ST1S10PHR [STMICROELECTRONICS]

3 A, 900 kHz, monolithic synchronous step-down regulator; 3 A, 900千赫,单片同步降压型稳压器
ST1S10PHR
型号: ST1S10PHR
厂家: ST    ST
描述:

3 A, 900 kHz, monolithic synchronous step-down regulator
3 A, 900千赫,单片同步降压型稳压器

稳压器
文件: 总26页 (文件大小:788K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST1S10  
3 A, 900 kHz, monolithic synchronous  
step-down regulator  
Features  
Step-down current mode PWM regulator  
Output voltage adjustable from 0.8 V  
Input voltage from 2.5 V up to 18 V  
2% DC output voltage tolerance  
Synchronous rectification  
Inhibit function  
DFN8 (4x4mm)  
PowerSO-8  
Synchronizable switching frequency from 400  
kHz up to 1.2 MHz  
Internal soft start  
Dynamic short circuit protection  
Typical efficiency: 90%  
3 A output current capability  
Description  
The ST1S10 is a high efficiency step-down PWM  
current mode switching regulator capable of  
providing up to 3 A of output current. The device  
operates with an input supply range from 2.5 V to  
18 V and provides an adjustable output voltage  
Stand-by supply current: max 6 µA over  
temperature range  
Operative junction temp: from -25°C to 125°C  
from 0.8 V (V ) to 0.85*V  
[V  
=
FB  
IN_SW OUT  
Applications  
V
*(1+R1/R2)]. It operates either at a 900 kHz  
FB  
fixed frequency or can be synchronized to an  
external clock (from 400 kHz to 1.2 MHz). The  
high switching frequency allows the use of tiny  
SMD external components, while the integrated  
synchronous rectifier eliminates the need for a  
Schottky diode. The ST1S10 provides excellent  
transient response, and is fully protected against  
thermal overheating, switching over-current and  
output short circuit.  
Consumer  
– STB, DVD, DVD recorders, TV, VCR, car  
audio, LCD monitors  
Networking  
– XDSL, modems, DC-DC modules  
Computer  
– Optical storage, HD drivers, printers,  
audio/graphic cards  
The ST1S10 is the ideal choice for point-of-load  
regulators or LDO pre-regulation.  
Industrial and security  
– Battery chargers, DC-DC converters, PLD,  
PLA, FPGA, LED drivers  
Table 1.  
Device summary  
Part number  
Package  
DFN8 (4x4 mm)  
PowerSO-8  
ST1S10  
ST1S10PUR  
ST1S10PHR  
October 2007  
Rev. 3  
1/26  
www.st.com  
26  
Contents  
ST1S10  
Contents  
1
2
3
4
5
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.1  
5.2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.2.1  
Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
Output capacitor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Output capacitor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Inductor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Inductor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.8.1  
5.8.2  
5.8.3  
5.8.4  
5.8.5  
Sync operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
OCP (over-current protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SCP (short circuit protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SCP and OCP operation with high capacitive load . . . . . . . . . . . . . . . . 12  
6
Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.1  
Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7
Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8
9
10  
2/26  
ST1S10  
Application circuit  
1
Application circuit  
Figure 1. Typical application circuit  
L1  
3.3µH  
12V  
5V – 3A  
VIN_SW  
SW  
FB  
C1  
EN  
R1  
4.7µF  
ST1S10  
VIN_A  
C2  
22µF  
C3  
R2  
0.1µF  
SYNC  
AGND  
PGND  
3/26  
Pin configuration  
ST1S10  
2
Pin configuration  
Figure 2.  
Pin connections (top view for PowerSO-8, bottom view for DFN8)  
DFN8 (4x4)  
PowerSO-8  
Table 2.  
Pin n°  
Pin description  
Symbol  
Name and function  
1
2
VIN_A  
Analog input supply voltage to be tied to VIN supply source  
Inhibit pin active low. Connect to VIN_A if not used  
INH (EN)  
Feedback voltage for connection to external voltage divider to set the VOUT  
from 0.8V up to 0.85*VIN_SW. (see output voltage selection paragraph 5.5)  
3
4
VFB  
AGND  
Analog ground  
Synchronization and frequency select. Connect SYNC to GND for 900 kHz  
operation, or to an external clock from 400 kHz to 1.2 MHz. (see Sync  
operation paragraph 5.8.1)  
5
SYNC  
6
7
VIN_SW  
SW  
Power input supply voltage to be tied to VIN power supply source  
Switching node to be connected to the inductor  
Power ground  
8
PGND  
epad  
epad  
Exposed pad to be connected to ground  
4/26  
ST1S10  
3
Maximum ratings  
Maximum ratings  
Table 3.  
Absolute maximum ratings  
Symbol  
VIN_SW  
Parameter  
Value  
Unit  
Positive power supply voltage  
Positive supply voltage  
Inhibit voltage  
-0.3 to 20  
-0.3 to 20  
-0.3 to VIN_A  
-0.3 to 20  
-0.3 to 2.5  
-1 to +1  
V
V
VIN_A  
VINH  
VSW  
VFB  
V
Output switch voltage  
Feedback voltage  
V
V
IFB  
FB current  
mA  
V
Sync  
TSTG  
TOP  
Synchronization  
-0.3 to 6  
Storage temperature range  
Operating junction temperature range  
-40 to 150  
-25 to 125  
°C  
°C  
Note:  
Absolute maximum ratings are the values beyond which damage to the device may occur.  
Functional operation under these conditions is not implied.  
Table 4.  
Symbol  
Thermal data  
Parameter  
PowerSO-8  
DFN8  
Unit  
RthJA  
RthJC  
Thermal resistance junction-ambient  
Thermal resistance junction-case  
40  
12  
40  
4
°C/W  
°C/W  
5/26  
Electrical characteristics  
ST1S10  
4
Electrical characteristics  
Table 5.  
Electrical characteristics  
= V = V = V  
V
= 12 V, V  
= GND, V  
= 5 V, I  
= 10 mA, C = 4.7 µF  
IN  
IN_SW  
IN_A  
INH  
SYNC  
OUT  
OUT IN  
+0.1 µF, C  
= 22 µF, L1 = 3.3 µH, T = -25 to 125°C (Unless otherwise specified, refer to  
OUT  
J
the typical application circuit. Typical values assume T = 25°C)  
J
Symbol  
Parameter  
Test conditions  
TJ = 25°C  
TJ = -25°C to 125°C  
Min.  
Typ. Max.  
Unit  
784  
776  
800 816  
800 824  
600  
mV  
mV  
nA  
VFB  
IFB  
IQ  
Feedback voltage  
VFB pin bias current  
Quiescent current  
VINH > 1.2 V, not switching  
1.5  
2
2.5  
6
mA  
µA  
VINH < 0.4 V  
VIN = 2.5 V to 18 V  
IOUT  
Output current (1)  
3.0  
1.2  
A
VOUT = 0.8 V to 13.6 V (2)  
Device ON  
V
V
VINH  
IINH  
Inhibit threshold  
Inhibit pin current  
Device OFF  
0.4  
2
µA  
%VOUT  
ΔVIN  
/
%VOUT/ΔVIN Reference line regulation  
2.5 V < VIN < 18 V  
10 mA < IOUT < 3 A  
0.4  
%VOUT  
ΔIOUT  
/
%VOUT  
/
Reference load regulation  
0.5  
0.9  
ΔIOUT  
VFB = 0.7 V, Sync = GND  
TJ = 25°C  
PWM fs  
PWM switching frequency  
0.7  
85  
1.1  
MHz  
DMAX  
Maximum duty cycle (2)  
90  
0.10  
0.12  
5.0  
85  
%
Ω
RDSon-N  
NMOS switch on resistance  
PMOS switch on resistance  
Switch current limitation  
ISW = 750 mA  
ISW = 750 mA  
RDSon-P  
Ω
ISWL  
A
I
I
OUT = 100 mA to 300 mA  
OUT = 300 mA to 3 A  
%
%
°C  
°C  
ν
Efficiency  
90  
TSHDN  
THYS  
Thermal shut down  
150  
15  
Thermal shut down hysteresis  
100 mA < IOUT < 1 A,  
tR = tF 500 ns  
VOUT/ΔIOUT Output transient response  
5
%VO  
%VO  
MHz  
VOUT/ΔIOUT Short circuit removal response  
@IO=short (overshot)  
10 mA < IOUT < short  
10  
VIN = 2.5 V to 18 V,  
VSYNC = 0 to 5 V  
FSYNC  
SYNC frequency capture range  
0.4  
1.2  
0.4  
SYNCWD SYNC pulse width  
VIN = 2.5 V to 18 V  
VIN = 2.5 V to 18 V  
VIN = 2.5 V to 18 V  
250  
ns  
V
VIL_SYNC SYNC input threshold low  
VIH_SYNC SYNC input threshold high  
1.6  
V
6/26  
ST1S10  
Table 5.  
Electrical characteristics  
Electrical characteristics (continued)  
= V = V = V = 12 V, V  
V
= GND, V  
= 5 V, I  
= 10 mA, C = 4.7 µF  
IN  
IN_SW  
IN_A  
INH  
SYNC  
OUT  
OUT IN  
+0.1 µF, C  
= 22 µF, L1 = 3.3 µH, T = -25 to 125°C (Unless otherwise specified, refer to  
OUT  
J
the typical application circuit. Typical values assume T = 25°C)  
J
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
Unit  
VIN = 2.5 V to 18 V,  
VSYNC = 0 or 5 V  
IIL, IH  
I
SYNC input current  
-10  
+10  
µA  
V
IN rising  
2.3  
V
UVLO  
Under voltage lock-out threshold  
Hysteresis  
200  
mV  
1. Guaranteed by design, but not tested in production.  
2. See output voltage selection paragraph 5.5 for maximum duty cycle conditions.  
7/26  
Application information  
ST1S10  
5
Application information  
5.1  
Description  
The ST1S10 is a high efficiency synchronous step-down DC-DC converter with inhibit  
function. It provides up to 3 A over an input voltage range of 2.5 V to 18 V, and the output  
voltage can be adjusted from 0.8 V up to 85% of the input voltage level. The synchronous  
rectification removes the need for an external Schottky diode and allows higher efficiency  
even at very low output voltages.  
A high internal switching frequency (0.9 MHz) allows the use of tiny surface-mount  
components, as well as a resistor divider to set the output voltage value. In typical  
application conditions, only an inductor and 3 capacitors are required for proper operation.  
The device can operate in PWM mode with a fixed frequency or synchronized to an external  
frequency through the SYNC pin. The current mode PWM architecture and stable operation  
with low ESR SMD ceramic capacitors results in low, predictable output ripple. No external  
compensation is needed.  
To maximize power conversion efficiency, the ST1S10 works in pulse skipping mode at light  
load conditions and automatically switches to PWM mode when the output current  
increases.  
The ST1S10 is equipped with thermal shut down protection activated at 150°C (typ.).  
Cycle-by-cycle short circuit protection provides protection against shorted outputs for the  
application and the regulator. An internal soft start for start-up current limiting and power ON  
delay of 275 µs (typ.) helps to reduce inrush current during start-up.  
5.2  
External components selection  
5.2.1  
Input capacitor  
The ST1S10 features two V pins: V  
switching peak current is drawn, and V  
drivers.  
for the power supply input voltage where the  
to supply the ST1S10 internal circuitry and  
IN  
IN_SW  
IN_A  
The V  
input capacitor reduces the current peaks drawn from the input power supply  
IN_SW  
and reduces switching noise in the IC. A high power supply source impedance requires  
larger input capacitance.  
For the V  
input capacitor the RMS current rating is a critical parameter that must be  
IN_SW  
higher than the RMS input current. The maximum RMS input current can be calculated  
using the following equation:  
2
D2  
η
η
2 D  
+
=
IRMS IO  
D -  
where η is the expected system efficiency, D is the duty cycle and I is the output DC  
O
current. The duty cycle can be derived using the equation:  
D = (V  
+ V ) / (V -V  
)
OUT  
F
IN SW  
where V is the voltage drop across the internal NMOS, and V  
represents the voltage  
SW  
F
drop across the internal PDMOS. The minimum duty cycle (at V  
) and the maximum  
IN_max  
8/26  
ST1S10  
Application information  
) should be considered in order to determine the max I flowing  
duty cycle (at V  
IN_min  
RMS  
through the input capacitor.  
A minimum value of 4.7 µF for the V  
and a 0.1 µF ceramic capacitor for the V  
are  
IN_A  
IN_SW  
suitable in most application conditions. A 10 µF or higher ceramic capacitor for the V  
IN_SW  
and a 1 µF or higher for the V  
are recommended in cases of higher power supply source  
IN_A  
impedance or where long wires are needed between the power supply source and the V  
pins. The above higher input capacitor values are also recommended in cases where an  
IN  
output capacitive load is present (47 µF < C  
< 100 µF), which could impact the  
LOAD  
switching peak current drawn from the input capacitor during the start-up transient.  
In cases of very high output capacitive loads (C > 100 µF), all input/output capacitor  
LOAD  
values shall be modified as described in the OCP and SCP operation section 5.8.5 of this  
document.  
The input ceramic capacitors should have a voltage rating in the range of 1.5 times the  
maximum input voltage and be located as close as possible to V pins.  
IN  
5.3  
Output capacitor (VOUT > 2.5 V)  
The most important parameters for the output capacitor are the capacitance, the ESR and  
the voltage rating. The capacitance and the ESR affect the control loop stability, the output  
ripple voltage and transient response of the regulator.  
The ripple due to the capacitance can be calculated with the following formula:  
V
= (0.125 x ΔI ) / (F x C  
)
OUT  
RIPPLE(C)  
SW  
S
where F is the PWM switching frequency and ΔI  
is the inductor peak-to-peak switching  
S
SW  
current, which can be calculated as:  
ΔI  
= [(V - V  
) / (F x L)] x D  
SW  
IN  
OUT S  
where D is the duty cycle.  
The ripple due to the ESR is given by:  
V
(ESR) = ΔI  
x ESR  
SW  
RIPPLE  
The equations above can be used to define the capacitor selection range, but final values  
should be verified by testing an evaluation circuit.  
Lower ESR ceramic capacitors are usually recommended to reduce the output ripple  
voltage. Capacitors with higher voltage ratings have lower ESR values, resulting in lower  
output ripple voltage.  
Also, the capacitor ESL value impacts the output ripple voltage, but ceramic capacitors  
usually have very low ESL, making ripple voltages due to the ESL negligible. In order to  
reduce ripple voltages due to the parasitic inductive effect, the output capacitor connection  
paths should be kept as short as possible.  
The ST1S10 has been designed to perform best with ceramic capacitors. Under typical  
application conditions a minimum ceramic capacitor value of 22 µF is recommended on the  
output, but higher values are suitable considering that the control loop has been designed to  
work properly with a natural output LC frequency provided by a 3.3 µH inductor and 22 µF  
output capacitor. If the high capacitive load application circuit shown in Figure 3 is used, a  
47 µF (or 2 x 22 µF capacitors in parallel) could be needed as described in the OCP and  
SCP operation section 5.8.5. of this document.  
9/26  
Application information  
ST1S10  
The use of ceramic capacitors with voltage ratings in the range of 1.5 times the maximum  
output voltage is recommended.  
5.4  
5.5  
Output capacitor (0.8 V < VOUT < 2.5 V)  
For applications with lower output voltage levels (V < 2.5 V) the output capacitance and  
out  
inductor values should be selected in a way that improves the DC-DC control loop behavior.  
In this output condition two cases must be considered: V > 8 V and V < 8 V.  
IN  
IN  
For V < 8 V the use of 2 x 22 µF capacitors in parallel to the output is recommended, as  
IN  
shown in Figure 4.  
For V > 8 V, a 100 µF electrolytic capacitor with ESR < 0.1 Ω should be added in parallel to  
IN  
the 2 x 22 µF output capacitors as shown in Figure 5.  
Output voltage selection  
The output voltage can be adjusted from 0.8 V up to 85% of the input voltage level by  
connecting a resistor divider (see R1 and R2 in the typical application circuit) between the  
output and the V pin. A resistor divider with R2 in the range of 20 kΩ is a suitable  
FB  
compromise in terms of current consumption. Once the R2 value is selected, R1 can be  
calculated using the following equation:  
R1 = R2 x (V  
- V ) / V  
FB FB  
OUT  
where V = 0.8 V (typ.).  
FB  
Lower values are suitable as well, but will increase current consumption. Be aware that duty  
cycle must be kept below 85% at all application conditions, so that:  
D = (V  
+ V ) / (V -V ) < 0.85  
F IN SW  
OUT  
where V is the voltage drop across the internal NMOS, and V  
represents the voltage  
F
SW  
drop across the internal PDMOS.  
Note that once the output current is fixed, higher V  
levels increase the power dissipation  
OUT  
of the device leading to an increase in the operating junction temperature. It is  
recommended to select a V level which maintains the junction temperature below the  
OUT  
thermal shut-down protection threshold (150°C typ.) at the rated output current. The  
following equation can be used to calculate the junction temperature (T ):  
J
T = {[V  
x I  
x R  
x (1-η)] / η} +T  
thJA AMB  
J
OUT  
OUT  
where R  
is the junction-to-ambient thermal resistance, η is the efficiency at the rated  
thJA  
I
current and T  
is the ambient temperature.  
OUT  
AMB  
To ensure safe operating conditions the application should be designed to keep T < 140°C.  
J
5.6  
Inductor (VOUT > 2.5 V)  
The inductor value fixes the ripple current flowing through output capacitor and switching  
peak current. The ripple current should be kept in the range of 20-40% of I  
(for  
OUT_MAX  
example it is 0.6 - 1.2 A at I  
the following formula:  
= 3 A). The approximate inductor value can be obtained with  
OUT  
L = [(V - V  
) / ΔI ] x T  
SW ON  
IN  
OUT  
10/26  
ST1S10  
Application information  
where T is the ON time of the internal switch, given by:  
ON  
T
= D/F  
S
ON  
The inductor should be selected with saturation current (I ) equal to or higher than the  
SAT  
inductor peak current, which can be calculated with the following equation:  
I
= I + (ΔI /2), I  
I  
SAT PK  
PK  
O
SW  
The inductor peak current must be designed so that it does not exceed the switching current  
limit.  
5.7  
Inductor (0.8 V < VOUT < 2.5 V)  
For applications with lower output voltage levels (V < 2.5 V) the description in the previous  
out  
section is still valid but it is recommended to keep the inductor values in a range from 1µH to  
2.2 µH in order to improve the DC-DC control loop behavior, and increase the output  
capacitance depending on the V level as shown in the Figure 4 and Figure 5. In most  
IN  
application conditions a 2.2 µH inductor is the best compromise between DC-DC control  
loop behavior and output voltage ripple.  
5.8  
Function operation  
5.8.1  
Sync operation  
The ST1S10 operates at a fixed frequency or can be synchronized to an external frequency  
with the SYNC pin. The ST1S10 switches at a frequency of 900 kHz when the SYNC pin is  
connected to ground, and can synchronize the switching frequency between 400 kHz to 1.2  
MHz from an external clock applied to the SYNC pin. When the SYNC feature is not used,  
this pin must be connected to ground with a path as short as possible to avoid any possible  
noise injected in the SYNC internal circuitry.  
5.8.2  
5.8.3  
Inhibit function  
The inhibit pin can be used to turn OFF the regulator when pulled down, thus drastically  
reducing the current consumption down to less than 6 µA. When the inhibit feature is not  
used, this pin must be tied to V to keep the regulator output ON at all times. To ensure  
proper operation, the signal source used to drive the inhibit pin must be able to swing above  
and below the specified thresholds listed in the electrical characteristics section under V  
Any slew rate can be used to drive the inhibit pin.  
IN  
.
INH  
OCP (over-current protection)  
The ST1S10 DC-DC converter is equipped with a switch over-current protection. In order to  
provide protection for the application and the internal power switches and bonding wires, the  
device goes into a shutdown state if the switch current limit is reached and is kept in this  
condition for the T  
period (T  
= 135 µs typ.) and turns on again for the T period  
OFF  
OFF(OCP) ON  
(T  
= 22 µs typ.) under typical application conditions. This operation is repeated cycle  
ON(OCP)  
by cycle. Normal operation is resumed when no over-current is detected.  
11/26  
Application information  
ST1S10  
5.8.4  
SCP (short circuit protection)  
In order to protect the entire application and reduce the total power dissipation during an  
overload or an output short circuit condition, the device is equipped with dynamic short  
circuit protection which works by internally monitoring the V (feedback voltage).  
FB  
In the event of an overload or output short circuit, if the V  
voltage is reduced causing the  
OUT  
feedback voltage (V ) to drop below 0.3 V (typ.), the device goes into shutdown for the  
FB  
T
time (T  
= 288 µs typ.) and turns on again for the T period (T  
= 130  
OFF  
OFF(SCP)  
ON  
ON(SCP)  
µs typ.). This operation is repeated cycle by cycle, and normal operation is resumed when  
no overload is detected (V > 0.3 V typ.) for the full T period.  
FB  
ON  
This dynamic operation can greatly reduce the power dissipation in overload conditions,  
while still ensuring excellent power-on startup in most conditions.  
5.8.5  
SCP and OCP operation with high capacitive load  
Thanks to the OCP and SCP circuit, ST1S10 is strongly protected against damage from  
short circuit and overload.  
However, a highly capacitive load on the output may cause difficulties during start-up. This  
can be resolved by using the modified application circuit shown in Figure 3, in which a  
minimum of 10 µF for C1 and a 4.7 µF ceramic capacitor for C3 are used. Moreover, for  
C
> 100 µF, it is necessary to add the C4 capacitor in parallel to the upper voltage  
LOAD  
divider resistor (R1) as shown in Figure 3. The recommended value for C4 is 4.7 nF.  
Note that C4 may impact the control loop response and should be added only when a  
capacitive load higher than 100 µF is continuously present. If the high capacitive load is  
variable or not present at all times, in addition to C4 an increase in the output ceramic  
capacitor C2 from 22 µF to 47 µF (or 2 x 22 µF capacitors in parallel) is recommended. Also  
in this case it is suggested to further increase the input capacitors to a minimum of 10 µF for  
C1 and a 4.7 µF ceramic capacitor for C3 as shown in Figure 3.  
Figure 3.  
Application schematic for heavy capacitive load  
L1  
3.3µH  
C4 (*)  
12V  
5V – 3A  
4.7nF  
VIN_SW  
SW  
FB  
C1  
EN  
R1  
R2  
10µF  
ST1S10  
LOAD  
VIN_A  
C2(*)  
22µF  
CLOAD  
C3  
4.7µF  
Output Load  
SYNC  
AGND PGND  
(*) see OCP and SCP descriptions for C2 and C4 selection  
12/26  
ST1S10  
Application information  
Figure 4.  
Application schematic for low output voltage (V  
< 2.5 V) and 2.5 V < V < 8 V  
OUT IN  
L1  
2.2µH  
VIN<8V  
0.8V<VOUT<2.5V  
VIN_SW  
SW  
C1  
EN  
R1  
10µF  
ST1S10  
VIN_A  
C2  
2x22µF  
FB  
C3  
0.1µF  
R2  
SYNC  
AGND PGND  
Figure 5.  
Application schematic for low output voltage (V  
< 2.5 V) and 8 V < V < 16 V  
OUT IN  
L1  
2.2µH  
8V<VIN<16V  
0.8V<VOUT<2.5V  
+
VIN_SW  
SW  
C1  
EN  
R1  
R2  
10µF  
ST1S10  
VIN_A  
C5  
C2  
100µF  
2x22µF  
FB  
Electrolytic  
ESR<0.1Ohm  
C3  
4.7µF  
SYNC  
AGND PGND  
13/26  
Layout considerations  
ST1S10  
6
Layout considerations  
Layout is an important step in design for all switching power supplies.  
High-speed operation (900 kHz) of the ST1S10 device demands careful attention to PCB  
layout. Care must be taken in board layout to get device performance, otherwise the  
regulator could show poor line and load regulation, stability issues as well as EMI problems.  
It is critical to provide a low inductance, impedance ground path. Therefore, use wide and  
short traces for the main current paths.  
The input capacitor must be placed as close as possible to the IC pins as well as the  
inductor and output capacitor. Use a common ground node for power ground and a different  
one for control ground (AGND) to minimize the effects of ground noise. Connect these  
ground nodes together underneath the device and make sure that small signal components  
returning to the AGND pin and do not share the high current path of C and C  
.
IN  
OUT  
The feedback voltage sense line (V ) should be connected right to the output capacitor and  
FB  
routed away from noisy components and traces (e.g., SW line). Its trace should be  
minimized and shielded by a guard-ring connected to the ground.  
Figure 6.  
PCB layout suggestion  
CN1=Input power supply  
CN2=Enable/Disable  
VFB guard-ring  
CN3=Input sync.  
CN4=VOUT  
Input capacitor C1 must be placed  
as close as possible to the IC  
pins as well as the inductor L1  
and output capacitor C2  
Vias from thermal pad  
to bottom layer  
47mm  
14/26  
ST1S10  
Layout considerations  
Figure 7.  
PCB layout suggestion  
Common ground node  
for power ground  
Power Ground  
IIN  
6.1  
Thermal considerations  
The leadframe die pad, of ST1S10, is exposed at the bottom of the package and must be  
soldered directly to a properly designed thermal pad on the PCB, the addition of thermal  
vias from the thermal pad to an internal ground plane will help increase power dissipation.  
15/26  
Diagram  
7
ST1S10  
Diagram  
Figure 8.  
Block diagram  
16/26  
ST1S10  
Typical performance characteristics  
8
Typical performance characteristics  
Unless otherwise specified, refer to the typical application circuit under the following  
conditions: T = 25°C, V = V  
= V  
= V  
= 12 V, V  
= GND, V = 5 V,  
J
IN  
IN-SW  
IN-A  
OUT  
INH  
SYNC  
OUT  
I
= 10 mA, C = 4.7 µF + 0.1 µF, C  
= 22 µF, L1 = 3.3 µH  
OUT  
IN  
Figure 9.  
Voltage feedback vs. temperature  
Figure 10. Oscillator frequency vs.  
temperature  
830  
820  
810  
800  
790  
780  
770  
1.2  
1.1  
1
0.9  
0.8  
VIN=VINH=12V, VOUT=0.8V, IOUT=10mA  
0.7  
VIN-A=VIN-SW=VINH=12V, VFB=0V  
0.6  
-50  
760  
-50  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
TEMPERATURE [°C]  
TEMPERATURE [°C]  
Figure 11. Max duty cycle vs. temperature  
Figure 12. Inhibit threshold vs. temperature  
1.4  
1.2  
1
92  
90  
88  
86  
0.8  
0.6  
84  
0.4  
VIN-A=VIN-SW=VINH=12V, VFB=0V  
VIN-A=VIN-SW=2.5V, VOUT=0.8V, IOUT=10mA  
82  
80  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100 125  
TEMPERATURE [°C]  
TEMPERATURE [°C]  
Figure 13. Reference line regulation vs.  
temperature  
Figure 14. Reference load regulation vs.  
temperature  
0.2  
0.1  
0
1.3  
VIN-A=VIN-SW=VINH=12V, IOUT from 10mA to 3A  
1
0.7  
0.4  
0.1  
-0.2  
-0.5  
-0.1  
VIN-A=VIN-SW=VINH from 2.5 to 20V, VOUT=0.8V, IOUT=10mA  
-0.2  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
TEMPERATURE [°C]  
TEMPERATURE [°C]  
17/26  
Typical performance characteristics  
ST1S10  
Figure 15. ON mode quiescent current vs.  
temperature  
Figure 16. Shutdown mode quiescent current  
vs. temperature  
7
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
6
VIN-A=VIN-SW=12V, VINH=GND, VOUT=0.8V  
5
4
3
2
1
0
VIN-A=VIN-SW=12V, VINH=1.2V, VOUT=0.8V  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
3
TEMPERATURE [°C]  
TEMPERATURE [°C]  
Figure 17. PMOS ON resistance vs.  
temperature  
Figure 18. NMOS ON resistance vs.  
temperature  
320  
270  
220  
170  
120  
120  
110  
100  
90  
80  
70  
70  
60  
VIN=12V, ISW=750mA  
VIN=12V, ISW=750mA  
50  
-50  
20  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
TEMPERATURE [°C]  
TEMPERATURE [°C]  
Figure 19. Efficiency vs. temperature  
Figure 20. Efficiency vs. output current  
100  
90  
100  
90  
80  
80  
70  
70  
60  
60  
VIN-A=VIN-SW=VINH=12V, VOUT=5V, IOUT=3A  
VIN-A=VIN-SW=VINH=12V, VOUT=5V, TJ=25°C  
50  
-50  
50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
TEMPERATURE [°C]  
OUTPUT CURRENT [A]  
18/26  
ST1S10  
Typical performance characteristics  
Figure 21. Efficiency vs. output current  
Figure 22. Efficiency vs. output current  
100  
90  
100  
90  
80  
80  
70  
70  
60  
60  
VIN-A=VIN-SW=VINH=5V, VOUT=3.3V, TJ=25°C  
VIN-A=VIN-SW=VINH=16V, VOUT=12V, TJ=25°C  
50  
50  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
OUTPUT CURRENT [A]  
OUTPUT CURRENT [A]  
19/26  
Package mechanical data  
ST1S10  
9
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
20/26  
ST1S10  
Package mechanical data  
PowerSO-8 mechanical data  
mm.  
inch.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.70  
0.067  
0.00  
1.25  
0.31  
0.17  
4.80  
2.24  
5.80  
3.80  
1.55  
0.15  
0.00  
0.006  
0.142  
0.020  
0.010  
0.197  
0.126  
0.244  
0.157  
0.099  
0.049  
0.012  
0.007  
0.189  
0.088  
0.228  
0.150  
0.061  
0.51  
0.25  
5.00  
3.20  
6.20  
4.00  
2.51  
c
D
4.90  
3.10  
6.00  
3.90  
2.41  
1.27  
0193  
0.122  
0.236  
0.154  
0.095  
0.050  
D1  
E
E1  
E2  
e
h
0.25  
0.40  
0°  
0.50  
1.27  
8°  
0.010  
0.016  
0°  
0.020  
0.050  
8°  
L
k
ccc  
0.10  
0.004  
7195016C  
21/26  
Package mechanical data  
ST1S10  
DFN8 (4x4) mechanical data  
mm.  
inch.  
Typ.  
Dim.  
Min.  
Typ.  
0.90  
0.02  
0.20  
0.30  
4.00  
3.00  
4.00  
2.20  
0.80  
0.50  
Max.  
1.00  
0.05  
Min.  
0.031  
0
Max.  
A
A1  
A3  
b
0.80  
0.035  
0.039  
0
0.001  
0.008  
0.012  
0.157  
0.118  
0.157  
0.087  
0.031  
0.020  
0.002  
0.23  
3.90  
2.82  
3.90  
2.05  
0.38  
4.10  
3.23  
4.10  
2.30  
0.009  
0.154  
0.111  
0.154  
0.081  
0.015  
0.161  
0.127  
0.161  
0.091  
D
D2  
E
E2  
e
L
0.40  
0.60  
0.016  
0.024  
7869653B  
22/26  
ST1S10  
Package mechanical data  
Tape & reel SO-8 mechanical data  
mm.  
inch.  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
330  
Min.  
Max.  
12.992  
0.519  
A
C
12.8  
20.2  
60  
13.2  
0.504  
0.795  
2.362  
D
N
T
22.4  
8.5  
5.9  
2.3  
4.1  
8.1  
0.882  
0.335  
0.232  
0.090  
0.161  
0.319  
Ao  
Bo  
Ko  
Po  
P
8.1  
5.5  
2.1  
3.9  
7.9  
0.319  
0.216  
0.082  
0.153  
0.311  
23/26  
Package mechanical data  
ST1S10  
Tape & reel QFNxx/DFNxx (4x4) mechanical data  
mm.  
Typ.  
inch.  
Typ.  
Dim.  
Min.  
Max.  
330  
Min.  
Max.  
A
C
12.992  
0.519  
12.8  
20.2  
99  
13.2  
0.504  
0.795  
3.898  
D
N
101  
3.976  
T
14.4  
0.567  
Ao  
Bo  
Ko  
Po  
P
4.35  
4.35  
1.1  
4
0.171  
0.171  
0.043  
0.157  
0.315  
8
24/26  
ST1S10  
10  
Revision history  
Revision history  
Table 6.  
Document revision history  
Revision  
Date  
Changes  
28-Aug-2007  
24-Sep-2007  
25-Oct-2007  
1
2
3
Initial release.  
Add RthJC on Table 4.  
Added new paragraph 6: Layout considerations.  
25/26  
ST1S10  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

ST1S10PUR

3 A, 900 kHz, monolithic synchronous step-down regulator
STMICROELECTR

ST1S12G12R

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12G18R

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12GR

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12XX

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12XX12

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12XX18

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S12XX_10

Synchronous rectification with enable, 0.7 A, 1.7 MHz fixed or adjustable step-down switching regulator in TSOT23-5L
STMICROELECTR

ST1S14

Power good open collector output
STMICROELECTR

ST1S14PHR

Up to 3 A step-down switching regulator
STMICROELECTR

ST1S15

Short-circuit and thermal protection
STMICROELECTR

ST1S15J18R

Short-circuit and thermal protection
STMICROELECTR