ST75C520PQFP [STMICROELECTRONICS]

HIGH SPEED FAX MODEM DATA PUMP; 高速传真调制解调器数据泵
ST75C520PQFP
型号: ST75C520PQFP
厂家: ST    ST
描述:

HIGH SPEED FAX MODEM DATA PUMP
高速传真调制解调器数据泵

调制解调器 泵
文件: 总45页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST75C520  
HIGH SPEED FAX MODEM DATA PUMP  
PRELIMINARY DATA  
.
ITU-T V.17, V.29, V.27ter, V.21 WITH FAX  
SUPPORT  
DESCRIPTION  
The SGS-THOMSON Microelectronics ST75C520  
chip is a highly integrated modem engine, which  
can operate with all currently used FAX group III  
standards up to 14400bps. Full V.21, V.23 and Bell  
103 full duplex modem standards are imple-  
mented.  
.
.
.
.
.
.
ITU-T V.23, V.21, BELL 103  
V.17, V.29 (T104), V.27ter SHORT TRAINS  
V.33 HALF-DUPLEX  
1800Hz OR 1700Hz CARRIER  
SINGLE CHIP COMPLETE DATA PUMP  
SINGLE 5V POWER SUPPLY :  
-
TYPICAL ACTIVE POWER CONSUMPTION :  
375mW  
-
LOW POWER MODE (typ. 5mW)  
.
EXTENDED MODES OF OPERATIONS :  
-
-
-
FULL IMPLEMENTATION OF THE V.17,  
V.33, V.29 AND V.27ter HANDSHAKES  
AUTODIAL AND AUTOANSWER CAPABIL-  
ITY  
PROGRAMMABLE TONE DETECTION AND  
FSK V.21 FLAG PATTERN DETECTION  
DURING HIGH SPEED RECEPTION  
PROGRAMMABLE CALL PROGRESS AND  
CALL WAITING TONE DETECTORS IN-  
CLUDING DTMF  
-
-
PQFP64  
(Plastic Quad Flat Pack)  
PROGRAMMABLE CLASS  
CAPABILITY  
DETECTION  
-
-
ORDER CODE : ST75C520 PQFP  
WIDE DYNAMIC RANGE (>48dB)  
A-LAW VOICE PCM MODE  
.
VERSATILE INTERFACES :  
-
PARALLEL 64 x 8-BIT DUAL PORT RAM  
SYNCHRONOUS/HDLC PARALLEL DATA  
HANDLING  
-
-
-
-
HDLC FRAMING SUPPORT  
V.24 INTERFACE  
FULL OPERATING STATUS REAL TIME  
MONITORING  
-
-
FULL DIAGNOSTIC CAPABILITY  
DUAL 8-BIT DAC FOR CONSTELLATION  
DISPLAY  
1/45  
June 1995  
This is advance information on a new product now in development or undergoing evaluation. Detailsare subject to change without notice.  
ST75C520  
CONTENTS  
Page  
I
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
I.1  
I.2  
I.3  
I.4  
I.5  
I.6  
I.7  
PIN CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOST INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ANALOG INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V.24 INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MISCELLANOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BOUNDARY SCAN INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
POWER SUPPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
3
4
4
4
4
5
II  
BLOCK DIAGRAMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
6
III  
III.1  
III.2  
III.3  
MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6
6
8
IV  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
10  
IV.1  
IV.2  
IV.3  
SYSTEM ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
10  
10  
11  
V.  
USER INTERFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11  
V.1  
V.2  
V.3  
V.4  
V.5  
DUAL PORT RAM DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
COMMAND SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
COMMAND SET SHORT FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STATUS - REPORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DATA EXCHANGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11  
14  
16  
17  
17  
VI  
COMMAND SET DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
STATUS DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
18  
27  
VII  
VII.1  
VII.2  
COMMAND ACKNOWLEDGE AND REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MODEM STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
27  
28  
VIII  
TONE DETECTORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
34  
VIII.1  
VIII.2  
VIII.3  
OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
34  
34  
38  
IX  
BUFFER OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
38  
IX.1  
IX.2  
IX.3  
IX.4  
IX.5  
IX.6  
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RECEIVE OPERATIONS OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TRANSMIT OPERATIONS OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BUFFER STATUS AND FORMAT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RECEIVE BUFFER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DATA BUFFER MANAGEMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
38  
39  
39  
40  
40  
40  
X
DEFAULT CALL PROGRESS TONE DETECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DEFAULT ANSWER TONE DETECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ELECTRICAL SCHEMATICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PCB DESIGN GUIDELINES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
42  
42  
42  
43  
XI  
XII  
XIII  
2/45  
ST75C520  
I - PIN DESCRIPTION  
I.1 - Pin Connections  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
17  
18  
19  
20  
21  
22  
64  
63  
62  
61  
60  
59  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
AGNDT  
VCM  
AVDD  
RXA2  
RXA1  
AGNDR  
VREFP  
VREFN  
EXTAL  
XTAL  
23  
24  
25  
58  
57  
56  
SA6  
GND  
VDD  
SD0  
SD1  
SD2  
SD3  
26  
27  
28  
29  
30  
31  
32  
55  
54  
53  
52  
51  
50  
49  
CLKOUT  
HALT  
RESET  
SD4  
SD5  
SCOUT  
BOS  
SD6  
EOS  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
I.2 - Host Interface  
The exchanges with the control processor proceed through a 64 Bytes DUAL port RAM shared between  
the ST75C520 and the Host. The signals associated with this interface are :  
Pin Name  
Type  
Description  
SD0..SD7  
I/O  
System Data Bus. 8-bit data bus used for asynchronous exchanges between the ST75C520  
and the Host through the dual port RAM. High impedance when exchanges are not active.  
SA0..SA6  
I
I
System Address Bus. 7-bit address bus for dual port RAM.  
SDS (SRD)  
System Data Strobe. Active low. Synchronizes all the exchanges. In Motorola mode initiates  
the exchange, active low. In Intel mode initiates a read exchange, active low.  
SR/W (SWR)  
I
System Read/Write. In Motorola mode defines the type of exchange read/write. In Intel  
mode initiates a write exchange, active low.  
SCS  
I
System Chip Select. Active low.  
SDTACK  
SINTR  
OD  
OD  
System Bus Data Acknowledge. Active low. Open drain.  
System Interrupt Request. Active low. This signal is asserted by the ST75C520 and  
negated by the host. Open drain.  
RESET  
RING  
I
I
I
Reset. Active low.  
Ring Detect Signal. Active low.  
Select Intel/Motorola Interface.  
INT/MOT  
3/45  
ST75C520  
I.3 - Analog Interface  
Pin  
Type  
Name  
Description  
TXA1  
TXA2  
O
O
Transmit Analog Output 1  
Transmit Analog Output 2. Outputs TXA1 and TXA2 provide analog signals with maximum peak to peak  
amplitude 2 x VREF, and must be followed by an external continous-time two pole smoothing filter (where  
VREF = VREFP - VREFN).  
RXA1  
RXA2  
I
I
Receive Analog Input 1  
Receive Analog Input 2. The analog differential input peak to peak signal must be less than 2 x VREF. It  
must be preceded by an external continous-time single pole anti-aliasing filter. This filter must be as  
close as possible to the RXA1 and RXA2 Pins (where VREF = VREFP - VREFN).  
VCM  
I/O  
Analog Common Voltage (nominal +2.5V). This input must be decoupled with respect to AGND.  
VREFN  
VREFP  
I
I
Analog Negative Reference (nominal VCM - 1.25V). This input must be decoupled with respect to VCM  
Analog Positive Reference (nominal VCM+1.25V). This input must be decoupled with respect to VCM  
.
.
I.4 - V.24 Interface  
Pin Name  
RTS  
Type  
Description  
I
Request to Send. Active low.  
CLK  
O
O
O
I
Data Bit Clock. Falling edge coïncides with DATA change.  
Clear to Send. Active low.  
CTS  
RxD  
Receive Data  
TxD  
Transmit Data sampled with rising edge of CLK  
Carrier Detect. Active low.  
CD  
O
I.5 - Miscellaneous  
Pin Name  
XTAL  
Type  
Description  
Internal Oscillator Output. Left open if not used.  
Internal Oscillator Input, or External Clock  
Constellation X analog coordinate  
Constellation Y analog coordinate  
To be left open  
O
I
EXTAL  
EYEX  
O
O
EYEY  
TEST1  
TEST2  
To be left open  
Note : The nominal external clock frequency of the ST75C520 is 29.4912MHz with a precision better than ± 5.10-5  
I.6 - Boundary Scan Interface  
A set of 13 signals are dedicated for Testing the ST75C520 Component. These signals can be used in a  
development phase, associated with the SGS-THOMSON ST18932 Boundary Scan Development Tools,  
to Debug the application Hardware and Software. If not used all input signals must be grounded and all  
output signals left open.  
Pin Name  
SCIN  
Type  
Description  
I
I
Scan Data Input  
Scan Clock  
SCCLK  
SCOUT  
BOS  
O
I
Scan Data Output  
Begin of Scan Control  
End of Scan  
EOS  
I
MC0..MC2  
HALT  
I
Mode Control  
I
Stop ST75C520 Execution  
Multicycle Instruction  
Ready to Scan Flag  
MCI  
O
O
I
RDYS  
EBS  
Enable Boundary Scan. Active low (must be set low in normal mode).  
Internal ST75C520 Clock (XTAL frequency divided by 2)  
CLKOUT  
O
4/45  
ST75C520  
I.7 - Power Supply  
Symbol  
Parameter  
VDD  
Digital +5V (Pin 9, 25, 41). To be connected to AVDD (see below).  
Digital Ground (Pin 8, 24, 40). To be connected to AGNDT and AGNDR (see below).  
Analog +5V (Pin 62). To be connected to VDD (see below).  
GND  
AVDD  
AGNDT  
AGNDR  
Analog Transmit Ground (Pin 64). To be connected to GND (see below).  
Analog Receive Ground (Pin 59). To be connected to GND (see below).  
AGNDT and AGNDR must be connected together as close as possible to the chip.  
GND and AGNDR board plans should be separated, then connectedtogether as close as possible to the  
chip, at a single point. Similarly VDD and AVDD must ne connected as close as possible to the chip, at a  
single point.  
II - BLOCK DIAGRAMS  
II.1 - Functional Block Diagram  
15  
16  
14  
ST75C520  
1
2
TXA2  
TXA1  
HDLC  
TX  
V.17, V.29, V.27  
FAX TRANSMITTER  
TX  
ANALOG  
MUX  
SD [0..7]  
(26 to 33)  
DUAL RAM  
INTERFACE  
DPLL  
60 RXA1  
RXA2  
HDLC  
RX  
V.17, V.29, V.27  
FAX RECEIVER  
RX  
ANALOG  
61  
TONE  
DETECTOR  
HANDSHAKE AND  
STATUS REPORT  
SINTR 38  
V.21 FLAG  
DETECTOR  
V.24  
INTERFACE  
RING  
DETECTOR  
13 12 11  
10  
5/45  
ST75C520  
II.2 - Hardware Block Diagram  
ST75C520  
PROGRAM ROM 8K x 32  
XTAL  
55  
56  
EXTAL  
12  
ST18932  
DSP CORE  
RAM  
2K x 16  
BOUNDARY SCAN  
(42 to 51 - 53-54)  
TXA2  
TXA1  
1
2
FIFO  
8 x 16  
IIR  
FIR  
EBS  
3
RESET 52  
58 VREFP  
63 VCM  
7
DPLL AND CONTROL  
SA [0..6]  
(17 to 23)  
57 VREFN  
60 RXA1  
61 RXA2  
SD [0..7]  
(26 to 33)  
8
DUAL  
PORT  
RAM  
FIFO  
8 x 16  
SDS (SDR) 34  
SR/W (SWR) 35  
SCS 36  
FIR  
IIR  
FIR  
P
A
G
E
S
S
S
I
64 x 8  
E
Y
E
CROM  
8K x 16  
SDTACK 37  
SINTR 38  
O
V.24 INTERFACE  
INT/MOT 39  
8-24  
40  
9-25  
41  
11 12 13 14 10  
16 15  
7
6
5
4
59 62 64  
III - ELECTRICAL SPECIFICATIONS  
Unless otherwise noted, electrical characteristics are specified over the operating range. Typical value are  
given for VDD = +5V and tamb = 25°C.  
III.1 - MaximumRatings (referenced to GND)  
Symbol  
VDD  
Parameter  
Value  
Unit  
V
DC Supply Voltage  
-0.3 to 7.0  
VI, VIN  
II, IIN  
IO  
Digital or Analog Input Voltage  
Digital or Analog Input Current  
Digital Output Current  
-0.3 to (VDD + 0.3)  
V
±
mA  
mA  
mA  
°C  
1
±
±
20  
10  
IOUT  
Analog Output Current  
Toper  
Tstg  
Operating Temperature  
0, + 70  
- 40, + 125  
1000  
Storage Temperature (plastic)  
Maximum Power Dissipation  
°C  
Ptot  
mW  
Stresses above those hereby listed may cause damage to the device. The ratings are stress related only and functional operation of the device  
at conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Standard MOS circuits handling procedure should be used to avoid possible damage to the  
device.  
III.2 - DC Characteristics  
V
DD = 5.0V ± 5%, GND = 0V, Tamb = 0 to 70°C (unless otherwise specified).  
III.2.1 - Power Supply and Common Mode Voltage  
Symbol  
VDD  
Parameter  
Min.  
Typ.  
5
Max.  
5.25  
100  
Unit  
V
Supply Voltage  
4.75  
IDD  
Supply Current (internal oscillator)  
Supply Current in Low Power Mode  
Common Mode Voltage  
75  
mA  
mA  
V
IDD-lp  
VCM  
1
VDD/2 -5%  
VDD/2  
VDD/2 + 5%  
6/45  
ST75C520  
III.2.2 - Digital Interface  
All digital pins except XTAL Pins.  
Symbol  
Parameter  
Min.  
-0.3  
2.2  
Typ.  
Max.  
Unit  
V
VIL  
VIH  
II  
Low Level Input Voltage  
High Level Input Voltage  
0.8  
V
Input Current VI = VDD or VI = GND  
-10  
0
+10  
µA  
V
VOH  
VOL  
IOZ  
High Level Output Voltage (Iload = 2mA)  
Low Level Output Voltage (Iload = 2mA)  
2.4  
0.4  
50  
V
Three State Input Leakage Current (GND < VO < VDD  
)
-50  
0
5
µ
A
CIN  
Input Capacitance  
pF  
Crystal oscillator interface (XTAL, EXTAL).  
Symbol  
VIL  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
Low Level Input Voltage  
1.5  
VIH  
High Level Input Voltage  
3.5  
-15  
V
IL  
Low Level Input Current GND < VI < VILmax  
High Level Input Current VIHmin < VI < VDD  
µ
µ
A
A
IH  
15  
III.2.3 - Analog Interface  
Symbol  
Parameter  
Min.  
Typ.  
2.50  
Max.  
Unit  
V
VREF  
Differential Reference Voltage Input = VREFP - VREFN  
Input Common Mode Offset, v = (RXA1+RXA2)/2 - VCM  
Differential Input Voltage RXA1 - RXA2  
2.40  
-300  
2.60  
300  
VCMOin  
VDIFin  
VCMOout  
VDIFout  
VOFFOut  
Rin  
mV  
VPP  
mV  
VPP  
mV  
kΩ  
2 x VREF  
200  
Output Common Mode Voltage Offset = (TXA1+TXA2)/2 - VCM  
Differential Output Voltage TXA1 - TXA2  
-200  
2 x VREF  
100  
Differential Output DC Offset (TXA1 - TXA2)  
-100  
100  
Input Resistance  
Output Resistance  
Load Resistance  
Load Capacitance  
RXAx  
TXAx  
TXAx  
TXAx  
Rout  
20  
50  
RL  
10  
kΩ  
CL  
pF  
7/45  
ST75C520  
III.3 - AC Electrical Characteristics  
III.3.1 - Dual Port RAM Host Timing  
WRITE-CYCLE TIMING  
READ-CYCLE TIMING  
NSCS  
SA[0..6]  
SR/NW  
Valid Address  
Valid Address  
1
7
4
5
1
9
4
5
NSDS  
8
12  
3
10  
Valid Data  
IN  
Valid Data  
OUT  
SD[0..7]  
2
6
2
6
NSDTACK  
NSINTR  
11  
SR/NW (= NWRITE)  
NSDS (= NREAD)  
Number  
Description  
Min.  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
Address and Control Set-up Time  
SDTACK Acknowledge  
Data Set-up Time  
5
20  
3
10  
0
4
Address and Control Hold Time  
Data Hold Time  
5
5
6
SDTACK Hold Time  
0
7
Write Enable Low State  
Access Inhibition High State (see Note)  
Read Enable Low State  
Read Data Access  
45  
70  
45  
8
9
10  
11  
12  
35  
50  
15  
SINTR Clear Delay  
Data Valid to Tristate  
Note : A minimum delay of 70ns is required only from the rizing edge of NWRITE to the falling edge of the next selected NREAD or NWRITE.  
8/45  
ST75C520  
III.3.2 - Serial V.24 Interface Timing  
CLK  
1
2
TXD  
RXD  
Valid Data In  
3
Valid Data Out  
4
Number  
Description  
Min.  
30  
Typ.  
Max.  
Unit  
ns  
1
2
3
4
TXD to CLK Set-up Time  
TXD to CLK Hold Time  
10  
ns  
RXD Valid to CLK Delay Time  
RXD Valid to CLK Hold Time  
100  
ns  
0
ns  
9/45  
ST75C520  
IV - FUNCTIONAL DESCRIPTION  
IV.1 - System Architecture  
IV.2.6 - DTMF Detector Description  
A DTMF Detector is included in the ST75C520, it  
allows detectionofvalid DTMF Digits. AvalidDTMF  
Digit is defined as a dual Tone with a total power  
higher than -35dBm, a duration higher than 40ms  
and a differential amplitude within 8dB (negativeor  
positive).  
The chip allows the design of a complete FAX  
data-pump without any externalcomponent. Aver-  
satile dual port RAM allows an easy interface with  
most micro-controllers.  
IV.2 - Operation  
IV.2.1 - Modes  
IV.2.7 - Voice Mode  
The ST75C520 voice mode allows the implemen-  
tation of enhanced telephone functions like an-  
swering machines. The incoming samples  
(9600Hz), received from the line are PCM A-law  
coded and writen into the dual port RAM. The  
outpoing samples are decompressed using the  
same A-law and output to the telephone line.  
The modem implementationisfullycompatible with  
FAX modulation recommendations. The modula-  
tion can be either Trellis Coded Modulation (TCM)  
as in V.17 14400, 12000, 9600, 7200bps rates,  
Quadrature Amplitude Modulation (QAM) as in  
V.29 9600, 7200, 4800 and V.27ter 4800 and  
2400bps. Other modes of operation include tone  
and DTMF detection or generation, or speech  
mode.  
The voice mode is entered using a CONF com-  
mand, it can be either transmit voice from the dual  
RAM Tx buffer to the telephone line, receive voice  
from the telephone line to the dual RAM buffer, or  
both of these functions simultaneously. The format  
of the signal is A-law coded without complementa-  
tion of the even bits. The buffer mechanism, be-  
tween the host micro-controler and the ST75C520,  
is identicalto the mechanism used for parallel data  
exchanges except that it starts immediately after  
CONF command, the size of the transmit and  
received buffer, are and must be 8 bytes, there is  
no need for a XMIT command, and if an overrun or  
underrun condition occurs no error will be reported  
to the host processor.  
IV.2.2 - Transmitter Description  
The signal pulses are shaped in a dedicated filter  
further combined with a compromise transmit  
equalizersuited for transmission over strongly dis-  
torted lines. 3 different compromise equalizers are  
available and can be selected by software.  
IV.2.3 - ReceiverDescription  
The receiver section handlescomplex signals and  
uses a fractionally spaced complex equalizer. It is  
able to cope with distant modem timing drifts up to  
10-4 as specified in the ITU-T recommendations. It  
also compensatefor frequencydrift up to 10Hzand  
for phase jitter at multiple and simultaneous fre-  
quencies.  
IV.2.8 - Analog Loop Back Test Mode  
In any transmission standard and serial data for-  
mat, the ST75C520 can be configured for analog  
loop back test.  
IV.2.4 - Tone Generator Description  
IV.2.9 - Low Power Mode  
Four tonescan besimultaneouslygeneratedbythe  
ST75C520. The tones are determined by their  
frequenciesandby theoutputamplitudelevel.Aset  
of specific commands are also available for DTMF  
generation(using two of the four generatorsavail-  
able).  
Sleep state can be attainedby a SLEEPcommand.  
Activating the reset signal will wake up the data-  
pump. When in sleep mode, the dual port RAM is  
unavailableand the clocks are disabled.  
When enteringthe lowpowermode, the ST75C520  
stops its oscillator, all the peripherals of the DSP  
core are stopped in order to reduce the power  
consumption. The dual RAM is made inacessible.  
IV.2.5 - Tone Detector Description  
Sixteen tones can be simultaneously detected by  
the ST75C520. Each of the tones to bedetected is  
defined by the coefficients of a 4th order program-  
mable IIR. Detectionthresholds are also program-  
mable from-45dBm up to -10dBm.DTMF detection  
is also availableand is performed by a specificfilter  
section (that requires no programming).  
The ST75C520 can be awakened by a hardware  
reset.  
There is a maximum time of 20ms to restart the  
oscillator after waking up and an additional 5ms  
after the interrupt to be able to accept any com-  
mand coming from the host.  
10/45  
ST75C520  
IV.2.10 - Reset  
V.1.1 - Mapping  
After a hardware reset, or an INIT command, the  
ST75C520 clears all its internal memories, clears  
the whole dual RAM and starts to initialize the delta  
sigma analog converters. As soon as these initiali-  
zations are completed, the ST75C520 clears the  
dual RAM address 0 (COMSYS), generates an  
interrupt IT6 (command acknoledge) and is pro-  
grammed to send and receive tones, the bit clock  
and the sample clock are programmed to 9600Hz.  
The total duration of the reset sequence is about  
5ms. After that time the ST75C520 is ready to  
execute commands sent by the host micro-control-  
ler. Thedurationofthe resetsignalshouldbegreater  
than 700ns.  
V.1.1.1 - Command Area  
The command area is located from $00 to $04.  
Address $00 holds the command byte COMSYS,  
and the next four locations hold the parameters  
COMPAR[0..3]. The command parameters must  
be entered before the command word is issued.  
Once the command has been entered, the com-  
mand byte is reset and an acknowledge report is  
issued. A new command should not be issued  
before theacknowledgecounterCOMACK isincre-  
mented.  
V.1.1.2 - Report Area  
The report area is located from address $05 to  
address $07. Location $05 holds the acknowledge  
counter COMACK. Each time a command is ac-  
knowledged, the report bytes COMREP[0..1] (if  
any) are written by the ST75C520 into locations  
$06 and $07, and the content of COMACK is  
incremented. This counter allows the ST75C520 to  
accurately monitor the command processing.  
IV.3 - Modem Interface  
IV.3.1 - Analog Interface  
The modemdesigner must provide a proper hybrid  
interface to the ST75C520. An example of hybrid  
design is given in paragraphs XII and XIII. The  
inputs and outputs of the MAFE are differential,  
achieving thus a better noise immunity. The D/A  
converter output amplifier includes a single pole  
low-pass filter, its cut-off frequencyis :  
V.1.1.3 - Status Area  
Fc - 3dB # 19200Hz.  
The statusarea islocated from address$08to $0A.  
The error status word SYSERR is located at ad-  
dress $08. This error status word is updated each  
time anerrorcondition occurs. An optionalinterrup-  
tion IT0 may additionally be triggered in the case  
of an error condition. Locations $09 and $0A hold  
the general status bytes STATUS[0..1]. The mean-  
ing of the bits depends on the mode of operation,  
and is described in Chapter VII. The third byte at  
address $0B holds the Quality Monitor byte  
STAQUA.  
Continuous-time filtering of the analog differential  
output is necessary using an off-chip amplifier and  
a few external passive components.  
IV.3.2 - Host Interface  
The host interface is seen by the micro as a 64x8  
RAM, with additional registers accessible through  
an 8-bit address space. A selection Pin (INT/MOT)  
allows to configure the host bus for either INTEL or  
MOTOROLA type control signals.  
V.1.1.4 - Optional Status Area  
V - USER INTERFACE  
The user can program (through the DOSR com-  
mand) the three locations STAOPT[0..2] of the  
Optional Status Area ($0C to $0E) for the real time  
monitoring of three arbitrary memory locations.  
V.1 - Dual Port Ram Description  
Thedual port RAM is thestandard interfacebetween  
the controller and the ST75C520, for either com-  
mands ordata.This memory is addressedthrougha  
7-bit address bus. The locationsfrom $00 to $3F are  
RAM locations, while locations from $40 to $50 are  
control registers dedicated to the interrupt handling.  
Severalfunctionalareasare definedin thedualport  
RAM, namely :  
- the command area,  
V.1.1.5 - Data Buffer Area  
The data area is made of four 8-byte buffers. Two  
are dedicated to transmission and the two others  
to reception. Each of the four buffers is attached to  
a status byte. the meaning of the status byte de-  
pends on the selected format of transmission.  
Within each buffer, D0 represents the first bit in  
time.  
- the report area,  
- the status area,  
- the data buffer area.  
11/45  
ST75C520  
V.1.2 - Interruptions  
- IT3 : Rx Buffer  
Each time the ST75C520 has filled a buffer, this  
interrupt is generated.  
The ST75C520 can generate 5 interrupts for the  
controller. The interrupt handlingis made with a set  
of registers located from $40 to $50.  
The interruptions generated by the ST75C520  
come from several different sources. Once the  
ST75C520 raises an interrupt, a signal is sent to  
the controller. The controller has then to process  
the interrupt and clear it. The interrupt source can  
be examined in the Interrupt Source Register  
ITSRCR located at $50. According to this status  
byte, the interrupt sourcecan be determined.Then,  
writing a zero at one of the memory location $40 to  
$46 (Reset Interrupt Registers ITREST[0..6]) will  
reset the corresponding interrupt (and thus ac-  
knowledge it). These sources of interruptions can  
be masked globally or individually using the Inter-  
rupt Mask Register ITMASK located at $4F.  
- IT4 : Status Byte  
This signifies that the status byte has changed  
and must be checked by the controller.  
- IT6 : Command Acknowledge  
This signifies thatthe ST75C520hasreadthelast  
command entered by the host, incremented the  
command counter COMACK, and is ready for a  
new command.  
ITSRCR  
X
D6  
X
D4 D3 D2  
X
D0  
D0 = 1  
D2 = 1  
Dn = 1  
IT0 Pending  
IT2 Pending  
ITn Pending  
The interrupt sources are :  
- IT0 : Error/Warning  
This signifies that an error has occurred and the  
error code is available in the error status byte  
SYSERR.This byte can be selectivelycleared by  
the CSE command.  
ITMASK D7 D6  
X
D4 D3 D2  
X
D0  
D7 and D0 = 1 IT0 EnableD  
D7 and D2 = 1 IT2 EnableD  
...................... .....................  
D7 and D6 = 1 IT6 EnableD  
- IT2 : Tx Buffer  
Each time the ST75C520 frees a buffer, this  
interrupt is generated.  
12/45  
ST75C520  
V.1.3 - Host Interface Summary  
Address (hex)  
Description  
Size (Byte)  
Mnemonic  
COMMAND AREA  
$00  
Command  
1
4
COMSYS  
$01-$04  
Command Parameters  
COMPAR[0..3]  
REPORT AREA  
$05  
Acknowledge Counter  
Report  
1
2
COMACK  
$06-$07  
COMREP[0..1]  
STATUS AREA  
$08  
Error Status  
1
2
1
3
SYSERR  
$09-$0A  
$0B  
General Status  
Quality Monitor  
Optional Report  
STATUS[0..1]  
STAQUA  
$0C-$0E  
STAOPT[0..2]  
DATA AREA  
$1C  
Data Rx Buffer 0 Status  
Data Rx Buffer 0  
1
8
1
8
1
8
1
8
DTRBS0  
$1D-$24  
$25  
DTRBF0[0..7]  
DTRBS1  
Data Rx Buffer 1 Status  
Data Rx Buffer 1  
$26-$2D  
$2E  
DTRBF1[0..7]  
DTTBS0  
Data Tx Buffer 0 Status  
Data Tx Buffer 0  
$2F-$36  
$37  
DTTBF0[0..7]  
DTTBS1  
Data Tx Buffer 1 Status  
Data Tx Buffer 1  
$38-$3F  
DTTBF1[0..7]  
INTERRUPT AREA  
$40-$46  
$4F  
Reset Interrupt Reg.  
Interrupt Mask Reg.  
Interrupt Source Reg.  
7
1
1
ITREST[0..6]  
ITMASK  
$50  
ITSRCR  
13/45  
ST75C520  
V.2 - Command Set  
The Command Set has the following attractive  
features :  
SETGN Set Gain. This command sets the global  
gain factor, which is used for thetransmit  
samples. Parametric command.  
- user friendly with easy to remember mnemonics,  
- possibility of straightforwardexpansion with new  
commands to suit specific customer require-  
ments,  
- easy upgradeof existing software using previous  
modem based SGS-THOMSON products.  
V.2.1.2 - Data Communication Commands  
XMIT  
Tra nsmit Data. Start/stop the  
transmission of data in parallel mode.  
After a XMIT command, the ST75C520  
sends the data contained in its dual port  
RAM.  
The command set has been designed to provide  
the necessary functional controlon the ST75C520.  
Each command is classified according to its syntax  
and the presence/absence of parameters. In the  
case of a parametric command, parameters must  
first be written into the dual port RAM before the  
command is issued. Acknowledge and error report  
is issued for each command entered.  
SERIAL Select Serial or Parallel Mode. This  
command selects the data source, i.e.  
either parallel or serial. The parallel  
mode uses a part of the dual port RAM  
as a double buffer. Theserial mode uses  
the serial synchronous I/O. Parametric  
command.  
V.2.1 - Command Set Summary  
FORM SelectstheTransmission Format(only in  
para llel mode). Th is comma nd  
configures the data interface for both  
receiver and transmitter according to the  
selected data format. Parametric  
command (HDLC or synchronous). In  
serial mode, format is always  
synchronous.  
V.2.1.1 - Operational Control Commands  
INIT  
Initialize. Initialize the modem engine.  
Set all parameters to their default values  
and wait for commands of the control  
processor. Non parametric command.  
IDT  
Identify. Return the product identification  
code. Non parametric command.  
SLEEP Turn to low power mode, the ST75C520  
enters the low power mode and stops its  
crystal oscillator to reduce power  
consumption. In this mode all the clocks  
are stopped and the dual RAM is  
unreachable.  
V.2.1.3 - Memory Handling Commands  
MW  
MR  
CR  
Memory Write. This command is used to  
write an arbitrary 16-bit value into the  
writable memory location currently  
specified by a parameter. Parametric  
command.  
Memory Read.Thiscommand allows the  
controller to read any of the ERAM or  
CROM (ST75C520 memory spaces)  
location without interrupting the  
processor. Parametric command.  
Complex Read. This command allows  
the controller to read at the same time  
the real and imaginary part of a complex  
value stored in a double ERAM or  
CROM location. This feature is very  
interesting for eye pattern software  
control and for equalization monitoring.  
This command insures that the real and  
imaginary parts are sampled in the  
memory at the same time (integrity).  
Parametric command.  
HSHK  
Handshake. Begins the handshake  
sequence. The modem engine  
generates all the sequences defined in  
the ITU-T recommendations. A status  
report indicates to the control processor  
the state of the handshake. This  
command only applies to modes where  
a handshake sequence is defined. A  
CONF commandmust havebeen issued  
prior to the use of HSHK. Non parametric  
command.  
STOP  
SYNC  
FAX Stop. Stop FAX Half-duplex  
transmitter. Non parametric command.  
FAX Synchronize. Start/Stop of FAX  
Half-duplex receiver. Parametric  
command.  
CSE  
Clear Status Error. Selectivelyclears the  
Error status byte SYSERR. Parametric  
command.  
14/45  
ST75C520  
V.2.1.4 - Configuration Control Commands  
DEFT  
TGEN  
Define Tone. Programs the tone  
generator(s)for arbitrary tone synthesis.  
Parametric command.  
Tone Generator Control. Enables or  
disables the tone generator(s).  
Parametric command.  
CONF  
Configure.This commandconfiguresthe  
modemenginefor datatransmission and  
handshake procedures (if any) in any of  
the supported modes. The transmission  
parametersare set to theirdefaultvalues  
and can be modified with the MODC  
command. Parametric command.  
IV.2.1.6 - Tone Detection Commands  
TDRC Read Tone Detector Coefficient. Read  
one Tone Detector Coefficient.  
Parametric command.  
TDWC Write Tone Detector Coefficient. Write  
one Tone Detector Coefficient.  
Parametric command.  
TDRW Read Tone Detector Wiring. Read one  
Tone Detector Wiring connection.  
Parametric command.  
TDWW Write Tone Detector Wiring. Write one  
Tone Detector Wiring connection.  
Parametric command.  
MODC Modify Configuration. This command  
allows modification of some of the  
parameters which have been set up by  
the CONF command. It can also be used  
to alter the mode of operations (short  
train). Parametric command.  
DOSR  
Define Optional Status Report. This  
command allows the modification of the  
optional status report located in the  
status area of the dual port RAM. One  
can thus select a particular parameter to  
be monitored during all modes of  
operation. Parametric command.  
DSIT  
Define Status Interrupt. This command  
allows the programming of the status  
word bit that will generate an Interrupt to  
the controller. Parametric command.  
TDZ  
Clear Tone Detector Cell. Clear internal  
variables of a Tone Detector Cell.  
Parametric command.  
V.2.1.5 - Tone Generation Commands  
TONE Select Tone. Programs the tone  
V.2.1.7 - MiscellaneousCommands  
CALL  
Call a Subroutine. Call a subroutine with  
one Parameter. Parametric command.  
generator(s) for the desired default  
tone(s). Additional mnemonics provide  
quick programming of DTMF tones or  
other currently used tones. Parametric  
command.  
JSR  
Call a Low Level Subroutine. Call an  
internal subroutine with one parameter.  
Parametric command.  
15/45  
ST75C520  
V.3 - Command Set Short Form  
CCI Command  
Mnemonic  
XMIT  
Value  
0x01  
0x02  
0x03  
0x04  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0C  
0x0D  
0x0E  
0x10  
0x11  
0x12  
0x13  
0x14  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x20  
0x21  
0x25  
0x26  
Description  
Transmit Data  
SETGN  
SLEEP  
HSHK  
INIT  
Set Transmit Gain  
Power Down the ST75C520  
Start Handshake  
Initialize (Software Master RESET)  
Enable/disable Data Serial Mode  
Clear Error Status Word  
Define Parallel Data Format  
Define Optional Status Report  
Generate Predefined Tones  
Enable Tone Generator  
Define Arbitrary Tone  
SERIAL  
CSE  
FORM  
DOSR  
TONE  
TGEN  
DEFT  
MR  
Memory Read  
CR  
Complex Read  
MW  
Memory Write  
DSIT  
Define Status Interrupt  
Return Product Identification Code  
Call a Low Level Subroutine  
Call a Subroutine  
IDT  
JSR  
CALL  
TDRC  
TDRW  
TDWC  
TDWW  
TDZ  
Tone Detector Read Coefficient  
Tone Detector Read Wiring  
Tone Detector Write Coefficient  
Tone Detector Write Wiring  
Tone Detector Clear Cell  
Configure  
CONF  
MODC  
STOP  
SYNC  
Modify Default Configuration  
FAX Stop Transmitter  
FAX Synchronize Receiver  
16/45  
ST75C520  
V.4 - Status - Reports  
V.4.1 - Status  
V.5.1.1 - Transmit  
Thecontrollermust firstfill atleastthefirstbufferof data  
(Tx Buffer0) with the bits to be transmitted. In orderto  
perform this operation, the controller must first check  
the Tx Buffer 0 status word DTTBS0. If this buffer is  
empty, the controller fills the data buffer locations(up  
to 64 bits), and then writes in DTTBS0 the number of  
bytescontained in the buffer. The controllercan then  
either proceed with the second buffer or initiate the  
transmission with a XMIT command.  
The ST75C520 copies the contents of the data  
buffer and then clears the buffer status word in  
order to make it again available, then generatesan  
IT2 interrupt. The number of bytes specified by the  
status word is then queued for transmission. The  
process goes on with the two buffers until an XMIT  
command stops the transmission. After the finish-  
ing XMIT command has been issued, the last buff-  
ers are emptied by the ST75C520.  
The ST75C520 has a dedicated status reporting  
area located in its dual port RAM. This allow a  
continuous monitoring of the status variables with-  
out interrupting the ST75C520.  
The first status byte gives the error status. Issuing  
of an error status can also be flagged by a mask-  
able interrupt for the controller. The signification of  
the error codes are given in Chapter VII.  
The second and third status bytes give the general  
status of the modem. These status include for  
example the ITU-T circuit status and other items  
described in appendix. These two status can gen-  
erate, when a change occurs, an interrupt to the  
controller ; each bit of the two byte word can be  
masked independently.  
The forth byte gives in real time a measure of the  
reception quality. This information may be used by  
the controller to monitor the quality of the received  
bits.  
Errors occur when bothbuffers are empty while the  
transmit bit queue is also empty. Error is signalled  
with an IT0 interruption to the controller.  
Three other locations are dedicated for custom  
status reporting. The controller can program the  
ST75C520 for a real time monitoring of any of its  
internal RAM location. High byte or low byte of any  
word can thus be monitored.  
V.5.1.2 - Receive  
The controller should take care of releasing the Rx  
buffers before the Data Carrier Detect goes true.  
This is made by writing zero in the Rx Buffer Status  
0 and 1. The ST75C520 then fills the first buffer,  
and oncefilled setsthe statusword withthe number  
of bytes received and then generates an IT3 inter-  
rupt. It then takes control of the second buffer and  
operates the same way. The controller must check  
the statusof the buffers and empty them. Once the  
data read, the controller must release the used  
buffer and wait for the next buffer to be filled.  
Error occurs when both buffers are declared full,  
and incoming bits continue to arrive from the line.  
Error is signaled by an IT0 interrupt.  
V.4.2 - Reports  
The ST75C520 features an acknowledge and re-  
port facility. The acknowledge of a command is  
monitored by a counter COMACK located in the  
dual port RAM. Each time a command is read from  
the command area, the ST75C520 will increment  
this counter. For instance, when a MR (Memory  
Read) command is issued, the data is first written  
in the report area, and the counter is incremented  
afterwards. This way of processing insures data  
integrity and gives additional synchronization be-  
tween the controller and the data pump.  
V.5.2 - HDLC Parallel Mode  
This mode implements part of the High Level Data  
Link Control formats and procedures. It is well  
suited for error correcting protocols like ECM or  
FAXT4/T30 recommendations.It supportstheflag-  
ging generation,16-bitFrame Check Sequence,as  
well as the Zero insertion/deletionmechanism.  
V.5 - Data Exchanges  
The ST75C520 accepts many kinds of data ex-  
change : the default mode uses the synchronous  
serial exchange. Other modes include HDLC fram-  
ing support and synchronous parallel exchanges.  
Detailed description of the Data Buffer Exchanges  
modes is available in the paragraph IX.  
V.5.3 - Serial Exchanges  
The other mode of operation for data exchangesis  
the Serial Synchronous Mode. In this mode, the  
data I/O is made through the V.24 interface (page  
4). Even when using the parallel mode described  
above, the received bits are available on the  
ST75C520 RxD Pin. See paragraph VII.2.1 table  
for clock values.  
V.5.1 - Synchronous Parallel Mode  
The data exchanges are made through the dual  
port RAM and are byte synchronous oriented. The  
double buffer facilities of the ST75C520 allow an  
efficient buffering of the data.  
17/45  
ST75C520  
VI - COMMAND SET DESCRIPTION  
The appendixAcontainsthe descriptionofthecomplete command set.Commandsare presentedaccording  
to the following form :  
COMMAND  
Command Name Meaning  
COMMAND  
Opcode  
Hexadecimal digit  
X
X
X
X
X
X
X
X
Synopsis  
Short description of the functions performed by the command.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
Name  
X
b..a  
Explanation of the parameter  
Default value  
xx *  
Field  
Byte  
Pos.  
Name of the addressed bit field.  
Index (or address in the dual port RAM) of the parameter byte (from 1 to 4).  
Bit field position inside the parameter byte. Can either be a single position (from 0 to 7, 0  
being LSB) or a range.  
Value  
Possible values for the bit (resp. bit field). Range means all values are allowed. A star  
means a defaultvalue. Values are expressed either under the form of a bit string, or under  
hexadecimal format.  
CALL  
Opcode:  
Call a Subroutine  
CALL  
19  
0
0
0
1
1
0
0
1
Synopsis  
CALL allows to executea part of the ST75C520 firmware with a specificargument.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
7..0  
7..0  
Value  
Definition  
Low byte of the call address  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
C_ADDR_L  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
1
2
3
4
18/45  
ST75C520  
CONF  
Configure for Operations  
CONF  
Opcode  
20  
0
0
1
0
0
0
0
0
Synopsis  
CONF allows the complete definition of the ST75C520 operation, including the mode of  
operation(tone, FAX transmit, FAX receive, voice transmit, voice receive, DTMF receive, ...)  
and the modem parameters (standard, speed, ...).  
Field  
Byte  
Pos.  
3..0  
4
Value  
Definition  
Parameters  
CONF_OPER  
CONF_ANAL  
1
1
-
Mode of operation, see below  
0
1
Normal mode  
Analog loop back (test mode only)  
CONF_PSTN  
CONF_AO  
1
1
1
2
5
6
0
1
PSTN (carrier detect set to -43/-48dBm)  
Leased line (carrier detect -33/-38dBm)  
0
1
Answer mode (FSK full duplex only)  
Originate mode (FSK full duplex only)  
CONF_V24  
CONF_MODE  
7
0
1
Do not use RTS pin signal  
Use RTS pin signal  
5..0  
1
Bell 103 (full duplex)  
V.21 (full duplex)  
V.23 (full duplex)  
V.27ter  
V.29  
V.17  
V.33 (half duplex)  
V.21 channel 2  
Reserved  
3
4
7
8
9
C
D
Other  
CONF_TXEQ  
2
7..6  
0
1
2
3
No transmit equalizer  
Transmit equalizer #1  
Transmit equalizer #2  
Transmit equalizer #3  
CONF_CAR  
CONF_SP0  
3
3
0
0
1
1800Hz carrier (V.17/V.33 only)  
1700Hz carrier (V.17/V.33 only)  
7..5  
xx1  
x1x  
1xx  
2400bps allowed (V.27)  
4800bps allowed (V.27, V.29)  
7200bps allowed (V.29, V.17)  
CONF_SP1  
4
2..0  
xx1  
x1x  
1xx  
9600bps allowed (V.29, V.17)  
12000bps allowed (V.17, V.33)  
14400bps allowed (V.17, V.33)  
According with the 4 first bits of the CONF_OPER the ST75C520 is put into the following  
mode of operation.  
CONF_OPER  
0000*  
0010  
Transmit  
Received  
Tones  
Voice  
Tone  
Tones  
Tones  
DTMF  
DTMF  
Voice  
0100  
0110  
Voice  
Tones  
Voice  
Modem  
1000  
1010  
Voice  
1111  
Modem  
Other  
Not allowed  
Not allowed  
19/45  
ST75C520  
CR  
Complex Read  
CR  
Opcode:  
11  
0
0
0
1
0
0
0
1
Synopsis  
CR allows the reading of a complex parameter. The parameter specifies the parameter  
address (for the real part : the imaginary part is next location). CR returns the high byte  
value of both real and imaginary part of the addressed complex parameter.  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
High byte of the 16-bit address  
Parameters  
CR_ADDR_L  
CR_ADDR_H  
1
2
CSE  
Clear Error Status  
CSE  
Opcode:  
08  
0
0
0
0
1
0
0
0
Synopsis  
CSE is used to clear the ST75C520 error status SYSERR byte. It is also used as an  
acknowledge to the error condition handler. For details, please refer to the corresponding  
appendix.  
Field  
Byte  
Pos.  
Value  
Definition  
Parameters  
ERR_MASK  
1
7..0  
Error mask  
See report appendix for detailed meaning  
DEFT  
Define Arbitrary Tone  
DEFT  
Opcode:  
0E  
0
0
0
0
1
1
1
0
Synopsis  
DEFT programsoneof the fourtone generatorforarbitrarytone generation.The parameter  
is the frequency of the generated tone expressed in Hertz between 0 and 3600Hz.  
Field  
Byte  
Pos.  
1..0  
7..0  
7..0  
Value  
Definition  
Index of the tone generator (3..0)  
Low byte of the frequency  
Parameters  
TONE_GEN_SL  
TONE_FREQ_L  
TONE_FREQ_H  
1
2
3
High byte of the frequency  
(internally masked with 0F)  
TONE_SCALE  
4
7..0  
Amplitude scaling factor (high byte)  
3F gives the nominal amplitude  
DOSR  
Define Optional Status Report  
DOSR  
Opcode:  
0A  
0
0
0
0
1
0
1
0
Synopsis  
DOSR specifies the address of the RAM variables to be monitored in the 3 locations  
STAOPT[0..2] of the dual port RAM. It also specifiesthe assignment within the 3 locations.  
Field  
Byte  
Pos.  
1..0  
7..0  
3..0  
7
Value  
Definition  
Index of the STAOPT destination  
Low byte of source address  
High byte of source address  
Parameters  
STA_OPT_ASS  
STA_OPT_ADL  
STA_OPT_ADH  
STA_OPT_HL  
1
2
3
3
0..2  
0
1
Select low byte of source  
Select high byte of source  
20/45  
ST75C520  
DSIT  
Opcode:  
Define Status Interrupt  
DSIT  
13  
0
0
0
1
0
0
1
1
Synopsis  
DSIT specifies the bit mask used with the STATUS[0] and STATUS[1] byte to generate an  
interrupt IT4 to controller. Each time a bit change happens in the status words, assuming  
the corresponding bit mask will be set, an interrupt will be generated.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
Status[0] bit mask pattern  
Status[1] bit mask pattern  
STA_IT_MSK0  
STA_IT_MSK1  
1
2
Notes :  
The default IT Status is 0x3F for STATUS[0] and 0xFF for STATUS[1].  
FORM  
Opcode:  
Select Transmission Format  
FORM  
09  
0
0
0
0
1
0
0
1
Synopsis  
FORM defines the type of transmission used. This format is valid only in the parallel data  
mode. The default format, unless specified, is synchronous.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
X_SYNC  
1
1..0  
00*  
01  
10  
11  
Synchronous format  
Transmit continous ”1” (1)  
HDLC framing  
Transmit continous ”0” (1)  
Notes :  
1. This format is only valid for the transmiter.  
HSHK  
Opcode:  
Handshake  
HSHK  
04  
0
0
0
0
0
1
0
0
Synopsis  
HSHK is used to command the ST75C520 to begin the transmit handshake sequence  
processing. The progress of the handshake is reported to the control processor.  
Parameter  
Non parametric command.  
IDT  
Opcode:  
Identify  
IDT  
14  
0
0
0
1
0
1
0
0
Synopsis  
Parameter  
IDTReturn the ST75C520HardwareandSoftwarerelease number.See paragraph VII.1.4.  
Non parametric command.  
INIT  
Opcode:  
Initialization  
INIT  
06  
0
0
0
0
0
1
1
0
Synopsis  
INIT forces the ST75C520 to reset all parameters to their default conditions and restart  
operations.  
Parameter  
Non parametric command.  
Notes :  
This command makes a software reset of the ST75C520 and so cannot have the regular handshake protocol. It does  
not increment the COMACK, neither generate an Interrupt.  
21/45  
ST75C520  
JSR  
Call a Low Level Subroutine  
JSR  
Opcode:  
18  
0
0
0
1
1
0
0
0
Synopsis  
JSR allows to execute a part of the ST75C520 firmware with a specific argument.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
7..0  
7..0  
Value  
Definition  
Low byte of the call address  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
C_ADDR_L  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
1
2
3
4
MODC  
Modify Configuration  
MODC  
Opcode:  
21  
0
0
1
0
0
0
0
1
Synopsis  
MODC allows modification of the configuration for special purpose. This command has no  
effect while in data mode, the parameters are just sampled when starting to transmit or  
receive. The value of these parameters are notaffected when sending a CONF command.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
MODC_SH  
1
6
0*  
1
Normal training sequence  
Short training (1) sequence  
MODC_FPT  
2
3..2  
00*  
01  
10  
No echo protection tone  
Long echo protection tone (180ms)  
Short echo protection tone (30ms)  
Notes :  
1. Short train sequence must be preceded by at least one normal training sequence.  
MR  
Memory Read  
MR  
Opcode:  
10  
0
0
0
1
0
0
0
0
Synopsis  
MR allows the reading of a 16-bit parameter. The parameter specifies the parameter  
address.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
High byte of the 16-bit address  
MR_ADDR_L  
MR_ADDR_H  
1
2
MW  
Memory Write  
MW  
Opcode:  
12  
0
0
0
1
0
0
1
0
Synopsis  
MW allows the writing of a 16-bit parameter. The parameter specifies the address as well  
as the value to be transferred.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
7..0  
7..0  
Value  
Definition  
Low byte of the 16-bit address  
High byte of the 16-bit address  
Low byte of the 16-bit value  
High byte of the 16-bit value  
MW_ADDR_L  
MW_ADDR_H  
MW_VALUE_L  
MW_VALUE_H  
1
2
3
4
22/45  
ST75C520  
SERIAL  
Opcode:  
Select Serial or Parallel Mode  
SERIAL  
07  
0
0
0
0
0
1
1
1
Synopsis  
SERIAL defines the data path, i.e. either serial or parallel.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TX_SDATA  
1
0
0*  
1
Use serial link for Tx Data  
Use parallel link for Tx Data  
RX_SDATA  
1
1
0*  
1
Use only serial link for Rx Data  
Use also parallel link for Rx Data  
Notes :  
The received Bits always go to the output pin RXD, even when the RX_SDATA bit is set.  
Set Output Gain  
SETGN  
Opcode:  
SETGN  
02  
0
0
0
0
0
0
1
0
Synopsis  
SETGN is a command which sets the scaling factor of the transmit samples. It is used for  
setting the output level or for setting the level of the tone generators. The gain value is  
given in the form of a 2’s complement 16-bit value.  
Parameters  
Field  
Byte  
Pos.  
7..0  
7..0  
Value  
Definition  
GAIN_L  
GAIN_H  
1
2
range FF*  
range 7F*  
Low byte of the 16-bit gain value  
High byte of the 16-bit gain value  
Example  
Gain (dB)  
Gain (Hex)  
Gain (dB)  
Gain (Hex)  
47FA  
Gain (dB)  
-10  
Gain (Hex)  
287A  
0
7FFF  
7214  
65AC  
5A9D  
50C3  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
4026  
-11  
2413  
392C  
-12  
2026  
32F5  
-13  
1CA7  
2D6A  
-14  
198A  
SLEEP  
Opcode:  
Turn to Sleep Mode  
SLEEP  
03  
0
0
0
0
0
0
1
1
Synopsis  
SLEEP is used to force the ST75C520 to turn to low power mode.  
Non parametric command.  
Parameter  
Notes :  
When receiving this command the ST75C520 will stop processing and so cannot have theregular handshake protocol.  
It does not increment the COMACK, neither generate an Interrupt.  
STOP  
Opcode:  
FAX Stop Transmitter  
STOP  
25  
0
0
1
0
0
1
0
1
Synopsis  
STOP is used, in FAX Modes, to force the ST75C520 to turn off the transmitter in  
accordance with the corresponding ITU-T V.33/V.17/V.29/V.27recommendation.  
Parameter  
Non parametric command.  
Notes :  
When receiving this command the ST75C520 will stop sending regular Data. In parallel mode this command must be  
preceded by a XMIT Stop command. In parallel mode the ST75C520 will wait until all the transmit buffers are sent before  
starting the Stop sequence.  
23/45  
ST75C520  
SYNC  
Opcode:  
FAX Synchronize the Receiver  
SYNC  
26  
0
0
1
0
0
1
1
0
Synopsis  
SYNC is used, in FAX Modes, to force the ST75C520 to Start/Stop the receiver in  
accordance with the corresponding ITU-T V.33/V.17/V.29/V.27recommendation.As soon  
as the ST75C520 receives the SYNC Start command it sets its receiver to detect the FAX  
synchronizationsignal.This command is the equivalentHSHK command for the receiver.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
RX_SYNC  
1
0
0*  
1
Stop receiver  
Start receiver synchronization  
TDRC  
Opcode:  
Tone Detector Read Coefficient  
TDRC  
1A  
0
0
0
1
1
0
1
0
Synopsis  
TDRC Read one Coefficient of the selected Tone Detector Cell.  
Parameters  
Field  
Byte  
Pos.  
3..0  
7..0  
Value  
Definition  
TD_CELL  
1
2
0..F  
Tone detector cell number  
TD_C_ADDR  
0..B  
10  
20  
Other  
Biquad coefficient  
Energy coefficient  
Static level  
Reserved  
The command answer is : Low Byte of Coefficient followed by High Byte of Coefficient.  
TDRW  
Opcode:  
Tone Detector Read Wiring  
TDRW  
1B  
0
0
0
1
1
0
1
1
Synopsis  
TDRC Read Wiring of the selected Tone Detector Cell.  
Parameters  
Field  
Byte  
Pos.  
3..0  
0
Value  
Definition  
TD_CELL  
1
2
0..F  
Tone detector cell number  
TD_W_ADDR  
0
1
Biquad and energy input  
Comparator inputs  
Reserved  
Other  
The command answer is:  
a) If TD_W_ADDR = 0 :  
- First Byte is the Node Number of the Signal connected to Biquadratic Filter input.  
- Second Byte is the Node Number of the Signal connected to the Energy estimator input.  
b) if TD_W_ADDR = 1 :  
- First Byte is the Node Number of the Signal connected to Comparator Negative input.  
- SecondByte istheNode Number of theSignal connectedto the ComparatorPositive input.  
24/45  
ST75C520  
TDWC  
Opcode:  
Tone Detector Write Coefficient  
TDWC  
1C  
0
0
0
1
1
1
0
0
Synopsis  
TDWC Write one Coefficient of the selected Tone Detector Cell.  
Parameters  
Field  
Byte  
Pos.  
3..0  
7..0  
Value  
Definition  
TD_CELL  
1
2
0..F  
Tone detector cell number  
TD_C_ADDR  
0..B  
10  
Biquad coefficient  
Energy coefficient  
Static level  
20  
Other  
Reserved  
TD_COEFL  
TD_COEFH  
3
4
7..0  
7..0  
Low byte of coefficient  
High byte of coefficient  
TDWW  
Opcode:  
Tone Detector Write Wiring  
TDWW  
1D  
0
0
0
1
1
1
0
1
Synopsis  
TDRC Write Wiring of the selected Tone Detector Cell.  
Parameters  
Field  
Byte  
Pos.  
3..0  
0
Value  
Definition  
TD_CELL  
1
2
0..F  
Tone detector cell number  
TD_W_ADDR  
0
1
Biquad and energy input  
Comparator inputs  
Reserved  
Other  
If TD_W_ADDR = 0 (Select Biquad and Energy Inputs)  
Parameters  
Parameters  
Field  
Byte  
Pos.  
Value  
0..3F  
0..3F  
Definition  
Energy estimator signal input  
Biquad filter signal input  
TD_W_ERN  
TD_W_BIQ  
3
4
If TD_W_ADDR = 1 (Select Comparator Inputs)  
Field  
Byte  
Pos.  
Value  
0..3F  
0..3F  
Definition  
TD_W_CN  
TD_W_CP  
3
4
Negative comparator signal input  
Positive comparator signal input  
TDZ  
Opcode:  
Tone Detector Clear Cell  
TDZ  
1E  
0
0
0
1
1
1
1
0
Synopsis  
TDZ Clears all internal variables of one Tone detector cell including Filter local variables  
and energy estimator. This command must be sent after changingcoefficients of a cell to  
avoid instability.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TD_CELL  
1
3..0  
0..F  
Tone detector cell number  
25/45  
ST75C520  
TGEN  
Opcode:  
Enable/disable Tone Generators  
TGEN  
0D  
0
0
0
0
1
1
0
1
Synopsis  
TGEN causes the ST75C520 to enable or disable the four tone generators.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TONE_0_ENA  
1
0
0*  
1
Generator #0 disabled  
Generator #0 enabled  
TONE_1_ENA  
TONE_2_ENA  
TONE_3_ENA  
1
1
1
1
2
3
0*  
1
Generator #1 disabled  
Generator #1 enabled  
0*  
1
Generator #2 disabled  
Generator #2 enabled  
0*  
1
Generator #3 disabled  
Generator #3 enabled  
TONE  
Opcode:  
Predefined Tones  
TONE  
0C  
0
0
0
0
1
1
0
0
Synopsis  
TONE programs the tone generatorsfor the predefinedtones. Thetone generators#0 and  
eventually #1 are reprogrammed with this command. Eventually the tone generator #0  
and #1 are enabled. Using a value not in the following table will disable tone generator #0  
and #1.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
DTMF 0 (941 & 1336Hz)  
TONE_SELECT  
1
5..0  
0
1
DTMF 1 (697 & 1209Hz)  
DTMF 2 (697 & 1336Hz)  
DTMF 3 (697 & 1477Hz)  
DTMF 4 (770 & 1209Hz)  
DTMF 5 (770 & 1336Hz)  
DTMF 6 (770 & 1477Hz)  
DTMF 7 (852 & 1209Hz)  
DTMF 8 (852 & 1336Hz)  
DTMF 9 (852 & 1477Hz)  
DTMF A (697 & 1633Hz)  
DTMF B (770 & 1633Hz)  
DTMF C (852 & 1633Hz)  
DTMF D (941 & 1633Hz)  
DTMF * (941 & 1209Hz)  
DTMF # (941 & 1477Hz)  
Answer tone (2100Hz)  
Tone (1650Hz)  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10  
11  
12  
13  
Answer tone (2225Hz)  
Tone (1300Hz)  
XMIT  
Opcode:  
Start/stop Transmission  
XMIT  
01  
0
0
0
0
0
0
0
1
Synopsis  
XMIT start or stop the transmission ofthe Parallel Transmit Data. This command work only  
if the Parallel Transmit Data mode has been selected with a SERIAL command.  
Parameters  
Field  
Byte  
Pos.  
Value  
Definition  
TX_START  
1
0
0*  
1
Stop transmission  
Start transmission  
26/45  
ST75C520  
VII - STATUS DESCRIPTION  
In the case of a memory reading command (CR,  
TDRC, TDRW, IDT or MR) once the command  
entered is executed, the report areais filled and the  
acknowledge counter is incremented afterwards.  
This insures that the controller will read the value  
corresponding to its request.  
This appendix is dedicated to the ST75C520 re-  
porting features. in the following sections the com-  
mand acknowledge process and the report and  
status definitions are explained.  
VII.1 - Command Acknowledge and Report  
Furthermore, theST75C520 resets thevalueof the  
COMSYS register once the command has been  
read. The interruption IT6 is raised just after the  
counter is incremented.  
VII.1.1 - Command Acknowledge Process  
(see Figure 1)  
The ST75C520 features an acknowledge process  
based on a counter COMACK. On power-on reset  
(or INIT command), this counter’s value is set to 0.  
Each time a command is successfully executed by  
the ST75C520, the acknowledge counter CO-  
MACK is incremented. This allows a precise moni-  
toring of the command entered and avoids  
command collision.  
VII.1.2 - Reports Specification  
The report section of the Dual Port RAM is dedi-  
cated tomemory reading. Inresponseto a CR, MR,  
TDRC, TDRW, IDT commands, the value read is  
transferred to the report registers COMREP[0..1].  
Figure 1 : Command Acknowledge Process  
BEGIN  
Yes  
No  
COMSYS = 0  
Yes  
No  
COMMAND EXIST  
CLEAR  
ANSWER  
EXECUTE  
COMMAND  
COPY ANSWER  
INTO  
SET SYSERR  
ERR_IPRM  
SET SYSERR  
ERR_IOCD  
COMREP  
ASSERT  
INTERRUPT  
IT0  
ASSERT  
INTERRUPT  
IT0  
INCREMENT  
COMACK  
CLEAR  
COMSYS  
ASSERT  
INTERRUPT  
IT6  
END  
27/45  
ST75C520  
VII.1.3 - CR Command  
Issuing a CR command causes the ST75C520 to dump a specific memory location in complex mode. This  
instruction is particularlyuseful for equalizer state analysis or for software eye-pattern display. The report  
area has this meaning :  
RP7  
RP6  
RP5  
RP4  
RP3  
RP2  
RP1  
RP0  
COMREP[0]  
IP7  
IP6  
IP5  
IP4  
IP3  
IP2  
IP1  
IP0  
COMREP[1]  
RP0..RP7 is the MSB part of the 16-bit value of the real part and IP0..IP7 is the MSB part of the imaginary  
part. The CR command insures that the real and imaginary part of the desired complex value are sampled  
internally at the same time. The address given in the parameter field of CR is the address of the real part.  
VII.1.4 - MR/TDRC/TDRW/IDT Commands  
The report issued by the MR/TDRC/TDRW/IDT commands follow the same rules as for CR. The report  
meaning is :  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
COMREP[0]  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
COMREP[1]  
D0..D15 is the 16-bit value required by the MR/TDRC command.  
In the case of IDT, D15..D12 contains the product identification (2 for ST75C520), D11..D8 contains the  
hardware revision identification and D7..D0 contains the software revision identification.  
VII.2 - Modem Status  
VII.2.1 - Modem Status Description  
The Status of ST75C520 is divided into 4 fields :  
- The error status byte SYSERR that provides information about error. This status can trigger an IT0  
interrupt,  
- The general status byte STATUS[0] and STATUS[1] that contains all the modem signals. These status  
bytes can trigger an IT4 interrupt,  
- The quality status STAQUA, that contains the quality of the received transmission,  
- The optional status bytes STAOP[0], STAOP[1] and STAOP[2], that contains additional information  
regardingthe ST75C520 operatingmode. This defaultinformationcan be changedto monitor any internal  
variables using the DOSR command.  
All these informations are updated on a Baud basis :  
Mode  
Tone, DTMF, Voice  
Baud Rate (2) (Hz)  
CLK (Hz)  
2400  
9600  
Bell 103 (full duplex)  
V.21 (full duplex)  
V.23 (full duplex)  
V.27ter 2400bps  
V.27ter 4800bps  
V.29  
2400  
9600  
2400  
9600  
9600  
2400  
1200  
1600 (1)  
2400  
4800  
2400  
9600/7200/4800  
14400/12000/9600/7200  
14400/12000  
300  
V.17  
2400  
V.33  
2400  
V.21 channel 2  
2400  
Notes : 1. The tone detectors outputs are update 800 times by second.  
2. This baud rate defines also, the maximum command rate. Each baud time the ST75C520 looks at the COMSYS location  
(addesss $00) to see if a command have been sent by the host processor. If the content of this location is different from zero the  
ST75C520 execute the command.  
28/45  
ST75C520  
Starting at the adddress $08 the status area have the following format :  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$08 SYSERR ERR_RTK  
-
-
ERR_IPRM ERR_IOCD  
-
ERR_RX ERR_TX  
$09 STATUS0 STA_109F STA_CPT10 STA_CPT1 STA_CPT0 STA_RING STA_106 STA_107 STA_109  
$0A STATUS1 STA_DTMF STA_FLAG  
-
STA_HR  
STA_AT STA_CCITT  
Quality  
-
STA_H  
$0B STAQUA  
$0C STAOP0  
$0D STAOP1  
$0E STAOP2  
-
Depend on operating mode (see below)  
VII.2.2 - Error Status  
The error status changes each time an error occurs. When the ST75C520 signals an error by setting one  
of the SYSERR bit, it generatesan interrupt IT0. These bits can only be cleared by the host controler using  
the CSE command.  
The meaning of the different bits of the SYSERR byte is discribed below :  
SYSERR  
Field  
Pos.  
Meaning when set  
ERR_TX  
0
Transmit buffer underflow. Loss of synchronisation between the host and ST75C520  
transmit data buffer managment.  
ERR_RX  
1
Receive buffer overflow. Loss of synchronisation between the host and ST75C520 receive  
data buffer managment.  
ERR_IOCD  
ERR_IPRM  
ERR_RTK  
3
4
7
Incorrect CCI command  
Incorrect parameter for the CCI command  
Real time kernel error. ST75C520 not able to perform all its tasks within the baud period  
(transmit or receive samples lost).  
VII.2.3 - Modem General Status  
The modem general status word is composed of two bytes STATUS[0] and STATUS[1]. Any bit change can  
generate an IT4 interrupt. Using the DSIT command allows the selection of the corresponding bit that will  
generate an interrupt each time they will change. The default pattern is $3F for STATUS[0] and $FF for  
STATUS[1].  
The different bits have the following meaning :  
STATUS[0]  
Field  
Pos.  
Meaning when set  
STA_109  
0
CCITT circuit 109 (carrier detect). Indicates that valid data are received. When 0 the output  
data RxD are clamped to constant mark. Valid only in modem mode.  
STA_107  
STA_106  
1
2
CCITT circuit 107 (data set ready). Valid only in modem mode.  
CCITT circuit 106 (clear to send). Indicates that the training sequence has been completed  
and that any data at TxD pin (serial mode) or in the transmit buffer (parallel mode) will be  
transmitted. valid only in modem mode.  
STA_RING  
3
Ring detected. A ring signal (from 15Hz to 68Hz) is present at the RING pin. Valid only in  
tones modes. The precise frequency can be read in the optional status byte STAOP2. The  
detection time is 1 period of the ring signal. The detection lost time in 20ms after the last  
transition on the ring signal.  
STA_CPT0  
STA_CPT1  
STA_CPT10  
STA_109F  
4
5
6
7
Call progress tone detector #0. Low pass filter 650Hz. Valid only in tones modes.  
Call progress tone detector #1. High pass filter 600Hz. Valid only in tones modes.  
Signal in filter #0 is highter than #1. Valid only in tones modes.  
Fast Carrier Detect. Valid only in modem mode.  
29/45  
ST75C520  
STATUS[1]  
Field  
STA_H  
Pos.  
Meaning  
0
2
Transmit synchronisation in progress. Valid only in modem mode.  
STA_CCITT  
CCITT 2100Hz versus 2225Hz answer tone detect. Valid if STA_AT is set. Valid only in  
tones modes.  
STA_AT  
3
4
6
7
Answer tone (either 2100Hz or 2225Hz) detected. Valid only in tones modes.  
Receive synchronisation in progress. Valid only in modem mode.  
STA_HR  
STA_FLAG  
STA_DTMF  
V.21 channel 2 flag detect. Valid only in FAX modem mode and tone mode.  
DTMF digit detect. The digit itself is available in the optional status byte STAOP2. Valid  
only in DTMF receive mode.  
VII.2.4 - Quality Status  
The quality byte STAQUA monitors an evaluation of the line quality. It is updated once per baud and its  
value ranges from 127 (perfect quality) to 0 (terrible quality).This value is automaticalyadjusted according  
to the current receiving mode. Refer to the following chart to convert the value into its Bit Error Rate  
equivalence.  
BER  
1e-2  
1e-3  
1e-4  
1e-5  
1e-6  
1e-7  
1e-8  
STAQUA  
1e-9  
0
31  
63  
95  
127  
VII.2.5 - Optional Status  
According to the operating mode of the ST75C520 the optionalstatus is displaying different informations.  
The optional status are automatically reprogrammed after each CONF command with the address of the  
variablesto monitor according with theoperatingmode selected(CONF_OPER). After the CONF command  
the user must overwrite this default programming by using the DOSR command.  
VII.2.6 - Default Optional Status in Tone Mode  
While in tone mode the format of the STAOP word is as follows :  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$0C  
$0D  
$0E  
STAOP0  
STAOP1  
STAOP2  
TDT7  
TDT15  
TDT6  
TDT14  
TDT5  
TDT13  
TDT4  
TDT12  
TDT3  
TDT2  
TDT10  
TDT1  
TDT9  
TDT0  
TDT8  
TDT11  
(1)  
RING_PERIOD  
Notes : 1. RING_PERIOD is valid when the bit 3 of the STATUS[0] (STA_RING) goes high. This value is updated at each falling edge of  
the RING signal. The RING_PERIOD value must be divided by 2400 to obtain the period in seconds.  
2. TDTx is the output of the tone detector x.  
30/45  
ST75C520  
VII.2.7 - Default Optional Status in DTMF Receiver Mode  
While in DTMF receiver mode the format of the STAOP word is as follows :  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
(1)  
(1)  
$0C  
$0D  
$0E  
STAOP0  
STAOP1  
STAOP2  
TDT7 (1)  
TDT6  
TDT5 (1)  
TDT4  
TDT3  
TDT2  
TDT1  
TDT0  
(1)  
TDT15 (1) TDT14 (1) TDT13 (1) TDT12 (1) TDT11 (1) TDT10 (1) TDT9 (1)  
DTMF_DIGIT (2)  
TDT8  
Notes : 1. These cells are used by the DTMF detector.  
2. DTMF_DIGIT is valid when the bit 7 of STATUS[1] (STA_DTMF) goes high. This value remains unchanged until a new DTMF  
digit is detected.  
VII.2.8 - Default Optional Status in Modem Mode  
While in modem mode the format of the STAOP word is as follows :  
Bit  
Add.  
Name  
7
6
5
4
3
2
1
0
$0C  
$0D  
$0E  
STAOP0  
STAOP1  
STAOP2  
x
x
x
SPEED (2)  
SPVAL (1)  
Not used  
SCR1s PRs  
PNSUCs PRDETs PNDETs  
PNs  
P2s  
P1s  
Notes : 1. SPVALis active in V.33 receiver only at the same time as the rising transition of the SCR1s signal. Went SPVALis set, it  
indicates that the SPEED bits contain the data speed information.  
2. SPEED is valid in V.33 receiver only. It can have 2 values, after the SCR1s signal goes high : 1000 for 14400bps and 0111 for  
12000bps.  
3. The STAOP2 bit reflects the progression of the synchronization. The STAOP2 bits have the following meaning :  
Name  
P1s  
Position  
Description  
Unmodulated carrier sequence. Optional, used for echo protection.  
Continuous 180° phase reversal sequence  
Equalizer trainning sequence  
Tx  
X
Rx  
0
1
2
3
4
5
6
7
P2s  
X
X
X
PNs  
X
PRs  
V.33 and V.17 rate sequence  
X
SCR1s  
PNDETs  
PRDETs  
PNSUCs  
Continuous scrambled 1 sequence  
X
X
X
X
X
Turned on after PN sequence detection  
Turned on after PR sequence detection (V.33 and V.17 only)  
Turned on after succesfull training of the receive equalizer. When on at  
the end of the synchronization, the transmition BER is statisticaly  
bellow 10ppm.  
31/45  
ST75C520  
With the following timing :  
P1  
T1  
P2  
T 3  
PN  
T4  
R
SCR1  
T6  
Data  
T2  
T 5  
Transmit  
STA_H  
P1s  
P2s  
PNs  
PRs  
(6)  
SCR1s  
T7  
T7  
T 8  
T 8  
T 8  
T 8  
Receive  
(7)  
STA_HR  
STA_109F  
P2s  
PNDETs  
PNs  
(1)  
PRDETs  
(2)  
PNSUCs  
SCR1s  
STA_109  
RxData  
Mode  
V.17  
T1 (4)  
192  
192  
192  
192  
192  
192  
192  
192  
T1p (5)  
30  
T2  
22  
22  
22  
22  
22  
22  
22  
22  
T3  
107  
107  
53  
41  
31  
9
T4  
T5  
T6  
T7  
T8  
7
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
1240  
16  
27  
0
20  
20  
20  
8
5
5
5
5
5
5
6
6
V.17 short  
V.29  
30  
7
30  
160  
26  
0
7
V.29 short  
V.27 4800  
V.27 4800 short  
V.27 2400  
V.27 2400 short  
30  
0
7
30  
670  
36  
0
5
7
30  
0
5
7
30  
42  
12  
895  
48  
0
7
7
30  
0
7
7
32/45  
ST75C520  
Data  
SCR1  
T10  
T11 min  
Transmit  
STA_H  
P1s  
P2s  
PNs  
PRs  
(6)  
SCR1s  
T12  
Receive  
(3)  
T13  
STA_HR  
STA_109F  
(3)  
PNDETs  
PNs  
(3)  
(3)  
PRDETs  
PNSUCs  
STA_109  
RxData  
Mode  
T10  
13  
13  
13  
13  
20  
20  
27  
27  
T11  
20  
20  
20  
20  
30  
30  
40  
40  
T12  
8
T13  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
V.17  
25  
25  
25  
25  
25  
25  
25  
25  
V.17 short  
V.29  
8
8
V.29 short  
8
V.27 4800  
8
V.27 4800 short  
V.27 2400  
8
8
V.27 2400 short  
8
Notes : 1. In the case of V.29 or V.27, PRs and PRDETs bits are not active.  
2. PNSUCs indicates the quality of the Rx signal that will give a ber of approximation of 1e-5.  
3. After sending the command SYNC0, all bits are reset.  
4. When using long echo protection tone, otherwise 0.  
5. When using short echo protection tone, otherwise 0.  
6. STA-106 is set at the end of T6 and reset at the beginning of T10.  
7. After sending the command SYNC1, this bit is set.  
33/45  
ST75C520  
VIII - TONE DETECTORS  
VIII.1 - Overview  
Each BiquadraticFilter, Power Estimator andStatic  
Level can be programmed using a complete set of  
Commands(TDRC, TDRW, TDWC, TDWW, TDZ).  
The wiring between the different Cells can be de-  
fined by the user, using the associatedCommand  
allowing a wide range of applications.  
The general purpose TS75C520 tone detectors  
block is a powerful module that covers a lot of  
applications :  
The 16 Comparator Outputs give, on a baud basis,  
the information into two 8 bits words TONEDET0  
(for cells number 0 to 7) and TONEDET1 (for cells  
number 8 to F). These TONEDET variables can be  
accessed using a MR command or, more easily,  
monitored on a baud basis using the DOSR com-  
mand.  
- call progress tone detection, fully programmable  
for all countries,  
- DTMF detection,  
- FAX, voice, data automatic detection,  
- callwaiting detection,while invoiceordata mode.  
VIII.2 - Description  
VIII.2.1 - Biquadratic Filters  
The tonedetectorblock is a set of 16identicalCells.  
Each cell is composed of a Double Biquadratic  
Filter, a Power estimator section, a Static level and  
a Level comparator.  
Each Biquadratic Filter is a double regular section  
that can performany Transfer function with 4 Poles  
and 4 Zeros. This routine is run on a sample basis.  
Figure 2 : BiquadraticIIR Filter  
-1  
IN  
C0  
C5  
C6  
CB  
OUT  
Z
2
2
-1  
-1  
Z
Z
Z
Z
C1  
C2  
C3  
C7  
C8  
C9  
-1  
-1  
C4  
CA  
The corresponding transfer function is :  
C5 + 2 C3 z±1 + 2 C4 z±2  
CB+ 2 C9 z±1 + 2 CA z±2  
1 ± 2 C7 z±1 ± 2 C8 z±2  
Out  
Input  
±1  
= C0  
C6  
z
±2  
1 ± 2 C1  
z
±1 ± 2 C2 z  
Note : All coefficients are coded on 16 bits 2’s complement in the range +1, -1 (Q15). To avoid the possibility of overflow the user must check  
that the internal node must not be higher that 0.5 (in Q15 representation).  
34/45  
ST75C520  
VIII.2.2 - Power Estimation  
corresponding bit into the TONEDET[0..1] word; if  
not it clear this bit.  
The Power estimation Cell is needed to measure  
the amplitude of the different tones. It is run on a  
sample basis.  
VIII.2.5 - Wiring  
The user must specify the connection (wiring) be-  
tween theinput/outputof theFilter, the input/output  
of the Power estimator, the output of the static  
levels and the two inputs of the Comparators.  
Figure 3 : Power Estimator  
OUT  
IN  
+
-1  
ABS(.)  
P1  
Z
The output signals have an absolute address:  
Node Address  
Signal  
-1  
Z
Address  
Description  
Name  
Ground  
RxSig  
00  
01  
Signal always equal to 0000  
The corresponding transfer function is :  
Receive signal from the  
Analog front end  
P1  
Out = |Input| z±1  
RxSig2  
RxSig4  
02  
03  
Receive signal multiplied by 2  
Receive signal multiplied by 4  
1 ± (1 ± P1) z±1  
04..0F Reserved  
VIII.2.3 - Static Level  
Filter[0..F]  
10..1F Biquadratic Filter Outputs  
A single Threshold level is associated with each  
Cell. It can be useto comparethe outputof aPower  
Estimation with an Absolute Value.  
Power[0..F] 20..2F Power Estimator Outputs  
Level[0..F] 30..3F Static Levels  
The user will specify the inputs of the filters, Power  
and Comparator. At leastone inputmust come from  
the RxSig (node 01, 02 or 03). It is mandatory to  
connect all unusedcell inputs to the Ground signal  
(node 00).  
VIII.2.4 - Comparator  
The Comparator computes, on a baud basis, the  
difference of the signal on its Positive and Negative  
Inputs. If the result is Higher that zero it sets the  
35/45  
ST75C520  
Figure 4 : Tone Detector Wiring Address (first half)  
BIQUADRATIC  
FILTER  
#0  
@10  
@20  
@30  
POWER  
#0  
COMP.  
#0  
LEVEL #0  
BIQUADRATIC @11  
@21  
@31  
POWER  
#1  
FILTER  
#1  
COMP.  
#1  
LEVEL #1  
BIQUADRATIC @12  
@22  
@32  
POWER  
#2  
FILTER  
#2  
COMP.  
#2  
LEVEL #2  
@00  
D0  
D1  
D2  
D3  
D4  
BIQUADRATIC  
FILTER  
#3  
@13  
@14  
@15  
@16  
@17  
@23  
@33  
GROUND  
POWER  
#3  
COMP.  
#3  
LEVEL #3  
@01  
@02  
@03  
RX SIGNAL  
BIQUADRATIC  
@24  
@34  
POWER  
#4  
FILTER  
#4  
COMP.  
#4  
D5  
D6  
D7  
2
2
LEVEL #4  
BIQUADRATIC  
@25  
@35  
POWER  
#5  
TONEDET0  
FILTER  
#5  
COMP.  
#5  
LEVEL #5  
BIQUADRATIC  
@26  
@36  
POWER  
#6  
FILTER  
#6  
COMP.  
#6  
LEVEL #6  
BIQUADRATIC  
@27  
@37  
POWER  
#7  
FILTER  
#7  
COMP.  
#7  
LEVEL #7  
36/45  
ST75C520  
Figure 5 : Tone Detector Wiring Address (second half)  
BIQUADRATIC @18  
@28  
@38  
POWER  
FILTER  
#8  
#8  
COMP.  
#8  
LEVEL #8  
BIQUADRATIC @19  
POWER  
@29  
@39  
FILTER  
#9  
COMP.  
#9  
#9  
LEVEL#9  
BIQUADRATIC @1A  
@2A  
@3A  
POWER  
FILTER  
#A  
#A  
COMP.  
#A  
LEVEL#A  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
BIQU ADRATIC  
FILTER  
@1B  
@1C  
@1D  
@1E  
@1F  
@2B  
@3B  
POWER  
#B  
#B  
COMP.  
#B  
LEVEL #B  
BIQUADRATIC  
FILTER  
@2C  
@3C  
POWER  
#C  
#C  
COMP.  
#C  
LEVEL #C  
BIQUADRATIC  
FILTER  
@2D  
@3D  
POWER  
#D  
TONEDET1  
#D  
COMP.  
#D  
LEVEL #D  
BIQUADRATIC  
FILTER  
@2E  
@3E  
POWER  
#E  
#E  
COMP.  
#E  
LEVEL#E  
BIQUADRATIC  
FILTER  
@2F  
@3F  
POWER  
#F  
#F  
COMP.  
#F  
LEVEL#F  
37/45  
ST75C520  
VIII.3 - Example  
Hereunder is an example of programming a single  
Tone detection (using Cell #3) and a complex dif-  
ferential tone detection (using Cell #4 and #5).  
Bit 3 of the TONEDET variable will be triggered  
eachtime the energy of that filtered signal is higher  
than Static Level number 3.  
Bit 4 of the TONEDET variable will be on each time  
a receive signal has an energy higher than the  
Static Level number 4. Bit 5 will be on only when  
the Filtered (Filter section 4 and 5) received signal  
higher than the energy of the wide-band signal  
number 4 ; this prevents triggering on noise.  
Figure 6 : Wiring Example  
@00  
BIQUADRATIC @13  
@23  
@33  
POWER  
#3  
GROUND  
FILTER  
#3  
COMP.  
#3  
LEVEL #3  
@01  
RX SIGNAL  
@14  
@24  
@34  
BIQUADRATIC  
FILTER  
#4  
POWER  
#4  
D3  
D4  
@02  
@03  
COMP.  
#4  
2
2
LEVEL #4  
D5  
BIQUADRATIC @15  
@25  
@35  
TONEDET0  
POWER  
#5  
FILTER  
#5  
COMP.  
#5  
LEVEL #5  
Program Cell #3 :  
TDWW  
03  
00  
13  
01  
Connect Received signal to Filter and Filter to Energy.  
TDWW 03 01  
Connect Level to Comparator Neg Input and Energy to Pos Input.  
33  
23  
Program Cell #4 and #5 :  
TDWW  
Connect Received Signal to Filter and Energy.  
TDWW 04 01  
04  
00  
01  
34  
01  
24  
14  
25  
Connect Level to Comparator Neg Input and Energy to Pos Input.  
TDWW  
Connect Filter#4 Output to Filter and Filter to Energy.  
TDWW 05 01  
05  
00  
15  
24  
Connect Wide-band Energy to Neg Input and Energy to Pos Input.  
IX - BUFFER OPERATIONS  
IX.1 - Introduction  
Thisappendixis dedicatedto bufferoperation, eitherthe data buffersused in data exchangesor inparticular  
Modes (like Voice).  
The first part is oriented towards a functionaldescription of the buffer operation, while the second section  
is more oriented towards the management of the buffers.  
38/45  
ST75C520  
IX.2 - Receive Operations Overview  
fill them. This further means that the host must not  
perform any bufferoperation on the data part while  
the status remains 0.  
Figure 7 describes the receive data flow.  
The ST75C520 can handle the following types of  
format for the data :  
- parallel synchronous mode : 8-bit words are syn-  
chronously available in the receive buffers. The  
buffer status holds the number of valid bytes  
received,  
- parallel HDLC framing mode : 8-bit data is avail-  
able in the receive buffers. Framing information  
(like flags, CRC, additional ”0”) is interpreted by  
the ST75C520 and reported when necessary in  
the receive buffer status (CRC error, aborted  
frame, framing error, etc). This feature greatly  
eases the implementation of protocols as well as  
FAX data management.  
IX.3 - Transmit Operations Overview  
Figure 8 describes the transmit data flow. The  
following modes are available :  
- parallel synchronous mode : 8-bit words are syn-  
chronously read from the transmit buffers. The  
transmit status buffer holds the number of valid  
bytes to be transmitted (up to 8 per buffer),  
- parallel HDLC framing mode : 8-bit data is re-  
ceived from the transmit buffers. Framing infor-  
mation (frame open, frame close, frame abort,  
number of byte per buffer) is carried by the trans-  
mit buffer status and processed by the  
ST75C520. CRC, padding and other operations  
are automaticallyhandled by the ST75C520.  
Each time the receive deframerhas filled up a new  
buffer, itsets the correspondingflag with the proper  
status then generates the IT3 interrupt. The avail-  
ability of the buffers is tested just before starting to  
Each time the transmit framerhas emptied a buffer,  
the IT2 interrupt is raised.  
Figure 7 : Rx Buffer Schematics  
ER ROR R X  
(SYSERR )  
DATA  
FORMAT  
R EC EIVER  
IT3  
S TA TU S  
RX BUFFER  
STATUS  
RECEIVE  
DEFRAMER  
R EC EIVER  
RX DATA  
BUFFER  
D ATA  
SERIAL  
R X D  
OUT  
RX C LK  
Figure 8 : Tx Buffer Schematics  
ERROR TX  
(SYSERR)  
DATA  
FO RMAT  
TRANSMITTER  
IT2  
STATUS  
TX BUFFER  
STA TUS  
SERIAL  
TRANSMITTER  
FRAMER  
TRANSMITTER  
MU X  
DATA  
TX DATA  
BUFFER  
SERIAL  
T X D  
I N  
T XC LK  
39/45  
ST75C520  
IX.4 - Buffer Status and Format Description  
The following section describes the meaning and  
use of the buffer status words.  
DTRBS1 (see the Host Interface Summary sec-  
tion in the main document). These flags are set by  
the ST75C520 and must be reset by the host. The  
data buffer exchanges are synchronized through  
these status words, an improper resetting will trig-  
ger the error Err_Rx in the error status SYSERR.A  
value of 0 for DTRBS0 or DTRBS1 means that the  
corresponding buffers are empty : this value must  
be written by the host.  
IX.4.1 - Transmit Buffer  
The transmit buffer status words are DTTBS0 and  
DTTBS1 (see the Host Interface Summary sec-  
tion in the main document) and are more likely to  
be seen ascontrol words. These words must be set  
by the host and are reset by the ST75C520. The  
data buffer exchanges are synchronized through  
these status words, (see Buffer Status and format  
description)an impropersettingwill triggerthe error  
Err_Tx in the error status SYSERR. A value of 0 for  
DTTBS0 orDTTBS1 meansthatthe corresponding  
buffers are empty : this value is written by the  
ST75C520. The unused bits of DTTBSx must be  
set to 0 by the host.  
In FSK or V.21 Channel 2 Mode, when working in  
the parallel data mode, the receiver extract each  
bit using the nominal baud rate  
(1200Hz/300Hz/75Hz).  
IX.5.1 - Synchronous Mode  
Field  
Pos.  
Val.  
Description  
BUFF_LENG  
3..0  
1..8  
Number of valid  
bytes in the buffer  
In FSK Mode, when working in the parallel data  
mode, the transmitter expands each bit to the  
nominal baud time (1200Hz/300Hz/75Hz).  
IX.5.2 - HDLC Framing Mode  
Field  
Pos.  
Val.  
Description  
IX.4.2 - Synchronous Mode  
BUFF_LENG  
3..0  
1..8  
Number of valid  
bytes in the buffer  
Field  
Pos.  
Val.  
Description  
BUFF_ERRS  
5..4  
00  
01  
10  
No error  
BUFF_LENG  
3..0  
1..8  
Number of valid  
bytes in the buffer  
CRC error  
Non byte-aligned  
frame  
11  
Aborted frame  
IX.4.3 - HDLC Framing Mode  
BUFF_SFRM  
BUFF_EFRM  
6
7
0
1
Data stream  
Field  
Pos.  
Val.  
Description  
Start of frame  
BUFF_LENG  
3..0  
1..8  
Number of valid  
bytes in the buffer  
0
1
Data stream  
End of frame  
BUFF_SFRM  
BUFF_EFRM  
BUFF_FRAB  
4
5
6
0
1
Data stream  
Start of frame  
IX.6 - Data Buffer Management  
0
1
Data stream  
End of frame  
Figure 9 shows the general flow chart for transmit  
data buffer management. In the transmit path, the  
data buffer exchanges should always begin with  
the filling of buffer 0, then with the update of the  
buffer 0 status word. The initiation of the data  
exchanges is initiated then with the XMIT com-  
mand.  
0
1
Normal process  
Abort frame (no  
data in buffer)  
IX.5 Receive Buffer  
The receive buffer status words are DTRBS0 and  
40/45  
ST75C520  
Figure 9 : Buffer Operations Synchronization  
Tx MAIN PROGRAM  
INTERRUPT ROUTINE  
BEGIN  
INTERRUPT  
N
NEED TO  
TRANSMIT  
N
106 ON  
Y
Y
FILL BUFFER  
#IBUFF  
FILL BUFFER #0  
UPDATE STATUS  
BUFFER #IBUFF  
UPDATESTATUS  
BUFFER #0  
CLEAR IT2  
IBUFF = 1  
XMIT ON  
TOGGLE IBUFF  
ENABLE IT2  
RETURN  
N
Y
106 OFF or  
ERROR TX  
DISABLE IT2  
XMIT OFF  
CSE ERRTX  
(only if ERR)  
Rx MAIN PROGRAM  
INTERRUPT ROUTINE  
BEGIN  
INTERRUPT  
READ BUFFER  
#IBUFF  
N
109 ON  
Y
WRITE $00  
IN DATA STATUS  
BUFFER #IBUFF  
WRITE $00 IN  
DATA STATUS  
BUFFER #0 AND #1  
CLEAR IT3  
TOGGLE IBUFF  
RETURN  
IBUFF = 0  
ENABLE IT3  
Y
N
109 ON  
DISABLE IT3  
CSE ERRRX  
(only if ERR)  
41/45  
ST75C520  
X - DEFAULT CALL PROGRESS TONE DETEC-  
TORS  
XI - DEFAULT ANSWER TONE DETECTORS  
Figure 10 : Call Progress Tone Detector Band 1  
Figure 12 : 2100Hz Answer Tone Detector  
Figure 11 : Call Progress Tone Detector Band 2  
Figure 13 : 2225Hz Answer Tone Detector  
XII - ELECTRICAL SCHEMATICS  
Oscillator  
When using a third harmoniccrystal oscillator in series resonancemode (RS < 40, C0 = 6pF, Pe = 0.1mW),  
we recommend the following schematic :  
EX TA L  
5 6  
X TAL  
55  
29.4 912MHz  
33pF  
1µH  
5pF  
(opti onal)  
10n F  
42/45  
ST75C520  
XII - ELECTRICAL SCHEMATICS (continued)  
Figure 14  
22k  
220pF  
40k  
8
4
1.2kΩ  
15k  
13.2k  
22kΩ  
3
2
4
8
1
RXA2  
TXA1  
2
3
1
20kΩ  
TL072  
320Ω  
2.2nF  
TL072  
680pF  
82kΩ  
20k  
8
4
TL072  
220Ω  
15k  
2.2nF  
TL072  
5
6
4
8
13.2kΩ  
22kΩ  
7
6
5
TXA2  
7
RXA1  
1.2kΩ  
40kΩ  
TIP  
22k  
220pF  
AVDD  
RING  
TRANSFORMER  
1kΩ  
V
REFP  
10µF  
10µF  
1k  
100nF  
100nF  
VCM  
1kΩ  
1kΩ  
10µF  
V
REFN  
100nF  
AGND  
AGND  
AGND  
XIII - PCB DESIGN GUIDELINES  
Performances of the FAX modem depends on the  
ST75C520 intrinsic performances and on the  
proper PC board layout. All aspects of the proper  
engineering practices, for PC board design, are  
beyond the scope of this paragraph.  
under componentson both sides of the band and  
connect to avoid small islands,  
- both AGNDR and AGNDT must be connected  
with very low impedance to a single point, (see  
Chapter I.7, Power Supply),  
- thetwo2.2nFcapacitorsconnectedtotheRXA1and  
RXA2 Pins must be as close as possible to them,  
- thetwo 100nFcapacitorsconnectedtotheVREFPand  
We recommend the following points :  
- in a 4-layer PC board :  
Separated digital ground and analog ground,  
connected together at one point, as close as  
possible to the ST75C520,  
V
REFN pins must be as close as possible to them,  
- analog and digital supplies must be connected  
together,at a single point, as close as possible to  
the chip (see Chapter I.7, Power Supply).  
- in a 2-layer PC board :  
Provide a ground grid in all space around and  
43/45  
ST75C520  
TYPICAL APPLICATION  
(third harmonic series  
resonance oscillator)  
L1 1µH  
29.4912MHz  
Y1  
C1  
5pF  
C3  
10nF  
C2  
33pF  
+5VA  
C5  
43  
49  
56  
55  
SCCLK  
EOS  
EXTAL  
XTAL  
* C4  
100nF  
µ
F
10  
50  
45  
51  
42  
44  
53  
2
+5V  
BOS  
HALT/NOP  
TXA1  
TXA1  
TXA2  
RDYS  
SCOUT  
SCIN  
MCI  
1
+5V  
R8  
+5V  
TXA2  
DAA  
60  
61  
RXA1  
RXA1  
RXA2  
R1 1.2kΩ  
54  
48  
47  
CLKOUT  
MC0  
470  
R7  
62  
MC1  
AVDD  
10kΩ  
REFP  
*C6  
V
46  
26  
27  
58  
63  
57  
MC2  
2.2µF  
D0  
SD0  
VCM  
*C7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SD1  
V
REFN  
2.2µF  
RXA2  
28  
29  
30  
31  
32  
33  
59  
SD2  
AGNDR  
R2 1.2kΩ  
SD3  
64  
SD4  
AGNDT  
SD5  
7
6
SD6  
TP1  
TP2  
EYEX  
EYEY  
R3  
1.2kΩ  
SD7  
DTACKl  
INTRl  
37  
38  
36  
4
5
SDTACK  
SINTR  
SCS  
EYESYNC  
EYECLK  
*
*
C10  
R4  
1.2kΩ  
CSl  
1µF  
C9  
100nF  
35  
34  
16  
14  
SR/W(WRl)  
SDSl (RDl)  
SR/W  
SDS  
TXD  
CLK  
RXD  
CD  
VCM  
R5  
1.2kΩ  
C11  
1µF  
C8  
100nF  
39  
17  
18  
19  
15  
13  
11  
12  
10  
INT/MOT  
SA0  
A0  
A1  
R6  
1.2k  
SA1  
RTS  
CTS  
RING  
A2  
SA2  
AGND  
20  
21  
22  
A3  
SA3  
(connect close  
to the ST75C52)  
A4  
SA4  
TxD  
RxD  
CLK  
3
A5  
SA5  
EBS  
23  
52  
A6  
SA6  
8
RESETl  
RESET  
DV DD  
DV DD  
DV DD  
DGND  
DGND  
DGND  
+5V  
CDl  
RTSl  
CTSl  
RINGl  
V.24/RS232  
9
24  
40  
+5V  
INTEL mode  
25  
41  
MOTOROLA mode  
*C12 *C13 *C14  
10nF 10nF 10nF  
10µF  
(select one  
of the two)  
Notes : All capacitor with a ”*” must be implanted close to the ST75C520 pin.  
All signal name ending with a ”1” are active low.  
R3, R4, R5, R6 are needed if the hybrid will sink a current on VCM  
.
44/45  
ST75C520  
PACKAGE MECHANICAL DATA  
64 PINS - PLASTIC QUAD FLAT PACK  
A
A2  
e
A1  
16  
17  
1
64  
32  
33  
49  
48  
C
E2  
E1  
E
K
Millimeters  
Typ.  
Inches  
Typ.  
Dimensions  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
B
3.40  
0.134  
0.25  
2.55  
0.01  
0.10  
2.80  
3.05  
0.45  
0.11  
0.12  
0.018  
0.009  
0.687  
0.555  
0.30  
0.012  
0.005  
0.667  
0.547  
C
0.13  
0.23  
D
16.95  
13.90  
17.20  
14.00  
12.00  
0.80  
17.45  
14.10  
0.677  
0.551  
0.472  
0.031  
0.677  
0.551  
0.472  
0.063  
D1  
D2  
e
E
16.95  
13.90  
17.20  
14.00  
12.00  
1.60  
17.45  
14.10  
0.667  
0.547  
0.687  
0.555  
E1  
E2  
F
K
0o (min.), 7o (max.)  
0.95 0.025  
L
0.65  
0.80  
0.031  
0.037  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility  
for the consequences of use of suchinformation nor for any infringement of patents or other rights of third parties which may result  
from its use. No licence is granted by implication or otherwiseunder anypatent or patent rights of SGS-THOMSON Microelectronics.  
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all  
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life  
support devices or systems without express written approval of SGS-THOMSON Microelectronics.  
1995 SGS-THOMSON Microelectronics - All Rights Reserved  
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to  
the I2C Standard Specifications as defined by Philips.  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
45/45  

相关型号:

ST75C52PQFP

DSP For MODEM
ETC

ST75C530

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C530FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C530PQFP

Telecommunication IC
ETC

ST75C530TQFP

暂无描述
STMICROELECTR

ST75C540

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540PQFP

Telecommunication IC
ETC

ST75C540TQFP

14.4kbps DATA, 14.4kbps FAX, MODEM-DATA/FAX, PQFP80, PLASTIC, TQFP-80
STMICROELECTR

ST760K

Circular DC Power Connector,
SWITCH

ST760L

Circular DC Power Connector, 2.032mm Dia,
SWITCH

ST7624

65K Color Dot Matrix LCD Controller/Driver
SITRONIX