NAND02GW3B2CZB6T [STMICROELECTRONICS]

256MX8 FLASH 3V PROM, 35ns, PBGA63, 9.50 X 12 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, TFBGA-63;
NAND02GW3B2CZB6T
型号: NAND02GW3B2CZB6T
厂家: ST    ST
描述:

256MX8 FLASH 3V PROM, 35ns, PBGA63, 9.50 X 12 MM, 1.20 MM HEIGHT, 0.80 MM PITCH, TFBGA-63

可编程只读存储器
文件: 总57页 (文件大小:887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAND01G-B, NAND02G-B,  
NAND04G-B, NAND08G-B  
1 Gbit, 2 Gbit, 4 Gbit, 8 Gbit  
2112 Byte/1056 Word Page, 1.8V/3V, NAND Flash Memory  
PRELIMINARY DATA  
FEATURES SUMMARY  
HIGH DENSITY NAND FLASH MEMORIES  
Figure 1. Packages  
Up to 8 Gbit memory array  
Up to 64Mbit spare area  
Cost effective solutions for mass storage  
applications  
NAND INTERFACE  
TSOP48 12 x 20mm  
x8 or x16 bus width  
Multiplexed Address/ Data  
Pinout compatibility for all densities  
FBGA  
SUPPLY VOLTAGE  
1.8V device: V = 1.7 to 1.95V  
DD  
VFBGA63 9.5 x 12 x 1mm  
TFBGA63 9.5 x 12 x 1.2mm  
3.0V device: V = 2.7 to 3.6V  
DD  
PAGE SIZE  
x8 device: (2048 + 64 spare) Bytes  
x16 device: (1024 + 32 spare) Words  
DATA PROTECTION  
Hardware and Software Block Locking  
Hardware Program/Erase locked during  
Power transitions  
BLOCK SIZE  
x8 device: (128K + 4K spare) Bytes  
x16 device: (64K + 2K spare) Words  
DATA INTEGRITY  
PAGE READ / PROGRAM  
100,000 Program/Erase cycles  
10 years Data Retention  
RoHS COMPLIANCE  
Lead-Free Components are Compliant  
with the RoHS Directive  
DEVELOPMENT TOOLS  
Random access: 25µs (max)  
Sequential access: 50ns (min)  
Page program time: 300µs (typ)  
COPY BACK PROGRAM MODE  
Fast page copy without external buffering  
CACHE PROGRAM AND CACHE READ  
MODES  
Error Correction Code software and  
hardware models  
Bad Blocks Management and Wear  
Leveling algorithms  
PC Demo board with simulation software  
File System OS Native reference software  
Hardware simulation models  
Internal Cache Register to improve the  
program and read throughputs  
FAST BLOCK ERASE  
Block erase time: 2ms (typ)  
STATUS REGISTER  
ELECTRONIC SIGNATURE  
CHIP ENABLE ‘DON’T CARE’  
for simple interface with microcontroller  
SERIAL NUMBER OPTION  
October 2005  
1/57  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 1. Product List  
Reference  
Part Number  
NAND01GR3B  
NAND01GW3B  
NAND01GR4B  
NAND01GW4B  
NAND02GR3B  
NAND02GW3B  
NAND02GR4B  
NAND02GW4B  
NAND04GR3B  
NAND04GW3B  
NAND04GR4B  
NAND04GW4B  
NAND08GR3B  
NAND08GW3B  
NAND08GR4B  
NAND08GW4B  
NAND01G-B  
NAND02G-B  
NAND04G-B  
NAND08G-B  
Note: x16 organization only available for MCP  
2/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2. Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 2. Logic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. TSOP48 Connections, x8 devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 5. FBGA63 Connections, x8 devices (Top view through package) . . . . . . . . . . . . . . . . . . . 11  
Figure 6. FBGA63 Connections, x16 devices (Top view through package) . . . . . . . . . . . . . . . . . . 12  
MEMORY ARRAY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bad Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 4. Valid Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 7. Memory Array Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inputs/Outputs (I/O0-I/O7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inputs/Outputs (I/O8-I/O15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address Latch Enable (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Command Latch Enable (CL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Enable (R).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Up Read Enable, Lock/Unlock Enable (PRL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ready/Busy (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
V
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DD  
SS  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Command Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6. Address Insertion, x8 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 7. Address Insertion, x16 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Address Definitions, x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 9. Address Definitions, x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
COMMAND SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 10. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DEVICE OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Memory Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Page Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8. Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9. Random Data Output During Sequential Data Output. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Cache Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10.Cache Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Page Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Sequential Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Random Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 11.Page Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12.Random Data Input During Sequential Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 11. Copy Back Program x8 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 12. Copy Back Program x16 Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 13.Copy Back Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 14.Page Copy Back Program with Random Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cache Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 15.Cache Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Block Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16.Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Read Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Write Protection Bit (SR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
P/E/R Controller and Cache Ready/Busy Bit (SR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
P/E/R Controller Bit (SR5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Cache Program Error Bit (SR1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Error Bit (SR0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SR4, SR3 and SR2 are Reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 13. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 14. Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 15. Electronic Signature Byte/Word 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DATA PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Blocks Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Blocks Unlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 17.Blocks Unlock Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Blocks Lock-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 18.Read Block Lock Status Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 16. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 19.Block Protection State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SOFTWARE ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Bad Block Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Block Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 17. Block Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 20.Bad Block Management Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 21.Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Wear-leveling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Error Correction Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 22.Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Hardware Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Behavioral simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
IBIS simulations models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 18. Program, Erase Times and Program Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 38  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 19. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 20. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 21. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 22. DC Characteristics, 1.8V Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 23.Equivalent Testing Circuit for AC Characteristics Measurement. . . . . . . . . . . . . . . . . . . 40  
Table 23. DC Characteristics, 3V Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 24. AC Characteristics for Command, Address, Data Input . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 25. AC Characteristics for Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 24.Command Latch AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 25.Address Latch AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 26.Data Input Latch AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 27.Sequential Data Output after Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 28.Read Status Register AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 29.Read Electronic Signature AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 30.Page Read Operation AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 31.Page Program AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 32.Block Erase AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 33.Reset AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Ready/Busy Signal Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 34.Ready/Busy AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 35.Ready/Busy Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 36.Resistor Value Versus Waveform Timings For Ready/Busy Signal . . . . . . . . . . . . . . . . 50  
5/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 37.Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 38.TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline . . . . . . . . 52  
Table 26. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data . 52  
Figure 39.VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline . . . . . . . . 53  
Table 27. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data 53  
Figure 40.TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline . . . . . . . . 54  
Table 28. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data 54  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 29. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
SUMMARY DESCRIPTION  
The NAND Flash 2112 Byte/ 1056 Word Page is a  
family of non-volatile Flash memories that uses  
NAND cell technology. The devices range from 1  
Gbit to 8 Gbits and operate with either a 1.8V or 3V  
voltage supply. The size of a Page is either 2112  
Bytes (2048 + 64 spare) or 1056 Words (1024 + 32  
spare) depending on whether the device has a x8  
or x16 bus width.  
The address lines are multiplexed with the Data In-  
put/Output signals on a multiplexed x8 or x16 In-  
put/Output bus. This interface reduces the pin  
count and makes it possible to migrate to other  
densities without changing the footprint.  
Each device has Cache Program and Cache Read  
features which improve the program and read  
throughputs for large files. During Cache Program-  
ming, the device loads the data in a Cache Regis-  
ter while the previous data is transferred to the  
Page Buffer and programmed into the memory ar-  
ray. During Cache Reading, the device loads the  
data in a Cache Register while the previous data  
is transferred to the I/O Buffers to be read.  
All devices have the Chip Enable Don’t Care fea-  
ture, which allows code to be directly downloaded  
by a microcontroller, as Chip Enable transitions  
during the latency time do not stop the read oper-  
ation.  
Each block can be programmed and erased over  
100,000 cycles. To extend the lifetime of NAND  
Flash devices it is strongly recommended to imple-  
ment an Error Correction Code (ECC).  
All devices have the option of a Unique Identifier  
(serial number), which allows each device to be  
uniquely identified.  
The devices have hardware and software security  
features:  
The Unique Identifier options is subject to an NDA  
(Non Disclosure Agreement) and so not described  
in the datasheet. For more details of this option  
contact your nearest ST Sales office.  
The devices are available in the following packag-  
es:  
A Write Protect pin is available to give a  
hardware protection against program and  
erase operations.  
A Block Locking scheme is available to  
provide user code and/or data protection.  
TSOP48 (12 x 20mm) for all products  
The devices feature an open-drain Ready/Busy  
output that can be used to identify if the Program/  
Erase/Read (P/E/R) Controller is currently active.  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor.  
A Copy Back Program command is available to  
optimize the management of defective blocks.  
When a Page Program operation fails, the data  
can be programmed in another page without hav-  
ing to resend the data to be programmed.  
VFBGA63 (9.5 x 12 x 1mm, 0.8mm pitch) for  
1Gb products  
TFBGA63 (9.5 x 12 x 1.2mm, 0.8mm pitch) for  
2Gb Dual Die products  
For information on how to order these options refer  
to Table 29., Ordering Information Scheme. De-  
vices are shipped from the factory with Block 0 al-  
ways valid and the memory content bits, in valid  
blocks, erased to ’1’.  
See Table 2., Product Description, for all the de-  
vices available in the family.  
7/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 2. Product Description  
Timings  
Random Sequential  
Bus  
Width  
Page  
Size  
Block  
Size  
Memory  
Array  
Operating  
Voltage  
Page  
Reference  
Part Number Density  
Packages  
Block  
Erase (typ)  
Access  
(max)  
Access  
(min)  
Program  
(typ)  
NAND01GR3B  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
1.7 to 1.95V  
2.7 to 3.6V  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
25µs  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
60ns  
50ns  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
300µs  
2048+64 128K+4K  
Bytes Bytes  
x8  
NAND01GW3B  
1Gbit  
64 Pages x  
1024 Blocks  
TSOP48  
VFBGA63  
NAND01G-B  
2ms  
2ms  
2ms  
2ms  
NAND01GR4B  
1024+32 64K+2K  
x16(2)  
x8  
Words  
Words  
NAND01GW4B  
NAND02GR3B  
2048+64 128K+4K  
Bytes Bytes  
NAND02GW3B  
2Gbit  
TSOP48  
TFBGA63(1)  
64 Pages x  
2048 Blocks  
NAND02G-B  
NAND04G-B  
NAND08G-B  
NAND02GR4B  
1024+32 64K+2K  
x16(2)  
x8  
Words  
Words  
NAND02GW4B  
NAND04GR3B  
2048+64 128K+4K  
Bytes Bytes  
NAND04GW3B  
4Gbit  
64 Pages x  
4096 Blocks  
TSOP48  
TSOP48  
NAND04GR4B  
1024+32 64K+2K  
x16(2)  
x8  
Words  
Words  
NAND04GW4B  
NAND08GR3B  
2048+64 128K+4K  
Bytes Bytes  
NAND08GW3B  
8Gbit  
NAND08GR4B  
64 Pages x  
8192 Blocks  
1024+32 64K+2K  
x16(2)  
Words  
Words  
NAND08GW4B  
1. Dual Die devices only  
2. x16 organization only available for MCP  
Figure 2. Logic Block Diagram  
Address  
Register/Counter  
AL  
CL  
NAND Flash  
Memory Array  
W
P/E/R Controller,  
High Voltage  
Generator  
Command  
Interface  
Logic  
E
WP  
R
Page Buffer  
PRL  
Cache Register  
Y Decoder  
Command Register  
I/O Buffers & Latches  
RB  
I/O0-I/O7, x8/x16  
I/O8-I/O15, x16  
AI09373b  
8/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 3. Signal Names  
Figure 3. Logic Diagram  
I/O8-15  
Data Input/Outputs for x16 devices  
V
Data Input/Outputs, Address Inputs,  
or Command Inputs for x8 and x16  
devices  
DD  
I/O0-7  
I/O8-I/O15, x16  
AL  
CL  
E
Address Latch Enable  
Command Latch Enable  
Chip Enable  
E
R
I/O0-I/O7, x8/x16  
W
R
Read Enable  
NAND Flash  
AL  
RB  
RB  
W
Ready/Busy (open-drain output)  
Write Enable  
CL  
WP  
Write Protect  
WP  
Power-Up Read Enable, Lock/Unlock  
Enable  
PRL  
PRL  
V
Supply Voltage  
Ground  
DD  
V
SS  
V
SS  
NC  
DU  
Not Connected Internally  
Do Not Use  
AI09372b  
Note: x16 organization only available for MCP  
9/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 4. TSOP48 Connections, x8 devices  
NC  
NC  
NC  
NC  
NC  
NC  
RB  
R
1
48  
NC  
NC  
NC  
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
E
NC  
NC  
NC  
PRL  
NAND Flash  
(x8)  
V
12  
13  
37  
36  
V
V
DD  
DD  
V
SS  
SS  
NC  
NC  
CL  
AL  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
W
WP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
24  
25  
AI11750  
10/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 5. FBGA63 Connections, x8 devices (Top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
AL  
V
SS  
C
WP  
E
W
RB  
D
E
F
NC  
NC  
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O3  
NC  
NC  
NC  
G
H
J
NC  
NC  
PRL  
NC  
NC  
I/O0  
I/O1  
I/O2  
NC  
V
DD  
V
I/O5  
I/O6  
I/O7  
DD  
V
K
L
I/O4  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI09376  
11/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 6. FBGA63 Connections, x16 devices (Top view through package)  
1
2
3
4
5
6
7
8
9
10  
DU  
DU  
DU  
A
B
DU  
DU  
DU  
DU  
V
SS  
C
WP  
AL  
E
W
RB  
D
E
F
NC  
NC  
R
CL  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
I/O1  
NC  
NC  
NC  
NC  
NC  
NC  
G
H
J
NC  
NC  
I/O5  
I/O12  
I/O7  
I/O14  
PRL  
I/O8  
I/O0  
I/O10  
V
DD  
V
I/O9  
I/O2  
I/O3  
I/O6  
I/O15  
DD  
V
K
L
I/O11  
I/O4  
I/O13  
V
SS  
SS  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
DU  
M
AI09377  
12/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
MEMORY ARRAY ORGANIZATION  
The memory array is made up of NAND structures  
where 32 cells are connected in series.  
The Bad Block Information is written prior to ship-  
ping (refer to Bad Block Management section for  
more details).  
Table 4. shows the minimum number of valid  
blocks in each device. The values shown include  
both the Bad Blocks that are present when the de-  
vice is shipped and the Bad Blocks that could de-  
velop later on.  
These blocks need to be managed using Bad  
Blocks Management, Block Replacement or Error  
Correction Codes (refer to SOFTWARE ALGO-  
RITHMS section).  
The memory array is organized in blocks where  
each block contains 64 pages. The array is split  
into two areas, the main area and the spare area.  
The main area of the array is used to store data  
whereas the spare area is typically used to store  
Error correction Codes, software flags or Bad  
Block identification.  
In x8 devices the pages are split into a 2048 Byte  
main area and a spare area of 64 Bytes. In the x16  
devices the pages are split into a 1,024 Word main  
area and a 32 Word spare area. Refer to Figure  
7., Memory Array Organization.  
Table 4. Valid Blocks  
Density of Device  
8 Gbits  
Min  
8032  
4016  
2008  
1004  
Max  
8192  
4096  
2048  
1024  
Bad Blocks  
The NAND Flash 2112 Byte/ 1056 Word Page de-  
vices may contain Bad Blocks, that is blocks that  
contain one or more invalid bits whose reliability is  
not guaranteed. Additional Bad Blocks may devel-  
op during the lifetime of the device.  
4 Gbits  
2 Gbits  
1Gbit  
Figure 7. Memory Array Organization  
x8 DEVICES  
x16 DEVICES  
Block = 64 Pages  
Block = 64 Pages  
Page = 2112 Bytes (2,048 + 64)  
Page = 1056 Words (1024 + 32)  
Main Area  
Main Area  
Block  
Page  
Block  
Page  
8 bits  
16 bits  
2048 Bytes  
64  
1024 Words  
32  
Words  
Bytes  
Page Buffer, 1056 Words  
32  
Page Buffer, 2112 Bytes  
64  
1,024 Words  
Words  
2,048 Bytes  
16 bits  
Bytes  
8 bits  
AI09854  
13/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
SIGNAL DESCRIPTIONS  
See Figure 3., Logic Diagram, and Table  
3., Signal Names, for a brief overview of the sig-  
nals connected to this device.  
left unconnected (Not Connected) or connected to  
V
.
SS  
Write Enable (W). The Write Enable input, W,  
controls writing to the Command Interface, Input  
Address and Data latches. Both addresses and  
data are latched on the rising edge of Write En-  
able.  
During power-up and power-down a recovery time  
of 10µs (min) is required before the Command In-  
terface is ready to accept a command. It is recom-  
mended to keep Write Enable high during the  
recovery time.  
Inputs/Outputs (I/O0-I/O7). Input/Outputs 0 to 7  
are used to input the selected address, output the  
data during a Read operation or input a command  
or data during a Write operation. The inputs are  
latched on the rising edge of Write Enable. I/O0-I/  
O7 are left floating when the device is deselected  
or the outputs are disabled.  
Inputs/Outputs (I/O8-I/O15). Input/Outputs 8 to  
15 are only available in x16 devices. They are  
used to output the data during a Read operation or  
input data during a Write operation. Command and  
Address Inputs only require I/O0 to I/O7.  
Write Protect (WP). The Write Protect pin is an  
input that gives a hardware protection against un-  
wanted program or erase operations. When Write  
The inputs are latched on the rising edge of Write  
Enable. I/O8-I/O15 are left floating when the de-  
vice is deselected or the outputs are disabled.  
Protect is Low, V , the device does not accept any  
program or erase operations.  
It is recommended to keep the Write Protect pin  
IL  
Low, V , during power-up and power-down.  
IL  
Address Latch Enable (AL). The Address Latch  
Enable activates the latching of the Address inputs  
in the Command Interface. When AL is high, the  
inputs are latched on the rising edge of Write En-  
able.  
Ready/Busy (RB). The Ready/Busy output, RB,  
is an open-drain output that can be used to identify  
if the P/E/R Controller is currently active.  
When Ready/Busy is Low, V , a read, program or  
OL  
erase operation is in progress. When the operation  
Command Latch Enable (CL). The Command  
Latch Enable activates the latching of the Com-  
mand inputs in the Command Interface. When CL  
is high, the inputs are latched on the rising edge of  
Write Enable.  
completes Ready/Busy goes High, V  
.
OH  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
Chip Enable (E). The Chip Enable input acti-  
vates the memory control logic, input buffers, de-  
coders and sense amplifiers. When Chip Enable is  
Refer to the Ready/Busy Signal Electrical Charac-  
teristics section for details on how to calculate the  
value of the pull-up resistor.  
low, V , the device is selected. If Chip Enable  
IL  
goes high, v , while the device is busy, the device  
remains selected and does not go into standby  
mode.  
IH  
V
Supply Voltage. V  
provides the power  
DD  
DD  
supply to the internal core of the memory device.  
It is the main power supply for all operations (read,  
program and erase).  
An internal voltage detector disables all functions  
whenever V  
1.5V (for 1.8V devices) to protect the device from  
any involuntary program/erase during power-tran-  
sitions.  
Read Enable (R). The Read Enable pin, R, con-  
trols the sequential data output during Read oper-  
is below 2.5V (for 3V devices) or  
DD  
ations. Data is valid t  
after the falling edge of  
RLQV  
R. The falling edge of R also increments the inter-  
nal column address counter by one.  
Each device in a system should have V decou-  
DD  
Power-Up Read Enable, Lock/Unlock Enable  
(PRL). The Power-Up Read Enable, Lock/Unlock  
Enable input, PRL, is used to enable and disable  
pled with a 0.1µF capacitor. The PCB track widths  
should be sufficient to carry the required program  
and erase currents  
the lock mechanism. When PRL is High, V , the  
IH  
device is in Block Lock mode.  
If the Power-Up Read Enable, Lock/Unlock En-  
able input is not required, the PRL pin should be  
V
Ground. Ground, V  
is the reference for  
SS  
SS,  
the power supply. It must be connected to the sys-  
tem ground.  
14/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
BUS OPERATIONS  
There are six standard bus operations that control  
the memory. Each of these is described in this  
section, see Table 5., Bus Operations, for a sum-  
mary.  
Typically, glitches of less than 5 ns on Chip En-  
able, Write Enable and Read Enable are ignored  
by the memory and do not affect bus operations.  
Data is accepted only when Chip Enable is Low,  
Address Latch Enable is Low, Command Latch  
Enable is Low and Read Enable is High. The data  
is latched on the rising edge of the Write Enable  
signal. The data is input sequentially using the  
Write Enable signal.  
See Figure 26. and Table 24. and Table 25. for de-  
tails of the timings requirements.  
Command Input  
Data Output  
Command Input bus operations are used to give  
commands to the memory. Commands are ac-  
cepted when Chip Enable is Low, Command Latch  
Enable is High, Address Latch Enable is Low and  
Read Enable is High. They are latched on the ris-  
ing edge of the Write Enable signal.  
Only I/O0 to I/O7 are used to input commands.  
See Figure 24. and Table 24. for details of the tim-  
ings requirements.  
Data Output bus operations are used to read: the  
data in the memory array, the Status Register, the  
lock status, the Electronic Signature and the  
Unique Identifier.  
Data is output when Chip Enable is Low, Write En-  
able is High, Address Latch Enable is Low, and  
Command Latch Enable is Low.  
The data is output sequentially using the Read En-  
able signal.  
Address Input  
See Figure 27. and Table 25. for details of the tim-  
ings requirements.  
Address Input bus operations are used to input the  
memory addresses. Four bus cycles are required  
to input the addresses for 1Gb devices whereas  
five bus cycles are required for the 2Gb, 4Gb and  
8Gb devices (refer to Table 6. and Table 7., Ad-  
dress Insertion).  
The addresses are accepted when Chip Enable is  
Low, Address Latch Enable is High, Command  
Latch Enable is Low and Read Enable is High.  
They are latched on the rising edge of the Write  
Enable signal. Only I/O0 to I/O7 are used to input  
addresses.  
Write Protect  
Write Protect bus operations are used to protect  
the memory against program or erase operations.  
When the Write Protect signal is Low the device  
will not accept program or erase operations and so  
the contents of the memory array cannot be al-  
tered. The Write Protect signal is not latched by  
Write Enable to ensure protection even during  
power-up.  
Standby  
See Figure 25. and Table 24. for details of the tim-  
ings requirements.  
When Chip Enable is High the memory enters  
Standby mode, the device is deselected, outputs  
are disabled and power consumption is reduced.  
Data Input  
Data Input bus operations are used to input the  
data to be programmed.  
Table 5. Bus Operations  
(1)  
Bus Operation  
E
AL  
CL  
R
W
WP  
I/O0 - I/O7  
I/O8 - I/O15  
(2)  
V
V
V
V
Command Input  
Address Input  
Data Input  
Rising  
Rising  
Rising  
Command  
Address  
Data Input  
Data Output  
X
X
IL  
IL  
IL  
IL  
IL  
IH  
IH  
IH  
IH  
X
V
V
V
V
V
V
V
X
X
IH  
IL  
V
IL  
V
V
IH  
Data Input  
IL  
V
IL  
V
V
IH  
Data Output  
Write Protect  
Falling  
X
Data Output  
IL  
V
IL  
X
X
X
X
X
X
X
X
X
X
X
V
V /V  
IL DD  
Standby  
X
IH  
Note: 1. Only for x16 devices.  
2. WP must be V when issuing a program or erase command.  
IH  
15/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 6. Address Insertion, x8 Devices  
Bus Cycle  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
A2  
I/O1  
A1  
I/O0  
A0  
st  
A7  
A6  
A5  
A4  
A3  
1
nd  
V
V
V
V
A11  
A15  
A23  
A10  
A14  
A22  
A30  
A9  
A8  
IL  
IL  
IL  
IL  
2
rd  
A19  
A27  
A18  
A26  
A17  
A25  
A16  
A24  
A13  
A21  
A29  
A12  
A20  
A28  
3
th  
4
th(2)  
V
IL  
V
IL  
V
IL  
V
V
IL  
IL  
5
Note: 1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2Gb, 4Gb and 8Gb devices. A28 is for 2Gb devices, A29-A28 are for 4Gb devices and A30-A28 for 8Gb  
devices only.  
Table 7. Address Insertion, x16 Devices  
Bus  
Cycle  
I/O8-  
I/O15  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
st  
X
X
X
X
X
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A9  
A0  
A8  
1
nd  
V
IL  
V
V
IL  
V
IL  
V
IL  
A10  
A13  
A21  
A29  
IL  
2
rd  
A18  
A26  
A17  
A25  
A16  
A24  
A15  
A23  
A14  
A22  
A12  
A20  
A28  
A11  
A19  
A27  
3
th  
4
th(2)  
V
IL  
V
V
IL  
V
IL  
V
IL  
IL  
5
Note: 1. Any additional address input cycles will be ignored.  
2. The fifth cycle is valid for 2Gb, 4Gb and 8Gb devices. A27 is for 2Gb devices, A28-A27 are for 4Gb devices and A29-A27 for 8Gb  
devices.  
16/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 8. Address Definitions, x8  
Address  
Definition  
Column Address  
Page Address  
A0 - A11  
A12 - A17  
A18 - A27  
A18 - A28  
A18 - A29  
A18 - A30  
Block Address  
Block Address  
Block Address  
Block Address  
1Gb device  
2Gb device  
4Gb device  
8Gb device  
Table 9. Address Definitions, x16  
Address  
A0 - A10  
A11 - A16  
Definition  
Column Address  
Page Address  
A17 - A26  
A17 - A27  
A17 - A28  
A17 - A29  
Block Address  
Block Address  
Block Address  
Block Address  
1Gb device  
2Gb device  
4Gb device  
8Gb device  
17/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
COMMAND SET  
All bus write operations to the device are interpret-  
ed by the Command Interface. The Commands  
are input on I/O0-I/O7 and are latched on the rising  
edge of Write Enable when the Command Latch  
Enable signal is high. Device operations are se-  
lected by writing specific commands to the Com-  
mand Register. The two-step command  
sequences for program and erase operations are  
imposed to maximize data security.  
The Commands are summarized in Table  
10., Commands.  
Table 10. Commands  
(1)  
Commands  
accepted  
during busy  
Bus Write Operations  
Command  
st  
nd  
rd  
th  
1
CYCLE  
2
CYCLE  
3
CYCLE  
4
CYCLE  
(2)  
Read  
30h  
E0h  
31h  
00h  
Random Data Output  
Cache Read  
05h  
00h  
34h  
(3)  
Exit Cache Read  
Yes  
Page Program  
(Sequential Input default)  
80h  
10h  
Random Data Input  
Copy Back Program  
Cache Program  
Block Erase  
85h  
00h  
80h  
60h  
FFh  
90h  
70h  
7Ah  
23h  
2Ah  
2Ch  
35h  
15h  
D0h  
85h  
10h  
Reset  
Yes  
Yes  
Read Electronic Signature  
Read Status Register  
Read Block Lock Status  
Blocks Unlock  
24h  
Blocks Lock  
Blocks Lock-Down  
Note: 1. The bus cycles are only shown for issuing the codes. The cycles required to input the addresses or input/output data are not shown.  
2. For consecutive Read operations the 00h command does not need to be repeated.  
3. Only during Cache Read busy.  
18/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
DEVICE OPERATIONS  
The following section gives the details of the de-  
vice operations.  
(refer to Table 25. for value). Once the transfer is  
complete the Ready/Busy signal goes High. The  
data can then be read out sequentially (from se-  
lected column address to last column address) by  
pulsing the Read Enable signal.  
Read Memory Array  
At Power-Up the device defaults to Read mode.  
To enter Read mode from another mode the Read  
command must be issued, see Table  
10., Commands. Once a Read command is is-  
sued, subsequent consecutive Read commands  
only require the confirm command code (30h).  
The device can output random data in a page, in-  
stead of the consecutive sequential data, by issu-  
ing a Random Data Output command.  
The Random Data Output command can be used  
to skip some data during a sequential data output.  
The sequential operation can be resumed by  
changing the column address of the next data to  
be output, to the address which follows the Ran-  
dom Data Output command.  
Once a Read command is issued two types of op-  
erations are available: Random Read and Page  
Read.  
Random Read. Each time the Read command is  
issued the first read is Random Read.  
The Random Data Output command can be is-  
sued as many times as required within a page.  
The Random Data Output command is not accept-  
ed during Cache Read operations.  
Page Read. After the first Random Read access,  
the page data (2112 Bytes or 1056 Words) is  
transferred to the Page Buffer in a time of t  
WHBH  
Figure 8. Read Operations  
CL  
E
W
AL  
R
tBLBH1  
RB  
Address Input  
I/O  
00h  
30h  
Data Output (sequentially)  
Command  
Code  
Command  
Code  
Busy  
ai08657b  
Note: 1. Highest address depends on device density.  
19/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 9. Random Data Output During Sequential Data Output  
tBLBH1  
(Read Busy time)  
RB  
Busy  
R
Address  
Inputs  
Address  
Inputs  
30h  
E0h  
I/O  
00h  
05h  
Data Output  
Data Output  
Cmd  
Cmd  
Cmd  
Cmd  
Code  
Code  
Code  
Code  
5 Add cycles  
2Add cycles  
Row Add 1,2,3 Col Add 1,2  
Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08658  
20/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Cache Read  
The Cache Read operation is used to improve the  
read throughput by reading data using the Cache  
Register. As soon as the user starts to read one  
page, the device automatically loads the next page  
into the Cache Register.  
An Cache Read operation consists of three steps  
(see Table 10.):  
terrupted after the latency time (t  
ure 10.  
The Ready/Busy signal can be used to monitor the  
start of the operation. During the latency period the  
Ready/Busy signal goes Low, after this the Ready/  
Busy signal goes High, even if the device is inter-  
nally downloading page n+1.  
), see Fig-  
BLBH1  
1. One bus cycle is required to setup the Cache  
Read command (the same as the standard  
Read command)  
Once the Cache Read operation has started, the  
Status Register can be read using the Read Status  
Register command.  
2. Four or Five (refer to Table 6. and Table 7.)  
bus cycles are then required to input the Start  
Address  
3. One bus cycle is required to issue the Cache  
Read confirm command to start the P/E/R  
Controller.  
The Start Address must be at the beginning of a  
page (Column Address = 00h, see Table 8. and  
Table 9.). This allows the data to be output unin-  
During the operation, SR5 can be read, to find out  
whether the internal reading is ongoing (SR5 =  
‘0’), or has completed (SR5 = ‘1’), while SR6 indi-  
cates whether the Cache Register is ready to  
download new data.  
To exit the Cache Read operation an Exit Cache  
Read command must be issued (see Table 10.).  
If the Exit Cache Read command is issued while  
the device is internally reading page n+1, page n  
will still be output, but not page n+1.  
Figure 10. Cache Read Operation  
tBLBH1  
(Read Busy time)  
RB  
Busy  
Address  
last page  
34h  
I/O  
31h  
00h  
1st page  
2nd page 3rd page  
Block N  
Inputs  
Exit  
Cache  
Read  
Code  
Read  
Setup  
Code  
Cache  
Read  
Confirm  
Code  
Data Output  
ai08661  
21/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Page Program  
5. the P/E/R Controller then programs the data  
into the array.  
The Page Program operation is the standard oper-  
ation to program data to the memory array. Gener-  
ally, data is programmed sequentially, however  
the device does support Random Input within a  
page.  
Random Data Input. During a Sequential Input  
operation, the next sequential address to be pro-  
grammed can be replaced by a random address,  
by issuing a Random Data Input command. The  
following two steps are required to issue the com-  
mand:  
The memory array is programmed by page, how-  
ever partial page programming is allowed where  
any number of Bytes (1 to 2112) or Words (1 to  
1056) can be programmed.  
The maximum number of consecutive partial page  
program operations allowed in the same page is  
eight. After exceeding this a Block Erase com-  
mand must be issued before any further program  
operations can take place in that page.  
1. one bus cycle is required to setup the Random  
Data Input command (see Table 10.)  
2. two bus cycles are then required to input the  
new column address (refer to Table 6.)  
Random Data Input can be repeated as often as  
required in any given page.  
Sequential Input. To input data sequentially the  
addresses must be sequential and remain in one  
block.  
For Sequential Input each Page Program opera-  
tion consists of five steps (see Figure 11.):  
1. one bus cycle is required to setup the Page  
Program (Sequential Input) command (see  
Table 10.)  
Once the program operation has started the Sta-  
tus Register can be read using the Read Status  
Register command. During program operations  
the Status Register will only flag errors for bits set  
to '1' that have not been successfully programmed  
to '0'.  
During the program operation, only the Read Sta-  
tus Register and Reset commands will be accept-  
ed, all other commands will be ignored.  
Once the program operation has completed the P/  
E/R Controller bit SR6 is set to ‘1’ and the Ready/  
Busy signal goes High.  
The device remains in Read Status Register mode  
until another valid command is written to the Com-  
mand Interface.  
2. four or five bus cycles are then required to  
input the program address (refer to Table 6.  
and Table 7.)  
3. the data is then loaded into the Data Registers  
4. one bus cycle is required to issue the Page  
Program confirm command to start the P/E/R  
Controller. The P/E/R will only start if the data  
has been loaded in step 3.  
Figure 11. Page Program Operation  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Data Input  
10h  
Address Inputs  
80h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Page Program  
Setup Code  
ai08659  
22/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 12. Random Data Input During Sequential Data Input  
tBLBH2  
(Program Busy time)  
RB  
I/O  
Busy  
Address  
Inputs  
Address  
Inputs  
80h  
85h  
10h  
Data Intput  
Data Input  
70h  
SR0  
Cmd  
Code  
Cmd  
Confirm  
Code  
Read Status Register  
Code 2 Add cycles  
5 Add cycles  
Col Add 1,2  
Row Add 1,2,3 Col Add 1,2  
Spare  
Area  
Spare  
Area  
Main Area  
Main Area  
ai08664  
23/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Copy Back Program  
The Copy Back Program operation is used to copy  
the data stored in one page and reprogram it in an-  
other page.  
The Copy Back Program operation does not re-  
quire external memory and so the operation is  
faster and more efficient because the reading and  
loading cycles are not required. The operation is  
particularly useful when a portion of a block is up-  
dated and the rest of the block needs to be copied  
to the newly assigned block.  
If the Copy Back Program operation fails an error  
is signalled in the Status Register. However as the  
standard external ECC cannot be used with the  
Copy Back Program operation bit error due to  
charge loss cannot be detected. For this reason it  
is recommended to limit the number of Copy Back  
Program operations on the same data and or to  
improve the performance of the ECC.  
11. for the addresses that must be the same  
for the Source and Target pages.  
3. Then the confirm command is issued to start  
the P/E/R Controller.  
To see the Data Input cycle for modifying the  
source page and an example of the Copy Back  
Program operation refer to Figure 13. .  
A data input cycle to modify a portion or a multiple  
distant portion of the source page, is shown in Fig-  
ure 14.  
Table 11. Copy Back Program x8 Addresses  
Same Address for Source and  
Density  
Target Pages  
1 Gbit  
2 Gbit  
no constraint  
no constraint  
A28  
The Copy Back Program operation requires four  
steps:  
1. The first step reads the source page. The  
operation copies all 1056 Words/ 2112 Bytes  
from the page into the Data Buffer. It requires:  
(1)  
2 Gbit DD  
4 Gbit  
no constraint  
Note: 1. DD = Dual Die  
one bus write cycle to setup the command  
Table 12. Copy Back Program x16 Addresses  
4 bus write cycles to input the source page  
address  
Same Address for Source and  
Density  
Target Pages  
one bus write cycle to issue the confirm  
command code  
1 Gbit  
2 Gbit  
no constraint  
A28  
2. When the device returns to the ready state  
(Ready/Busy High), the next bus write cycle of  
the command is given with the 4 bus cycles to  
input the target page address. Refer to Table  
(1)  
A27  
2 Gbit DD  
4 Gbit  
no constrain  
Note: 1. DD = Dual Die  
24/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 13. Copy Back Program  
Source  
Target  
Add Inputs  
I/O  
10h  
70h  
SR0  
35h  
85h  
00h  
Add Inputs  
Read  
Code  
Copy Back  
Code  
Read Status Register  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai09858b  
Note: Copy back program is only permitted between odd address pages or even address pages.  
Figure 14. Page Copy Back Program with Random Data Input  
2 Cycle  
Add Inputs  
Target  
Add Inputs  
Source  
Add Inputs  
I/O  
35h  
SR0  
00h  
85h  
Data 85h  
Data 10h  
70h  
Read  
Code  
Copy Back  
Code  
Unlimited number of repetitions  
tBLBH1  
tBLBH2  
(Read Busy time)  
(Program Busy time)  
RB  
Busy  
Busy  
ai11001  
25/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Cache Program  
Cache program command can be issued,  
while the internal programming is still  
executing.  
The Cache Program operation is used to improve  
the programming throughput by programming  
data using the Cache Register. The Cache Pro-  
gram operation can only be used within one block.  
The Cache Register allows new data to be input  
while the previous data that was transferred to the  
Page Buffer is programmed into the memory ar-  
ray.  
Once the program operation has started the Sta-  
tus Register can be read using the Read Status  
Register command. During Cache Program oper-  
ations SR5 can be read to find out whether the in-  
ternal programming is ongoing (SR5 = ‘0’) or has  
completed (SR5 = ‘1’) while SR6 indicates wheth-  
er the Cache Register is ready to accept new data.  
If any errors have been detected on the previous  
page (Page N-1), the Cache Program Error Bit SR1  
will be set to ‘1', while if the error has been detect-  
ed on Page N the Error Bit SR0 will be set to '1’.  
Each Cache Program operation consists of five  
steps (refer to Figure 15.):  
1. First of all the program setup command is  
issued (one bus cycle to issue the program  
setup command then four bus write cycles to  
input the address), the data is then input (up to  
2112 Bytes/ 1056 Words) and loaded into the  
Cache Register.  
When the next page (Page N) of data is input with  
the Cache Program command, t  
is affected  
WHBH2  
by the pending internal programming. The data will  
only be transferred from the Cache Register to the  
Page Buffer when the pending program cycle is  
finished and the Page Buffer is available.  
2. One bus cycle is required to issue the confirm  
command to start the P/E/R Controller.  
If the system monitors the progress of the opera-  
tion using only the Ready/Busy signal, the last  
page of data must be programmed with the Page  
Program confirm command (10h).  
3. The P/E/R Controller then transfers the data to  
the Page Buffer. During this the device is busy  
for a time of t  
.
WHBH2  
If the Cache Program confirm command (15h) is  
used instead, Status Register bit SR5 must be  
polled to find out if the last programming is finished  
before starting any other operations.  
4. Once the data is loaded into the Page Buffer  
the P/E/R Controller programs the data into  
the memory array. As soon as the Cache  
Registers are empty (after t  
) a new  
WHBH2  
Figure 15. Cache Program Operation  
tBLBH5  
tBLBH5  
tCACHEPG  
(Cache Busy time)  
RB  
Busy  
Busy  
10h  
Busy  
Address Data  
Address Data  
Inputs Inputs  
Address Data  
I/O  
80h  
15h  
80h  
15h  
80h  
70h SR0  
Inputs  
Inputs  
Inputs  
Inputs  
Cache Program  
Confirm Code  
Page  
Program  
Confirm Code  
Read Status  
Register  
Page  
Program  
Code  
Cache  
Page  
Program Program  
Code  
Code  
First Page  
Second Page  
Last Page  
(can be repeated up to 63 times)  
ai08672  
Note: 1. Up to 64 pages can be programmed in one Cache Program operation.  
2. t is the program time for the last page + the program time for the (last 1) page (Program command cycle time + Last  
th  
CACHEPG  
page data loading time).  
26/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Block Erase  
3. one bus cycle is required to issue the Block  
Erase confirm command to start the P/E/R  
Erase operations are done one block at a time. An  
erase operation sets all of the bits in the ad-  
dressed block to ‘1’. All previous data in the block  
is lost.  
An erase operation consists of three steps (refer to  
Figure 16.):  
Controller.  
The operation is initiated on the rising edge of  
write Enable, W, after the confirm command is is-  
sued. The P/E/R Controller handles Block Erase  
and implements the verify process.  
During the Block Erase operation, only the Read  
Status Register and Reset commands will be ac-  
cepted, all other commands will be ignored.  
Once the program operation has completed the P/  
E/R Controller bit SR6 is set to ‘1’ and the Ready/  
Busy signal goes High. If the operation completed  
successfully, the Write Status Bit SR0 is ‘0’, other-  
wise it is set to ‘1’.  
1. One bus cycle is required to setup the Block  
Erase command. Only addresses A18-A27  
(x8) or A17-A26 (x16) are used, the other  
address inputs are ignored.  
2. two or three bus cycles are then required to  
load the address of the block to be erased.  
Refer to Table 8. and Table 9. for the block  
addresses of each device.  
Figure 16. Block Erase Operation  
tBLBH3  
(Erase Busy time)  
RB  
Busy  
Block Address  
Inputs  
I/O  
60h  
D0h  
70h  
SR0  
Confirm  
Code  
Read Status Register  
Block Erase  
Setup Code  
ai07593  
Reset  
The Reset command is used to reset the Com-  
mand Interface and Status Register. If the Reset  
command is issued during any operation, the op-  
eration will be aborted. If it was a program or erase  
operation that was aborted, the contents of the  
memory locations being modified will no longer be  
valid as the data will be partially programmed or  
erased.  
If the device has already been reset then the new  
Reset command will not be accepted.  
The Ready/Busy signal goes Low for t  
after  
BLBH4  
the Reset command is issued. The value of t  
BLBH4  
depends on the operation that the device was per-  
forming when the command was issued, refer to  
Table 25. for the values.  
27/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Read Status Register  
During Cache Program operations SR6 acts as a  
Cache Program Ready/Busy bit, which indicates  
whether the Cache Register is ready to accept  
new data. When SR6 is set to '0', the Cache Reg-  
ister is busy and when SR6 is set to '1', the Cache  
Register is ready to accept new data.  
During all other operations SR6 acts as a P/E/R Con-  
troller bit, which indicates whether the P/E/R Con-  
troller is active or inactive. When the P/E/R  
Controller bit is set to ‘0’, the P/E/R Controller is  
active (device is busy); when the bit is set to ‘1’, the  
P/E/R Controller is inactive (device is ready).  
The device contains a Status Register which pro-  
vides information on the current or previous Pro-  
gram or Erase operation. The various bits in the  
Status Register convey information and errors on  
the operation.  
The Status Register is read by issuing the Read  
Status Register command. The Status Register in-  
formation is present on the output data bus (I/O0-  
I/O7) on the falling edge of Chip Enable or Read  
Enable, whichever occurs last. When several  
memories are connected in a system, the use of  
Chip Enable and Read Enable signals allows the  
system to poll each device separately, even when  
the Ready/Busy pins are common-wired. It is not  
necessary to toggle the Chip Enable or Read En-  
able signals to update the contents of the Status  
Register.  
P/E/R Controller Bit (SR5). The Program/Erase/  
Read Controller bit indicates whether the P/E/R  
Controller is active or inactive. When the P/E/R  
Controller bit is set to ‘0’, the P/E/R Controller is  
active (device is busy); when the bit is set to ‘1’, the  
P/E/R Controller is inactive (device is ready).  
After the Read Status Register command has  
been issued, the device remains in Read Status  
Register mode until another command is issued.  
Therefore if a Read Status Register command is  
issued during a Random Read cycle a new Read  
command must be issued to continue with a Page  
Read operation.  
Cache Program Error Bit (SR1). The Cache Pro-  
gram Error bit can be used to identify if the previous  
page (page N-1) has been successfully pro-  
gramed or not in a Cache Program operation. SR1  
is set to ’1’ when the Cache Program operation  
has failed to program the previous page (page N-  
1) correctly. If SR1 is set to ‘0’ the operation has  
completed successfully.  
The Status Register bits are summarized in Table  
13., Status Register Bits, . Refer to Table 13. in  
conjunction with the following text descriptions.  
The Cache Program Error bit is only valid during  
Cache Program operations, during other opera-  
tions it is Don’t Care.  
Write Protection Bit (SR7). The Write Protection  
bit can be used to identify if the device is protected  
or not. If the Write Protection bit is set to ‘1’ the de-  
vice is not protected and program or erase opera-  
tions are allowed. If the Write Protection bit is set  
to ‘0’ the device is protected and program or erase  
operations are not allowed.  
Error Bit (SR0). The Error bit is used to identify if  
any errors have been detected by the P/E/R Con-  
troller. The Error Bit is set to ’1’ when a program or  
erase operation has failed to write the correct data  
to the memory. If the Error Bit is set to ‘0’ the oper-  
ation has completed successfully. The Error Bit  
SR0, in a Cache Program operation, indicates a  
failure on Page N.  
P/E/R Controller and Cache Ready/Busy Bit  
(SR6). Status Register bit SR6 has two different  
functions depending on the current operation.  
SR4, SR3 and SR2 are Reserved.  
28/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 13. Status Register Bits  
Bit  
Name  
Logic Level  
Definition  
'1'  
Not Protected  
Protected  
SR7  
Write Protection  
'0'  
'1'  
P/E/R C inactive, device ready  
Program/ Erase/ Read  
Controller  
'0'  
P/E/R C active, device busy  
(1)  
SR6  
'1'  
Cache Register ready (Cache Program only)  
Cache Register busy (Cache Program only)  
P/E/R C inactive, device ready  
Cache Ready/Busy  
'0'  
'1'  
Program/ Erase/ Read  
SR5  
SR4, SR3, SR2  
SR1  
(2)  
Controller  
'0'  
P/E/R C active, device busy  
Reserved  
Don’t Care  
'1'  
'0'  
‘1’  
‘0’  
‘1’  
‘0’  
Page N-1 failed in Cache Program operation  
Page N-1 programmed successfully  
Error – operation failed  
(3)  
Cache Program Error  
Generic Error  
No Error – operation successful  
(1)  
SR0  
Page N failed in Cache Program operation  
Page N programmed successfully  
Cache Program Error  
Note: 1. The SR6 bit and SR0 bit have a different meaning during Cache Program and Cache Read operations.  
2. Only valid for Cache Program operations, for other operations it is same as SR6.  
3. Only valid for Cache Program operations, for other operations it is Don’t Care.  
29/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Read Electronic Signature  
2. one Bus Write cycle to input the address (00h)  
3. four Bus Read Cycles to sequentially output  
the data (as shown in Table 14., Electronic  
Signature).  
The device contains a Manufacturer Code and De-  
vice Code. To read these codes three steps are re-  
quired:  
1. one Bus Write cycle to issue the Read  
Electronic Signature command (90h)  
Table 14. Electronic Signature  
Byte/Word 1  
Byte/Word 2  
Part Number  
Byte/Word 3  
Byte/Word 4  
Manufacturer Code  
Device code  
A1h  
NAND01GR3B  
NAND01GW3B  
NAND01GR4B  
NAND01GW4B  
NAND02GR3B  
NAND02GW3B  
NAND02GR4B  
NAND02GW4B  
NAND04GR3B  
NAND04GW3B  
NAND04GR4B  
NAND04GW4B  
NAND08GR3B  
NAND08GW3B  
NAND08GR4B  
NAND08GW4B  
20h  
0020h  
20h  
F1h  
B1h  
C1h  
AAh  
DAh  
BAh  
Page Size  
Spare Area size  
Sequential Access Time  
Block Size  
0020h  
20h  
CAh  
ACh  
DCh  
BCh  
CCh  
A3h  
Reserved  
80h  
Organization  
(seeTable 15.)  
0020h  
20h  
D3h  
B3h  
0020h  
C3h  
30/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 15. Electronic Signature Byte/Word 4  
I/O  
Definition  
Value  
Description  
0 0  
0 1  
1 0  
1 1  
1K  
2K  
Reserved  
Reserved  
Page Size  
(Without Spare Area)  
I/O1-I/O0  
Spare Area Size  
(Byte / 512 Byte)  
0
1
8
16  
I/O2  
I/O3  
0
1
Standard (50 ns)  
Sequential Access Time  
Fast  
(30 ns)  
0 0  
0 1  
1 0  
1 1  
64K  
128K  
256K  
Block Size  
(Without Spare Area)  
I/O5-I/O4  
Reserved  
0
1
X8  
X16  
I/O6  
I/O7  
Organization  
Not Used  
Reserved  
Note: 1. V  
is equal to 2.5V for 3V Power Supply devices and to 1.5V for 1.8V Power Supply devices.  
DDth  
31/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
DATA PROTECTION  
The device has both hardware and software fea-  
tures to protect against program and erase opera-  
tions.  
Refer to Figure 24., Command Latch AC Wave-  
forms for details on how to issue the command.  
Blocks Unlock  
It features a Write Protect, WP, pin, which can be  
used to protect the device against program and  
erase operations. It is recommended to keep WP  
A sequence of consecutive locked blocks can be  
unlocked, to allow program or erase operations, by  
issuing an Blocks Unlock command (see Table  
10.).  
The Blocks Unlock command consists of four  
steps:  
at V during power-up and power-down.  
IL  
In addition, to protect the memory from any invol-  
untary program/erase operations during power-  
transitions, the device has an internal voltage de-  
tector which disables all functions whenever V  
CC  
One bus cycle to setup the command  
is below 1.5V.  
The device features a Block Lock mode, which is  
enabled by setting the Power-Up Read Enable,  
Lock/Unlock Enable, PRL, signal to High.  
The Block Lock mode has two levels of software  
protection.  
two or three bus cycles to give the Start Block  
Address (refer to Table 8. , Table 9. and  
Figure 17.)  
one bus cycle to confirm the command  
two or three bus cycles to give the End Block  
Address (refer to Table 8. , Table 9.and Figure  
17.).  
Blocks Lock/Unlock  
Blocks Lock-down  
Refer to Figure 19. for an overview of the protec-  
tion mechanism.  
The Start Block Address must be nearer the logi-  
cal LSB (Least Significant Bit) than End Block Ad-  
dress.  
If the Start Block Address is the same as the End  
Block Address, only one block is unlocked.  
Only one consecutive area of blocks can be un-  
locked at any one time. It is not possible to unlock  
multiple areas.  
Blocks Lock  
All the blocks are locked simultaneously by issuing  
a Blocks Lock command (see Table 10.).  
All blocks are locked after power-up and when the  
Write Protect signal is Low.  
Once all the blocks are locked, one sequence of  
consecutive blocks can be unlocked by using the  
Blocks Unlock command.  
Figure 17. Blocks Unlock Operation  
WP  
I/O  
Add1  
Add3  
23h  
Add1  
Add3  
24h  
Add2  
Add2  
End Block Address, 3 cycles  
Start Block Address, 3 cycles  
Blocks Unlock  
Command  
ai08670  
Note: Three address cycles are required for 2,4 and 8 Gb devices. 1Gb devices only require two address cycles.  
32/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Blocks Lock-Down  
Read Block Lock Status command (see Table  
10.).  
The Lock-Down feature provides an additional lev-  
el of protection. A Locked-down block cannot be  
unlocked by a software command. Locked-Down  
blocks can only be unlocked by setting the Write  
Protect signal to Low for a minimum of 100ns.  
Only locked blocks can be locked-down. The com-  
mand has no affect on unlocked blocks.  
The command consists of:  
one bus cycle to give the command code  
three bus cysles to give the block address  
After this, a read cycle will then output the Block  
Lock Status on the I/O pins on the falling edge of  
Chip Enable or Read Enable, whichever occurs  
last. Chip Enable or Read Enable do not need to  
be toggled to update the status.  
Refer to Figure 24., Command Latch AC Wave-  
forms for details on how to issue the command.  
The Read Block Lock Status command will not be  
accepted while the device is busy (RB Low).  
Block Lock Status  
The device will remain in Read Block Lock Status  
mode until another command is issued.  
In Block Lock mode (PRL High) the Block Lock  
Status of each block can be checked by issuing a  
Figure 18. Read Block Lock Status Operation  
W
tWHRL  
R
I/O  
Add1  
Add3  
7Ah  
Dout  
Add2  
Block Lock Status  
Block Address, 3 cycles  
Read Block Lock  
Status Command  
ai08669  
Note: Three address cycles are required for 2,4 and 8 Gb devices. 1Gb devices only require two address cycles.  
Table 16. Block Lock Status  
Status  
Locked  
I/O7-I/O3  
I/O2  
I/O1  
I/O0  
0
X
X
X
0
1
0
1
1
0
Unlocked  
Locked-Down  
0
1
Unlocked in Locked-  
Down Area  
X
1
0
1
Note: X = Don’t Care.  
33/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 19. Block Protection State Diagram  
Power-Up  
Block Unlock  
Locked  
Blocks Lock-Down  
Command  
Command  
(start + end block address)  
Blocks Lock  
Command  
WP V >100ns  
IL  
WP V >100ns  
IL  
Unlocked in  
Locked Area  
Locked-Down  
WP V >100ns  
IL  
Unlocked in  
Locked-Down  
Area  
Blocks Lock-Down  
Command  
AI08663c  
Note: PRL must be High for the software commands to be accepted.  
34/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
SOFTWARE ALGORITHMS  
This section gives information on the software al-  
gorithms that ST recommends to implement to  
manage the Bad Blocks and extend the lifetime of  
the NAND device.  
These additional Bad Blocks can be identified as  
attempts to program or erase them will give errors  
in the Status Register.  
As the failure of a page program operation does  
not affect the data in other pages in the same  
block, the block can be replaced by re-program-  
ming the current data and copying the rest of the  
replaced block to an available valid block. The  
Copy Back Program command can be used to  
copy the data to a valid block.  
See the “Copy Back Program” section for more de-  
tails.  
Refer to Table 17. for the recommended proce-  
dure to follow if an error occurs during an opera-  
tion.  
NAND Flash memories are programmed and  
erased by Fowler-Nordheim tunneling using a high  
voltage. Exposing the device to a high voltage for  
extended periods can cause the oxide layer to be  
damaged. For this reason, the number of program  
and erase cycles is limited (see Table 18. for val-  
ue) and it is recommended to implement Garbage  
Collection, a Wear-Leveling Algorithm and an Er-  
ror Correction Code, to extend the number of pro-  
gram and erase cycles and increase the data  
retention.  
To help integrate a NAND memory into an applica-  
tion ST Microelectronics can provide:  
Table 17. Block Failure  
A Demo board with NAND simulation software  
for PCs  
Operation  
Erase  
Recommended Procedure  
Block Replacement  
Block Replacement or ECC  
ECC  
File System OS Native reference software,  
which supports the basic commands of file  
management.  
Program  
Read  
Contact the nearest ST Microelectronics sales of-  
fice for more details.  
Figure 20. Bad Block Management Flowchart  
Bad Block Management  
START  
Devices with Bad Blocks have the same quality  
level and the same AC and DC characteristics as  
devices where all the blocks are valid. A Bad Block  
does not affect the performance of valid blocks be-  
cause it is isolated from the bit line and common  
source line by a select transistor.  
Block Address =  
Block 0  
Increment  
Block Address  
The devices are supplied with all the locations in-  
side valid blocks erased (FFh). The Bad Block In-  
formation is written prior to shipping. Any block,  
where the 1st and 6th Bytes, or 1st Word, in the  
spare area of the 1st page, does not contain FFh,  
is a Bad Block.  
The Bad Block Information must be read before  
any erase is attempted as the Bad Block Informa-  
tion may be erased. For the system to be able to  
recognize the Bad Blocks based on the original in-  
formation it is recommended to create a Bad Block  
table following the flowchart shown in Figure 20.  
Update  
Bad Block table  
Data  
= FFh?  
NO  
NO  
YES  
Last  
block?  
YES  
END  
Block Replacement  
AI07588C  
Over the lifetime of the device additional Bad  
Blocks may develop. In this case the block has to  
be replaced by copying the data to a valid block.  
35/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 21. Garbage Collection  
Old Area  
New Area (After GC)  
Valid  
Page  
Invalid  
Page  
Free  
Page  
(Erased)  
AI07599B  
Garbage Collection  
imum number of write cycles per block reaches a  
specific threshold.  
When a data page needs to be modified, it is faster  
to write to the first available page, and the previous  
page is marked as invalid. After several updates it  
is necessary to remove invalid pages to free some  
memory space.  
To free this memory space and allow further pro-  
gram operations it is recommended to implement  
a Garbage Collection algorithm. In a Garbage Col-  
lection software the valid pages are copied into a  
free area and the block containing the invalid pag-  
es is erased (see Figure 21.).  
Error Correction Code  
An Error Correction Code (ECC) can be imple-  
mented in the Nand Flash memories to identify  
and correct errors in the data.  
For every 2048 bits in the device it is recommend-  
ed to implement 22 bits of ECC (16 bits for line par-  
ity plus 6 bits for column parity).  
An ECC model is available in VHDL or Verilog.  
Contact the nearest ST Microelectronics sales of-  
fice for more details.  
Wear-leveling Algorithm  
For write-intensive applications, it is recommend-  
ed to implement a Wear-leveling Algorithm to  
monitor and spread the number of write cycles per  
block.  
Figure 22. Error Detection  
New ECC generated  
during read  
In memories that do not use a Wear-Leveling Al-  
gorithm not all blocks get used at the same rate.  
Blocks with long-lived data do not endure as many  
write cycles as the blocks with frequently-changed  
data.  
XOR previous ECC  
with new ECC  
The Wear-leveling Algorithm ensures that equal  
use is made of all the available write cycles for  
each block. There are two wear-leveling levels:  
NO  
NO  
>1 bit  
All results  
= zero?  
= zero?  
First Level Wear-leveling, new data is  
programmed to the free blocks that have had  
the fewest write cycles  
YES  
YES  
22 bit data = 0  
11 bit data = 1  
1 bit data = 1  
ECC Error  
Second Level Wear-leveling, long-lived data is  
copied to another block so that the original  
block can be used for more frequently-  
changed data.  
Correctable  
Error  
No Error  
The Second Level Wear-leveling is triggered when  
the difference between the maximum and the min-  
ai08332  
36/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Hardware Simulation Models  
ior of the I/O buffers and electrical characteristics  
of Flash devices.  
Behavioral simulation models. Denali Software  
Corporation models are platform independent  
functional models designed to assist customers in  
performing entire system simulations (typical  
VHDL/Verilog). These models describe the logic  
behavior and timings of NAND Flash devices, and  
so allow software to be developed before hard-  
ware.  
These models provide information such as AC  
characteristics, rise/fall times and package me-  
chanical data, all of which are measured or simu-  
lated at voltage and temperature ranges wider  
than those allowed by target specifications.  
IBIS models are used to simulate PCB connec-  
tions and can be used to resolve compatibility is-  
sues when upgrading devices. They can be  
imported into SPICETOOLS.  
IBIS simulations models. IBIS (I/O Buffer Infor-  
mation Specification) models describe the behav-  
37/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES  
The Program and Erase times and the number of  
Program/ Erase cycles per block are shown in Ta-  
ble 18.  
Table 18. Program, Erase Times and Program Erase Endurance Cycles  
NAND Flash  
Parameters  
Unit  
Min  
Typ  
300  
2
Max  
700  
3
Page Program Time  
Block Erase Time  
µs  
ms  
Program/Erase Cycles (per block)  
Data Retention  
100,000  
10  
cycles  
years  
MAXIMUM RATING  
Stressing the device above the ratings listed in Ta-  
ble 19., Absolute Maximum Ratings, may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 19. Absolute Maximum Ratings  
Value  
Symbol  
Parameter  
Unit  
Min  
– 50  
– 65  
Max  
125  
150  
260  
T
Temperature Under Bias  
°C  
°C  
°C  
BIAS  
T
Storage Temperature  
STG  
(2)  
T
LEAD  
Lead temperature during soldering  
1.8V devices  
3 V devices  
1.8V devices  
3 V devices  
– 0.6  
– 0.6  
– 0.6  
– 0.6  
2.7  
4.6  
2.7  
4.6  
V
V
V
V
(1)  
Input or Output Voltage  
Supply Voltage  
V
IO  
V
DD  
Note: 1. Minimum Voltage may undershoot to –2V for less than 20ns during transitions on input and I/O pins. Maximum voltage may over-  
shoot to V + 2V for less than 20ns during transitions on I/O pins.  
DD  
2. Compatibility with Lead-free soldering processes in accordance with ECOPACK 7191395 specifications. Not exceeding 250°C for  
more than 10s, and peaking at 260°C.  
38/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC characteristics Tables that follow, are de-  
rived from tests performed under the Measure-  
ment  
Conditions  
summarized  
in  
Table  
20., Operating and AC Measurement Conditions.  
Designers should check that the operating condi-  
tions in their circuit match the measurement condi-  
tions when relying on the quoted parameters.  
Table 20. Operating and AC Measurement Conditions  
NAND Flash  
Parameter  
Units  
Min  
Max  
1.95  
3.6  
70  
1.8V devices  
1.7  
2.7  
0
V
V
Supply Voltage (V  
)
DD  
3V devices  
Grade 1  
°C  
°C  
pF  
pF  
V
Ambient Temperature (T )  
A
Grade 6  
–40  
85  
1.8V devices  
3V devices (2.7 - 3.6V)  
1.8V devices  
3V devices  
30  
50  
Load Capacitance (C ) (1 TTL GATE and C )  
L
L
V
0
DD  
Input Pulses Voltages  
0.4  
2.4  
V
1.8V devices  
3V devices  
0.9  
1.5  
8.35  
5
V
Input and Output Timing Ref. Voltages  
V
Output Circuit Resistor R  
kΩ  
ns  
ref  
Input Rise and Fall Times  
Table 21. Capacitance  
Symbol  
Parameter  
Test Condition  
Typ  
Max  
Unit  
pF  
C
V
IN  
= 0V  
= 0V  
Input Capacitance  
10  
10  
IN  
(2)  
C
V
IL  
pF  
I/O  
Input/Output Capacitance  
Note: 1. T = 25°C, f = 1 MHz. C and C are not 100% tested  
A
IN  
I/O  
2. input/output capacitances double in stacked devices  
Table 22. DC Characteristics, 1.8V Devices  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
minimum  
Sequential  
Read  
RLRL  
I
-
8
15  
mA  
DD1  
E=V  
I
= 0 mA  
IL, OUT  
Operating  
Current  
I
Program  
Erase  
-
-
-
-
8
8
15  
15  
mA  
mA  
DD2  
I
DD3  
E=V -0.2,  
DD  
(1)  
I
-
10  
50  
µA  
DD5  
Standby Current (CMOS)  
WP=0/V  
DD  
(1)  
I
V = 0 to V max  
-
-
-
-
-
±10  
±10  
µA  
µA  
V
LI  
IN  
DD  
Input Leakage Current  
(1)  
I
LO  
V
OUT  
= 0 to V max  
DD  
Output Leakage Current  
Input High Voltage  
V
V
-0.4  
V
+0.3  
-
IH  
DD  
DD  
39/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
0.4  
-
Unit  
V
V
Input Low Voltage  
-
-0.3  
-
-
IL  
V
OH  
I
= -100µA  
= 100µA  
= 0.1V  
V
-0.1  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
V
OH  
DD  
V
OL  
I
OL  
-
-
0.1  
V
I
OL  
(RB)  
V
OL  
3
-
4
mA  
V
DD  
Supply Voltage (Erase and  
Program lockout)  
V
-
-
1.1  
V
LKO  
Note: 1. leakage current and standby current double in stacked devices  
Figure 23. Equivalent Testing Circuit for AC Characteristics Measurement  
V
DD  
2R  
ref  
NAND Flash  
C
L
2R  
ref  
GND  
GND  
Ai11085  
40/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 23. DC Characteristics, 3V Devices  
Symbol  
Parameter  
Test Conditions  
minimum  
Min  
Typ  
Max  
Unit  
t
Sequential  
Read  
RLRL  
I
-
15  
30  
mA  
DD1  
E=V  
I
= 0 mA  
IL, OUT  
Operating  
Current  
I
Program  
-
-
-
15  
15  
30  
30  
1
mA  
mA  
mA  
DD2  
I
Erase  
-
DD3  
(1)  
E=V , WP=0/V  
IDD4  
IH  
DD  
Standby current (TTL)  
E=V -0.2,  
DD  
(1)  
I
-
10  
-
50  
µA  
µA  
DD5  
Standby Current (CMOS)  
WP=0/V  
DD  
(1)  
I
LI  
V = 0 to V max  
-
-
±10  
±10  
IN  
DD  
Input Leakage Current  
(1)  
I
V
= 0 to V max  
-
-
µA  
V
LO  
OUT  
DD  
Output Leakage Current  
Input High Voltage  
Input Low Voltage  
V
V
+0.8  
V
V
+0.3  
-
IH  
DD  
DD  
V
+0.2  
-
-0.3  
2.4  
-
-
V
IL  
DD  
V
I
= -400µA  
= 2.1mA  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current (RB)  
-
-
V
OH  
OH  
V
I
OL  
-
0.4  
1.7  
V
OL  
I
(RB)  
V
OL  
= 0.4V  
-
8
10  
mA  
OL  
V
Supply Voltage (Erase and  
Program lockout)  
DD  
V
-
-
V
LKO  
Note: 1. leakage current and standby current double in stacked devices  
41/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 24. AC Characteristics for Command, Address, Data Input  
Alt.  
1.8V  
3V  
Symbol  
Parameter  
Unit  
Symbol  
Devices Devices  
t
Address Latch Low to Write Enable Low  
Address Latch High to Write Enable Low  
Command Latch High to Write Enable Low  
Command Latch Low to Write Enable Low  
Data Valid to Write Enable High  
ALLWL  
t
AL Setup time  
CL Setup time  
Min  
Min  
0
0
0
0
ns  
ALS  
t
ALHWL  
t
CLHWL  
t
ns  
CLS  
t
CLLWL  
t
t
Data Setup time  
E Setup time  
AL Hold time  
Min  
Min  
Min  
20  
0
20  
0
ns  
ns  
ns  
DVWH  
DS  
t
t
Chip Enable Low to Write Enable Low  
Write Enable High to Address Latch High  
Write Enable High to Command Latch High  
Write Enable High to Command Latch Low  
Write Enable High to Data Transition  
Write Enable High to Chip Enable High  
ELWL  
CS  
t
t
10  
10  
WHALH  
ALH  
t
WHCLH  
t
CL hold time  
Min  
10  
10  
ns  
CLH  
t
WHCLL  
t
t
Data Hold time  
E Hold time  
Min  
Min  
10  
10  
10  
10  
ns  
ns  
WHDX  
DH  
t
t
WHEH  
CH  
W High Hold  
time  
t
t
Write Enable High to Write Enable Low  
Min  
Min  
20  
20  
ns  
WHWL  
WH  
(1)  
(1)  
t
t
Write Enable Low to Write Enable High  
Write Enable Low to Write Enable Low  
W Pulse Width  
ns  
ns  
WLWH  
WP  
25  
60  
25  
50  
t
t
Write Cycle time Min  
WLWL  
WC  
Note: 1. If t  
is less than 10ns, t  
must be minimum 35ns, otherwise, t  
may be minimum 25ns.  
WLWH  
ELWL  
WLWH  
42/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Table 25. AC Characteristics for Operations  
Alt.  
Symbol  
1.8V  
3V  
Symbol  
Parameter  
Unit  
Devices Devices  
t
Read Electronic Signature  
Read cycle  
Min  
Min  
10  
10  
20  
25  
700  
3
10  
10  
20  
25  
700  
3
ns  
ns  
ns  
µs  
µs  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ALLRL1  
Address Latch Low to  
Read Enable Low  
t
AR  
t
ALLRL2  
t
t
Ready/Busy High to Read Enable Low  
Read Busy time  
Min  
BHRL  
RR  
t
Max  
Max  
Max  
Max  
Typ  
BLBH1  
t
t
PROG  
Program Busy time  
BLBH2  
t
t
Erase Busy time  
BLBH3  
BERS  
Ready/Busy Low to  
Ready/Busy High  
t
Reset Busy time, during ready  
5
5
BLBH4  
3
3
t
t
Cache Busy time  
BLBH5  
CBSY  
Max  
Max  
Max  
Max  
Min  
700  
5
700  
5
Reset Busy time, during read  
Reset Busy time, during program  
Reset Busy time, during erase  
Write Enable High to  
Ready/Busy High  
t
t
10  
500  
10  
0
10  
500  
10  
0
WHBH1  
RST  
t
t
Command Latch Low to Read Enable Low  
Data Hi-Z to Read Enable Low  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
Read Enable High to  
CLLRL  
CLR  
t
t
Min  
DZRL  
IR  
t
t
Max  
Max  
20  
45  
20  
45  
EHQZ  
CHZ  
t
t
ELQV  
CEA  
t
t
REH  
Read Enable High Hold time  
Min  
Min  
20  
15  
20  
15  
ns  
ns  
RHRL  
Read Enable Low  
T
T
EHQX  
RHQX  
T
Chip Enable high or Read Enable high to Output Hold  
OH  
Read Enable Low to  
Read Enable Pulse Width  
Read Enable High  
t
t
t
Min  
Min  
25  
60  
25  
50  
ns  
ns  
RLRH  
RP  
Read Enable Low to  
Read Cycle time  
t
RLRL  
RLQV  
RC  
Read Enable Low  
Read Enable Access time  
Read Enable Low to  
t
t
REA  
Max  
Max  
35  
25  
35  
25  
ns  
µs  
Output Valid  
(3)  
Read ES Access time  
Write Enable High to  
Ready/Busy High  
t
t
Read Busy time  
WHBH  
R
t
t
WB  
Write Enable High to Ready/Busy Low  
Write Enable High to Read Enable Low  
Max  
Min  
100  
60  
100  
60  
ns  
ns  
WHBL  
t
t
t
WHR  
WHRL  
Write Enable Low to  
Write Cycle time  
t
Min  
60  
50  
ns  
WLWL  
WC  
Write Enable Low  
Note: 1. The time to Ready depends on the value of the pull-up resistor tied to the Ready/Busy pin. See Figures 34, 35 and 36.  
2. To break the sequential read cycle, E must be held High for longer than t  
3. ES = Electronic Signature.  
.
EHEL  
43/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 24. Command Latch AC Waveforms  
CL  
tCLHWL  
tWHCLL  
(CL Setup time)  
(CL Hold time)  
tWHEH  
(E Hold time)  
tELWL  
(E Setup time)  
E
tWLWH  
W
tALLWL  
tWHALH  
(ALSetup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Command  
ai08028  
Figure 25. Address Latch AC Waveforms  
tCLLWL  
(CL Setup time)  
CL  
tELWL  
tWLWL  
tWLWL  
tWLWL  
(E Setup time)  
E
tWLWH  
tWLWH  
tWLWH  
tWLWH  
W
tWHWL  
tWHALL  
tALHWL  
tWHWL  
tWHALL  
tWHWL  
tWHALL  
(AL Setup time)  
(AL Hold time)  
AL  
I/O  
tDVWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
tWHDX  
(Data Hold time)  
Adrress  
cycle 3  
Adrress  
cycle 2  
Adrress  
cycle 4  
Adrress  
cycle 1  
ai08029  
Note: A fifth address cycle is required for 2Gb, 4Gb and 8Gb devices.  
44/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 26. Data Input Latch AC Waveforms  
tWHCLH  
(CL Hold time)  
CL  
E
tWHEH  
(E Hold time)  
tALLWL  
tWLWL  
(ALSetup time)  
AL  
W
tWLWH  
tWLWH  
tWLWH  
tDVWH  
tDVWH  
tWHDX  
tDVWH  
tWHDX  
(Data Setup time)  
tWHDX  
(Data Hold time)  
Data In  
Last  
I/O  
Data In 0  
Data In 1  
ai08030  
Note: Data In Last is 2112 in x8 devices and 1056 in x16 devices.  
Figure 27. Sequential Data Output after Read AC Waveforms  
tRLRL  
(Read Cycle time)  
E
tRHRL  
(R High Holdtime)  
tEHQZ  
R
tRHQZ  
tRHQZ  
tRLQV  
tRLQV  
tRLQV  
(R Accesstime)  
I/O  
RB  
Data Out  
Data Out  
Data Out  
tBHRL  
ai08031  
Note: 1. CL = Low, AL = Low, W = High.  
45/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 28. Read Status Register AC Waveform  
tCLLRL  
CL  
tWHCLL  
tCLHWL  
tWHEH  
E
tELWL  
tWLWH  
W
R
tELQV  
tWHRL  
tEHQZ  
tRHQZ  
tDZRL  
tWHDX  
tDVWH  
(Data Setup time)  
tRLQV  
(Data Hold time)  
70h/ 72h/  
73h/ 74h/ 75h  
Status Register  
Output  
I/O  
ai08666  
Figure 29. Read Electronic Signature AC Waveform  
CL  
E
W
AL  
tALLRL1  
R
tRLQV  
(Read ES Access time)  
I/O  
90h  
00h  
Byte1  
Byte2  
Byte3  
00h  
Byte4  
Man.  
code  
Device  
code  
Read Electronic 1st Cycle  
Signature  
Command  
see Note.1  
Address  
ai08667  
Note: 1. Refer to Table 14. for the values of the Manufacturer and Device Codes, and to Table 15. for the information contained in Byte4.  
46/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 30. Page Read Operation AC Waveform  
CL  
tEHEL  
tEHQZ  
tEHBH  
E
tWLWL  
W
tWHBL  
tWHBH  
AL  
tALLRL2  
tRLRL  
tRHQZ  
tRHBL  
(Read Cycle time)  
R
tRLRH  
tBLBH1  
RB  
I/O  
Add.N  
cycle 4  
Data  
N
Data  
N+1  
Data  
N+2  
Data  
Last  
Add.N  
cycle 1  
Add.N  
cycle 3  
Add.N  
cycle 2  
00h  
30h  
Data Output  
from Address N to Last Byte or Word in Page  
Command Address N Input  
Code  
Busy  
ai08660  
Note: A fifth address cycle is required for 2Gb, 4Gb and 8Gb devices.  
47/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 31. Page Program AC Waveform  
CL  
E
tWLWL  
tWLWL  
tWLWL  
(Write Cycle time)  
W
tWHBL  
tBLBH2  
(Program Busy time)  
AL  
R
Add.N  
Add.N Add.N  
cycle 1 cycle 2  
Add.N  
cycle 3  
I/O  
80h  
Last  
N
10h  
70h  
SR0  
cycle 4  
RB  
Confirm  
Code  
Page Program  
Setup Code  
Page  
Program  
Address Input  
Data Input  
Read Status Register  
ai08668  
Note: A fifth address cycle is required for 2Gb, 4Gb and 8Gb devices.  
48/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 32. Block Erase AC Waveform  
CL  
E
tWLWL  
(Write Cycle time)  
W
AL  
R
tBLBH3  
tWHBL  
(Erase Busy time)  
Add.  
Add.  
Add.  
I/O  
RB  
70h  
SR0  
60h  
D0h  
cycle 1 cycle 2  
cycle 3  
Block Erase  
Setup Command  
Confirm  
Code  
Block Erase  
Read Status Register  
Block Address Input  
ai08038b  
Note: Address cycle 3 is required for 2Gb, 4Gb and 8Gb devices only.  
Figure 33. Reset AC Waveform  
W
AL  
CL  
R
I/O  
RB  
FFh  
tBLBH4  
(Reset Busy time)  
ai08043  
49/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Ready/Busy Signal Electrical Characteristics  
Figures 35, 34 and 36 show the electrical charac-  
teristics for the Ready/Busy signal. The value re-  
Figure 35. Ready/Busy Load Circuit  
quired for the resistor R can be calculated using  
P
the following equation:  
(
)
V
V
DDmax  
OLmax  
+ I  
R min= -----------------------------------------------------------  
P
I
L
OL  
ibusy  
R
P
V
DD  
So,  
1.85V  
R min(1.8V)= ---------------------------  
P
+
3mA  
I
DEVICE  
L
RB  
Open Drain Output  
3.2V  
R min(3V)= ---------------------------  
P
+
8mA  
I
L
where I is the sum of the input currents of all the  
L
devices tied to the Ready/Busy signal. R max is  
P
determined by the maximum value of t .  
r
Figure 34. Ready/Busy AC Waveform  
V
SS  
ready V  
DD  
V
OH  
AI07563B  
V
OL  
busy  
t
t
r
f
AI07564B  
Figure 36. Resistor Value Versus Waveform Timings For Ready/Busy Signal  
V
= 1.8V, C = 30pF  
V
= 3.3V, C = 100pF  
DD  
L
DD  
L
400  
300  
200  
400  
300  
200  
4
3
2
4
3
2
400  
300  
2.4  
200  
1.2  
1.7  
120  
100  
0
1
100  
0
1
0.85  
0.8  
3.6  
100  
3.6  
90  
0.57  
0.6  
3.6  
60  
1.7  
0.43  
1.7  
30  
1.7  
3.6  
1.7  
1
2
3
4
1
2
3
4
R
(KΩ)  
R
(KΩ)  
P
P
t
t
r
ibusy  
f
ai07565B  
Note: T = 25°C.  
50/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Data Protection  
In the V  
range from V  
to the lower limit of  
LKO  
DD  
nominal range, the WP pin should be kept low  
The ST NAND device is designed to guarantee  
Data Protection during Power Transitions.  
(V ) to guarantee hardware protection during  
IL  
power transitions as shown in the below figure.  
A V  
detection circuit disables all NAND opera-  
DD  
tions, if V  
is below the V  
threshold.  
DD  
LKO  
Figure 37. Data Protection  
Nominal Range  
V
DD  
V
LKO  
Locked  
Locked  
W
Ai11086  
51/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
PACKAGE MECHANICAL  
Figure 38. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
Note: Drawing is not to scale.  
Table 26. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20 mm, Package Mechanical Data  
Symbol  
Typ  
Min  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
Typ  
Min  
Max  
A
A1  
A2  
B
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3°  
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3°  
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
5°  
L1  
α
0°  
5°  
0°  
52/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 39. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline  
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
BGA-Z67  
Note: Drawing is not to scale  
Table 27. VFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.05  
0.0413  
0.25  
0.0098  
0.70  
0.50  
9.60  
0.0276  
0.0197  
0.3780  
0.45  
9.50  
4.00  
7.20  
0.40  
9.40  
0.0177  
0.3740  
0.1575  
0.2835  
0.0157  
0.3701  
D
D1  
D2  
ddd  
E
0.10  
0.0039  
0.4764  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.4724  
0.2205  
0.3465  
0.0315  
0.1083  
0.0453  
0.1260  
0.0630  
0.0157  
0.0157  
0.4685  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
53/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Figure 40. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Outline  
D
D2  
D1  
FD1  
SD  
FD  
e
e
SE  
E
E2 E1  
ddd  
BALL "A1"  
FE1  
FE  
e
b
A
A2  
A1  
BGA-Z67  
Note: Drawing is not to scale  
Table 28. TFBGA63 9.5x12mm - 6x8 active ball array, 0.80mm pitch, Package Mechanical Data  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.20  
0.0472  
0.25  
0.0098  
0.80  
0.45  
9.50  
4.00  
7.20  
0.0315  
0.0177  
0.3740  
0.1575  
0.2835  
0.40  
9.40  
0.50  
9.60  
0.0157  
0.3701  
0.0197  
0.3780  
D
D1  
D2  
ddd  
E
0.10  
0.0039  
0.4764  
12.00  
5.60  
8.80  
0.80  
2.75  
1.15  
3.20  
1.60  
0.40  
0.40  
11.90  
12.10  
0.4724  
0.2205  
0.3465  
0.0315  
0.1083  
0.0453  
0.1260  
0.0630  
0.0157  
0.0157  
0.4685  
E1  
E2  
e
FD  
FD1  
FE  
FE1  
SD  
SE  
54/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
PART NUMBERING  
Table 29. Ordering Information Scheme  
Example:  
NAND02GR3B  
2
A ZA  
1
T
Device Type  
NAND Flash Memory  
Density  
01G = 1Gb  
02G = 2Gb  
04G = 4Gb  
08G = 8Gb  
Operating Voltage  
R = V = 1.7 to 1.95V  
DD  
W = V = 2.7 to 3.6V  
DD  
Bus Width  
3 = x8  
4 = x16  
Family Identifier  
B = 2112 Bytes/ 1056 Word Page  
Device Options  
2 = Chip Enable Don't Care Enabled  
Product Version  
A = First Version  
B= Second Version  
C= Third Version  
Package  
N = TSOP48 12 x 20mm (all devices)  
ZA = VFBGA63 9.5 x 12 x 1mm, 0.8mm pitch (1Gb devices)  
ZB = TFBGA63 9.5 x 12 x 1.2mm, 0.8mm pitch (2Gb Dual Die devices)  
Temperature Range  
1 = 0 to 70 °C  
6 = –40 to 85 °C  
Option  
blank = Standard Packing  
T = Tape & Reel Packing  
E = Lead Free Package, Standard Packing  
F = Lead Free Package, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits, in valid blocks, erased to ’1’. For further  
information on any aspect of this device, please contact your nearest ST Sales Office.  
55/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
REVISION HISTORY  
Table 30. Document Revision History  
Date  
Version  
Revision Details  
25-Feb-2005  
1
First Issue  
Automatic Page 0 Read feature removed throughout document.  
LFBGA63 package removed throughout document.  
Data Protection section and Figure 23., Equivalent Testing Circuit for AC Characteris-  
tics Measurement added.  
TFBGA63 and VFBGA63 packages updated. Note added to Figure 4., TSOP48  
Connections, x8 devices and Figure 5., TSOP48 Connections, x16 devices regarding  
the USOP package.  
16-Aug-2005  
18-Oct-2005  
2
3
Write Enable (W)., Table 11., Table 12., Table 14., Block Lock Status, Figure 19., Table  
20., Table 22., Table 23., Table 25. and Table 30. modified.  
512 device and USOP package removed throughout document.  
Figure 4., Figure 5., Table 22., Table 23. and Copy Back Program modified.  
56/57  
NAND01G-B, NAND02G-B, NAND04G-B, NAND08G-B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
57/57  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY