
V
SS  
AI01789C  
The SPI bus signals are C, D and Q, as shown in Figure 1 and Table 1. The device is  
selected when Chip Select (S) is driven low. Communications with the device can be  
interrupted when the HOLD is driven low.  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
C
Serial Clock  
Input  
Input  
Output  
Input  
Input  
Input  
D
Serial Data Input  
Serial Data Output  
Chip Select  
Write Protect  
Hold  
Q
S
W
HOLD  
VCC  
VSS  
Supply voltage  
Ground  
6/45  
Doc ID 13264 Rev 11  
 
 
 
M95M01-DF M95M01-R  
Figure 2.  
Description  
8-pin package connections (top view)  
M95xxx  
S
Q
1
2
3
4
8
V
CC  
HOLD  
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Section 10: Package mechanical data section for package dimensions, and how to identify pin 1.  
Figure 3.  
WLCSP connections for M95M01-DFCS6TP/K  
(top view, marking side, with balls on the underside)  
VCC  
D
C
Q
HOLD  
S
W
VSS  
MS19789V3  
Caution:  
As EEPROM cells lose their charge (and so their binary value) when exposed to ultra violet  
(UV) light, EEPROM dice delivered in wafer form or in WLCSP package by  
STMicroelectronics must never be exposed to UV light.  
Doc ID 13264 Rev 11  
7/45  
 
Memory organization  
M95M01-DF M95M01-R  
2
Memory organization  
The memory is organized as shown in the following figure.  
Figure 4. Block diagram  
HOLD  
High voltage  
generator  
W
S
Control logic  
C
D
Q
I/O shift register  
Data  
Address register  
and counter  
register  
Status  
register  
1/4  
Size of the  
Read only  
EEPROM  
area  
1/2  
1 page  
Identification page  
X decoder  
MS19733V1  
8/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Signal description  
3
Signal description  
During all operations, V must be held stable and within the specified valid range:  
CC  
V
(min) to V (max).  
CC  
CC  
All of the input and output signals must be held high or low (according to voltages of V ,  
IH  
V
, V or V , as specified in Section 9: DC and AC parameters). These signals are  
OH  
IL OL  
described next.  
3.1  
3.2  
Serial Data Output (Q)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the  
falling edge of Serial Clock (C).  
Serial Data Input (D)  
This input signal is used to transfer data serially into the device. It receives instructions,  
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock  
(C).  
3.3  
3.4  
Serial Clock (C)  
This input signal provides the timing of the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on  
Serial Data Output (Q) change from the falling edge of Serial Clock (C).  
Chip Select (S)  
When this input signal is high, the device is deselected and Serial Data Output (Q) is at high  
impedance. The device is in the Standby Power mode, unless an internal Write cycle is in  
progress. Driving Chip Select (S) low selects the device, placing it in the Active Power mode.  
After power-up, a falling edge on Chip Select (S) is required prior to the start of any  
instruction.  
3.5  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be selected, with Chip Select (S) driven low.  
Doc ID 13264 Rev 11  
9/45  
Signal description  
M95M01-DF M95M01-R  
3.6  
Write Protect (W)  
The main purpose of this input signal is to freeze the size of the area of memory that is  
protected against Write instructions (as specified by the values in the BP1 and BP0 bits of  
the Status Register).  
This pin must be driven either high or low, and must be stable during all Write instructions.  
3.7  
3.8  
VCC supply voltage  
V
is the supply voltage.  
CC  
VSS ground  
V
is the reference for all signals, including the V supply voltage.  
SS  
CC  
10/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Connecting to the SPI bus  
4
Connecting to the SPI bus  
All instructions, addresses and input data bytes are shifted in to the device, most significant  
bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C)  
after Chip Select (S) goes low.  
All output data bytes are shifted out of the device, most significant bit first. The Serial Data  
Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction  
(such as the Read from Memory Array and Read Status Register instructions) have been  
clocked into the device.  
Figure 5.  
Bus master and memory devices on the SPI bus  
VSS  
VCC  
R
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
VCC  
VCC  
VCC  
C
Q
D
C
Q
D
C Q D  
VSS  
VSS  
VSS  
SPI Bus Master  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
R
R
R
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI12836b  
1. The Write Protect (W) and Hold (HOLD) signals should be driven, high or low as appropriate.  
Figure 5 shows an example of three memory devices connected to an SPI bus master. Only  
one memory device is selected at a time, so only one memory device drives the Serial Data  
Output (Q) line at a time. The other memory devices are high impedance.  
The pull-up resistor R (represented in Figure 5) ensures that a device is not selected if the  
Bus Master leaves the S line in the high impedance state.  
In applications where the Bus Master may leave all SPI bus lines in high impedance at the  
same time (for example, if the Bus Master is reset during the transmission of an instruction),  
the clock line (C) must be connected to an external pull-down resistor so that, if all  
inputs/outputs become high impedance, the C line is pulled low (while the S line is pulled  
high): this ensures that S and C do not become high at the same time, and so, that the  
t
requirement is met. The typical value of R is 100 kΩ..  
SHCH  
Doc ID 13264 Rev 11  
11/45  
 
Connecting to the SPI bus  
M95M01-DF M95M01-R  
4.1  
SPI modes  
These devices can be driven by a microcontroller with its SPI peripheral running in either of  
the following two modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 6, is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 6.  
SPI modes supported  
CPOL CPHA  
C
0
1
0
1
C
D
MSB  
Q
MSB  
AI01438B  
12/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Operating features  
5
Operating features  
5.1  
Supply voltage (VCC)  
5.1.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Operating conditions  
CC  
CC  
in Section 9: DC and AC parameters). This voltage must remain stable and valid until the  
end of the transmission of the instruction and, for a Write instruction, until the completion of  
the internal write cycle (t ). In order to secure a stable DC supply voltage, it is  
W
recommended to decouple the V line with a suitable capacitor (usually of the order of  
CC  
10 nF to 100 nF) close to the V /V device pins.  
CC SS  
5.1.2  
Device reset  
In order to prevent erroneous instruction decoding and inadvertent Write operations during  
power-up, a power-on-reset (POR) circuit is included. At power-up, the device does not  
respond to any instruction until VCC reaches the POR threshold voltage. This threshold is  
lower than the minimum V operating voltage (see Operating conditions in Section 9: DC  
CC  
and AC parameters).  
At power-up, when V passes over the POR threshold, the device is reset and is in the  
CC  
following state:  
in Standby Power mode,  
deselected,  
Status Register values:  
The Write Enable Latch (WEL) bit is reset to 0.  
The Write In Progress (WIP) bit is reset to 0.  
The SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits).  
It is important to note that the device must not be accessed until V reaches a valid and  
CC  
stable level within the specified [V (min), V (max)] range, as defined under Operating  
CC  
CC  
conditions in Section 9: DC and AC parameters.  
5.1.3  
Power-up conditions  
When the power supply is turned on, V rises continuously from V to V . During this  
CC  
SS  
CC  
time, the Chip Select (S) line is not allowed to float but should follow the V voltage. It is  
CC  
therefore recommended to connect the S line to V via a suitable pull-up resistor (see  
CC  
Figure 5).  
In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edge-  
sensitive as well as level-sensitive: after power-up, the device does not become selected  
until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select  
(S) must have been high, prior to going low to start the first operation.  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
defined under Operating conditions in Section 9: DC and AC parameters, and the rise time  
must not vary faster than 1 V/µs.  
Doc ID 13264 Rev 11  
13/45  
Operating features  
M95M01-DF M95M01-R  
5.1.4  
Power-down  
During power-down (continuous decrease of the V supply voltage below the minimum  
CC  
V
operating voltage defined under Operating conditions in Section 9: DC and AC  
CC  
parameters), the device must be:  
deselected (Chip Select S should be allowed to follow the voltage applied on V ),  
CC  
in Standby Power mode (there should not be any internal write cycle in progress).  
5.2  
Active Power and Standby Power modes  
When Chip Select (S) is low, the device is selected, and in the Active Power mode. The  
device consumes I  
.
CC  
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in  
progress, the device then goes into the Standby Power mode, and the device consumption  
drops to I  
, as specified in DC characteristics (see Section 9: DC and AC parameters).  
CC1  
5.3  
Hold condition  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
To enter the Hold condition, the device must be selected, with Chip Select (S) low.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and the Serial  
Data Input (D) and the Serial Clock (C) are Don’t Care.  
Normally, the device is kept selected for the whole duration of the Hold condition.  
Deselecting the device while it is in the Hold condition has the effect of resetting the state of  
the device, and this mechanism can be used if required to reset any processes that had  
(a)(b)  
been in progress.  
Figure 7.  
Hold condition activation  
c
HOLD  
Hold  
condition  
Hold  
condition  
ai02029E  
The Hold condition starts when the Hold (HOLD) signal is driven low when Serial Clock (C)  
is already low (as shown in Figure 7).  
a. This resets the internal logic, except the WEL and WIP bits of the Status Register.  
b. In the specific case where the device has shifted in a Write command (Inst + Address + data bytes, each data  
byte being exactly 8 bits), deselecting the device also triggers the Write cycle of this decoded command.  
14/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Operating features  
The Hold condition ends when the Hold (HOLD) signal is driven high when Serial Clock (C)  
is already low.  
Figure 7 also shows what happens if the rising and falling edges are not timed to coincide  
with Serial Clock (C) being low.  
5.4  
5.5  
Status Register  
The Status Register contains a number of status and control bits that can be read or set (as  
appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a  
detailed description of the Status Register bits.  
Data protection and protocol control  
The device features the following data protection mechanisms:  
Before accepting the execution of the Write and Write Status Register instructions, the  
device checks whether the number of clock pulses comprised in the instructions is a  
multiple of eight.  
All instructions that modify data must be preceded by a Write Enable (WREN)  
instruction to set the Write Enable Latch (WEL) bit.  
The Block Protect (BP1, BP0) bits in the Status Register are used to configure part of  
the memory as read-only.  
The Write Protect (W) signal is used to protect the Block Protect (BP1, BP0) bits in the  
Status Register.  
For any instruction to be accepted, and executed, Chip Select (S) must be driven high after  
the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising  
edge of Serial Clock (C).  
Two points should be noted in the previous sentence:  
The “last bit of the instruction” can be the eighth bit of the instruction code, or the eighth  
bit of a data byte, depending on the instruction (except for Read Status Register  
(RDSR) and Read (READ) instructions).  
The “next rising edge of Serial Clock (C)” might (or might not) be the next bus  
transaction for some other device on the SPI bus.  
Table 2.  
Write-protected block size  
Status Register bits  
Protected block  
Protected array addresses  
BP1  
BP0  
0
0
1
1
0
1
0
1
none  
none  
Upper quarter  
Upper half  
1.80.00h - 1.FF.FFh  
1.00.00h - 1.FF.FFh  
0.00.00h - 1.FF.FFh  
Whole memory  
Doc ID 13264 Rev 11  
15/45  
 
Instructions  
M95M01-DF M95M01-R  
6
Instructions  
Each instruction starts with a single-byte code, as summarized in Table 3.  
If an invalid instruction is sent (one not contained in Table 3), the device automatically  
deselects itself.  
Table 3.  
Instruction set  
Instruction  
Description  
Write Enable  
Instruction format  
WREN  
WRDI  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Write Disable  
RDSR  
WRSR  
READ  
WRITE  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
Table 4.  
M95M01-D instruction set  
Instruction  
format  
Instruction  
Description  
WREN  
WRDI  
Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Write Disable  
RDSR  
WRSR  
READ  
WRITE  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
Read Identification  
Page  
Reads the page dedicated to identification.  
Writes the page dedicated to identification.  
1000 0011(1)  
1000 0010(1)  
Write Identification  
Page  
Read Lock Status Reads the lock status of the Identification Page.  
Lock ID Locks the Identification page in read-only mode.  
1000 0011(2)  
1000 0010(2)  
1. Address bit A10 must be 0, all other address bits are Don't Care.  
2. Address bit A10 must be 1, all other address bits are Don't Care.  
16/45  
Doc ID 13264 Rev 11  
 
 
 
M95M01-DF M95M01-R  
Instructions  
6.1  
Write Enable (WREN)  
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.  
The only way to do this is to send a Write Enable instruction to the device.  
As shown in Figure 8, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then  
enters a wait state. It waits for the device to be deselected, by Chip Select (S) being driven  
high.  
Figure 8.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
Doc ID 13264 Rev 11  
17/45  
 
Instructions  
M95M01-DF M95M01-R  
6.2  
Write Disable (WRDI)  
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction  
to the device.  
As shown in Figure 9, to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D).  
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select  
(S) being driven high.  
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion.  
Figure 9.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
18/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Instructions  
6.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction is used to read the Status Register. The  
Status Register may be read at any time, even while a Write or Write Status Register cycle  
is in progress. When one of these cycles is in progress, it is recommended to check the  
Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible  
to read the Status Register continuously, as shown in Figure 10.  
Figure 10. Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
The status and control bits of the Status Register are as follows:  
6.3.1  
6.3.2  
WIP bit  
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0, no such  
cycle is in progress.  
WEL bit  
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.  
When set to 1, the internal Write Enable Latch is set. When set to 0, the internal Write  
Enable Latch is reset, and no Write or Write Status Register instruction is accepted.  
The WEL bit is returned to its reset state by the following events:  
Power-up  
Write Disable (WRDI) instruction completion  
Write Status Register (WRSR) instruction completion  
Write (WRITE) instruction completion  
6.3.3  
BP1, BP0 bits  
The Block Protect (BP1, BP0) bits are non volatile. They define the size of the area to be  
software-protected against Write instructions. These bits are written with the Write Status  
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set  
to 1, the relevant memory area (as defined in Table 2) becomes protected against Write  
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the  
Hardware Protected mode has not been set.  
Doc ID 13264 Rev 11  
19/45  
 
Instructions  
M95M01-DF M95M01-R  
6.3.4  
SRWD bit  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)  
signal enable the device to be put in the Hardware Protected mode (when the Status  
Register Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven low). In this  
mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits  
and the Write Status Register (WRSR) instruction is no longer accepted for execution.  
Table 5.  
Status Register format  
b7  
b0  
SRWD  
0
0
0
BP1  
BP0  
WEL  
WIP  
Status Register Write Protect  
Block Protect bits  
Write Enable Latch bit  
Write In Progress bit  
6.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction is used to write new values to the Status  
Register. Before it can be accepted, a Write Enable (WREN) instruction must have been  
previously executed.  
The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) low,  
followed by the instruction code, the data byte on Serial Data input (D) and Chip Select (S)  
driven high. Chip Select (S) must be driven high after the rising edge of Serial Clock (C) that  
latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C).  
Otherwise, the Write Status Register (WRSR) instruction is not executed.  
The instruction sequence is shown in Figure 11.  
Figure 11. Write Status Register (WRSR) sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
20/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Instructions  
Driving the Chip Select (S) signal high at a byte boundary of the input data triggers the self-  
timed Write cycle that takes t to complete (as specified in AC tables under Section 9: DC  
W
and AC parameters).  
While the Write Status Register cycle is in progress, the Status Register may still be read to  
check the value of the Write in progress (WIP) bit: the WIP bit is 1 during the self-timed  
Write cycle t , and 0 when the Write cycle is complete. The WEL bit (Write Enable Latch) is  
W
also reset at the end of the Write cycle t .  
W
The Write Status Register (WRSR) instruction enables the user to change the values of the  
BP1, BP0 and SRWD bits:  
The Block Protect (BP1, BP0) bits define the size of the area that is to be treated as  
read-only, as defined in Table 2.  
The SRWD (Status Register Write Disable) bit, in accordance with the signal read on  
the Write Protect pin (W), enables the user to set or reset the Write protection mode of  
the Status Register itself, as defined in Table 6. When in Write-protected mode, the  
Write Status Register (WRSR) instruction is not executed.  
The contents of the SRWD and BP1, BP0 bits are updated after the completion of the  
WRSR instruction, including the t Write cycle.  
W
The Write Status Register (WRSR) instruction has no effect on the b6, b5, b4, b1, b0 bits in  
the Status Register. Bits b6, b5, b4 are always read as 0.  
Table 6.  
Protection modes  
Memory content  
W
signal  
SRWD Write protection of the  
Mode  
bit  
Status Register  
Protected area(1) Unprotected area(1)  
1
0
0
0
Status Register is  
writable (if the WREN  
Software- instruction has set the  
protected WEL bit).  
Ready to accept  
Write-protected  
Write instructions  
(SPM)  
The values in the BP1  
and BP0 bits can be  
changed.  
1
1
Status Register is  
Hardware write-  
protected.  
The values in the BP1  
and BP0 bits cannot be  
changed.  
Hardware-  
protected  
(HPM)  
Ready to accept  
Write-protected  
0
1
Write instructions  
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register. See Table 2.  
The protection features of the device are summarized in Table 6.  
When the Status Register Write Disable (SRWD) bit in the Status Register is 0 (its initial  
delivery state), it is possible to write to the Status Register (provided that the WEL bit has  
previously been set by a WREN instruction), regardless of the logic level applied on the  
Write Protect (W) input pin.  
Doc ID 13264 Rev 11  
21/45  
 
 
Instructions  
M95M01-DF M95M01-R  
When the Status Register Write Disable (SRWD) bit in the Status Register is set to 1, two  
cases should be considered, depending on the state of the Write Protect (W) input pin:  
If Write Protect (W) is driven high, it is possible to write to the Status Register (provided  
that the WEL bit has previously been set by a WREN instruction).  
If Write Protect (W) is driven low, it is not possible to write to the Status Register even if  
the WEL bit has previously been set by a WREN instruction. (Attempts to write to the  
Status Register are rejected, and are not accepted for execution). As a consequence,  
all the data bytes in the memory area, which are Software-protected (SPM) by the  
Block Protect (BP1, BP0) bits in the Status Register, are also hardware-protected  
against data modification.  
Regardless of the order of the two events, the Hardware-protected mode (HPM) can be  
entered by:  
either setting the SRWD bit after driving the Write Protect (W) input pin low,  
or driving the Write Protect (W) input pin low after setting the SRWD bit.  
Once the Hardware-protected mode (HPM) has been entered, the only way of exiting it is to  
pull high the Write Protect (W) input pin.  
If the Write Protect (W) input pin is permanently tied high, the Hardware-protected mode  
(HPM) can never be activated, and only the Software-protected mode (SPM), using the  
Block Protect (BP1, BP0) bits in the Status Register, can be used.  
6.5  
Read from Memory Array (READ)  
As shown in Figure 12, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data  
Input (D). The address is loaded into an internal address register, and the byte of data at  
that address is shifted out, on Serial Data Output (Q).  
Figure 12. Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
23 22 21  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI13878  
If Chip Select (S) continues to be driven low, the internal address register is incremented  
automatically, and the byte of data at the new address is shifted out.  
22/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Instructions  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a  
single READ instruction.  
The Read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Table 7.  
Address range bits  
Address significant bits  
A16-A0(1)  
1. Bits A23 to A17 are Don’t Care.  
6.6  
Write to Memory Array (WRITE)  
As shown in Figure 13, to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte, address byte, and at least one data byte are then shifted  
in, on Serial Data Input (D).  
The instruction is terminated by driving Chip Select (S) high at a byte boundary of the input  
data. The self-timed Write cycle, triggered by the Chip Select (S) rising edge, continues for a  
period t (as specified in AC characteristics in Section 9: DC and AC parameters), at the  
W
end of which the Write in Progress (WIP) bit is reset to 0.  
Figure 13. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
Data byte  
23 22 21  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High impedance  
MS30905V1  
In the case of Figure 13, Chip Select (S) is driven high after the eighth bit of the data byte  
has been latched in, indicating that the instruction is being used to write a single byte.  
However, if Chip Select (S) continues to be driven low, as shown in Figure 14, the next byte  
of input data is shifted in, so that more than a single byte, starting from the given address  
towards the end of the same page, can be written in a single internal Write cycle.  
Each time a new data byte is shifted in, the least significant bits of the internal address  
counter are incremented. If more bytes are sent than will fit up to the end of the page, a  
condition known as “roll-over” occurs. In case of roll-over, the bytes exceeding the page size  
are overwritten from location 0 of the same page.  
Doc ID 13264 Rev 11  
23/45  
 
Instructions  
M95M01-DF M95M01-R  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before),  
if a Write cycle is already in progress,  
if the device has not been deselected, by driving high Chip Select (S), at a byte  
boundary (after the eighth bit, b0, of the last data byte that has been latched in),  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits.  
Note:  
The self-timed write cycle t is internally executed as a sequence of two consecutive  
W
events: [Erase addressed byte(s)], followed by [Program addressed byte(s)]. An erased bit is  
read as “0” and a programmed bit is read as “1”.  
Figure 14. Page Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
D
Instruction  
24-bit address  
Data byte 1  
23 22 21  
3
2
1
0
7
6
5
4
3
2
0
1
S
C
Data byte 2  
Data byte 3  
Data byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
MS30906V1  
24/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Instructions  
6.6.1  
Cycling with Error Correction Code (ECC)  
The ECC is an internal logic function which is transparent for the SPI communication  
protocol.  
(c)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(c)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the four bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined in Table 13.  
c. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.  
Doc ID 13264 Rev 11  
25/45  
 
 
Instructions  
M95M01-DF M95M01-R  
6.7  
Read Identification Page (available only in M95M01-D  
devices)  
The Identification Page (256 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode.  
Reading this page is achieved with the Read Identification Page instruction (see Table 4).  
The Chip Select signal (S) is first driven low, the bits of the instruction byte and address  
bytes are then shifted in, on Serial Data Input (D). Address bit A10 must be 0, upper  
address bits are Don't Care, and the data byte pointed to by the lower address bits [A7:A0]  
is shifted out on Serial Data Output (Q). If Chip Select (S) continues to be driven low, the  
internal address register is automatically incremented, and the byte of data at the new  
address is shifted out.  
The number of bytes to read in the ID page must not exceed the page boundary, otherwise  
unexpected data is read (e.g.: when reading the ID page from location 90d, the number of  
bytes should be less than or equal to 166d, as the ID page boundary is 256 bytes).  
The read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle. The first byte addressed can be any  
byte within any page.  
The instruction is not accepted, and is not executed, if a write cycle is currently in progress.  
Figure 15. Read Identification Page sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
23 22 21  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
7
High impedance  
2
7
6
5
4
3
1
0
MSB  
MS30907V1  
26/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Instructions  
6.8  
Write Identification Page (available only in M95M01-D  
devices)  
The Identification Page (256 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode.  
Writing this page is achieved with the Write Identification Page instruction (see Table 4). The  
Chip Select signal (S) is first driven low. The bits of the instruction byte, address bytes, and  
at least one data byte are then shifted in on Serial Data Input (D). Address bit A10 must be  
0, upper address bits are Don't Care, the lower address bits [A7:A0] address bits define the  
byte address inside the identification page. The instruction sequence is shown in Figure 16.  
Figure 16. Write identification page sequence  
S
0
1
2
3
4
5
6
7
8
9 10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
Data byte  
D
Q
23 22 21  
3
2
1
0
7
6
5
4
3
2
0
1
High impedance  
MS30909V1  
Doc ID 13264 Rev 11  
27/45  
 
Instructions  
M95M01-DF M95M01-R  
6.9  
Read Lock Status (available only in M95M01-Ddevices)  
The Read Lock Status instruction (see Table 4) is used to check whether the Identification  
Page is locked or not in Read-only mode. The Read Lock Status sequence is defined with  
the Chip Select (S) first driven low. The bits of the instruction byte and address bytes are  
then shifted in on Serial Data Input (D). Address bit A10 must be 1, all other address bits are  
Don't Care. The Lock bit is the LSB (least significant bit) of the byte read on Serial Data  
Output (Q). It is at “1” when the lock is active and at “0” when the lock is not active. If Chip  
Select (S) continues to be driven low, the same data byte is shifted out. The read cycle is  
terminated by driving Chip Select (S) high.  
The instruction sequence is shown in Figure 17.  
Figure 17. Read Lock Status sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
3
2
1
0
23 22 21  
MSB  
D
Q
Data Out 1  
Data Out 2  
7
High impedance  
2
7
6
5
4
3
1
0
MSB  
MS30910V1  
28/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Instructions  
6.10  
Lock ID (available only in M95M01-D devices)  
The Lock ID instruction permanently locks the Identification Page in read-only mode. Before  
this instruction can be accepted, a Write Enable (WREN) instruction must have been  
executed.  
The Lock ID instruction is issued by driving Chip Select (S) low, sending the instruction  
code, the address and a data byte on Serial Data Input (D), and driving Chip Select (S) high.  
In the address sent, A10 must be equal to 1, all other address bits are Don't Care. The data  
byte sent must be equal to the binary value xxxx xx1x, where x = Don't Care.  
Chip Select (S) must be driven high after the rising edge of Serial Clock (C) that latches in  
the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise,  
the Lock ID instruction is not executed.  
Driving Chip Select (S) high at a byte boundary of the input data triggers the self-timed write  
cycle whose duration is t (as specified in AC characteristics in Section 9: DC and AC  
W
parameters). The instruction sequence is shown in Figure 18.  
The instruction is discarded, and is not executed, under the following conditions:  
If a Write cycle is already in progress,  
If the Block Protect bits (BP1,BP0) = (1,1),  
If a rising edge on Chip Select (S) happens outside of a byte boundary.  
Figure 18. Lock ID sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
C
Instruction  
24-bit address  
Data byte  
D
Q
23 22 21  
3
2
1
0
7
6
5
4
3
2
0
1
High impedance  
MS30911V1  
Doc ID 13264 Rev 11  
29/45  
 
Power-up and delivery state  
M95M01-DF M95M01-R  
7
Power-up and delivery state  
7.1  
Power-up state  
After power-up, the device is in the following state:  
Standby power mode,  
deselected (after power-up, a falling edge is required on Chip Select (S) before any  
instructions can be started),  
not in the Hold condition,  
the Write Enable Latch (WEL) is reset to 0,  
Write In Progress (WIP) is reset to 0.  
The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous  
power-down (they are non-volatile bits).  
7.2  
Initial delivery state  
The device is delivered with the memory array set to all 1s (each byte = FFh). The Status  
Register Write Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.  
30/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Maximum rating  
8
Maximum rating  
Stressing the device outside the ratings listed in Table 8 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VO  
Lead temperature during soldering  
Output voltage  
See note (1)  
–0.50  
–0.50  
–0.50  
VCC+0.6  
VI  
Input voltage  
6.5  
6.5  
5
V
VCC  
IOL  
Supply voltage  
V
DC output current (Q = 0)  
DC output current (Q = 1)  
Electrostatic discharge voltage (human body model)(2)  
mA  
mA  
V
IOH  
5
VESD  
4000  
1. Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb assembly), with the ST ECOPACK®  
7191395 specification, and with the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
2. Positive and negative pulses applied on different combinations of pin connections, according to AEC-  
Q100-002 (compliant with JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω).  
Doc ID 13264 Rev 11  
31/45  
 
DC and AC parameters  
M95M01-DF M95M01-R  
9
DC and AC parameters  
This section summarizes the operating conditions and the DC/AC characteristics of the  
device.  
Table 9.  
Symbol  
Operating conditions (M95M01-R, device grade 6)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.8  
5.5  
85  
V
–40  
°C  
Table 10. Operating conditions (M95M01-DF, device grade 6)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
1.7  
5.5  
85  
V
–40  
°C  
Table 11. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
CL  
Load capacitance  
100  
pF  
ns  
V
Input rise and fall times  
Input pulse voltages  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing reference voltages  
V
Figure 19. AC measurement I/O waveform  
Input voltage levels  
Input and output  
timing reference levels  
0.8 V  
CC  
0.7 V  
CC  
0.3 V  
CC  
0.2 V  
CC  
AI00825C  
32/45  
Doc ID 13264 Rev 11  
 
 
 
M95M01-DF M95M01-R  
DC and AC parameters  
Table 12. Capacitance  
Symbol  
Parameter  
Test conditions(1)  
Min.  
Max.  
Unit  
COUT  
Output capacitance (Q)  
Input capacitance (D)  
VOUT = 0 V  
VIN = 0 V  
VIN = 0 V  
8
8
6
pF  
pF  
pF  
CIN  
Input capacitance (other pins)  
1. Sampled only, not 100% tested, at TA = 25 °C and a frequency of 5 MHz.  
Table 13. Cycling performance by groups of four bytes  
Symbol  
Parameter(1)  
Test conditions  
Min.  
Max.  
Unit  
TA 25 °C,  
4,000,000  
1,200,000  
VCC(min) < VCC < VCC(max)  
Ncycle  
Write cycle endurance(2)  
Write cycle(3)  
TA = 85 °C,  
VCC(min) < VCC < VCC(max)  
1. Cycling performance for products identified by process letters KB.  
2. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1,  
4*N+2, 4*N+3] where N is an integer. The Write cycle endurance is defined by characterization and  
qualification.  
3. A Write cycle is executed when either a Page Write, a Byte Write, a WRSR, a WRID or an LID instruction is  
decoded. When using the Byte Write, the Page Write or the WRID instruction, refer also to Section 6.6.1:  
Cycling with Error Correction Code (ECC).  
Table 14. Memory cell data retention  
Parameter  
Data retention(1)  
Test conditions  
TA = 55 °C  
Min.  
Unit  
200  
Year  
1. For products identified by process letters KB. The data retention behavior is checked in production. The  
200-year limit is defined from characterization and qualification results.  
Doc ID 13264 Rev 11  
33/45  
 
 
DC and AC parameters  
M95M01-DF M95M01-R  
Table 15. DC characteristics  
Symbol  
Parameter  
Test conditions  
VIN = VSS or VCC  
Min  
Max  
Unit  
ILI  
Input leakage current  
Output leakage current  
± 2  
± 2  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
C = 0.1 VCC/0.9 VCC at 2 MHz,  
VCC = 1.8 V(1), Q = open  
1.5  
2(2)  
4
mA  
mA  
mA  
C = 0.1 VCC/0.9 VCC at 5 MHz,  
VCC = 1.8 V(1), Q = open  
C = 0.1 VCC/0.9 VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
ICC  
Supply current (Read)  
C = 0.1 VCC/0.9 VCC at 10 MHz,  
VCC = 2.5 V, Q = open  
2(2)  
5
C = 0.1 VCC/0.9 VCC at 5 MHz,  
VCC = 5 V, Q = open  
mA  
C = 0.1 VCC/0.9 VCC at 10 MHz,  
VCC = 5.5 V, Q = open  
5(2)  
5
(3)  
ICC0  
Supply current (Write)  
During tW, S = VCC  
,
mA  
µA  
S = VCC, VIN = VSS or VCC  
,
3
VCC = 1.8 V(1)  
S = VCC, VIN = VSS or VCC  
,
1
3
µA  
µA  
µA  
µA  
µA  
VCC = 1.8 V(1), temp = 25 °C (or less)  
S = VCC, VIN = VSS or VCC  
,
VCC = 2.5 V  
Supply current  
ICC1  
(Standby Power mode)  
S = VCC, VIN = VSS or VCC  
,
1
VCC = 2.5 V, temp = 25 °C (or less)  
S = VCC, VIN = VSS or VCC  
,
5
VCC = 5.5 V  
S = VCC, VIN = VSS or VCC  
,
1.5  
VCC = 5.5 V, temp = 25 °C (or less)  
1.8 V(1) VCC < 2.5 V  
–0.45  
–0.45  
0.25 VCC  
0.3 VCC  
VCC+1  
VCC+1  
0.3  
VIL  
VIH  
Input low voltage  
Input high voltage  
V
V
2.5 V VCC 5.5 V  
1.8 V(1) VCC < 2.5 V  
2.5 V VCC 5.5 V  
0.75 VCC  
0.7 VCC  
IOL = 0.15 mA, VCC = 1.8 V(1)  
V
V
VOL  
Output low voltage  
Output high voltage  
VCC = 2.5 V, IOL = 1.5 mA or VCC = 5 V,  
0.4  
IOL = 2 mA  
IOH = –0.1 mA, VCC = 1.8 V(1)  
VOH  
0.8 VCC  
V
VCC = 2.5 V, IOH = –0.4 mA or VCC = 5 V,  
IOH = –2 mA  
1. Or VCC = 1.7 V for the M95M01-DF.  
2. For devices identified by process letter K.  
3. Characterized value, not tested in production.  
34/45  
Doc ID 13264 Rev 11  
 
 
 
M95M01-DF M95M01-R  
DC and AC parameters  
Table 16. AC characteristics  
Test conditions specified in Table 9, Table 10 and Table 11  
VCC  
VCC  
VCC  
VCC  
1.7 V(1)  
1.8 V(2)  
2.5 V(3)  
4.5 V(1)  
Symbol Alt.  
Parameter  
Unit  
Min. Max. Min. Max. Min. Max. Min. Max.  
fC  
fSCK Clock frequency  
D.C.  
150  
150  
200  
150  
150  
200  
200  
2
D.C.  
60  
60  
60  
60  
60  
90  
90  
5
D.C.  
30  
30  
40  
30  
30  
40  
40  
10  
D.C.  
20  
20  
25  
20  
20  
25  
25  
16  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
tSLCH tCSS1 S active setup time  
tSHCH tCSS2 S not active setup time  
tSHSL  
tCS S Deselect time  
tCHSH tCSH S active hold time  
tCHSL  
S not active hold time  
tCLH Clock high time  
(4)  
tCH  
(4)  
tCL  
tCLL Clock low time  
tRC Clock rise time  
tFC Clock fall time  
(5)  
tCLCH  
2
2
2
2
2
2
(5)  
tCHCL  
tDVCH tDSU Data in setup time  
tCHDX tDH Data in hold time  
Clock low hold time after  
50  
50  
20  
20  
10  
10  
10  
10  
tHHCH  
150  
150  
0
60  
60  
0
30  
30  
0
25  
20  
0
ns  
ns  
ns  
ns  
HOLD not active  
Clock low hold time after  
HOLD active  
tHLCH  
tCLHL  
tCLHH  
Clock low set-up time before  
HOLD active  
Clock low set-up time before  
HOLD not active  
0
0
0
0
(5)  
tSHQZ  
tCLQV  
tCLQX  
tDIS Output disable time  
tV Clock low to output valid  
tHO Output hold time  
200  
200  
80  
80  
40  
40  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
0
0
0
0
(5)  
tQLQH  
tRO Output rise time  
200  
200  
200  
200  
5
80  
80  
80  
80  
5
40  
40  
40  
40  
5
25  
25  
25  
25  
5
(5)  
tQHQL  
tHHQV  
tFO Output fall time  
tLZ HOLD high to output valid  
tHZ HOLD low to output high-Z  
tWC Write time  
(5)  
tHLQZ  
tW  
1. For devices identified by process letter K.  
2. Previous products (identified with process letter A) were specified with fC(max) = 2 MHz, with the same AC values as  
defined in the 1.7 V columns in this table.  
3. Previous products (identified with process letter A) were specified with fC(max) = 5 MHz, with the same AC values as  
defined in the 1.8 V columns in this table.  
4. tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max)  
5. Value guaranteed by characterization, not 100% tested in production.  
Doc ID 13264 Rev 11  
35/45  
 
 
 
 
DC and AC parameters  
M95M01-DF M95M01-R  
Figure 20. Serial input timing  
tSHSL  
tSHCH  
S
C
tCHSL  
tSLCH  
tCH  
tCHSH  
tDVCH  
tCHCL  
tCHDX  
tCL  
tCLCH  
MSB IN  
LSB IN  
D
Q
High impedance  
AI01447d  
Figure 21. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
HOLD  
AI01448c  
36/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
DC and AC parameters  
Figure 22. Serial output timing  
S
tCH  
tSHSL  
C
tCLQV  
tCLQX  
tCLCH  
tCHCL  
tCL  
tSHQZ  
Q
D
tQLQH  
tQHQL  
ADDR  
LSB IN  
AI01449f  
Doc ID 13264 Rev 11  
37/45  
Package mechanical data  
M95M01-DF M95M01-R  
10  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 23. SO8N – 8-lead plastic small outline, 150 mils body width, package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 17. SO8N – 8-lead plastic small outline, 150 mils body width, mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.750  
0.250  
0.0689  
0.0098  
0.100  
1.250  
0.280  
0.170  
0.0039  
0.0492  
0.0110  
0.0067  
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
-
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
ccc  
D
4.900  
6.000  
3.900  
1.270  
4.800  
5.800  
3.800  
-
0.1929  
0.2362  
0.1535  
0.0500  
0.1890  
0.2283  
0.1496  
-
E
E1  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
L
0.400  
1.270  
0.0157  
0.0500  
L1  
1.040  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
38/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Package mechanical data  
Figure 24. TSSOP8 – 8-lead thin shrink small outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 18. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
-
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
-
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
-
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N
1. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 13264 Rev 11  
39/45  
Package mechanical data  
M95M01-DF M95M01-R  
Figure 25. M95M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package outline  
bbb  
Z
e2  
D
Y
X
e
F
Detail A  
E
e1  
F
e3  
aaa  
A
G
G
Reference (4X)  
Wafer back side  
A2  
Orientation  
Bumps side  
Side view  
Bump  
A1  
eee  
Z
Z
b
Seating plane  
Øccc M  
Øddd M  
X Y  
Z
Z
Detail A  
Rotated 90 °  
1Ce_ME_V1  
1. Drawing is not to scale.  
40/45  
Doc ID 13264 Rev 11  
 
M95M01-DF M95M01-R  
Package mechanical data  
Table 19. M95M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
0.540  
0.190  
0.350  
0.270  
2.560  
1.698  
1.000  
0.866  
0.500  
0.500  
0.416  
0.780  
8
0.500  
0.580  
0.0213  
0.0075  
0.0138  
0.0106  
0.1008  
0.0669  
0.0394  
0.0341  
0.0197  
0.0197  
0.0164  
0.0307  
8
0.0197  
0.0228  
A1  
A2  
b
D
2.580  
1.718  
0.1016  
0.0676  
E
e
e1  
e2  
e3  
F
G
N (number of terminals)  
aaa  
bbb  
ccc  
ddd  
eee  
0.110  
0.110  
0.110  
0.060  
0.060  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Doc ID 13264 Rev 11  
41/45  
 
Part numbering  
M95M01-DF M95M01-R  
11  
Part numbering  
Table 20. Ordering information scheme  
Example:  
M95M01  
R
MN 6  
T
P /K  
Device type  
M95 = SPI serial access EEPROM  
Device function  
M01- = 1 Mbit (131072 x 8)  
M01-D = 1 Mbit plus Identification page  
Operating voltage  
R = VCC = 1.8 to 5.5 V  
F = VCC = 1.7 to 5.5 V  
Package  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
CS = WLCSP  
Device grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
Option  
blank = Standard packing  
T = Tape and reel packing  
Plating technology  
P = RoHS compliant and halogen-free (ECOPACK®)  
Process(1)  
/K= Manufacturing technology code  
1. The process letters apply to WLCSP devices only. The process letters appear on the device package  
(marking) and on the shipment box. Please contact your nearest ST Sales Office for further information.  
42/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Revision history  
12  
Revision history  
Table 21. Document revision history  
Date  
Revision  
Changes  
13-Mar-2007  
1
Initial release.  
VCC conditions modified in Table 15: AC characteristics (M95M01-R6, VCC  
< 2.5 V). Small text changes.  
15-May-2007  
21-Jun-2007  
2
3
The device endurance is specified at more than 1 000 000 (1 million)  
cycles (corrected on page 1).  
Schmitt trigger inputs for enhanced noise margin added to Features on  
page 1.  
17-Jul-2007  
24-Jan-2008  
4
5
VIL and VIH values modified according to voltage range in Table 12: DC  
characteristics (M95M01-R6).  
Document status promoted from preliminary data to full datasheet.  
ICC0 modified in Table 12: DC characteristics (M95M01-R6).  
In Section 11: Package mechanical data, values in inches are converted  
from mm and rounded to 4 decimal digits.  
Table 20: Available products (package, voltage range, temperature grade)  
added. Small text changes.  
WLCSP package added (see Figure 3: WLCSP connections (bottom view,  
bump side) and Section 11: Package mechanical data).  
Section 3: Connecting to the SPI bus updated.  
Section 4.1: Supply voltage (VCC) updated.  
Note added to Section 6.6: Write to Memory Array (WRITE).  
Note added to Table 15: AC characteristics (M95M01-R6, VCC < 2.5 V).  
07-May-2009  
30-Jul-2009  
6
7
Figure 16: Serial input timing, Figure 17: Hold timing and Figure 18: Serial  
output timing updated.  
ECOPACK text updated under Section 11: Package mechanical data.  
M95M01-W device grade 3 devices added  
(see Table 9: Operating conditions (M95M01-W3),  
Table 13: DC characteristics (M95M01-W3),  
Table 14: AC characteristics (M95M01-R6 and M95M01-W3, VCC 2.5 V)  
and Table 20: Ordering information scheme).  
Added TSSOP package.  
Updated  
Table 12: DC characteristics (M95M01-R6)  
Table 13: DC characteristics (M95M01-W3)  
Table 14: AC characteristics (M95M01-R6 and M95M01-W3, VCC  
2.5 V)  
26-Mar-2012  
8
Table 15: AC characteristics (M95M01-R6, VCC < 2.5 V)  
Figure 15: AC measurement I/O waveform  
– “Process” in Section 12: Part numbering  
Deleted:  
Table 20: Available products (package, voltage range, temperature  
grade)  
Doc ID 13264 Rev 11  
43/45  
Revision history  
M95M01-DF M95M01-R  
Table 21. Document revision history (continued)  
Date  
Revision  
Changes  
Datasheet split into:  
– M95M01-125 datasheet for automotive products (range 3),  
– M95M01-DF, M95M01-R (this datasheet) for standard products (range  
6).  
Updated:  
– WLCSP package dimensions: Figure 25: M95M01-DFCS6TP/K,  
WLCSP 8-bump wafer-level chip scale package outline and Table 19:  
M95M01-DFCS6TP/K, WLCSP 8-bump wafer-level chip scale package  
mechanical data  
20-Jun-2012  
9
– Cycling and data retention performances (4 million Write cycles, 200-  
year data retention)  
Table 15: DC characteristics updated with 1.7 V values  
Table 16: AC characteristics updated with 16 MHz clock  
Added:  
– Identification page (M95M01-DF)  
– 1.7 V/5.5 V device (reference M95M01-DF)  
Deleted:  
– Reference M95M01-W3  
06-Jul-2012  
3-Sep-2012  
10  
11  
Updated WLCSP package reference from “CT” to “CS”.  
Fixed some errors in Figure 3: WLCSP connections for M95M01-  
DFCS6TP/K (top view, marking side, with balls on the underside)  
44/45  
Doc ID 13264 Rev 11  
M95M01-DF M95M01-R  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 13264 Rev 11  
45/45  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY