PM6686TR [STMICROELECTRONICS]

Dual step-down controller with adjustable voltages, adjustable LDO and auxiliary charge pump controller for notebook; 可调电压,可调LDO和辅助电荷泵控制器,用于笔记本电脑双路降压型控制器
PM6686TR
型号: PM6686TR
厂家: ST    ST
描述:

Dual step-down controller with adjustable voltages, adjustable LDO and auxiliary charge pump controller for notebook
可调电压,可调LDO和辅助电荷泵控制器,用于笔记本电脑双路降压型控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 电脑 泵
文件: 总50页 (文件大小:1065K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PM6686  
Dual step-down controller with adjustable voltages, adjustable LDO  
and auxiliary charge pump controller for notebook  
Features  
5.5 V to 28 V input voltage range  
Dual fixed OUT1 = 1.5 V/5 V and OUT2 =  
1.05 V / 3.3 V outputs or adjustable OUT1 = 0.7  
V to 5.5 V and OUT2 = 0.7 V to 2.5 V outputs,  
VFQFPN-32 5 x 5 mm  
1.5% accuracy over valley regulation  
Low-side MOSFETs' R current sensing  
DS(on)  
and programmable current limit  
Description  
Constant ON-time control  
PM6686 is a dual step-down controller specifically  
designed to provide extremely high efficiency  
conversion, with lossless current sensing  
technique. The constant on-time architecture  
assures fast load transient response and the  
embedded voltage feed-forward provides nearly  
constant switching frequency operation. Pulse  
skipping technique increases efficiency at very  
light load. Moreover a minimum switching  
frequency of 33 kHz is selectable to avoid audio  
noise issues. The PM6686 provides a selectable  
switching frequency, allowing three different  
values of switching frequencies for the two  
switching sections. The output voltages OUT1  
and OUT2 can be programmed to regulate  
1.5 V/5 V and 1.05 V/3.3 V outputs respectively or  
can deliver two adjustable output voltages. An  
optional external charge pump can be monitored.  
This device embeds a linear regulator that can  
provide 3.3 V/5 V or an adjustable voltage from  
0.7 V to 4.5 V output. The linear regulator  
provides up to 100 mA output current. LDO can  
be bypassed with the switching regulator outputs  
or with an external power supply (switchover  
function).  
Frequency selectable  
Soft-start internally fixed at 2 ms and soft-stop  
Selectable pulse skipping at light loads  
Selectable minimum frequency (33 kHz) in  
pulse skip mode  
Independent Power Good and EN signals  
Latched OVP and UVP  
Charge pump feedback  
Fixed 3.3 V/5.0 V, or adjustable output 0.7 V to  
4.5 V, 1.5% (LDO): 200 mA  
3.3 V reference voltage 2.0%: 5 mA  
2.0 V reference voltage 1.0%: 50 µA  
Applications  
Notebook computers  
Main (3.3 V/5 V), chipset (1.5 V/1.05 V),  
DDR1/2/3, graphic cards power supply  
PDAs, mobile devices, tablet PC or slates  
3-4 cells Li+ battery powered devices  
When in switchover, the LDO output can source  
up to 200 mA.  
Table 1.  
Device summary  
Order codes  
Package  
Packaging  
PM6686  
Tray  
VFQFPN-32L 5 x 5 mm  
PM6686TR  
Tape and reel  
July 2009  
Doc ID 15281 Rev 4  
1/50  
www.st.com  
50  
Contents  
PM6686  
Contents  
1
2
Simplified application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4
5
6
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
Screen shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7
8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1  
Switching sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.1.8  
Output voltage set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Constant on time control (COT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Non audible SKIP (NA SKIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Gate drivers and logic supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Current sensing and current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Soft-start and soft-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9
Monitoring and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9.1  
9.2  
9.3  
Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PVCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2/50  
Doc ID 15281 Rev 4  
PM6686  
Contents  
9.4  
9.5  
9.6  
9.7  
Linear regulator section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
General device fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.7.1  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10  
11  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1.1 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1.2 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.1.3 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.1.4 MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Diode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.1 Freewheeling diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2 Charge pump diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.3 Other important components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
11.3.1 VIN filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
11.3.2 PVCC and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
11.3.3 VREF2 and VREF3 capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
11.3.4 LDO output capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
11.3.5 Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
12  
13  
14  
PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Doc ID 15281 Rev 4  
3/50  
List of figures  
PM6686  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Simplified application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connection (through top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Efficiency vs load OUT1 = 5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Efficiency vs load OUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Efficiency vs load OUT1 = 1.5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Efficiency vs load OUT2 = 1.05 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Load regulationOUT1 = 5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Load regulationOUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Load regulation OUT1 = 1.5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Load regulation OUT2 = 1.05 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. Switching frequency vs load OUT1 = 5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 12. Switching frequency vs load OUT2 = 3.3 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 13. Section 1 line regulation OUT1 = 5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14. Section 2 line regulation OUT2 = 3.3 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 15. Section 1 line regulation OUT1 = 1,5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 16. Section 2 line regulation OUT2 = 1,05 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 17. Stand-by mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 18. Shut-down mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 19. PWM no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 20. SKIP no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 21. NA SKIP no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 22. VREF3 load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 23. VREF2 load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 24. LDO = 3,3 V load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 25. LDO = 5 V load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 26. OUT1 soft-start no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 27. OUT2 soft-start no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 28. OUT1 soft-start 8 A constant current load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 29. OUT2 soft-start loaded 8 A constant current load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 30. OUT1 soft-end, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 31. OUT2 soft-end, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 32. OUT1 soft-start, EN2 = VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 33. OUT2 soft-start, EN1=VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 34. soft-end, EN2 = VREF2 no loads applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 35. soft-end, EN1=VREF2 no loads applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 36. Load transient 0-5 A 2 A/µs OUT1 = 5 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 37. Load transient 0-5 A 2 A/µs OUT1 = 5 V SKIP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 38. Load transient 0-5 A 2 A/ µs OUT1 = 1,5 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 39. Load transient 0-5 A 2 A/ µs OUT1 = 1,5 V SKIP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 40. Load transient 0-5 A 2 A/µs OUT2 = 3.3 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 41. Load transient 0-5 A 2 A/µs OUT2 = 3.3 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 42. Load transient 0-5 A 2 A/ µs OUT2 = 1,05 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 43. Load transient 0-5 A 2 A/ µs OUT2 = 1,05 V SKIP mode. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 44. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 45. Resistor divider to configure the output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 46. Constant on time block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 47. Inductor current and output voltage in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 48. Inductor current and output voltage in SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4/50  
Doc ID 15281 Rev 4  
PM6686  
List of figures  
Figure 49. Inductor current and output voltage in NA SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 50. Internal supply diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 51. Current waveforms in current limit conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 52. Current limit circuit block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 53. VOUT2 behavior if EN2 is connected to VREF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 54. Charge pump application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 55. VIN pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 56. VCC and PVCC filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 57. Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 58. Current paths, ground connection and driver traces layout . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 59. Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Doc ID 15281 Rev 4  
5/50  
Simplified application schematic  
PM6686  
1
Simplified application schematic  
Figure 1.  
Simplified application schematic  
3'.$  
5ꢀ  
6).  
6).  
0'.$  
0'.$  
ꢀꢆ  
ꢁꢃ  
ꢁꢅ  
ꢁꢄ  
ꢁꢂ  
ꢂꢀ  
ꢁꢁ  
ꢁꢀ  
ꢂꢊ  
ꢂꢁ  
"//4ꢀ  
"//4ꢁ  
('!4%ꢁ  
0(!3%ꢁ  
,'!4%ꢁ  
),)-ꢁ  
0'.$  
ꢀꢄ  
ꢀꢅ  
ꢀꢇ  
ꢀꢁ  
ꢀꢊ  
ꢀꢀ  
('!4%ꢀ  
0(!3%ꢀ  
,'!4%ꢀ  
),)-ꢀ  
3'.$  
3'.$  
0'.$  
/54ꢀ  
0'.$  
'.$  
0'.$  
0-ꢅꢅꢇꢅ  
3'.$  
3'.$  
0'.$  
&"ꢀ  
,$/?37  
#0?&"  
0'ꢀ  
/54ꢁ  
6##  
ꢁꢊ  
ꢀꢂ  
ꢁꢇ  
ꢁꢉ  
0'.$  
2%&). ꢁ  
,$/  
6##  
6##  
06##  
3'.$  
0'ꢁ  
,$/2%&).  
%.?,$/  
0'.$  
0'.$  
3+)0  
62%&ꢂ  
3'.$  
0'.$  
2%&  
3'.$  
3'.$  
!-ꢊꢁꢀꢊꢂVꢀ  
6/50  
Doc ID 15281 Rev 4  
PM6686  
Pin settings  
2
Pin settings  
2.1  
Connections  
Figure 2.  
Pin connection (through top view)  
0-ꢅꢅꢇꢅ  
!-ꢊꢁꢀꢊꢃVꢀ  
2.2  
Pin descriptions  
Table 2.  
N°  
Pin descriptions  
Pin  
Function  
Internal 2 V high accuracy voltage reference. It can deliver 50 μA. Loading  
VREF2 can affect FB and output accuracy. Bypass to GND with a 100 nF  
capacitor.  
1
2
VREF2  
Frequency selection pin. It provides a selectable switching frequency,  
allowing three different values of switching frequencies for the switching  
sections.  
TON  
3
4
VCC  
Controller supply voltage input. Bypass to GND with a 1 μF capacitor.  
Enable input for the linear regulator. The LDO is enabled if  
EN_LDO is > 1.6 V and is disabled if EN_LDO < 1 V.  
EN_LDO  
Internal 3.3 V high accuracy voltage reference. It can deliver 5 mA if  
bypassed to GND with a 10 nF capacitor. If not used, it can be left floating.  
5
6
VREF3  
VIN  
Device supply voltage pin. VIN is used in the on-time generators of the two  
switching controllers. VIN is also used to power the linear regulator when the  
switchover function is not active. Connect VIN to the battery input and  
bypass with a 1 µF capacitor.  
Doc ID 15281 Rev 4  
7/50  
 
Pin settings  
PM6686  
Table 2.  
N°  
Pin descriptions (continued)  
Pin  
Function  
Linear regulator output. It can provide up to 100 mA peak current. The LDO  
regulates at 5 V If LDOREFIN is connected to GND. When the LDO is set at  
5 V and LDO_SW is within 5 V switchover threshold, the internal regulator  
shuts down and the LDO output pin is connected to LDO_SW through a  
0.8 Ω switch. The LDO regulates at 3.3 V if LDOREFIN is connected to  
VCC. When the LDO is set at 3.3 V and LDO_SW is within 3.3 V switchover  
threshold, the internal regulator shuts down and the LDO output pin is  
connected to LDO_SW through a 1.1 Ω switch. Bypass LDO output to GND  
with a minimum of 4.7 µF ceramic capacitor.  
7
8
LDO  
Feedback of the adjustable linear regulator. Connect LDOREFIN to GND for  
fixed 5 V operation. Connect LDOREFIN to VCC for fixed 3.3 V operation.  
LDOREFIN can be used to program LDO output voltage from 0.7 V to 4.5 V:  
LDO output is two times the voltage of LDOREFIN. The switchover function  
is disabled in adjustable mode.  
LDOREFIN  
Source of the switchover connection. LDO_SW is the switchover source  
voltage for the LDO when LDOREFIN is connected to GND or VCC.  
Connect LDO_SW to 5 V if LDOREFIN is tied to GND. Connect LDO_SW to  
3.3 V if LDOREFIN is tied to VCC.  
9
LDO_SW  
OUT1  
Output voltage sense for the switching section 1.This pin must be directly  
connected to the output voltage of the switching section. It provides also the  
feedback for the switching section 1 when FB1 is tied to GND/VCC.  
10  
Feedback input for the switching section 1:  
– If this pin is connected to GND, OUT1 operates at 5 V  
– If this pin is connected to VCC, OUT1 operates at 1.5 V  
11  
FB1  
– This pin is connected to a resistive voltage-divider from OUT1 to GND to  
adjust the output voltage from 0.7 V to 5.5 V.  
Positive current sense input for the switching section 1. It is possible to set a  
threshold voltage that is compared with 1/10th of the GND-PHASE1 drop  
during the off time.  
12  
13  
ILIM1  
PG1  
Power Good output signal for the section 1. This pin is an open drain output  
and It is pulled down when the output of the switching section 1 is out of  
+/- 10% of its nominal value.  
Enable input for the switching section 1.  
– If EN1 < 0.8 V the switching section OUT1 is turned off and all faults are  
cleared.  
14  
EN1  
– If EN1 > 2.4 V the switching section OUT1 is turned on.  
– If EN1 is connected to VREF2, the switching section OUT1 turns on after  
the switching section OUT2 reaches regulation.  
15  
16  
HGATE1  
PHASE1  
High-side gate driver output for section 1.  
Switch node connection and return path for the high-side driver for the  
section 1.It is also used as positive and negative current sense input.  
Bootstrap capacitor connection for the switching section 1. It supplies the  
high-side gate driver.  
17  
18  
19  
BOOT1  
LGATE1  
PVCC  
Low-side gate driver output for the section 1.  
5 V low-side gate drivers supply voltage input. Bypass to PGND with a 1 μF  
capacitor.  
8/50  
Doc ID 15281 Rev 4  
PM6686  
Pin settings  
Table 2.  
N°  
Pin descriptions (continued)  
Pin  
Function  
The CP_FB is used to monitor the optional external 14 V charge pump.  
Connect a resistive voltage-divider from 14 V charge pump output to GND. If  
CP_FB drops below the threshold voltage, the device performs a no audible  
skip cycle. This charges the charge pump output (driven by LGATE1). Leave  
CP_FB floating if the charge pump feedback is not needed.  
20  
21  
CP_FB  
GND  
Signal ground reference for internal logic circuitry and LDO. It must be  
connected to the signal ground plan of the power supply and to the exposed  
pad. The signal ground plan and the power ground plan must be connected  
together in one point near the PGND pin.  
Power ground. This pin must be connected to the power ground plan of the  
power supply.  
22  
23  
24  
PGND  
LGATE2  
BOOT2  
Low-side gate driver output for the section 2.  
Bootstrap capacitor connection for the switching section 2. It supplies the  
high-side gate driver.  
Switch node connection and return path for the high-side driver for the  
section 2. It is also used as positive and negative current sense input.  
25  
26  
PHASE2  
HGATE2  
High-side gate driver output for section 2.  
Enable input for the switching section 2.  
– If EN2 < 0.8 V the switching section OUT2 is turned off and all faults are  
cleared.  
27  
28  
29  
EN2  
PG2  
SKIP  
– If EN2 > 2.4 V the switching section OUT2 is turned on.  
If EN2 is connected to VREF2, the switching section OUT2 turns on after  
the switching section OUT1 reaches regulation.  
Power Good output signal for the section 2. This pin is an open drain output  
and It is pulled down when the output of the switching section 2 is out of  
+ 14% / - 10% of its nominal value.  
Pulse skipping mode control input.  
– If the pin is connected to VCC the PWM mode is enabled.  
– If the pin is connected to GND, the pulse skip mode is enabled.  
– If the pin is connected to VREF2 (or floating) the pulse skip mode is  
enabled but and the switching frequency is kept higher than 33 kHz (No-  
audible pulse skip mode).  
Output voltage sense for the switching section 2.This pin must be directly  
connected to the output voltage of the switching section. It provides also the  
feedback for the switching section 2 when REFIN2 is tied to VREF3/VCC.  
30  
31  
OUT2  
ILIM2  
Positive current sense input for the switching section 2. It is possible to set a  
threshold voltage that is compared with 1/10th of the GND-PHASE2 drop  
during the off time.  
Feedback input for the switching section 2:  
– If this pin is connected to VCC, OUT2 operates at 3.3 V  
– If this pin is connected to VREF3, OUT2 operates at 1.05 V  
32  
REFIN2  
– If this pin is connected to an external reference from 0.7 V to 2.5 V, OUT2  
works in tracking with this reference. Bypass REFIN2 to GND with a 100  
nF capacitor.  
Doc ID 15281 Rev 4  
9/50  
Electrical data  
PM6686  
3
Electrical data  
3.1  
Maximum rating  
Table 3.  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VIN to PGND  
-0.3 to 38  
-0.3 to 38  
V
V
V
V
V
V
PHASEx to PGND  
BOOTx to PHASEx  
PVCC to PGND  
-0.3 to 6  
-0.3 to 6  
HGATEx to PHASEx  
LGATEx, CP_FB to PGND  
-0.3 to BOOTx +0.3  
-0.3 to PVCC +0.3  
VCC, ENx, SKIP, PGx, LDO, REFIN2, OUTx, VREF3,  
LDOREFIN, LDO_SW, TON to GND  
-0.3 to 6  
V
FB1, ILIMx to GND  
EN_LDO to GND  
-0.3 to VCC+0.3  
-0.3 to 7  
V
V
VREF2 to GND  
-0.3 to VREF3+0.3  
-0.3 to +0.3  
2
V
PGND to GND  
V
Power dissipation at TA = 25 °C  
W
Maximum withstanding voltage range test condition: CDF-AEC-  
Q100-002- “human body model” acceptance criteria: “normal  
performance”  
1250  
V
3.2  
Thermal data  
Table 4.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
RthJA  
TJ  
Thermal resistance junction to ambient  
Junction operating temperature range  
Storage temperature range  
35  
°C/W  
°C  
-40 to 125  
-50 to 150  
-40 to 85  
TSTG  
TA  
°C  
Operating ambient temperature range  
°C  
10/50  
Doc ID 15281 Rev 4  
 
PM6686  
Recommended operating conditions  
4
Recommended operating conditions  
Table 5.  
Recommended operating conditions  
Value  
Unit  
Typ Max  
Symbol  
Parameter  
Min  
VIN  
Input voltage range, LDO = 5 V in regulation  
VCC operative voltage range  
5.5  
4.5  
-
-
28  
V
V
VCC  
5.5  
REFIN2 voltage range with OUT2 in  
adjustable mode, VIN = 5.5 V to 28 V  
REFIN2  
0.7  
-
2.5  
V
OUT1  
ILIM  
OUT1 output voltage range  
ILIM voltage range  
0.70  
0.2  
-
-
5.50  
2
V
V
LDOREFIN setting with LDO = 2 x LDOREFIN  
(adjustable mode)  
LDOREFIN  
0.35  
-
-
-
2.25  
200  
100  
V
VIN = 5.5 V to 28 V, LDO_SW = 5 V,  
LDOREFIN = GND  
mA  
mA  
LDO DC output current  
(switchover function  
enabled)  
VIN = 5.5 V to 28 V, LDO_SW = 3.3 V,  
LDOREFIN = VCC  
LDO DC output current  
(switchover function  
disabled)  
VIN = 5.5 V to 28 V, LDO_SW = 0 V,  
LDOREFIN = GND, VCC  
-
100  
mA  
Doc ID 15281 Rev 4  
11/50  
Electrical characteristics  
PM6686  
5
Electrical characteristics  
VIN = 12 V, no load on LDO, OUT1, OUT2, VREF3, and VREF2. EN2 = EN1 = VCC,  
LDO_SW = 5 V, PVCC = 5 V, EN_LDO = 5 V, T = 25 °C unless otherwise specified)  
J
Table 6.  
Symbol  
Electrical characteristics  
Parameter  
Test condition  
Min  
Typ Max Unit  
Switching controller output accuracy  
VIN = 5.5 V to 28 V, REFIN2 = VCC,  
SKIP = VCC  
3.25 3.330 3.397  
1.038 1.05 1.062  
1.482 1.500 1.518  
4.975 5.050 5.125  
0.693 0.700 0.707  
V
V
V
V
V
%
OUT2  
Output voltage  
Output voltage  
VIN = 5.5 V to 28 V,  
REFIN2 = VREF3, SKIP = VCC  
VIN = 5.5 V to 28 V, FB1 = VCC,  
SKIP = VCC  
OUT1  
FB1  
VIN = 5.5 V to 28 V, FB1 = GND,  
SKIP = VCC  
Feedback accuracy with  
OUT1 in adjustable mode  
VIN = 5.5 V to 28 V, SKIP = VCC  
REFIN2 = 0.7 V to 2.5 V,  
SKIP = VCC  
REFIN2 Accuracy referred to REFIN2  
-1  
1
Current limit and zero crossing comparator  
ILIM  
ILIM bias current  
TA = +25 °C.  
4.5  
35  
5
5.5  
65  
µA  
Adjustable, VILIM = 0.5 V, GND-PHASE  
50  
mV  
Adjustable, VILIM = 1 V or VCC, GND-  
PHASE  
Positive current limit threshold  
85  
180  
-1  
100  
200  
115  
220  
+11  
mV  
mV  
mV  
Adjustable, VILIM = 2 V, GND-PHASE  
Zero crossing current  
threshold  
SKIP = GND, VREF2, or OPEN, GND-  
PHASE  
Switching frequency  
TON = GND or  
0.908 1.068 1.228  
VREF2  
OUT1 = 5.125 V  
On-time pulse width  
TON = VCC  
1.815 2.135 2.455  
0.477 0.561 0.655  
OUT2 = 3.368 V  
TON = GND  
µs  
TON = VCC or  
VREF2  
0.796 0.936 1.076  
Minimum Off-time  
350  
33  
472  
No-audible skip mode  
operating frequency  
SKIP = VREF2(or OPEN)  
25  
2
kHz  
ms  
Soft-start and soft-end  
Soft-start ramp time  
4
12/50  
Doc ID 15281 Rev 4  
PM6686  
Electrical characteristics  
Table 6.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Min  
Typ Max Unit  
Linear regulator and reference  
LDO_SW = GND, 5.5 V < VIN < 28 V,  
LDOREFIN < 0.3 V, 0 < ILDO < 100 mA  
4.925 5.000 5.075  
3.250 3.300 3.350  
V
V
LDO  
LDO output voltage  
LDO_SW = GND, 5.5 V < VIN < 28 V,  
LDOREFIN = VREF3,  
0 < ILDO < 100 mA  
LDO accuracy in adjustable  
mode  
VIN = 5.5 V to 28 V, LDOREFIN = 0.35 V  
to 2.25 V, no load  
-2.5  
260  
+2.5  
380  
%
mA  
V
LDO short circuit current  
(linear regulator enabled)  
LDO = 4.3 V, LDO_SW = GND  
320  
LDO = 5 V, rising edge of LDO_SW,  
LDOREFIN = GND  
LDO_SW LDO_SW switch on threshold  
LDO_SW LDO_SW hysteresis  
4.64 4.75 4.84  
200 400  
LDO = 5 V, falling edge of LDO_SW,  
LDOREFIN = GND  
mV  
LDO = 5 V, rising edge of LDO_SW,  
LDOREFIN = GND,  
LDO_SW switch resistance  
0.81 1.275  
Ω
output current = 200 mA  
VREF3 output voltage  
VREF3  
No load  
3.235 3.300 3.365  
V
VREF3 current limit  
VREF3 = GND  
No load  
22  
30  
mA  
V
VREF2  
VREF2 output voltage  
VREF2 load regulation  
VREF2 sink current  
VIN shutdown current  
1.980 2.000 2.02  
0 < Load < 50 μA  
VREF2 > 2.030 V  
EN1 and EN2 low, EN_LDO low  
6
mV  
µA  
µA  
10  
49  
70  
EN1 and EN2 low, EN_LDO high,  
LDOREFIN = GND  
VIN standby current  
132  
180  
µA  
Switching regulators on,  
FB1 = SKIP = GND, REFIN2 = VCC,  
LDOREFIN = GND,  
Operating power consumption  
(VCC and VIN pins  
consumption)  
4,3  
6,5  
mW  
OUT1 = LDO_SW = 5.3V, OUT2 = 3.5 V  
Fault management  
PVCC UVLO threshold  
Rising edge of PVCC  
4.33  
4
V
V
Falling edge of PVCC  
Referred to FB1 nominal regulation point  
+11  
%
Overvoltage trip threshold  
Referred to REFIN2 nominal regulation  
point. worst case:REFIN2 = 0.7 V  
+14  
%
PG threshold  
Lower threshold  
ISink = 4 mA  
PG = 5 V  
-13  
-10  
-7  
405  
1
%
mV  
µA  
PG low voltage  
PG leakage current  
159  
235  
Doc ID 15281 Rev 4  
13/50  
Electrical characteristics  
PM6686  
Table 6.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test condition  
Min  
Typ Max Unit  
Output undervoltage  
shutdown threshold  
Referred to FB1, REFIN2 nominal  
regulation point  
67  
70  
73  
%
Inputs and outputs  
fixed OUT1 = 5 V  
0.528  
V
V
V
FB1  
FB1 logic level  
fixed OUT1 = 1.5 V  
4.1  
VREF3  
fixed OUT2 = 1.05 V, VCC = 5 V  
REFIN2 REFIN2 logic level  
LDOREFIN LDOREFIN logic level  
VCC-  
0.838  
fixed OUT 2= 3.3 V, VCC = 5 V  
V
fixed LDO = 5 V  
0.4  
0.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
fixed LDO = 3.3 V  
Pulse skip mode  
2.43  
2.4  
SKIP  
TON  
SKIP logic level  
TON logic level  
EN level  
No audible skip mode (VREF2 or floating)  
PWM mode  
VREF2  
VREF2  
VREF2  
Low level  
0.8  
0.8  
Middle level  
High level  
2.4  
Switching regulators off level  
Delay start level  
EN1,2  
Switching regulators on level  
Linear regulator off level  
Linear regulator on level  
FB1 = 0.7 V  
2.4  
0.905 1.00 1.050  
1.500 1.6 1.650  
EN_LDO EN_LDO level  
Input leakage current  
-1  
+1  
REFIN2 = 2.5 V  
12  
Internal bootstrap diode  
Diode forward voltage  
PVCC = -BOOT, Idiode = 10 mA  
0.2  
V
Diode Leakage current  
BOOT= 30 V, PHASE = 28 V, PVCC = 5 V  
500  
nA  
High-side and low-side gate drivers  
HGATEx high state (pull-up)  
Isource = 100 mA  
1.8  
1.3  
1.3  
0.6  
HGATE driver on-resistance  
LGATE driver on-resistance  
HGATEx low state (pull-down)  
Isink = 100 mA  
1.9  
0.8  
Ω
LGATEx high state (pull-up)  
Isource = 100 mA  
LGATEx low state (pull-down)  
Isink = 100 mA  
14/50  
Doc ID 15281 Rev 4  
PM6686  
Typical operating characteristics  
6
Typical operating characteristics  
(T = VCC (200 / 300 kHz), SKIP = GND (skip mode), LDOREFIN = SGND (LDO = 5 V),  
ON  
LDO_SW = OUT1, PVCC connected to LDO, V = 12 V, EN1-EN2-EN_LDO are high, no  
IN  
load unless specified). Measures performed on the demonstration kit (PM6686_SYSTEM  
and PM6686_CHIPSET)  
Efficiency traces: Green: VIN = 7 V, red: VIN = 12 V, blue: VIN = 19 V.  
Figure 3.  
Efficiency vs load  
Figure 4.  
Efficiency vs load  
OUT1 = 5 V, T = VCC  
OUT2 = 3.3 V, T = VCC  
ON  
ON  
Figure 5.  
Efficiency vs load  
Figure 6.  
Efficiency vs load  
OUT1 = 1.5 V, T = VCC  
OUT2 = 1.05 V, T = VCC  
ON  
ON  
A-PWM  
A-PWM  
B-SKIP  
B-SKIP  
A-NASKIP  
A-NASKIP  
Doc ID 15281 Rev 4  
15/50  
Typical operating characteristics  
PM6686  
Figure 7.  
Load regulation  
Figure 8.  
Load regulation  
OUT2 = 3.3 V, T = VCC  
OUT1 = 5 V, T = VCC  
ON  
ON  
Figure 9.  
Load regulation  
Figure 10. Load regulation  
OUT2 = 1.05 V, T = VCC  
OUT1 = 1.5 V, T = VCC  
ON  
ON  
Figure 11. Switching frequency vs load Figure 12. Switching frequency vs load  
OUT1 = 5 V, T = VCC OUT2 = 3.3 V, T = VCC  
ON  
ON  
16/50  
Doc ID 15281 Rev 4  
PM6686  
Typical operating characteristics  
Figure 13. Section 1 line regulation  
Figure 14. Section 2 line regulation  
OUT1 = 5 V, T = VCC  
OUT2 = 3.3 V, T = VCC  
ON  
ON  
Figure 15. Section 1 line regulation  
Figure 16. Section 2 line regulation  
OUT1 = 1,5 V, T = VCC  
OUT2 = 1,05 V, T = VCC  
ON  
ON  
Figure 17. Stand-by mode input battery Figure 18. Shut-down mode input  
current vs input voltage  
battery current vs input  
voltage  
EN1=EN2=GND  
FN_LDO=GND  
Doc ID 15281 Rev 4  
17/50  
Typical operating characteristics  
PM6686  
Figure 19. PWM no load input currents Figure 20. SKIP no load input currents  
vs input voltage  
vs input voltage  
Figure 21. NA SKIP no load input  
currents vs input voltage  
Figure 22. VREF3 load regulation  
Figure 23. VREF2 load regulation  
Figure 24. LDO = 3.3 V load regulation  
18/50  
Doc ID 15281 Rev 4  
PM6686  
Typical operating characteristics  
Figure 25. LDO = 5 V load regulation  
6.1  
Screen shots  
Typical operating characteristic (T = VCC (200 / 300 kHz), SKIP = GND (skip mode),  
ON  
FB1 = GND (OUT1 = 5 V), REFIN2 = VCC (OUT2 = 3.3 V), LDOREFIN = SGND  
(LDO = 5 V), CP_FB = floating, LDO_SW = OUT1, PVCC connected to LDO, VIN = 12 V,  
EN1-EN2-EN_LDO are high, no load unless specified)  
Figure 26. OUT1 soft-start no load  
Figure 27. OUT2 soft-start no load  
Doc ID 15281 Rev 4  
19/50  
Typical operating characteristics  
PM6686  
Figure 28. OUT1 soft-start 8 A constant Figure 29. OUT2 soft-start loaded 8 A  
current load constant current load  
Figure 30. OUT1 soft-end, no load  
Figure 31. OUT2 soft-end, no load  
Figure 32. OUT1 soft-start, EN2 = VREF2 Figure 33. OUT2 soft-start, EN1=VREF2  
no loads applied no loads applied  
20/50  
Doc ID 15281 Rev 4  
PM6686  
Typical operating characteristics  
Figure 34. Soft-end, EN2 = VREF2 no  
loads applied  
Figure 35. Soft-end, EN1=VREF2 no  
loads applied  
Figure 36. Load transient 0-5 A 2 A/µs  
OUT1 = 5 V PWM mode  
Figure 37. Load transient 0-5 A 2 A/µs  
OUT1 = 5 V SKIP mode  
Figure 38. Load transient 0-5 A 2 A/ µs Figure 39. Load transient 0-5 A 2 A/ µs  
OUT1 = 1.5 V PWM mode OUT1 = 1.5 V SKIP mode  
Doc ID 15281 Rev 4  
21/50  
Typical operating characteristics  
PM6686  
Figure 40. Load transient 0-5 A 2 A/µs  
OUT2 = 3.3 V PWM mode  
Figure 41. Load transient 0-5 A 2 A/µs  
OUT2 = 3.3 V SKIP mode  
Figure 42. Load transient 0-5 A 2 A/ µs Figure 43. Load transient 0-5 A 2 A/ µs  
OUT2 = 1.05 V PWM mode OUT2 = 1.05 V SKIP mode  
22/50  
Doc ID 15281 Rev 4  
PM6686  
Block diagram  
7
Block diagram  
Figure 44. Functional block diagram  
VIN  
VREF2  
VREF3  
PVCC  
VCC  
+
UVLO  
VREF3  
VREF2  
-
LDOREFIN  
LDO  
ADJ.  
LINEAR  
REGULATOR  
ILIM1  
ILIM2  
LDO EN INT  
SWITCHOVER  
THRESHOLD  
+
-
LDO_SW  
CP_FB  
PVCC  
PVCC  
BOOT1  
BOOT2  
HSIDE2  
LEVEL  
SHIFTER  
LEVEL  
SHIFTER  
HGATE1  
SMPS1  
CONTROLLER  
SMPS2  
CONTROLLER  
PHASE1  
OUT1  
PHASE2  
OUT2  
PVCC  
PVCC  
LGATE2  
LGATE1  
FB1  
REFIN2  
PG2  
PG1  
EN1  
EN2  
STARTUP  
CONTROLLER  
THERMAL  
CONTROLLER  
LDO EN INT  
EN_LDO  
TON  
SKIP  
Doc ID 15281 Rev 4  
23/50  
Device description  
PM6686  
8
Device description  
The PM6686 is a dual step down controller dedicated to provide logic voltages for notebook  
computers. It offers several operating configurations: it combines two synchronous buck  
controllers, an internal linear regulator (LDO), two voltage references and a charge pump  
controller.  
Each buck controller is based on constant on time (COT) architecture. This type of control  
offers a very fast load transient response with a minimum external components count.  
The two switching sections (SMPS) generate two output voltages OUT1 and OUT2 that  
regulate adjustable voltages. A fixed output voltage configuration can also be selected,  
reducing further the external components count because no external resistor divider is  
needed.  
In fixed mode, OUT1 provides 5 V or 1.5 V; in adjustable mode OUT1 can regulate an output  
voltage between 0.7 V and 5.5 V. In fixed mode, OUT2 provides 3.3 V or 1.05 V, in  
adjustable mode OUT2 can regulate an output between 0.7 V to 2.5 V by tracking an  
external reference.  
The switching frequencies of both switching controllers can be adjusted to 200 kHz/300 kHz,  
400 kHz/300 kHz or 400 kHz/500 kHz respectively. To maximize the efficiency at light loads  
a pulse skipping mode can be selected. Moreover a pulse skipping mode with a minimum  
switching frequency of 33 kHz (non audible skip operation mode) can be selected to avoid  
audible noise issue. The linear regulator can provide a fixed (5 V or 3.3 V) or an adjustable  
output voltage. In order to reduce the power consumption the internal LDO can be turned off  
and the LDO output can be supplied with an external voltage applied at LDO_SW pin  
(switch-over function).  
The PM6686 supplies two voltage references: 3.3 V and 2 V. The charge pump controller  
can be programmed to regulate a 14 V output. The switching sections and the LDO have  
independent enable signals. Moreover the switching sections have a selectable power up  
sequence and a turn off management.  
The device is protected against overvoltage, undervoltage and over temperature. Two  
independent Power Good signals monitor the output voltage range of each switching  
sections.  
8.1  
Switching sections  
8.1.1  
Output voltage set up  
The switching sections can be configured in several ways.  
OUT1 output voltage is configured with FB1 pin. If FB1 pin is tied to GND the PM6686  
regulates 5 V while if FB1 is connected to VCC the controller set OUT1 at 1.5 V. Using an  
external resistor divider the output can be adjusted following this equation:  
Equation 1  
R1  
R2  
VOUT1 = 0,7V ⋅  
+1  
24/50  
Doc ID 15281 Rev 4  
PM6686  
Device description  
Figure 45. Resistor divider to configure the output voltage  
VOUT  
PHASE  
L
R1  
COUT  
FB1  
R2  
Where R1, R2 are the resistors of the FB1 pin divider, as shown in Figure 2.  
OUT2 output voltage is programmed with REFIN2 pin. Fixed output voltage is selected  
connecting REFIN2 to VREF3 (OUT2 = 1.05 V) or to VCC (OUT2 = 3.3 V).  
When the REFIN2 voltage is between 0.7 V and 2.5 V, OUT2 output voltage tracks REFIN2  
voltage. When REFIN2 is lower than 0.5 V the section is turned OFF.  
Table 7.  
Output  
Switching output voltages configuration  
Control pin  
control pin  
Operation mode  
Output voltage  
connected to  
GND  
VCC  
Fixed  
Fixed  
5 V  
1.5 V  
OUT1  
OUT2  
FB1  
R1  
R2  
Resistor divider  
Adj  
VOUT1 = 0.7V⋅  
+1  
VCC  
Fixed  
Fixed  
3.3 V  
REFIN2  
VREF3  
1.05 V  
=REFIN2  
Ext source  
Tracking  
Doc ID 15281 Rev 4  
25/50  
Device description  
PM6686  
8.1.2  
Constant on time control (COT)  
PM6686 implements a pseudo-fixed frequency algorithm using the COT architecture. The  
two sections are completely independent with separated switching controllers (SMPS).  
The COT architecture bases its algorithm on the output ripple derived across the output  
capacitor's ESR. The controller has an internal on time (TON) generator triggered on the  
output voltage valley: when VOUT reaches the regulation value a new TON starts. The TON  
duration is given by the following equation:  
Equation 2  
VOUT  
TON = K ⋅  
V
IN  
Where TON is the on time duration, K is a constant, VOUT is the sensed output voltage and  
VIN is the input voltage.  
The duty cycle in a buck converter is:  
Equation 3  
TON  
TSW  
VOUT  
= D =  
V
IN  
The switching frequency in continuous current mode (CCM) is:  
Equation 4  
VOUT  
D
V
VOUT  
1
IN  
fSW  
=
=
=
TON  
K
K ⋅  
V
IN  
The switching frequency is theoretically constant, but in a real application it depends on  
parasitic voltage drops that occur during the charging path (high-side switch resistance,  
inductor resistance (DCR)) and discharging path (low-side switch resistance, DCR). As a  
result the switching frequency increases as a function of the load current. The following  
table shows the switching frequencies that can be selected through TON pin:  
Table 8.  
TON  
Frequency configurations  
SMPS 1  
SMPS 2  
Frequency  
K
Frequency  
300 kHz  
300 kHz  
500 kHz  
K
VCC  
200 kHz  
5 µs  
3.33 µs  
3.33 µs  
2 µs  
VREF2 or open  
GND  
400 kHz  
400 kHz  
2.5 µs  
2.5 µs  
26/50  
Doc ID 15281 Rev 4  
PM6686  
Device description  
The COT architecture uses a minimum off-time (TOFFMIN) to allow inductor valley current  
sense on the synchronous switch and to allow the charge of the bootstrap capacitor. A  
minimum on-time is also introduced to assure the start-up sequence.  
An adaptive anti-cross conduction algorithm avoids current paths between VIN and GND  
during switching transition.  
The PM6686 has three different operation modes selectable with SKIP pin: forced PWM  
(PWM), pulse SKIP (SKIP) and non audible pulse SKIP (NA SKIP). The following  
paragraphs explain in details the different features of these operation modes.  
Table 9.  
Operative mode configurations  
Control pin  
Control pin  
Operation mode  
connected to  
VCC  
GND  
PWM  
SKIP  
SKIP  
VREF2 or floating  
NA SKIP  
Figure 46. Constant on time block diagram  
Toff min  
BOOT  
1/10  
ILIM  
+
-
SE T  
CLR  
Level  
Shifter  
S
R
Q
Q
HS Driver  
HGATE  
PH ASE  
PHASE  
Ton  
generator  
-
0,25V  
-
OU T  
VIN  
+
-
Voltage  
Reference  
+
PWM  
Comparator  
-
0,5V  
+
-
+
-
SE T  
CLR  
S
R
Q
Q
PVCC  
Z.C.  
Comparator  
LS Driver  
LGATE  
PGND  
0,8V  
-
Doc ID 15281 Rev 4  
27/50  
Device description  
PM6686  
8.1.3  
PWM  
PWM implements the continuous current mode (CCM). During TON, the high-side MOSFET  
is turned on and the inductor current starts increasing. When the Ton is elapsed the high-  
side MOSFET is turned off and after a dead time during which neither MOSFET conducts,  
the low-side MOSFET turns on. The inductor current decreases until these three conditions  
are verified:  
Output voltage reaches the regulation voltage  
Inductor current is below the current limit  
TOFFMIN is elapsed  
When these conditions are satisfied a new TON starts.  
PWM operation mode has a quasi-constant switching frequency, avoiding any audible noise  
issue and the continuous current mode assures better load transitions despite of a lower  
efficiency at light loads.  
Figure 47. Inductor current and output voltage in PWM mode  
Inductor  
current  
Output  
voltage  
Vreg  
t
T
o
n  
Toff  
28/50  
Doc ID 15281 Rev 4  
PM6686  
Device description  
8.1.4  
SKIP  
To improve the efficiency at light load the PM6686 implements pulse skip operation mode.  
When SKIP pin is tied to GND the inductor current is sensed and if it is equal to zero the  
synchronous MOSFET is turned off. As a consequence the output capacitor is left floating  
and the discharge depends only on the current sourced by the load. The new TON starts  
when the output reaches the voltage regulation. As a consequence at light load conditions  
the switching frequency decreases improving the total efficiency of the converter. Working in  
discontinuous current mode, the switching and the conduction losses are decreased  
skipping some cycles.  
If the output load is high enough to make the system work in CCM, skip mode is  
automatically changed in PWM mode.  
Figure 48. Inductor current and output voltage in SKIP mode  
Inductor  
current  
Output  
Vreg  
TON  
TOFF  
8.1.5  
Non audible SKIP (NA SKIP)  
To avoid audio noise the NA SKIP operation mode can be selected, connecting SKIP pin to  
VREF2 or leaving it floating. In this condition if a new cycle doesn't start within 30 μs typ.  
from the previous one the PM6686 turns on the low-side MOSFET to discharge the output  
capacitor. The inductor current goes negative until the output reaches the voltage regulation  
voltage allowing a new cycle to begin. If the switching frequency is above 33 kHz the device  
works in SKIP mode.  
This operation mode is useful to avoid audio noise but it lowers the efficiency at light loads if  
it is compared to the SKIP mode.  
Doc ID 15281 Rev 4  
29/50  
Device description  
Figure 49. Inductor current and output voltage in NA SKIP mode  
PM6686  
Inductor  
current  
Output  
Vreg  
TMAX  
TON TOFF  
TIDLE  
t
8.1.6  
Gate drivers and logic supply  
The integrated high-current drivers allow the use of different power MOSFET.  
high-side driver is supplied with a bootstrap circuit with an integrated bootstrap diode. The  
BOOT and the PHASE pins work respectively as supply and return rails for the HS driver.  
The PVCC pin is the input for the supply of the low-side driver and PGND is the pin used as  
return rail.  
The PM6686 implements an anti-cross conduction protection which prevents high-side and  
low-side MOSFET from being on at the same time.  
The power dissipation of each driver can be calculated as:  
Equation 5  
PDISS = VPVCC QG fsw  
Where VPVCC is the voltage applied to PVCC pin (+5 V) and fSW is the switching frequency.  
The power dissipated by the drivers can be reduced lowering the sections switching  
frequencies and mounting MOSFET with smaller QG.  
VCC pin is the input voltage rail to supply the internal logic circuit. This pin is connected  
internally with a resistor to PVCC. As usual analog supply should be divided by the power  
supply with a low pass filter to reduce the noise for the analog supply of the logic. Being the  
resistor integrated it is enough to put a decoupling capacitor near VCC pin to realize the  
filter with a components count reduction.  
30/50  
Doc ID 15281 Rev 4  
PM6686  
Device description  
Figure 50. Internal supply diagram  
8.1.7  
Current sensing and current limit  
The PM6686 implements a positive valley current limit to protect the application from an  
overcurrent fault. Each section has an independent current limit setting. A new switching  
cycle can't start until the inductor current is under the positive current limit threshold. Note  
that the peak current flowing in the inductor can reach a value greater than the current limit  
threshold by an amount equal to the inductor ripple current.  
Figure 51. Current waveforms in current limit conditions  
The inductor current is sensed during the off time TOFF by measuring the voltage drop  
across the low-side MOSFET using the RDS(on) as a lossless sensing element (PHASE to  
PGND voltage). The voltage drop is compared to the threshold set with ILIM pin. If ILIM is  
connected to a voltage higher than VCC-1V the limit is 100mV. A current of 5 µA is sourced  
from the pin ILIM; if a resistor is connected between ILIM and ground the current limit is  
given by the voltage at the ILIM pin. The device sets the PHASE voltage threshold at 1/10 of  
the ILIM voltage.  
Doc ID 15281 Rev 4  
31/50  
Device description  
Figure 52. Current limit circuit block diagram  
PM6686  
5uA  
ILIM  
+
-
HGATE  
PHASE  
RILIM  
9R  
R
+
-
LGATE  
Ton  
Generator  
Table 10. Current limit configuration  
Control pin  
Control pin voltage  
Threshold SET  
VILIM = VCC-1 V  
100 mV  
ILIM1  
ILIM2  
0.2 V = VILIM = 2 V  
VILIM = 5µA * RILIM  
VILIM/10  
A negative current control is also implemented: the low-side MOSFET is forced off when the  
current exceeds the negative limit. This function prevents the excessive negative inductor  
current during the PWM operating mode. The threshold is set approximately at the 120% of  
the positive current limit.  
8.1.8  
Soft-start and soft-end  
The two sections have independent enable pins, EN1 and EN2. A not programmable soft-  
start procedure takes place when EN pin rises above 2.4 V typ.  
To prevent high input inrush currents, the current limit is increased from 25% to 100% with  
steps of 25%.  
The procedure is not programmable and ends typically in 2.8 ms. The overvoltage protection  
is always active while the undervoltage protection is enabled typically 20 ms after the  
beginning of the soft-start procedure.  
Driving one EN pin below 0.8 V makes the section perform a soft-end: gate driving signals  
are pulled low and the output is discharged through an internal MOSFET with RDS(on) of  
28 Ω typ.  
A power up sequence for the switching sections can be selected connecting one EN pin to  
VREF2.  
32/50  
Doc ID 15281 Rev 4  
 
PM6686  
Device description  
The section with the EN pin connected to VREF2 begins the soft-start only when the other  
section is in regulation (its PGOOD is high) and makes a soft-end suddenly when the other  
section is turned off.  
Figure 53. VOUT2 behavior if EN2 is connected to VREF2  
EN1  
VOUT1  
PGOOD1  
OUT2  
To protect the EN1, EN2, EN_LDO and SKIP pin of the PM6686 an external divider or a  
series resistor is required, in order to prevent a large inrush current flowing into the device in  
case the voltage spike is exceeding the recommended operating conditions.  
Doc ID 15281 Rev 4  
33/50  
Monitoring and protections  
PM6686  
9
Monitoring and protections  
The PM6686 controls its switching output to prevent any damage or uncontrolled working  
condition.  
The device offers also PGOOD signals to monitor the state of each switching output voltage.  
PGOOD is an open drain output: it is pulled low if the output voltage is below the 90% or  
above the OVP threshold. of the nominal value.  
9.1  
Overvoltage protection  
PM6686 provides a latched overvoltage protection (OVP). If the output voltage rises above  
the +111% typ. for section 1 and above the +116% typ. for the section 2, a latched OVP  
protection is activated. The controller tries to pull down the output voltage down to 0 V,  
working in PWM. The current is limited by the negative current limit. The low-side MOSFET  
is kept on when the output voltage is about 0 V. This management avoids high negative  
undervoltage of the output rail that may damage the load.  
The protection is latched and this fault is cleared toggling cleared by toggling EN or by  
driving PVCC<3.979V and then PVCC>4.025V (PVCC Power On Reset).  
9.2  
9.3  
Undervoltage protection  
If during regulation the output voltage droops under the 70% of the nominal value, an  
undervoltage latched fault is detected. The controller performs a soft-end procedure (see  
“soft-start and soft-end” paragraph). The undervoltage fault is cleared by toggling EN or by  
driving PVCC<3.979V and then PVCC>4.025V (PVCC power on reset).  
PVCC monitor  
The device monitors the driver supply voltage at PVCC pin. The switching sections can start  
operating only if the voltage at PVCC pin is above 4,025 V typ. If PVCC falls below 3,979 V  
typ., both the switching sections are turned off until the PVCC voltage goes over 4,025 V typ.  
Table 11. Faults management summary  
Fault  
Condition  
Device reaction  
Negative current limit protection activated. Low-side MOSFET is turned on when  
VOUT>+111% the output voltage is about 0 V. Latched fault, cleared by toggling EN or by driving  
PVCC<3.979V and then PVCC>4.025V (PVCC POR).  
Overvoltage  
section1  
Negative current limit protection activated. Low-side MOSFET is turned on when  
VOUT>+116% the output voltage is about 0 V. Latched fault, cleared by toggling EN or by driving  
PVCC<3.979V and then PVCC>4.025V (PVCC POR).  
Overvoltage  
section 2  
The controller performs a soft-end. Latched fault cleared by toggling EN or by  
VOUT<70%  
Undervoltage  
driving PVCC<3.979V and then PVCC>4.025V (PVCC POR).  
PVCC  
undervoltage  
The controller turns off the switching sections. All faults of switching sections are  
cleared. Not latched fault  
PVCC<3,979 V  
34/50  
Doc ID 15281 Rev 4  
 
 
 
PM6686  
Monitoring and protections  
9.4  
Linear regulator section  
The PM6686 has an integrated linear regulator (LDO) that can provide an average of  
100 mA typ. with a peak current of 270 mA typ. The LDO can be enabled using EN_LDO  
pin. If VIN is applied the linear regulator is active even if PVCC is low.  
The output voltage can be programmed by LDOREFIN pin. If LDOREFIN pin is tied to  
ground (GND) the LDO provides a +5 V output voltage. If it is connected to VREF3 pin the  
LDO regulates 3.3 V. If the voltage at the LDOREFIN pin is between 0.35 V and 2.25 V the  
LDO generates an output voltage equals to 2xVLDOREFIN  
.
Table 12. LDO output voltage configuration  
LDOREFIN voltage  
LDO voltage  
GND  
VREF3  
+5 V  
+3,3 V  
0,35 V < VLDOREFIN < 2,25 V  
2x VLDOREFIN  
The controller provides a switchover function when LDOREFIN pin is connected to VCC or  
GND. If the voltage at LDO_SW pin is high enough, the internal linear regulator is turned off  
and the LDO pin is connected with an internal MOSFET to the LDO_SW pin. This feature  
decreases the power dissipation of the device.  
When the switchover function is used the maximum current capability is 200 mA if LDO  
output is +5 V and 100 mA if the LDO output is +3.3 V.  
Table 13. LDO switchover management  
Switchover  
VLDOREFIN  
VBYPLDO_SW  
VLDO  
Internal LDO  
resistance  
< 0,35 V  
< 0,35 V  
> 4,75 V  
< 4,55 V  
> 3.18 V  
< 3.05 V  
+5 V  
+5 V  
Disabled  
Enabled  
Disabled  
Enabled  
Enabled  
0.81 Ω  
-
> 2.43 V  
+3,3 V  
1.12 Ω  
> 2.43 V  
+3,3 V  
-
-
0,35 V < VLDOREFIN < 2,25 V  
2x VLDOREFIN  
Doc ID 15281 Rev 4  
35/50  
Monitoring and protections  
PM6686  
9.5  
Charge pump  
The PM6686 can drive an external charge pump circuit whose typical application schematic  
is shown in the next figure.  
Figure 54. Charge pump application circuit  
Vout  
PHASE  
L
COUT  
LGATE  
D1  
CP_FB  
C1  
D2  
D3  
C2  
CP  
C3  
D4  
C4  
R1  
R2  
The charge pump works in 4 phases:  
1. LGATE is low. C1 is charged through the D1a diode at OUT1 voltage minus the diode  
drop.  
2. LGATE is driven high and C1 transfers the charge to C2. C2 voltage is OUT1 voltage  
plus the LGATE voltage minus the voltage drops on D1 and D2.  
3. LGATE is turned low and C2 shares its charge with C3 thought D3.  
4. LGATE becomes high and C3 can charge C4 thought diode D4.  
Every diode used to transfer charge introduces a voltage drop that decreases the charge  
pump output voltage.  
Repeating this cycle several times makes the charge pump output voltage equals to:  
Equation 6  
VCP =VOUT1 + 2VLGATE1 4VDIODE  
Where VCP is the charge pump output voltage, VOUT1 is the output voltage of the switching  
section 1, VLGATE1 is the low-side MOSFET gate driving voltage and VDIODE is the forward  
voltage droop of the diodes used in the application.  
CP_FB pin must be connected to the output of the charge pump with a resistor divider;  
when CP_FB pin droops below 2 V typ., OUT1 controller starts a NA SKIP cycle to boost the  
voltage of the charge pump.  
36/50  
Doc ID 15281 Rev 4  
PM6686  
Monitoring and protections  
The minimum voltage of the charge pump is:  
Equation 7  
R1  
R2  
VCP _MIN = VCP _FB 1+  
Where VCP_FB is the minimum voltage of CP_FB pin(2V typ.).  
In case the charge pump feedback is not used, leave the CP_FB pin floating or connect the  
pin to VCC.  
9.6  
Voltage references  
The PM6686 provides two voltage references.  
The device regulates a 3,3 V voltage reference (VREF3) with 2% accuracy over  
temperature. VREF3 can source up to 5 mA. VREF3 voltage is always available if VIN is  
applied. The device allows the enabling of the outputs if VREF3 is above 2,8V typ. and turns  
off when VREF3 falls under 2,7 V typ.  
VREF2 is a + 2 V reference with an accuracy of 1% over temperature. It can source up to  
50 µA typ. and sink up to 10 µA. VREF2is adopted as internal reference; this voltage can be  
used as voltage threshold to set configuration pins (e.g. TON, SKIP pins). VREF2 is enabled  
when one enable pin (EN1, EN2 or EN_LDO) is pulled high.  
9.7  
General device fault management  
9.7.1  
Thermal protection  
If the internal temperature of the device exceeds typically +150 °C, the controller shuts down  
immediately all the internal circuitry. Switching sections performs the soft-end management.  
Toggling EN, EN LDO or cycling VIN resets the latched fault.  
Doc ID 15281 Rev 4  
37/50  
Application information  
PM6686  
10  
Application information  
10.1  
External components selection  
10.1.1  
Inductor  
Once that switching frequency is defined, inductor selection depends on the desired  
inductor ripple current and load transient performance.  
Low inductance means great ripple current and could generate great output noise. On the  
other hand, low inductor values involve fast load transient response.  
A good compromise between the transient response time, the efficiency, the cost and the  
size is to choose the inductor value in order to maintain the inductor ripple current ΔIL  
between 20% and 50% of the maximum output current ILOAD (max). The maximum ΔIL  
occurs at the maximum input voltage. With these considerations, the inductor value can be  
calculated with the following relationship:  
Equation 8  
V
VOUT VOUT  
IN  
L =  
×
fsw × ΔIL  
V
IN  
Where fSW is the switching frequency, VIN is the input voltage, VOUT is the output voltage  
and ΔIL is the selected inductor ripple current.  
In order to prevent overtemperature working conditions, inductor must be able to provide an  
RMS current greater than the maximum RMS inductor current ILRMS  
:
Equation 9  
(ΔIL(max))2  
ILRMS = (ILOAD(max))2 +  
12  
Where ΔIL(max) is the maximum ripple current:  
Equation 10  
V
VOUT VOUT  
INmax  
ΔIL(max) =  
×
fsw ×L  
V
INmax  
If hard saturation inductors are used, the inductor saturation current should be much greater  
than the maximum inductor peak current Ipeak:  
Equation 11  
ΔIL(max)  
Ipeak = ILOAD(max) +  
2
Using soft-saturation inductors it’s possible to choose inductors with saturation current limit  
nearly to Ipeak.  
Below there is a list of some inductor manufacturers.  
38/50  
Doc ID 15281 Rev 4  
PM6686  
Application information  
Table 14. Inductor manufacturer  
Manufacturer  
Series  
Inductor value (µH) RMS current (A) Saturation current (A)  
COILCRAFT  
COILCRAFT  
COILCRAFT  
MSS-1048  
MSS-1260  
MLC-1550  
3,3  
3,3  
2,5  
7,22  
9,7  
7,6  
7
16,5  
11,4  
10.1.2  
Input capacitor  
In a buck topology converter the current that flows into the input capacitor is a pulsed current  
with zero average value. The input RMS current of the two switching sections can be roughly  
estimated as follows:  
Equation 12  
ICinRMS = D1 ×I12 ×(1D1) + D2 ×I22 ×(1D2)  
Where D1, D2 are the duty cycles and I1, I2 are the maximum load currents of the two  
sections.  
Input capacitor should be chosen with an RMS rated current higher than the maximum RMS  
current given by both sections.  
Tantalum capacitors are good in term of low ESR and small size, but they occasionally can  
burn out if subjected to very high current during the charge. Ceramic capacitors have  
usually a higher RMS current rating with smaller size and they remain the best choice.  
Below there is a list of some ceramic capacitor manufacturers.  
Table 15. Input capacitor manufacturer  
Manufacturer  
Series  
Capacitor value (µF)  
Rated voltage (V)  
TAYIO YUDEN  
TAYIO YUDEN  
UMK325BJ106 KM-T  
GMK325BJ106MN  
10  
10  
50  
35  
10.1.3  
Output capacitor  
The selection of the output capacitor is based on the ESR value and on the voltage rating  
rather than on the capacitor value Cout.  
The output capacitor has to satisfy the output voltage ripple requirements. Lower inductor  
value can reduce the size of the choke but increases the inductor current ripple ΔI .  
L
Since the voltage ripple VRIPPLEout is given by:  
Equation 13  
VRIPPLEout = Rout × ΔIL  
A low ESR capacitor is required to reduce the output voltage ripple. Switching sections can  
work correctly even with 15mV output ripple.  
Doc ID 15281 Rev 4  
39/50  
Application information  
PM6686  
Finally the output capacitor choice deeply impacts on the load transient response. Below  
there is a list of some capacitor manufacturers.  
Output capacitor manufacturer  
Table 16. Input capacitor manufacturer  
Manufacturer  
Series  
Capacitor value (µF)  
Rated voltage (V)  
ESR max (m)  
SANYO  
SANYO  
POSCAP TPB  
POSCAP TPF  
150 to 330  
150 to 470  
2.5 to 6.3  
2.5 to 6.3  
35 to 65  
7 to 15  
10.1.4  
MOSFET  
Logic-level MOSFETs are recommended, since low-side and high-side gate drivers are  
powered by PVCC. Their breakdown voltage (VBRDSS) must be higher than the maximum  
input voltage.  
In notebook applications, power management efficiency is a high level requirement. The  
power dissipation on the power switches becomes an important factor in switching  
selections. Losses of high-side and low-side MOSFETs depend on their working conditions.  
The power dissipation of the high-side MOSFET is given by:  
Equation 14  
PDHighSide = Pconduction +Pswitching  
Maximum conduction losses are approximately:  
Equation 15  
VOUT  
Pconduction = RDSon  
×
×ILOAD(max)2  
V
INmin  
Where RDS(on) is the drain-source on resistance of the high-side MOSFET.  
Switching losses are approximately:  
Equation 16  
ΔI  
2
ΔI  
2
V ×(ILOAD(max) L )× ton × fsw V ×(ILOAD(max) + L )× toff × fsw  
IN  
IN  
Pswitching  
=
+
2
2
Where ton and toff are the switching times of the turn off and turn off phases of the  
MOSFETs.  
As general rule, high-side MOSFETs with low gate charge are recommended, in order to  
minimize driver losses.  
Below there is a list of possible choices for the high-side MOSFETs.  
40/50  
Doc ID 15281 Rev 4  
PM6686  
Application information  
Table 17. High-side MOSFET manufacturer  
Manufacturer  
Type  
Gate charge (nC) RDS(on) (mΩ) Rated reverse voltage (V)  
ST  
ST  
STS12NH3LL  
STS17NH3LL  
10  
18  
8
4
30  
30  
The power dissipation of the low-side MOSFET is given by:  
Equation 17  
PDLowSide = Pconduction  
Maximum conduction losses occur at the maximum input voltage:  
Equation 18  
VOUT  
×ILOAD(max)2  
Pconduction = RDSon × 1−  
V
INmax  
Choose a synchronous rectifier with low RDS(on). When high-side MOSFET turns on, the  
fast variation of the phase node voltage can bring up even the low-side gate through its  
gate-drain capacitance CRSS, causing cross-conduction problems. Choose a low-side  
MOSFETs that minimizes the ratio CRSS/CGS (CGS = CISS - CRSS).  
Below there is a list of some possible low-side MOSFETs.  
Table 18. Low-side MOSFET manufacturer  
CRSS  
CGS  
Rated reverse voltage  
(V)  
Manufacturer  
Type  
RDS(on) (mΩ)  
ST  
ST  
STS17NF3LL  
STS25NH3LL  
5.5  
3.5  
0.047  
30  
30  
0.011  
Dual N-channel MOSFETs can be used in applications with a maximum output current of  
about 3 A. Below there is a list of some MOSFETs manufacturers.  
Table 19. Dual MOSFET manufacturer  
Gate charge Rated reverse voltage  
Manufacturer  
Type  
RDS(on) (mΩ)  
(nC)  
(V)  
ST  
ST  
STS8DNH3LL  
STS4DNF60L  
25  
65  
10  
32  
30  
60  
Doc ID 15281 Rev 4  
41/50  
Diode selection  
PM6686  
11  
Diode selection  
11.1  
Freewheeling diode  
A rectifier across the low-side MOSFET is recommended. The rectifier works as a voltage  
clamp across the synchronous rectifier and reduces the negative inductor swing during the  
dead time between turning the high-side MOSFET off and the synchronous rectifier on. It  
can increase the efficiency of the switching section, since it reduces the low-side switch  
losses. A Schottky diode is suitable for its low forward voltage drop (0.3 V). The diode  
reverse voltage must be greater than the maximum input voltage. A minimum recovery  
reverse charge is preferable. Below there is a list of some Schottky diode manufacturers.  
Table 20. Schottky diode manufacturer  
Forward voltage  
(V)  
Rated reverse  
voltage (V)  
Reverse current  
Manufacturer  
Series  
(μA)  
ST  
ST  
STPS1L30M  
STPS1L20M  
0.34  
0.37  
30  
20  
0.00039  
0.000075  
11.2  
Charge pump diode  
The charge pump capacitors are fed by the current supplied by LGATE1 (output of the low-  
side driver for the section 1). Dual in package diodes, in series configuration, could be used  
to reduce the area occupation.  
Table 21. Schottky diode manufacturer  
Forward voltage  
(V)  
Rated reverse  
voltage (V)  
Max forward  
current (A)  
Manufacturer  
Series  
ST  
ST  
ST  
BAT54S  
BAR43A  
BAS69-04  
0.24  
0.35  
0.35  
40  
30  
15  
0.3  
0.1  
0.01  
42/50  
Doc ID 15281 Rev 4  
PM6686  
Diode selection  
11.3  
Other important components  
11.3.1  
VIN filter  
A VIN pin low pass filter is suggested to reduce switching noise. The low pass filter is shown  
in the next figure:  
Figure 55. VIN pin filter  
Input  
VIN  
Voltage  
C
Typical component value is: C = 1 µF.  
11.3.2  
PVCC and VCC  
PVCC and VCC are connected with an internal resistor (about 10 Ω); this allows reducing  
the external components. Connect the +5 V supply rail only to PVCC.  
Use a bypass capacitor on PVCC pin. A VCC low pass filter helps to reject switching  
commutations noise, this filter can be implemented simply adding a bypass capacitor on  
VCC pin.  
Figure 56. VCC and PVCC filters  
PVCC  
C2  
VCC  
C1  
Doc ID 15281 Rev 4  
43/50  
Diode selection  
Typical components values are: C1 = 1 µF and C2 = 1 µF.  
PM6686  
11.3.3  
11.3.4  
11.3.5  
VREF2 and VREF3 capacitors  
A 10 nF to 100 nF ceramic capacitor on VREF2 pin must be added to ensure noise  
rejection. If VREF3 voltage is not used the pin can be left floating, otherwise a 10 nF to 100  
nF bypass ceramic capacitor should be mounted.  
LDO output capacitors  
Bypass the output of the linear regulator with 4,7 µF ceramic capacitor closer to the LDO  
pin. In most applicative conditions the ceramic output capacitor can be enough to ensure  
stability.  
Bootstrap circuit  
The external bootstrap circuit is represented in the next figure:  
Figure 57. Bootstrap circuit  
RBOOT  
RBOOT  
CBOOT  
PHASE  
L
The bootstrap circuit capacitor value CBOOT must provide the total gate charge to the high-  
side MOSFET during turn on phase. A typical value is 100 nF.  
A resistor RBOOT on the BOOT pin could be added in order to reduce noise when the  
phase node rises up, working like a gate resistor for the turn on phase of the high-side  
MOSFET. A typical value is RBOOT = 1 Ω.  
44/50  
Doc ID 15281 Rev 4  
PM6686  
PCB design guidelines  
12  
PCB design guidelines  
The layout is very important in terms of efficiency, stability and noise of the system. It is  
possible to refer to the PM6686 demonstration board for a complete layout example.  
For good PC board layout follows these guidelines:  
Place on the top side all the power components (inductors, input and output capacitors,  
MOSFETs and diodes). Refer them to a power ground plan, PGND. If possible, reserve  
a layer to PGND plan. The PGND plan is the same for both the switching sections.  
AC current paths layout is very critical (see Figure 58). The first priority is to minimize  
their length. Trace the LS MOSFET connection to PGND plan as short as possible.  
Place the synchronous diode D near the LS MOSFET. Connect the LS MOSFET drain  
to the switching node with a short trace.  
Place input capacitors near HS MOSFET drain. It is recommended to use the same  
input voltage plan for both the switching sections, in order to put together all input  
capacitors.  
Place all the sensitive analog signals (feedbacks, voltage references, current sense  
paths) on the bottom side of the board or in an inner layer. Isolate them from the power  
top side with a signal ground layer, SGND. Connect the SGND and PGND plans only in  
one point (a multiple vias connection is preferable to a 0 Ω resistor connection) near the  
PGND device pin. Place the device on the top or on the bottom size and connect the  
exposed pad and the SGND pins to the SGND plan (see Figure 58).  
As general rule, make the high-side and low-side drivers traces wide and short.  
The high-side driver is powered by the bootstrap circuit. It’s very important to place  
capacitor CBOOT as near as possible to the BOOT pin (for example on the layer  
opposite to the device). Route HGATE and PHASE traces as near as possible in order  
to minimize the area between them.  
The low-side gate driver is powered by PVCC pin. Placing PGND and LGATE pins near  
the low-side MOSFETs reduces the length of the traces and the crosstalk noise  
between the two sections.  
The linear regulator outputs are referred to SGND as long as the reference voltages  
VREF2 and VREF3. Place their output filtering capacitors as near as possible to the  
device.  
Place input filtering capacitors near PVCC, VCC and VIN pins.  
Doc ID 15281 Rev 4  
45/50  
PCB design guidelines  
Figure 58. Current paths, ground connection and driver traces layout  
PM6686  
46/50  
Doc ID 15281 Rev 4  
PM6686  
Package mechanical data  
13  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
Table 22. VFQFPN 5x5x1.0 mm 32 L pitch 0.50 mechanical data  
Databook (mm)  
Dim.  
Min  
Typ  
Max  
A
A1  
A3  
b
0.8  
0
0.9  
1
0.02  
0.05  
0.2  
0.18  
4.85  
0.25  
0.3  
D
5
5.15  
D2  
E
See exposed pad variations (2)  
4.85  
0.3  
5
5.15  
E2  
e
See exposed pad variations (2)  
0.5  
0.4  
L
0.5  
ddd  
0.05  
Table 23. Exposed pad variations  
(1)(2)D2  
E2  
Min  
Typ  
Max  
Min  
Typ  
Max  
3.20  
2.90  
3.10  
3.20  
2.90  
3.10  
1. VFQFPN stands for thermally enhanced very thin fine pitch quad flat package no lead. Very thin:  
A = 1.00 mm max.  
2. Dimensions D2 and E2 are not in accordance with JEDEC.  
Doc ID 15281 Rev 4  
47/50  
Package mechanical data  
Figure 59. Package dimensions  
PM6686  
48/50  
Doc ID 15281 Rev 4  
PM6686  
Revision history  
14  
Revision history  
Table 24. Document revision history  
Date  
Revision  
Changes  
09-Jan-2009  
26-Feb-2009  
07-May-2009  
1
2
3
Initial release  
Updated input voltage range in coverpage  
Updated pin 29 description in Table 2 on page 7  
Updated Table 3 on page 10, Section 8.1.8 on page 32, Section 9.1  
on page 34, Section 9.2 on page 34 and Table 11 on page 34  
23-Jul-2009  
4
Doc ID 15281 Rev 4  
49/50  
PM6686  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
50/50  
Doc ID 15281 Rev 4  

相关型号:

PM6697H

VR13 single phase controller
STMICROELECTR

PM6697HTR

VR13 single phase controller
STMICROELECTR

PM671

Single and dual output 0.5 to 1 Watt Nominal input DC/DC converters
ARTESYN

PM671P

Analog IC
ETC

PM671PR

Analog IC
ETC

PM671R

Analog IC
ETC

PM672

Single and dual output 0.5 to 1 Watt Nominal input DC/DC converters
ARTESYN

PM672P

Analog IC
ETC

PM672PR

Analog IC
ETC

PM672R

Analog IC
ETC

PM6764

Current sense across DCR with calibration
STMICROELECTR

PM6764TR

Current sense across DCR with calibration
STMICROELECTR